
491 Knowledge Representation

Default Logic (Reiter)

Marek Sergot
Department of Computing
Imperial College, London

February 2004; February 2007 v1.1; February 2017 v1.1j

Ray Reiter. A logic for default reasoning. Artificial Intelligence 13:81–132 (1980).

Very extensively studied. Many variations + generalisations.

Further reading: V.W. Marek, M. Truszczyński. Nonmonotonic Logic. Springer-Verlag,
1993. (Ch.2–6)

Notation

L is some (logical) language, usually propositional or (a fragment of) first-order predicate
logic. L is closed under truth-functional operations. (Thus, if α ∈ L then ¬α ∈ L, and if
α ∈ L and β ∈ L then α ∨ β ∈ L, α ∧ β ∈ L, α→ β ∈ L, etc.)

Lower-case Greek letters α, β, γ, . . . range over formulas.
Upper case letters A,B, . . . , S, . . . ,W,X, Y, . . . represent sets of formulas.

M is a model for L.

M |= α means that formula α evaluates to true in model M.
|= α means that formula α evaluates to true in all models M.

A |= α means that α is true in all models of A.

Th(A) stands for the set of all classical truth-functional consequences of A. α ∈ Th(A)
when α follows from A in classical propositional logic PL, i.e. when A |= α (α is true in all
models of A).

1

Defaults as inference rules

Default logic = classical logic + default rules of inference

Default rules
α : β1, . . . , βm

γ
(m ≥ 0)

where α, β1, . . . , βm, γ are all formulas (not just atoms or literals as in (extended) logic
programs).

α: ‘prerequisite’
β1, . . . , βm: consistency conditions or ‘justification’

γ: ‘consequent’

Informally:

If α is derivable and β1, . . . , βm all consistent, then derive γ.
If α is derivable and ¬β1, . . . ,¬βm not derivable, then derive γ.

And notice:
α : β1, . . . , βm

γ
is not the same as

α : β1 ∧ · · · ∧ βm
γ

.

In the latter case there is just one formula in the consistency condition.

Examples

• bird(x) : ¬ab fly(x)

fly(x)
(‘Open defaults’ — those containing free variables — are a scheme for all their ground
instances.)

• big(x) : strong(x)

strong(x)

• quaker(x) : pacifist(x)

pacifist(x)
,

republican(x) : ¬pacifist(x)

¬pacifist(x)

• on(x, y, t) ∧ next(t, t′) : ¬moved(x, t, t′)

on(x, y, t′)
(a kind of ‘frame axiom’)

• bird(x) : ¬penguin(x),¬ostrich(x),¬wounded(x)

fly(x) ∨ dead(x)

• bird(x) ∧ ∀y (p(y)→ q(x, y)) : s(x) ∧ q(x, x),¬dead(x)

∀y (q(y, y)→ p(x)) ∨ ∀y bird(y)

I have absolutely no idea what the last rule is supposed to represent. I just wanted to
emphasise how general the form of default rules is.

There will be examples of how to use defaults later.

Later we will see that clauses of a (normal or extended) logic program

L← L1, . . . , Lm, not Lm+1, . . . , not Ln

are equivalent to default rules of a certain form.

2

A default rule is more general. It is like a clause in a logic program of the form:

γ ← α1, . . . , αm, not βm+1, . . . , not βn

where γ, α1, . . . , αm, βm+1, . . . , βn can be any formulas.

The above would be written as a default rule like this:

α1 ∧ · · · ∧ αm : ¬βm+1, . . . ,¬βn
γ

Informally: ¬βi is consistent when βi is not derivable, and βi is not derivable corresponds
to negation by failure not βi
But consistent with what? That comes next . . .

Extensions

Default rules are used to create extensions of classical theories. Extensions can be regarded
as alternative acceptable sets of beliefs given facts W and a set of default rules D.

Default theory (D,W):

W is a set of (first-order) formulas (non-default rules and facts)
D is a (countable) set of default rules

An extension E of (D,W) is the smallest set of formulas containing W , closed under
classical consequence Th, and closed under the default rules D that are applicable given
E.

It remains to define what ‘closed under the default rules D that are applicable given E’
means. A formal definition follows presently.

Extensions are minimal: if E is an extension of (D,W) there is no other extension E ′ of
(D,W) such that E ′ ⊂ E. We will prove this later. (Easy.)

Example

D = {bird(x) : ¬penguin(x)

flies(x)
}

W = {bird(Colin), penguin(Frank), ∀x (penguin(x)→ bird(x))}

Default theory (D,W) has an extension Th(W ∪ {flies(Colin)}).

Example: ‘Nixon diamond’

Conflicting defaults induce multiple extensions.

D = {quaker(x) : pacifist(x)

pacifist(x)
,

republican(x) : ¬pacifist(x)

¬pacifist(x)
}

W = {quaker(Nixon), republican(Nixon) }

3

Default theory (D,W) has two extensions:

E1 = Th(W ∪ {pacifist(Nixon)}
E2 = Th(W ∪ {¬pacifist(Nixon)}

This example is commonly called “the Nixon diamond”.

So what do we conclude?

• ‘brave’ or ‘credulous’ reasoning: Nixon is a pacifist and is not a pacifist;

• ‘cautious’ or ‘sceptical’ reasoning: Nixon pacifist? — no conclusion

In general:

• α follows from (D,W) by ‘brave’/‘credulous’ reasoning when α in any extension of
(D,W): α ∈ ⋃

ext(D,W);

• α follows from (D,W) by ‘cautious’/‘sceptical’ reasoning when α in all extensions of
(D,W): α ∈ ⋂

ext(D,W).

Here I’m writing ext(D,W) for the set of extensions of (D,W).

Reiter’s original definition of an extension is quite elaborate and rather subtle. It is shown
later for reference (no need to memorise). It is much easier to define extensions in terms
of reduct — exactly the same idea as for stable models (answer sets) of logic programs but
much more general.

First we start with monotonic rules of inferences, and closures (of a set of formulas) under
ordinary (monotonic) rules.

4

Closure under (monotonic, non-default) rules

Definition Let S be a set of formulas. Let R be a set of rules
α

γ
.

TR(S)
def
= {γ | α

γ
∈ R and α ∈ S}

TR(S) is the set of formulas that are obtained from S by one application of the rules in R.
Clearly TR is monotonic: S1 ⊆ S2 ⇒ TR(S1) ⊆ TR(S2).

Clearly TR is also monotonic in R: R1 ⊆ R2 ⇒ TR1(S) ⊆ TR2(S).

A set of formulas S is closed under rules R when, for every
α

γ
∈ R and α ∈ S, we have

γ ∈ S. Or in other words, when TR(S) ⊆ S.

