Minimal models and fixpoint semantics for definite logic programs

Marek Sergot
Department of Computing
Imperial College, London
January 2005 v1.0h

Overview

A definite logic program is a set of clauses of the form

\[A \leftarrow A_1, \ldots, A_n \quad (n \geq 0) \]

where \(A \) and \(A_1, \ldots, A_n \) are all atoms, i.e., no negation.

For a definite logic program \(P \) (no negation), we have the following candidate semantics:

- the atomic (classical) consequences of \(P \):
 \[\{ \alpha \mid \alpha \in \text{atoms}(P) \land P \models \alpha \} \]
 i.e. \(\text{atoms}(P) \cap \text{Th}(P) \).

- the least (unique minimal) Herbrand model of \(P \)
 \[\text{lfp}(\text{T}_P) \]
 - \(\text{lfp}(\text{T}_P) \) is the least (set inclusion) set of atoms \(I \) such that \(\text{T}_P(I) = I \).

 moreover, in deductive databases it is usual to split a logic program \(P \) into \(\text{IDB} \) (rules) and \(\text{EDB} \) (facts)

\[P = \text{IDB} \cup \text{EDB} \]

Then we have also the following semantics for \(P \)

- \(\text{Cl}_{\text{IDB}}(\text{EDB}) \) — the closure of \(\text{EDB} \) under the rules \(\text{IDB} \) — the smallest set of atoms \(X \) such that
 - \(\text{EDB} \subseteq X \)
 - \(\text{T}_{\text{IDB}}(X) \subseteq X \)

- \(\text{T}_{\text{IDB}}^{\omega}(\text{EDB}) \)

Most of this does not hold for normal logic programs, i.e., where there can be occurrences of negation-by-failure in the body of a clause. We will look at ways to modify it for normal logic programs later.

Preliminary basics: minimal models

Given a set \(P \) of first-order formulas (a theory, a program, a database, or a knowledge base) an interpretation is constructed thus:

1. Choose a domain \(D \).
2. Specify a mapping from ground terms of \(P \) to the elements of \(D \) which says what each ground term denotes in your interpretation.
3. Give the extension of every predicate of \(P \) in the interpretation, by saying which ground atoms of \(P \) are true and which are false.

A model of \(P \) is an interpretation of \(P \) in which every formula of \(P \) is true.

The (well-formed formula) \(\alpha \) is a logical consequence of \(P \)

\[P \models \alpha \]

when \(\alpha \) is true in every model of \(P \). In the earlier notation this is \(\alpha \in \text{Th}(P) \).

Herbrand models

A Herbrand interpretation is a very special kind of interpretation: ground terms denote themselves.

- The domain \(D \) is the set of all ground terms in the language of \(P \) (the Herbrand universe \(\mathcal{U}_P \)).
- Each ground term of \(P \) denotes itself.
- It only remains to say which ground atoms of \(P \) are true and which are false.

So, to specify a Herbrand interpretation for a program or database \(P \), only step (3) is required – the pre-interpretation steps (1) and (2) are fixed.

A Herbrand model is a Herbrand interpretation which is a model.

Why do Herbrand interpretations have special status?
Because – in certain circumstances – there is no need to look at all possible interpretations and models; it is sufficient to look at Herbrand interpretations and models only. This obviously simplifies everything.

What are these circumstances?
Theorem If P is a set of universal sentences (all quantifiers are ‘at the front’ and all are universal) then:

P has a model if and only if P has a Herbrand model

Proof: One half is trivial: if P has a Herbrand model then obviously P has a model. For the other half, given a model M of P, it is very easy to show how to construct a Herbrand model for P as well.

Practical significance Suppose we have:

- a program or database P of universal sentences (say clauses);
- a query $\leftarrow G$ (which is a universal sentence because this is just conventional shorthand for $\forall (\neg G)$).

Now

$P \models \exists(G)$ if $P \cup \{ \leftarrow G \}$ has no model

$P \not\models \exists(G)$ if $P \cup \{ \leftarrow G \}$ has no Herbrand model.

Very convenient!

How to specify Herbrand interpretation

In order to specify a Herbrand interpretation it is enough to say – step (3) – which ground atoms are true and which are false (because the pre-interpretation steps (1) and (2) are fixed for Herbrand interpretations).