Note I deliberated long and hard about the choice of notation here. I chose TR(S)
because of the obvious analogy with the immediate consequence operator TP of a (definite)
logic program P :

TP (I)
def
= {A | A← B1, . . . Bm is a ground instance of a clause in P and {B1, . . . , Bm} ⊆ I}

A definite logic program P can be regarded as a set of rules: let Prules be the set of rules

obtained by replacing every ground clause A← B1, . . . Bm in P by the rule
B1 ∧ · · · ∧Bm

A
.

Then TP (I) = TPrules
(I).

On the left hand side, TP is the immediate consequence operator for the logic program P
and acts on a set of atoms I. On the right, TPrules

is the operator that applies rules Prules

to sets of formulas, not just sets of atoms.

I hope this does not confuse.

Just for the record: When P is a normal logic program (i.e., where some conditions can
be negation by failure literals)

TP (I)
def
= {A | A← B1, . . . Bm, not Bm+1, . . . not Bn is a ground instance of a clause in P

and {B1, . . . , Bm} ⊆ I and Bm+1 /∈ I, . . . , Bn /∈ I}

For P a normal logic program, TP is not monotonic in general. The operator T ′
P (I)

def
=

I∪TP (I) used in the iterated fixpoint construction for stratified programs is not monotonic
either but is ‘progressive’. The stratification of P makes T ′

P sufficiently well behaved for
construction of the iterated fixpoint. (The proofs were omitted.)

When P is a normal logic program with some occurences of negation by failure not , can
we also define a set of corresponding rules Prules? Yes, but these rules are Reiter default
rules and not ordinary (monotonic) rules as in the case of a definite logic program.

End of note

5

Definition Let W be a set of formulas and R a set of rules. The closure of formulas W
under rules R — denoted CnR(W) — is the smallest (set inclusion) set of formulas S such
that

1. W ⊆ S

2. Th(S) ⊆ S (S is closed under classical propositional consequence Th)
3. TR(S) ⊆ S (S is closed under the rules R, equivalently, under the operator TR)

The requirement that CnR(W) is the smallest such set captures the idea that every formula
in CnR(W) is ‘grounded in’ or ‘supported by’ W and R, in the sense that it is derivable
from W using the rules in R and the inference rules of classical propositional logic (Th).

(Earlier I used the notation ClP (EDB) for P a (definite) logic program. In this notation
ClP (EDB) = CnPrules

(EDB).)

How do we know that CnR(W) exists and/or is unique?

Proposition

• L (the set of all formulas) satisfies the closure conditions (1)–(3) of CnR(W).
• If sets S1 and S2 both satisfy the closure conditions (1)–(3) of CnR(W), then so does

their intersection S1 ∩ S2.
• CnR(W) is the intersection of all sets S satisfying the closure conditions (1)–(3).

Proof: (i) is obvious. (iii) follows from (ii). (ii) is an easy exercise.

Some properties of CnR(W)

Straight from the definition of CnR(W):

• W ⊆ CnR(W)
• Th(CnR(W)) ⊆ CnR(W)
• TR(CnR(W)) ⊆ CnR(W)

And now we can prove (tutorial exercises):

• W ⊆ CnR(W) (‘inclusion’)
• CnR(W) ⊆ CnR(W ∪X), any set of formulas X (CnR is monotonic)

which is equivalent to A ⊆ B ⇒ CnR(A) ⊆ CnR(B)
• X ⊆ CnR(W) ⇒ CnR(W ∪X) ⊆ CnR(W) (‘cut’ alias ‘cumulative transitivity’)

which is equivalent to W ⊆ W ′ ⊆ CnR(W) ⇒ CnR(W ′) ⊆ CnR(W)
• CnR(CnR(W)) ⊆ CnR(W) (‘closure’)

(Recall that CnR monotonic implies ‘cut’ is equivalent to ‘closure’)
• CnR is a classical consequence relation
• Th(W) ⊆ CnR(W) (‘supraclassical’)
• compactness: if α ∈ CnR(W) then α ∈ CnR(W ′) for some finite subset W ′ ⊆ W .

We can also show:

• CnR(W) is the smallest set of formulas S such that S = Th(W ∪ TR(S)).
(This is useful for proving certain properties of default theories.)

Proofs of all the above, except compactness which is a little bit more fiddly, are left as
tutorial exercises.

6

Inductive characterisations

E0 = W

En+1 = Th(En ∪ TR(En))

CnR(W) =
⋃ω

n=0
En

(Note: although En ⊆ En+1 we still need the big union in the definition of E because we
have no other way of expressing that n ‘goes up to infinity’.)

Where does this inductive definition come from? It comes from (proof later)

CnR(W) = T ′′
R↑ω(W)

where T ′′
R(S)

def
= Th(S ∪ TR(S)).

There are some alternative inductive characterisations, as we will see later. The most
important of them is the following.

Inductive characterisation: ‘base operator’

CnR(W) can also be characterised in terms of the ‘base operator’:

BR(S)
def
= S ∪ TR(Th(S)) = S ∪ {γ | α

γ
∈ R, α ∈ Th(S)}

The value of the ‘base operator’ BR is that when R and W are both finite it provides a
finite representation of the closure CnR(W).

This is important: the key objects in default logic (extensions) are infinitely large sets of
formulas (otherwise they would not be closed under Th). It is easier to deal with finite
representations of them, if we can.

It can be shown (details later) that

CnR(W) = Th(BR↑ω(W))

So we get . . .

Inductive characterisation

E0 = W

En+1 = BR(En) = En ∪ TR(Th(En))

= En ∪ {γ |
α

γ
∈ R, α ∈ Th(En)}

CnR(W) = Th(
⋃ω

n=0
En)

The value of this characterisation in terms of the ‘base operator’ BR is that if R and

W are both finite then so is each En and so is the union
⋃ω

n=0
En. We obtain a finite

representation of the closure CnR(W).

7

Example

R = { r¬q ,
p

s ∨ t}, W = {p ∨ q, r}

Let’s compute CnR(W):

E0 = {p ∨ q, r}
E1 = BR({p ∨ q, r}) = {p ∨ q, r} ∪ {¬q}
E2 = BR({p ∨ q, r, ¬q}) = {p ∨ q, r, ¬q} ∪ {s ∨ t} because p ∈ Th({p ∨ q, r, ¬q})
E3 = BR(E2) = E2

So CnR(W) = Th({p ∨ q, r, ¬q, s ∨ t}).

Notice that CnR(W) can also be written Th({p, r, ¬q, s ∨ t}) since in propositional logic
(p ∨ q) ∧ ¬q ≡ p ∧ ¬q.

Algorithm

It’s also easy to construct a simple algorithm for computing BR↑ω(W). Notice that once

a rule
α

γ
has been ‘applied’ it can be ignored: once the conclusion γ is included it cannot

be removed, and so there is no point rechecking the rule
α

γ
any more.

Input: a finite set R of rules and a finite set W of formulas.
Output: BR↑ω(W)

Ein := W
repeat

E := Ein

AR := {α
γ
∈ R | α ∈ Th(E) }

Ein := E ∪ {γ | α
γ
∈ AR}

R := R− AR
until AR = ∅
return(E)

8

Remark: integrity constraints

Recall the so-called metalevel or epistemic reading of an integrity constraint

“if α then β”

Informally, this is ‘if α is in the database then β is in the database’.

So, if the database content is Cn(D) (some base D, some notion of consequence Cn) then
we are saying:

if α ∈ Cn(D) then β ∈ Cn(D)

In other words:

Cn(D) is closed under the rule
α

β

And then the so-called ‘theoremhood’ or ‘entailment’ definition of satisfaction of an in-
tegrity constraint “if α then β” is:

Cn(D) is closed under the rule
α→ β

(What about the so-called ‘consistency’ definition of integrity constraint satisfaction:

¬(α→ β) /∈ Cn(D)

Not so easy to express in terms of closure under a rule.

Comparison with material implication

Compare rules
α

γ
with truth-functional (‘material’) implications α→ γ.

In both cases, given α we can derive γ. But there are differences: properties of material
implication (‘reasoning by cases’, contrapositive, . . .) do not hold for rules.

Example (no ‘reasoning by cases’)

Let R = {α
γ
,
β

γ
}.

γ ∈ CnR({α}). γ ∈ CnR({β}). But γ /∈ CnR({α ∨ β}). CnR({α ∨ β}) = Th({α ∨ β}).
(In other words, nothing new is obtained from Th({α ∨ β}) by adding rules

α

γ
,
β

γ
.)

9

Example (no contrapositive)

Let R = {α
γ
}.

γ ∈ CnR({α}). But ¬α /∈ CnR({¬γ}). CnR({¬γ}) = Th({¬γ}).

The following property summarizes the relationship between rules and material implica-
tions. (It is not necessary to memorize it. Just read what it is saying. It is also instructive
to look at how the proof works.)

Proposition (Makinson)

Let mat(R) be the set of ‘materialisations’ of rules R:

mat(R)
def
= {α→ γ | α

γ
∈ R}

Then
CnR(W) ⊆ Th(mat(R) ∪W)

Proof: It is sufficient to show that Th(mat(R) ∪W) satisfies the closure conditions for
CnR(W) because, by definition, CnR(W) is the smallest set that satisfies those conditions.

• W ⊆ Th(W ∪mat(R)). Obvious (Th inclusion).

• Th(W ∪mat(R)) is closed under Th. Obvious (Th ‘closure’/‘idempotence’).

• To show Th(W ∪ mat(R)) is closed under TR, suppose γ ∈ TR(Th(W ∪ mat(R)))
and show γ ∈ Th(W ∪mat(R)), as follows.

If γ ∈ TR(Th(W ∪ mat(R))) then there is a rule
α

γ
in R such that α ∈ Th(W ∪

mat(R)). But if
α

γ
∈ R then α→ γ ∈ mat(R) and hence α→ γ ∈ Th(W ∪mat(R)).

Now if α ∈ Th(W ∪ mat(R)) and α → γ ∈ Th(W ∪ mat(R)) then γ ∈ Th(W ∪
mat(R)), as required.

To show that the result does not hold the other way round, in general, consider either of
the two examples above.

Let R = {α
γ
,
β

γ
}. Then mat(R) = {α→ γ, β → γ}.

Let W = {α ∨ β}. Then γ ∈ Th({α ∨ β} ∪ {α→ γ, β → γ}) but γ /∈ CnR({α ∨ β}).
And suppose R = {α

γ
}. mat(R) = {α→ γ}.

Let W = {¬γ}. Then ¬α ∈ Th({¬γ} ∪ {α→ γ}) but ¬α /∈ CnR({¬γ}).

10

Extensions: definitions

Definition Let (D,W) be a default theory. Let E be a set of formulas.

Let DE denote the (non-default) rules corresponding to the default rules in D that are
applicable given E:

DE def
= {α

γ
| α : β1, . . . βm

γ
∈ D, ¬βi /∈ E, for every i ∈ 1..m}

DE is sometimes called the reduct of D given E. (No coincidence: see relationships with
logic programs later.)

E is an extension of (D,W) when E = CnDE(W).

Example

D = {bird(x) : ¬penguin(x)

flies(x)
}, Wpenguins = {∀x (penguin(x)→ bird(x))}

Colin is a bird.
Check that E = Th(Wpenguins ∪ {bird(Colin), flies(Colin)}) is an extension of
(D,Wpenguins ∪ {bird(Colin)}).

The reduct DE = {bird(Colin)

flies(Colin)
}.

CnDE(Wpenguins ∪ {bird(Colin)}) = Th(Wpenguins ∪ {bird(Colin), flies(Colin)}) = E. As ex-
pected.

How was this obtained? The reduct DE is just a set of ordinary, monotonic rules, so you
can use any of the methods/results of the previous section, such as the ‘base operator’
and/or the associated algorithm.

Now suppose that Colin is a penguin.
Check that E ′ = Th(Wpenguins ∪ {penguin(Colin), flies(Colin)}) is not an extension of
(D,Wpenguins ∪ {penguin(Colin)}).
The reductDE′

= ∅. CnDE′ (Wpenguins∪{penguin(Colin)}) = Th(Wpenguins∪{penguin(Colin)}) 6=
E ′.

Check that E ′′ = Th(Wpenguins∪{penguin(Colin)}) is an extension of (D,Wpenguins∪{penguin(Colin)}).
The reductDE′′

= ∅. CnDE′′ (Wpenguins∪{penguin(Colin)}) = Th(Wpenguins∪{penguin(Colin)}) =
E ′′.

Example: ‘Nixon diamond’

D = {q : p

p
,
r : ¬p
¬p }, W = {q, r}

Default theory (D,W) has two extensions: E1 = Th({q, r, p}) and E2 = Th({q, r,¬p})
Check: reduct DE1 = {q

p
}. CnDE1 ({q, r}) = Th({q, r, p}) = E1.

Check: reduct DE2 = { r¬p}. CnDE2 ({q, r}) = Th({q, r,¬p}) = E2.

11

Note: Be careful!