The set of ground atoms of the language of P, denoted $\text{atoms}(P)$ or sometimes B_P is called the Herbrand base of P.

So to specify a Herbrand interpretation for a program or database P it is enough to say, for each α in $\text{atoms}(P)$, whether α is true or false.

Example Database P:

$p(a) \leftarrow$

$p(b) \leftarrow$

$q(X) \leftarrow p(X)$

The Herbrand base $\text{atoms}(P)$ is $\{p(a), p(b), q(a), q(b)\}$.

Here is a Herbrand interpretation of P:

$\{p(a) \mapsto \text{true}, p(b) \mapsto \text{false}, q(a) \mapsto \text{false}, q(b) \mapsto \text{true}\}$.

This is an interpretation, but not a model of P.

Here is another Herbrand interpretation of P:

$\{p(a) \mapsto \text{true}, p(b) \mapsto \text{true}, q(a) \mapsto \text{true}, q(b) \mapsto \text{true}\}$.

This is a model of P.

Herbrand interpretations as sets of atoms

Listing out, for each atom α in $\text{atoms}(P)$, whether it is true or false is tedious – and unnecessary. We can adopt the following convention instead.

Given a database or program P, $\text{atoms}(P)$ is fixed. To specify a Herbrand interpretation, it is sufficient to say which atoms of P are true. The remainder are false by convention. So every Herbrand interpretation of P can be identified with a subset of $\text{atoms}(P)$. These are the ground atoms that are true in the interpretation.

Note that we could choose the other convention, and list out all the false atoms instead. But this is not so convenient.

Example Database P:

$p(a) \leftarrow$

$p(b) \leftarrow$

$q(X) \leftarrow p(X)$

Here are some Herbrand interpretations of P:

- $\{p(a), q(b)\}$ This is not a model of P
- $\{p(a), p(b), q(a), q(b)\} = \text{atoms}(P)$ This is a model of P
- \emptyset (the empty set) This is not a model of P

(There are other Herbrand models of P.)

Note It is important not to confuse two different things. Associating Herbrand models with subsets of $\text{atoms}(P)$ is nothing to do with ‘Closed World Assumptions’. It is just a convenient and concise way of representing Herbrand interpretations of P.

Example Database P:

$p \leftarrow q, r$

Here are some Herbrand interpretations of P:

- $\{q, r\}$ This is not a model of P
- $\{p, q, r\} = \text{atoms}(P)$ This is a model of P
- \emptyset This is a model of P

(There are other Herbrand models of P.)

Final remark In all my examples so far, the Herbrand base $\text{atoms}(P)$ is finite. This saves writing for me. But $\text{atoms}(P)$ is not always finite. $\text{atoms}(P)$ is not finite if there are function symbols in P.
Minimal (Herbrand) models

The relation ⊆ (subset) is obviously a partial ordering for subsets of atoms(P), and therefore for Herbrand interpretations and Herbrand models. So we can talk of minimal Herbrand models.

Definition A Herbrand model is minimal if no proper subset of it is also a model.

Note that minimal does not imply unique, in general. A set of formulas might have several minimal Herbrand models. For example, \{a \lor b\} has the following Herbrand models:

\{a\} \quad \{b\}

The models \{a\} and \{b\} are both minimal.

The usual terminology for any partial ordering is that least means unique minimal. So sometimes we speak of the least Herbrand model, which is the unique minimal model, if it exists.

Definite clauses

Sets of definite clauses (atom in the head, no negations anywhere) have some very convenient and very important properties.

Theorem Let P be a set of definite clauses. Then:

- atoms(P) is always a model of P;
- Model intersection property

 If M_1 is a model of P and M_2 is a model of P then M_1 \cap M_2 is a model of P.

Theorem Let P be a set of definite clauses. Then:

- P has a model. (atoms(P) is one.)
- P has a minimal Herbrand model.
- P has a unique minimal Herbrand model, denoted M(P).
- M(P) = the intersection of all Herbrand models of P.

These very strong properties do not hold in general. They hold for sets of definite clauses.

A natural contender for the intended semantics of a definite clause program P is its least (unique minimal) Herbrand model M(P).