E is an extension of (D,W) when E = CnDE(W). By definition, CnDE(W) is the smallest
set of formulas containing W , closed under Th, and closed under the reduct DE, i.e., under
the operator TDE .

The following definition looks equivalent but is NOT.

E is an extension of (D,W) when E is the smallest set of formulas such that:

1. W ⊆ E

2. Th(E) ⊆ E

3. E is closed under the applicable default rules D given E: TDE(E) ⊆ E.

To see the difference, consider the following example.

Let D = {p : q

q
}, W = {p}.

Consider E = Th({p,¬q}). You can see that E is not an extension of (D,W): DE = ∅.
And Cn∅({p}) = Th({p}) 6= E.

But E satisfies the conditions of the wrong definition above. E = Th({p,¬q}) contains
W = {p}. E is obviously closed under Th. And E is closed under rules DE, trivially
because DE = ∅. Moreover, subsets of E = Th({p,¬q}) do not satisfy these conditions.

In particular, E ′ = Th({p}) does not, because the reduct DE′
= {p

q
}, and E ′ is not closed

under DE′
.

Where is the difference?

Right definition E is an extension of (D,W) when DE = R and E is the smallest set of
formulas containing W and closed under R and Th.

Wrong definition E is an extension of (D,W) when E is the smallest set of formulas
containing W and closed under DE and Th.

That still looks very similar. Perhaps it is clearer like this:

Right definition W ⊆ E, Th(E) ⊆ E, TDE(E) ⊆ E,
¬∃S[S ⊂ E,W ⊆ S,Th(S) ⊆ S,TDE(S) ⊆ S]

Wrong definition W ⊆ E, Th(E) ⊆ E, TDE(E) ⊆ E,
¬∃S[S ⊂ E,W ⊆ S,Th(S) ⊆ S,TDS(S) ⊆ S]

(The difference is in the very last bit of each.)

My advice? Don’t worry about it. Don’t use the wrong definition. Just construct the
reduct DE and then the closure CnDE(W).

12

Some properties

Given E, the reduct DE is a (possibly empty) set of ordinary, non-default, monotonic rules.
So we have available all the properties of (monotonic, non-default) closures.

For example: E is an extension of (D,W) when E is the smallest set of formulas S such
that:

S = Th(W ∪ TDE(S))

And we have various inductive characterisations (see below).

Clearly, if E1 ⊆ E2, then DE2 ⊆ DE1 . This is because any rule that passes the consistency
check against E2 must pass the consistency check against E1. The following property
follows immediately and is very useful.

Proposition TDE(S) is monotonic in D and S but anti-monotonic in E:

D1 ⊆ D2 ⇒ TD1
E(S) ⊆ TD2

E(S)

S1 ⊆ S2 ⇒ TDE(S1) ⊆ TDE(S2)

E1 ⊆ E2 ⇒ TDE2 (S) ⊆ TDE1 (S)

Here’s a property of extensions mentioned earlier. Extensions are minimal: if E is an
extension of (D,W) then no proper subset of E can be an extension of (D,W). Or put
another way . . .

Proposition (Extensions are minimal) If E and E ′ are extensions of (D,W) such
that E ′ ⊆ E then E ′ = E.

Proof: We just need to show E ⊆ E ′.
E ′ ⊆ E implies CnDE(W) ⊆ CnDE′ (W). So we have:

E = CnDE(W) ⊆ CnDE′ (W) = E ′

and so E ⊆ E ′.

Inductive characterisation

Now we take the inductive characterisation of the closure CnR given earlier but apply to
the special case of CnDE(E). We get . . .

A set of formulas E is an extension of a default theory (D,W) when:

E0 = W

En+1 = Th(En ∪ TDE(En))

E =
⋃ω

n=0
En

In the above, you first construct the reduct DE and then use that to define the inductive
characterisation of the closure CnDE(E).

13

You can omit the separate reduct construction step if you like. Then . . .

E0 = W

En+1 = Th(En ∪ {γ |
α : β1, . . . βm

γ
∈ D, α ∈ En, and ¬βi /∈ E, for every i ∈ 1..m})

Look very carefully at the consistency check in the definition of En+1. It refers to E not
to En. So this isn’t a constructive definition. We need to know the extension E before
we start the inductive construction. This feature is sometimes referred to as end-regulated
induction.

My advice? Construct the reduct first, then compute the closure.

Inductive characterisation (another version)

In case you do some background reading, here is another inductive characterisation. Some
books present the following:

E0 = W

En+1 = Th(En) ∪ TDE(En)

E =
⋃ω

n=0
En

This is not the same as the earlier one. But they are equivalent. (Explained why later.)

Inductive characterisation — ‘base operator’

Much more important is this version in terms of the ‘base operator’. As usual, this has
the advantage that if D and W are both finite then we obtain a finite representation of an
extension.

E is an extension of (D,W) when

E0 = W

En+1 = BDE(En) = En ∪ TDE(Th(En))

= En ∪ {γ |
α

γ
∈ DE and α ∈ Th(En)}

E = Th(
⋃ω

n=0
En)

Again, you can eliminate the separate step of constructing the reduct and do it all in one
go if you like:

E0 = W

En+1 = En ∪ {γ |
α : β1, . . . βm

γ
∈ D, α ∈ Th(En), and ¬βi /∈ E, for every i ∈ 1..m}

Again, look very carefully at the consistency check. It refers to E not to En. This is still
end-regulated induction, not a constructive definition.

(It is possible to give constructive inductive definitions but it’s quite complicated and I
won’t cover it in these notes.)

14

Example (by Henry Prakken)

D = {d : sp

sk
,
l : ph

ph
,
ph : ¬sp
¬sp }

(If a person is Dutch and it’s consistent (s)he likes sport, then (s)he can skate.
Logicians typically like philosophy. Persons who like philosophy typically don’t like sport.
What about Dutch logicians?)

W = {d, l}
Now if you just casually apply the rules in the order they are written you get Th({d, l} ∪
{sk, ph,¬sp}). But this isn’t right. This isn’t an extension of (D,W).

Check : the reduct is { l
ph
,
ph

¬sp}. Computing the closure gives Th({d, l} ∪ {ph,¬sp}),
which is different.

E = Th({d, l} ∪ {ph,¬sp}) is an extension of (D,W).

Check: the reduct DE is { l
ph
,
ph

¬sp}.
Compute CnDE(W):

E0 = {d, l}
E1 = BDE(E0) = {d, l} ∪ {ph}
E2 = BDE(E1) = {d, l, ph} ∪ {¬sp}
E3 = BDE(E2) = E2

So CnDE(W) = Th({d, l, ph,¬sp}) = E.

15

Comparison with Reiter’s original

This section is just for reference. You do not have to learn it.

In case you do some background reading, here is Reiter’s original definition of an extension
of (D,W).

Let (D,W) be a default theory. Let S be a set of formulas.

Let ΓD,W (S) be the smallest set of formulas such that:

1. W ⊆ ΓD,W (S)

2. Th(ΓD,W (S)) ⊆ ΓD,W (S)

3. if
α : β1, . . . βm

γ
∈ D, α ∈ ΓD,W (S), every ¬βi /∈ S, then γ ∈ ΓD,W (S).

E is an extension of (D,W) when E = ΓD,W (E).

Notice that expressed in terms of the reduct DS, condition (3) is

• if
α

γ
∈ DS, α ∈ ΓD,W (S), then γ ∈ ΓD,W (S), i.e. TDS(ΓD,W (S)) ⊆ ΓD,W (S).

So ΓD,W (S) is the smallest set of formulas such that:

• W ⊆ ΓD,W (S)

• Th(ΓD,W (S)) ⊆ ΓD,W (S)

• TDS(ΓD,W (S)) ⊆ ΓD,W (S)

which means, by definition, that ΓD,W (S) = CnDS(W).

So we have E is an extension of (D,W) when E = ΓD,W (E) = CnDE(W).

(You don’t need to learn the original definition. I included it in case you come across
Reiter’s definition, for instance at a party, and wonder why it’s different from the definition
given earlier.)

I think the formulation in terms of the reduct is clearer than the original.

Don’t try to memorise the original definition.

16

Normal, semi-normal, and non-normal default rules

• general form:
α : β1, . . . , βm

γ

• ‘normal’ default rule:
α : γ

γ

• ‘semi-normal’ default rule:
α : β

γ
where ∀(β → γ) is classically valid

• two common forms of semi-normal:
α : γ ∧ δ

γ

α : γ

γ ∨ δ
It was originally conjectured that normal default rules would be adequate for most, if not
all, practical representation problems. But it is clear from even simple examples that the
conjecture is false: we need semi-normal and general default rules.

Example (normal default)

D = {bird(x) : flies(x)

flies(x)
}

W = {bird(Jim),

bird(Frank), ¬flies(Frank)}

Example (normal default)

D = {bird(x) : ¬baby(x) ∧ flies(x)

¬baby(x) ∧ flies(x)
}

W = {bird(Jim),

bird(Keith), baby(Keith),

bird(Alice), baby(Alice), flies(Alice),

bird(Frank), ¬flies(Frank)}
We get one extension E = Th(W ∪ {¬baby(Jim), flies(Jim)}).

Check! (Tutorial exercise)

Example (semi-normal default)

D = {bird(x) : ¬baby(x) ∧ flies(x)

flies(x)
}

W = {bird(Jim),

bird(Keith), baby(Keith),

bird(Francesca), baby(Francesca), flies(Francesca),

bird(Frank), ¬flies(Frank)}
We get one extension E = Th(W ∪ {flies(Jim)}).

17

Example (by Etherington)

W = {has motive(Jim)}

Compare:

D1 = {has motive(x) : suspect(x) ∧ guilty(x)

suspect(x)
} semi-normal

D2 = {has motive(x) : suspect(x) ∧ guilty(x)

suspect(x) ∧ guilty(x)
} normal

Example (exceptions)

Here is another example, which we have seen already in various forms.

Birds (typically) fly.
Penguins are birds and (typically) do not fly.

Try this:

D = {bird(x) : flies(x)

flies(x)
,

penguin(x) : ¬flies(x)

¬flies(x)
}

W = {∀x (penguin(x)→ bird(x)), bird(Jim)}
(D,W) has one extension. It contains flies(Jim). Fine.

But (D,W ∪ {penguin(Jim)}) has two extensions: one in which Jim flies and one in which
Jim does not fly. We haven’t represented the exception structure.

Solution 1

D′ = {bird(x) : flies(x) ∧ ¬penguin(x)

flies(x)
,

penguin(x) : ¬flies(x)

¬flies(x)
}

W ′ = W

(The form of the first default rule is chosen so that we can assert, for example, that Jeremy,
who is a bird but not a penguin, cannot fly.) OK, but not sufficiently general.

Solution 2 (more general)

D′′ = {bird(x) : ¬ab bird fly(x)

flies(x)
,

penguin(x) : ¬flies(x)

¬flies(x)
}

W ′′ = W ∪ {∀x (penguin(x)→ ab bird fly(x))}

Solution 3 (there are many other variations)

D′′′ = {bird(x) : flies(x) ∧ ¬ab bird fly(x)

flies(x)
,

penguin(x) : ¬flies(x) ∧ ¬ab penguin fly(x)

¬flies(x)
}

W ′′′ = W ′′ = W ∪ {∀x (penguin(x)→ ab bird fly(x))}
OK, but we haven’t represented that penguins typically do not fly.

18

Reiter defaults: Problems/inadequacies

• Some default theories have no extensions.

e.g. W = ∅, D = { : p

¬p }.
Compare the logic program: {p← not p}.
This isn’t really a ‘problem’ but to some people it is a bad feature of Reiter’s definitions
that there are default theories with no extension.

Some classes of default theories, e.g. those in which all default rules are normal, always
have extensions.

There are variations of Reiter’s default logic which guarantee the existence of extensions
for all default theories. Details omitted.

• The precondition requirement is too strong (arguably):

D ={bird(x) : flies(x)

flies(x)
,

bat(x) : flies(x)

flies(x)
}

W ={bird(Alex) ∨ bat(Alex)}

Shouldn’t this imply (defeasibly) that Alex can fly? It doesn’t.

• The blocking effect of the consistency check is too weak (arguably):

D = {suspect(x) : innocent(x)

innocent(x)
}

W = {suspect(Ronnie), suspect(Reggie),¬(innocent(Ronnie) ∧ innocent(Reggie))}

It says in W that they are not both innocent. But both are innocent by default.

Personally, I don’t see anything problematic about this example. There are two extensions.
(Tutorial exercise.) One has innocent(Ronnie), and therefore ¬innocent(Reggie). The other
has innocent(Reggie), and ¬innocent(Ronnie). That seems fine to me.

• There is no (direct) way to reason about defaults.

Normally, canaries are yellow.
Yellow implies not blue.

Therefore:
Normally, canaries are not blue.

There is no (direct) way to get inferences like these in default logic. The consequences of
a default theory are sets of formulas, not rules.