How does this new semantics relate to what we had earlier? They are equivalent!

Theorem Let P be a set of definite clauses. The minimal Herbrand model M(P) is the set of all ground atoms of P that are logical consequences of P:

\[
M(P) = \{ \alpha \mid \alpha \in \text{atoms}(P) \text{ and } P \models \alpha \} = \text{atoms}(P) \cap \text{Th}(P) \text{ in the other notation}
\]

Proof \(\alpha \in \text{atoms}(P) \) and \(P \models \alpha \)

iff \(\alpha \in \text{atoms}(P) \) and \(P \cup \{ \leftarrow \alpha \} \) has no model

iff \(\alpha \in \text{atoms}(P) \) and \(P \cup \{ \leftarrow \alpha \} \) has no Herbrand model

iff \(\alpha \in \text{atoms}(P) \) and \(\neg \alpha \) is false in all Herbrand models of P

iff \(\alpha \in \text{atoms}(P) \) and \(\alpha \) is true in all Herbrand models of P

iff \(\alpha \in \text{atoms}(P) \) and \(\alpha \) is in the intersection of all Herbrand models of P

iff \(\alpha \in \text{atoms}(P) \) and \(\alpha \in M(P) \).

Supported’ interpretations

The notion of a ‘supported’ interpretation of a set of clauses is not so important for definite clause programs but it will come up later so I might as well deal with it now.

Motivating example Consider the program or database P:

\[
p(a) \leftarrow
q(b) \leftarrow
r(X) \leftarrow p(X)
\]

Here is a Herbrand model of P:

\[M_1 = \{ p(a), q(a), q(b), r(a), r(b) \} \quad \text{(not minimal)}\]

And here is another:

\[M(P) = \{ p(a), q(b), r(a) \} \quad \text{(minimal)}\]

Apart from minimality, is there anything else to distinguish model M(P) from model M_1?

Notice that in M(P), every atom is the head of a clause of P whose body is true in M(P).

We say that such a model (or interpretation more generally) is supported. This is not the case in M_1. In M_1 there are atoms \(q(a) \) and \(r(b) \) which have no ‘support’ in this sense: they are not the heads of any clause in P whose body is true in M_1.

Definition Let I be a Herbrand interpretation of a set P of clauses (not necessarily definite). I is a supported interpretation of P if and only if, for every \(\alpha \in I \):

\[
\alpha \leftarrow B_1, \ldots, B_m \quad (m \geq 0)
\]

is a ground instance of a clause in P, and \(B_1, \ldots, B_m \) are all true in I, i.e., \(\{ B_1, \ldots, B_m \} \subseteq I \).
Notice that ‘supported’ is defined for interpretations not just models. An interpretation of P can be a supported interpretation without being a model of P. For example, same example P as above:

\[
\begin{align*}
p(a) &\leftarrow \\
q(b) &\leftarrow \\
r(X) &\leftarrow p(X)
\end{align*}
\]

The interpretation \{p(a), r(a)\} is supported, but is not a model.

When we look at normal logic programs and extended logic programs we shall be interested in their (not necessarily unique) minimal supported Herbrand models. For definite clause programs, ‘supported’ is not so interesting: the minimal Herbrand model $\mathcal{M}(P)$ is unique, and it’s easy to see it is always supported as well.

Fixpoint semantics

Again, the following holds for definite clause programs. We will look at how it generalises for normal logic programs and extended logic programs later.

The immediate consequence operator T_P

Every definite clause program or database P has an operator T_P – the immediate consequence operator – associated with it.

T_P maps subsets of $\text{atoms}(P)$ to subsets of $\text{atoms}(P)$:

\[T_P: \wp(\text{atoms}(P)) \rightarrow \wp(\text{atoms}(P)) \]

Or if you prefer, T_P maps sets of ground atoms of P to sets of ground atoms of P, or Herbrand interpretations of P to Herbrand interpretations of P.