19

Later developments

• Default logics with guarantee of extensions for all theories

• Default logics with adjusted pre-requisite and/or justification (consistency) condi-
tions

• Semantical characterisations of extensions (i.e., in terms of models)

• Prioritised default logics
... many others

Default Logic and (Extended) Logic Programs

The (normal or extended) logic program clause

L← L1, . . . , Lm, not Lm+1, . . . , not Ln

has the same meaning as the non-normal default rule:

L1 ∧ · · · ∧ Lm : Lm+1, . . . , Ln
L

where Li represents the literal complementary to Li, as usual.

Any logic program P can be translated to a default theory (D,W) as follows:

• W is the set of ‘facts’ in P , i.e., clauses in P with empty body.

• D is the set of default rules obtained by translating all other clauses in P to a default
rule as shown above.

Now there is 1-1 correspondence between the extensions of (D,W) and the answer sets of
P .

• If S is an answer set of P then Th(S) is an extension of (D,W).

• If E is an extension of (D,W) then E = Th(S) for exactly one answer set S of P .

(In fact, this answer set S = E ∩ Lit(P)).

Every logic program can be translated to a default theory, but of course not every default
theory can be translated to a logic program. Default theories are much more general than
logic programs (default theories allow arbitrary formulas in rules and not just literals).

PS. Cf. ‘Irritating point of detail’ in the notes on Extended Logic Programs.

The Reiter default theory

〈{ :

p
,

:

¬p }, ∅〉

has an extension: it is Th({p, ¬p}) = L. (Easy to check.)

The equivalent extended logic program is { p ←, ¬p ←}. That is why (to preserve the
equivalence) it is convenient to say that this logic program, by definition, has an answer
set, which is {p, ¬p} (or Lit more generally if there are other literals in the language).
(But it’s a trivial point.)

20

Two final remarks: (1)

It should be obvious that, without loss of generality, it is sufficient to consider only Reiter
default theories of the form (D, ∅), i.e., where the ‘facts’ (formulas) W are empty.

Why? Because given (D,W) where the formulas W are not empty, we can write them
equivalently as (non-default) inference rules: replace every formula α in W by the (non-
default) rule

α
and add that to the rules D.

Is it obvious that this is equivalent? Surely, but in case it is not, here it is in all its detail.
Given a set W of formulas let

RW
def
= {

α
| α ∈ W}

Now, every Reiter default theory (D,W) has the same extensions as (D ∪RW , ∅).
First, the rules RW are non-default rules with no ‘consistency checks’ so, for any set E of
formulas, the reduct RE

W = RW .

Now it is easy to show that, for any E, CnDE∪RW
(∅) = CnDE(W).

And more generally, for any set R of classical (non-default) rules R:

CnR(W) = CnR∪RW
(∅)

Proof: By definition CnR∪RW
(∅) is the smallest set S of formulas such that:

• ∅ ⊆ S

• Th(S) ⊆ S

• TR∪RW
(S) ⊆ S

Clearly, TR∪RW
(S) = TR(S) ∪ TRW

(S), and TRW
(S) = W .

So CnR∪RW
(∅) is the smallest set S of formulas such that:

• ∅ ⊆ S

• Th(S) ⊆ S

• TR(S) ∪W ⊆ S

or equivalently such that

• ∅ ⊆ S

• Th(S) ⊆ S

• TR(S) ⊆ S

• W ⊆ S

which by definition is CnR(W).

21

Two final remarks: (2)

Be careful when translating between default theories and logic programs. Do not confuse

the rule
α

γ
with the material implication α→ γ.

(‘Material implication’ is the name for the simple kind of implication in classical logic

whereby A→ B
def
= ¬A→ B.)

I have made this point before. Rules are ‘uni-directional’. Material implications in classical
logic Th have contrapositives (and other properties).

Example The default theory (D,W)

D = { : j

j
,

: k

k
,

: l

l
}, W = {k → j, l→ ¬j}

is equivalent to (D ∪RW , ∅):

D ∪RW = { : j

j
,

: k

k
,

: l

l
,
k → j

,
l→ ¬j }

(D,W) is not equivalent to (Dbad, ∅):

Dbad = { : j

j
,

: k

k
,

: l

l
,
k

j
,
l

¬j }

Dbad represents only one ‘direction’ of the material implications in W .

Compare the following two logic programs:

P1

j ← not ¬j
k ← not ¬k
l ← not ¬l
j ← k
¬j ← l

no (consistent) answer sets!! (Check it for yourself!)
Informally: there are no rules defining ¬k and ¬l. Any
answer set must contain k and l, and hence j and ¬j.

P2

j ← not ¬j
k ← not ¬k
l ← not ¬l
j ← k
¬j ← l
¬k ← ¬j
¬l ← j

two answer sets: {j, k,¬l}, {¬j,¬k, l}

P1 is a translation of (Dbad, ∅). P2 is a translation of (D ∪ RW , ∅) and hence of (D,W).
The last two clauses of P2 are necessary to capture the contrapositives of the formulas in
W . (Obviously it is not always so easy in more complicated, bigger examples.)

22

Appendix: More about operators, closures, and extensions

In the previous sections there were various results about closures, ‘base operators’, exten-
sions, various inductive characterisations, and so on. In fact they are all (or almost all)
properties that follow from elementary properties of ‘operators’ in general.

Here is a summary of those properties. Nearly everything here was in an earlier Appendix
to fixpoint semantics for definite clause programs. Here it is again, with more examples to
show how generally applicable these results are.

Operators

Here (again) is a summary of the theory of operators in a set U . The first part is very
general. U can be any set. Operators are just mappings of ℘(U) into itself.

Definition

1. An operator in U is any mapping F : ℘(U)→ ℘(U).

2. An operator F is called monotonic (sometimes: monotone) if, for all subsets S1, S2

of U , S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).

3. An operator F is called anti-monotonic (sometimes: anti-monotone) if, for all subsets
S1, S2 of U , S1 ⊆ S2 ⇒ F (S2) ⊆ F (S1).

4. An operator F is called compact (sometimes: finitizable) if, for all subsets S of U , if
α ∈ F (S) then α ∈ F (S ′) for some finite subset S ′ ⊆ S.

5. An operator F is called progressive if, for all subsets S of U , S ⊆ F (S).

Examples

• The immediate consequence operator TP for a definite logic program P is an operator in
atoms(P), i.e. TP : ℘(atoms(P))→ ℘(atoms(P)).

The immediate consequence operator TP is

• monotonic: I1 ⊆ I2 ⇒ TP (I1) ⊆ TP (I2).

• not progressive: e.g. P = {p← q}. TP ({q}) = {p}. {p} 6⊆ {q}.
• compact, because the body of every clause has a finite number of conditions. Spelled

out in detail: if A ∈ TP (I) then there is a ground instance A ← B1, . . . , Bm of a
clause in P such that {B1, . . . , Bm} ⊆ I. And so A ∈ TP (I ′) for a finite subset
I ′ = {B1, . . . , Bm} of I.