Definition Let P be a set of definite clauses and I a set of ground atoms of P.

\[T_P(I) = \{ \alpha \in \text{atoms}(P) \mid \alpha \leftarrow B_1, \ldots, B_m (m \geq 0) \text{ is a ground instance of a clause in } P \text{ and } \{B_1, \ldots, B_m\} \subseteq I \} \]

Or in words: $\alpha \in T_P(I)$ if $\alpha \leftarrow B_1, \ldots, B_m (m \geq 0)$ is a ground instance of a clause in P and the conditions B_1, \ldots, B_m of the body are all true in the interpretation I.

It should be obvious why T_P is called the ‘immediate consequence’ operator.

Example The program or database P:

\[
\begin{align*}
p(a) &\leftarrow \\
q(b) &\leftarrow \\
r(X) &\leftarrow p(X)
\end{align*}
\]

$T_P(\emptyset) = \{p(a), q(b)\}$

$T_P(\{p(a), q(b)\}) = \{p(a), q(b), r(a)\}$

$T_P(\{p(a), q(b), r(b)\}) = \{p(a), q(b), r(a)\}$

$T_P(\{q(a)\}) = \{p(a), q(b)\}$

$T_P(\{p(b)\}) = \{p(a), q(b), r(b)\}$

\[: \]

For definite clause programs P, the immediate consequence operator T_P has some very important properties:

1. T_P is monotonic:

 If $I_1 \subseteq I_2$ then $T_P(I_1) \subseteq T_P(I_2)$

 This property is actually implied by the next.

2. T_P is ‘continuous’.

For present purposes, it does not matter what ‘continuous’ means. The definition takes too long to state. I’ll give a more careful account later. What matters is that there are some important results which hold for continuous operators.

In particular:

- a continuous operator T_P has a fixpoint I

 $T_P(I) = I$

- it has a least (unique minimal) fixpoint

- the least fixpoint is T_P^{\uparrow} (defined in a moment)
The significance of fixpoints of T_P

Theorem The interpretation (set of ground atoms) I is a model of P if and only if \[T_P(I) \subseteq I \quad \text{('I is closed under T_P')}. \]

Proof Trivial: just apply the definition of T_P.

Theorem The interpretation (set of ground atoms) I of P is supported if and only if \[T_P(I) \supseteq I \]

Proof Trivial: just apply the definition of T_P.

So now any fixpoint I of T_P \[T_P(I) = I \]

will be a supported model of P. And the least such fixpoint T_P^{ω} will be the (unique) minimal supported model of P. This I is a natural candidate for the semantics of P.

The least fixpoint of T_P

There is a standard result for all 'continuous' operators such as T_P (which is 'continuous' when P is a set of definite clauses). This result says

\[\text{lfp}(T_P) = T_P^{\omega} \]

(lfp is 'least fixpoint').

Definition

\[
\begin{align*}
T_P^0 & \overset{\text{def}}{=} \emptyset \\
T_P^1 & \overset{\text{def}}{=} T_P(T_P^0) \\
T_P^2 & \overset{\text{def}}{=} T_P(T_P^1) \\
& \quad \vdots \\
T_P^{n+1} & \overset{\text{def}}{=} T_P(T_P^n) \\
& \quad \vdots \\
T_P^{\omega} & \overset{\text{def}}{=} \bigcup_{n \geq 0} T_P^n
\end{align*}
\]

Now the key result:

Theorem (van Emden and Kowalski)

If P is a set of definite clauses, its unique minimal Herbrand model $M(P)$ is given by

\[M(P) = \text{lfp}(T_P) = T_P^{\omega} \]

Proof The first half of the equation is quite easy to prove. The second half just uses the standard result once it is established that T_P is continuous.

Example Suppose P is:

\[
\begin{align*}
q(a,b) & \leftarrow \\
p(b) & \leftarrow \\
p(X) & \leftarrow q(X,Y), p(Y)
\end{align*}
\]

The minimal Herbrand model $M(P)$ is obviously \[M(P) = \{q(a,b), p(a), p(b)\} \]

by inspection.