We can also define an operator T ′
P (I)

def
= I∪TP (I). T ′

P is obviously monotonic, progressive,
and compact (if P has a finite number of atoms).

• When P is a normal logic program (i.e., where some conditions can be negation by failure
literals)

TP (I)
def
= {A | A← B1, . . . Bm, not Bm+1, . . . not Bn is a ground instance of a clause in P

and {B1, . . . , Bm} ⊆ I and Bm+1 /∈ I, . . . , Bn /∈ I}

23

For P a normal logic program, TP is not monotonic in general, and is not progressive.

The operator T ′
P (I)

def
= I ∪ TP (I) is not monotonic either but is ‘progressive’.

• For extended logic programs, the corresponding operator (cf. the definition of answer set)
is defined on sets of literals TP : ℘(Lit(P))→ ℘(Lit(P)).

TP (S)
def
= {L | L← L1, . . . Lm, not Lm+1, . . . not Ln is a ground instance of a clause in P

and {L1, . . . , Lm} ⊆ S and Lm+1 /∈ S, . . . , Ln /∈ S}

When P contains no occurrences of negation by failure not (but does possibly contain
occurrences of ¬) TP is monotonic, not progressive, compact.

As usual, T ′
P (S)

def
= S ∪ TP (S) is monotonic when P contains no negation by failure

literals, progressive, and compact if Lit(P) is finite.

• Let R be a set of (ordinary, monotonic) rules. TR : ℘(L)→ ℘(L)

TR(S)
def
= {γ | α

γ
∈ R, α ∈ S}

is monotonic, not progressive, and compact (since rules have finite prerequisites α).

(L is the set of all formulas of some given language, remember.)

• Classical propositional consequence Th: ℘(L) → ℘(L) is monotonic, progressive (since
W ⊆ Th(W)), and compact.

• The operator T ′′
R : ℘(L)→ ℘(L)

T ′′
R(S)

def
= Th(S ∪ TR(S))

is monotonic, progressive, and compact.

• The operator T ′
R : ℘(L)→ ℘(L)

T ′
R(S)

def
= Th(S) ∪ TR(S)

is monotonic, progressive, and compact.

Note that when we deal with logic programs (sets of clauses P) and sets of atoms/literals
I, we define a progressive operator T ′

P like this:

T ′
P (I)

def
= I ∪ TP (I)

But when we deal with sets of rules R and sets of arbitrary formulas S there are more
options for defining a progressive operator. We have used both

T ′
R(S)

def
= Th(S) ∪ TR(S)

and
T ′′
R(S)

def
= Th(S ∪ TR(S))

It turns out (conveniently) that the fixpoints of these operators are the same.

24

Theorem (Knaster-Tarski lemma) Let F : ℘(U)→ ℘(U) be a monotonic operator.

1. The operator F possesses a least fixpoint. This least fixpoint is equal to F↑α(∅) for
some ordinal α.

2. If, in addition, F is compact then the least fixpoint of F is equal to F↑ω(∅).

Theorem Let F : ℘(U) → ℘(U) be a monotonic and progressive operator. Then for
every subset X ⊆ U , there is a least set S such that X ⊆ S and S is a fixpoint of F .
This set S is of the form F↑α(X). If, in addition, F is compact then this set S is equal to
F↑ω(X).

Examples

• Let P be a definite logic program (i.e., no negation by failure not , no negation ¬).

TP (I) ⊆ I means that I is a model of P . It is easy to check that TP (I) ⊆ I iff T ′
P (I) ⊆ I.

Since I ⊆ T ′
P (I) the least (unique, smallest) model of P is also the least fixpoint of T ′

P , i.e.
(Knaster-Tarski) T ′

P↑ω(∅).
The least (unique, smallest) model of P that contains atoms EDB is T ′

P↑ω(EDB).

• Recall that for an extended logic program P , the first step in defining an answer set S of
literals is to define the answer sets of extended logic programs containing no occurrences
of negation by failure not . For such a program P , an answer set S is the smallest set of
literals closed under TP , or Lit(P) if S contains complementary literals A and ¬A. And
so, S is an answer set of P when

S =

{
T ′
P↑ω(∅) if T ′

P↑ω(∅) contains no pair of complementary literals A and ¬A,
Lit(P) otherwise.

• As we shall see below, the smallest set of formulas closed under the operator T ′′
R and

containing the set of formulas W is CnR(W). So CnR(W) is also the least fixpoint of T ′′
R,

i.e., CnR(W) = T ′′
R↑ω(W).

• Finally, what is the least fixpoint of Th? Since Th is monotonic, progressive and compact,
the least fixpoint is Th↑ω(∅). But since Th(Th(S)) = Th(S), Th↑ω(∅) = Th(∅). So the
least fixpoint of Th is Th(∅) (the set of all propositional tautologies). Exactly as we should
expect. And the least fixpoint of Th containing the set of formulas W is just Th(W).
Again, exactly as we would expect.

25

You’ve also seen the following before. Here it is as a reminder.

Definition Let F be an operator in U and let X be a subset of U . The closure of X
under the operator F — denoted ClF (X) — is the smallest subset S of U such that:

X ⊆ S and F (S) ⊆ S

How do we know that ClF (X) exists and/or is unique?

Proposition U satisfies the closure conditions (1)–(2) of ClF (X).

Proposition If F is monotonic, then if subsets S1 and S2 of U both satisfy the closure
conditions (1)–(2) of ClF (W), then so does their intersection S1 ∩ S2.

Proposition If F is monotonic, ClF (X) is the intersection of all sets S satisfying the
closure conditions (1)–(2).

ClF (X) is the least set S satisfying X ⊆ S and F (S) ⊆ S. If in addition F is progressive,
S ⊆ F (S). So then ClF (X) is the least fixpoint of F that contains X.

Proposition If F is progressive, then ClF (X) is the least fixpoint of F that contains X.
If F is monotonic and progressive and compact, then ClF (X) = F↑ω(X).

(These examples were to help clarify the defintions and to show how widely applicable the
results are.)

26

Closures under monotonic rules

Now let’s consider the special case of operators mapping sets of formulas to sets of formulas.

Let W be a set of formulas and R a set of rules
α

γ
. By definition, the closure of formulas

W under rules R — denoted CnR(W) — is the smallest (set inclusion) set of formulas S
such that

• W ⊆ S

• Th(S) ⊆ S

• TR(S) ⊆ S

or equivalently, the smallest set of formulas S such that

• W ⊆ S

• Th(S) ∪ TR(S) ⊆ S

So CnR(W) is the closure of W under the operator

T ′
R(S)

def
= Th(S) ∪ TR(S)

Note: the terminology. For operator F in an arbitrary set (i.e., not necessarily a set of
formulas) I speak of the closure of a subset X under the operator F . This I have written
as ClF (X).

Now we apply the general results to the special case where the sets are sets of formulas. Of
particular interest is the closure of a set of formulas W under both classical consequence
Th and (monotonic) rules R, or if you prefer, under the operators Th and TR. This I am
writing as CnR(W). Expressed in terms of the general notation, CnR(W) = ClT ′

R
(W).

End of note

Since TR and Th are both monotonic, so is T ′
R.

Since S ⊆ Th(S), T ′
R is progressive.

Since Th is compact, and every rule in R has a finite ‘body’, then T ′
R is also compact. So

therefore . . .

Proposition

1. CnR(W) is the least (smallest, unique) set S such that W ⊆ S
and S = Th(S) ∪ TR(S).

2. CnR(W) = T ′
R↑ω(W)

Inductive characterisation obtained from T ′
R↑ω(W):

E0 = W

En+1 = Th(En) ∪ TR(En)

CnR(W) =
⋃ω

i=0
Ei

27

CnR(W) — Alternative characterisation

CnR(W) is equivalent to the closure of W under the operator T ′
R(S) = Th(S) ∪ TR(S).

Now we show that it is also equivalent to the closure of W under another operator:

T ′′
R(S)

def
= Th(S ∪ TR(S))

(You can skip the next result. You should certainly not try to memorize the proof. It is
provided so you can see the reasoning.)

Proposition Any set S of formulas is closed under T ′
R(S) = Th(S)∪TR(S) iff it is closed

under T ′′
R(S) = Th(S ∪ TR(S)), i.e., Th(S) ∪ TR(S) ⊆ S iff Th(S ∪ TR(S)) ⊆ S.

Proof: Left-to-right: From LHS we have TR(S) ⊆ S and Th(S) ⊆ S.

TR(S) ⊆ S ⇒ S ∪ TR(S) ⊆ S

⇒ Th(S ∪ TR(S)) ⊆ Th(S) (Th monotonic)

⇒ Th(S ∪ TR(S)) ⊆ S because Th(S) ⊆ S

Right-to-left: S ⊆ S ∪ TR(S) ⇒ Th(S) ⊆ Th(S ∪ TR(S)) (Th monotonic)

Now Th(S) ⊆ Th(S ∪ TR(S)) ⊆ S by RHS. So Th(S) ⊆ S.

S ∪ TR(S) ⊆ Th(S ∪ TR(S)) (Th inclusion), and RHS again gives S ∪ TR(S) ⊆ S, and
hence TR(S) ⊆ S.

So CnR(W) is also equivalent to the closure of W under the operator:

T ′′
R(S)

def
= Th(S ∪ TR(S))

Since TR and Th are both monotonic, so is T ′′
R.

Since S ⊆ Th(S), T ′′
R is progressive.

Since Th is compact, and every rule in R has a finite ‘body’, then T ′′
R is also compact. So

therefore . . .

Proposition

1. CnR(W) is the least (smallest, unique) set S such that W ⊆ S
and S = Th(S ∪ TR(S)).

2. CnR(W) = T ′′
R↑ω(W)

Inductive characterisation obtained from T ′′
R↑ω(W):

E0 = W

En+1 = Th(En ∪ TR(En))

CnR(W) =
⋃ω

n=0
En

28

CnR(W) — One more characterisation (‘base operator’)

CnR(W) is equivalent to the closure of W under the operators T ′
R(S)

def
= Th(S) ∪ TR(S)

and T ′′
R(S)

def
= Th(S ∪ TR(S)).

Now we show that it can also be characterised in terms of the closure of W under the ‘base
operator’:

BR(S)
def
= S ∪ TR(Th(S))

It’s not quite equivalence, but nearly.

BR is monotonic and obviously progressive.

As usual, don’t bother to learn the proofs. They are included to show the reasoning but if
you don’t find them helpful, ignore them. The first result is just a stepping stone.

Proposition For any set of formulas S, BR(S) ⊆ T ′′
R(Th(S))

Proof: T ′′
R(Th(S)) = Th(Th(S)) ∪ TR(Th(S)) = Th(S) ∪ TR(Th(S)).

Since S ⊆ Th(S), BR(S) = S ∪ TR(Th(S)) ⊆ Th(S) ∪ TR(Th(S)) = T ′′
R(Th(S)).

Here is the main result. (Everything else can be reconstructed from it.)

Proposition

CnR(W) = T ′
R↑ω(W) = T ′′

R↑ω(W) = Th(BR↑ω(W))

Proof: First, observe that W ⊆ Th(BR↑ω(W)), and Th(BR↑ω(W)) is closed under Th,
and Th(BR↑ω(W)).

(The first two observations are indeed obvious. M & T simply assert the third one. I don’t
think it’s obvious. I haven’t been able to check it.)

By definition, CnR(W) is the least set of formulas satisfying these three conditions, and so
CnR(W) ⊆ Th(BR↑ω(W)).

To prove the converse inclusion, Th(BR↑ω(W)) ⊆ CnR(W), it is enough to showBR↑ω(W) ⊆
T ′′
R↑ω(W), because then, by monotonicity of Th, we have Th(BR↑ω(W)) ⊆ Th(T ′′

R↑ω(W)),
and T ′′

R↑ω(W) is closed under Th.

We prove BR↑n(W) ⊆ T ′′
R↑n(W) for all n by induction on n.

Base case (n = 0): BR↑n(W) = T ′′
R↑n(W) = W .

Inductive step: assume BR↑n(W) ⊆ T ′′
R↑n(W).

BR↑n+1(W) = BR(BR↑n(W))

⊆ BR(T ′′
R↑n(W)) (inductive hypothesis)

⊆ T ′′
R(Th(T ′′

R↑n(W))) (we showed BR(S) ⊆ T ′′
R(Th(S)))

= T ′′
R(T ′′

R↑n(W)) (T ′′
R↑n(W) closed under Th)

= T ′′
R↑n+1(W)

29

Inductive characterisation obtained from BR↑ω(W)

E0 = W

En+1 = BR(En) = En ∪ TR(Th(En))

CnR(W) = Th(
⋃ω

n=0
En)

Extensions

Now we just apply all the results above to the special case where the (monotonic) rules are
reducts of default rules under some given set of formulas E.

Proposition A set of formulas E is an extension for (D,W) iff

E = CnDE(W) = T ′
DE↑ω(W) = T ′′

DE↑ω(W) = Th(BDE↑ω(W))

30