The least fixpoint $\text{lfp}(T_P)$ is obtained thus:

\[
\begin{align*}
T_P^0 &= \emptyset \\
T_P^1 &= T_P(\emptyset) = \{q(a,b), p(b)\} \\
T_P^2 &= T_P(\{q(a,b), p(b)\}) = \{q(a,b), p(b), p(a)\} \\
T_P^3 &= T_P(\{q(a,b), p(b), p(a)\}) = \{q(a,b), p(b), p(a)\} \\
& \quad \vdots \\
T_P^{\omega} &= \{q(a,b), p(b), p(a)\} = M(P)
\end{align*}
\]

$M(P)$ is a model of P: \[T_P(M(P)) \subseteq M(P) \]

$M(P)$ is supported: \[T_P(M(P)) \supseteq M(P) \]

Example Consider the database/program $P = \{p \leftarrow q, q \leftarrow p\}$. Its Herbrand interpretations are:

\[
\begin{align*}
\{p\} & \quad \text{(fixpoint – supported model; but not minimal)} \\
\{q\} & \quad \text{(not a model; not supported)} \\
\{p\} & \quad \text{(not a model; not supported)} \\
\{\} & \quad \text{(fixpoint – supported model; minimal)}
\end{align*}
\]
Example Consider the database/program $P = \{ q(0) \leftarrow, p(X) \leftarrow p(f(X)) \}$.
Is $\{ q(0), p(f(f(0)), p(f(0)), p(0) \}$ a model of P? Yes:
$$T_P(\{ q(0), p(f(f(0)), p(f(0)), p(0) \}) = \{ q(0), p(f(0)), p(0) \}$$
Is $\{ q(0), p(0) \}$ a model of P? Yes:
$$T_P(\{ q(0), p(0) \}) = \{ q(0) \} \subseteq \{ q(0), p(0) \}$$
Is $\{ q(0) \}$ a model of P? Yes:
$$T_P(\{ q(0) \}) = \{ q(0) \} \subseteq \{ q(0), p(0) \}$$
Is \emptyset a model of P? No:
$$T_P(\emptyset) = \{ q(0) \}$$

Deductive databases

The simplest form of deductive database:

- **‘rules’** definite clauses
 - IDB
 - EDB
- **‘facts’** atoms
 - EDB

EDB is the ‘extensional database’

IDB is the ‘intensional database’

(stupid terminology)

The database content is

$$\text{Cl}_{\text{IDB}}(\text{EDB})$$

the ‘closure of facts EDB under rules IDB’

Definition $\text{Cl}_{\text{IDB}}(\text{EDB})$ is the smallest (set inclusion) set X of atoms such that:

1. $\text{EDB} \subseteq X$
2. $T_{\text{IDB}}(X) \subseteq X$ (X is closed under IDB')

How do we know $\text{Cl}_{\text{IDB}}(\text{EDB})$ exists and is unique?

- atoms(IDB \cup EDB), the set of all ground atoms of IDB \cup EDB, satisfies conditions (1) and (2) above:
 - $\text{EDB} \subseteq \text{atoms(IDB} \cup \text{EDB})$ (EDB is a set of ground atoms)
 - $T_{\text{IDB}}(\text{atoms(IDB} \cup \text{EDB})) \subseteq \text{atoms(IDB} \cup \text{EDB})$
- If T_{IDB} is monotonic (which it is when the rules IDB are all definite clauses) then:
 - if X_1 satisfies conditions (1) and (2) above, and X_2 satisfies conditions (1) and (2), then $X_1 \cap X_2$ satisfies conditions (1) and (2). (Easy exercise.)
 - So $\text{Cl}_{\text{IDB}}(\text{EDB})$ is the intersection of all sets of ground atoms that satisfy conditions (1) and (2).

How do we compute $\text{Cl}_{\text{IDB}}(\text{EDB})$?

Let

$$T'_{\text{IDB}}(I) \overset{\text{def}}{=} T_{\text{IDB}}(I) \cup I$$

Then:

$$\text{Cl}_{\text{IDB}}(\text{EDB}) = T'_{\text{IDB}}(\text{EDB})$$

Exercise IDB \cup EDB is also a set of definite clauses. Show:

$$T_{\text{IDB:EDB}}(\text{EDB}) = T'_{\text{IDB}}(\text{EDB})$$

Exercise Construct an example (see Tutorial Exercise sheet) to show that, in general

$$T_{\text{IDB}}(\text{EDB}) \neq T'_{\text{IDB}}(\text{EDB})$$

This is the basis of

- bottom-up computation methods for deductive databases

The ‘naive’ method implements $T'_{\text{IDB}}(\text{EDB})$ directly.

The ‘semi-naive’ method uses the fact that

- $X \subseteq T_{\text{IDB}}(X)$

to eliminate unnecessary recomputation on each iteration.

(There are other methods (e.g. ‘not so naive’) which are a bit cleverer.)
Normal logic programs

The above all holds for definite clauses. If we allow negative conditions in clauses ('normal logic programs') then none of the nice properties hold in general.

Definition Let P be a normal logic program and I a set of ground atoms of P.

$$TP(I) = \{ \alpha \in \text{atoms}(P) \mid \alpha \leftarrow L_1, \ldots, L_m \ (m \geq 0) \}$$ is a ground instance of a clause in P and for all L_i, $0 \leq i \leq m$:

- if L_i is an atom, then $L_i \in I$; if L_i is of the form not B_i, then $B_i \notin I$

Equivalently, if we write $\text{head}(r)$ for the head of a clause r, $\text{body}^+(r)$ for the set of positive atoms in the body of r, and $\text{body}^-(r)$ for the set of atoms appearing in negation-by-failure literals in the body of r, then:

$$TP(I) = \{ \text{head}(r) \mid r \text{ is a ground instance of a clause in } P, \ \text{body}^+(r) \subseteq I, \text{ and } \text{body}^-(r) \cap I = \emptyset \}$$

Let I be a set of ground atoms of a normal logic program P.

- I is a model of P iff $TP(I) \subseteq I$ ('I is closed under TP')
- I is a supported interpretation of P iff $TP(I) \supseteq I$

So we are still interested in fixpoints $TP(I) = I$, and in minimal fixpoints. But there is no guarantee, in general, that a fixpoint exists, or if it exists, that there is a unique minimal fixpoint.

For example, consider the logic program/database P:

- $p(1) \leftarrow$
- $q(2) \leftarrow$
- $r(X) \leftarrow \neg q(X)$

- There are two different minimal models of P:
 - $\{p(1), q(2), r(1)\}$
 - $\{p(1), q(2), q(1)\}$

 Note that the first one is supported and the second one is not. (The atom $q(1)$ in the second model has no support.)

- The model intersection property does not hold. For example:
 - $\{p(1), q(2), r(1)\} \cap \{p(1), q(2), q(1)\} = \{p(1), q(2)\}$

 is not a model of P.

- The immediate consequence operator TP is no longer continuous. It is not even monotonic, in general. For example, for the P above:

 $$TP(\emptyset) = \{p(1), q(2), r(1), r(2)\}$$
 $$TP(\{q(2)\}) = \{p(1), q(2), r(1)\}$$

 Clearly $\emptyset \subseteq \{q(2)\}$ but $TP(\emptyset) \not\subseteq TP(\{q(2)\})$.

Example Even simpler: consider $P = \{p \leftarrow \neg q\}$.

- TP is not monotonic: $TP(\emptyset) = \{p\}$ but $TP(\{q\}) = \emptyset$.
- $\{p\}$ and $\{q\}$ are both (minimal) models: $TP(\{p\}) = \{p\}$ (and so a fixpoint, and supported); $TP(\{q\}) = \emptyset$ (a model, but not supported)

Example Consider $P = \{p \leftarrow \neg q, q \leftarrow \neg p\}$.

- $\{p\}$ and $\{q\}$ are both (minimal) supported models:
 - $TP(\{p\}) = \{p\}$ and $TP(\{q\}) = \{q\}$

Let's try to compute TP^ω:

$$TP(\emptyset) = \{p, q\}$$
$$TP(\{p, q\}) = \emptyset$$

Not getting anywhere!

Note that $TP^\omega = \bigcup_{n\geq0} TP^\omega = \emptyset \cup \{p, q\} = \{p, q\}$.

But $TP((p, q)) \neq \{p, q\}$. So TP^ω is not a fixpoint of this TP.

Note, in this case, $\{p, q\}$ is a model of P, though obviously not a minimal model. Also not supported.

Small remark

The references to TP^ω — as opposed to $TP(\emptyset)$, which is the same thing — and to the property that TP is 'continuous' are for historical reasons only. That is the way the van Emden-Kowalski theorem was originally stated and proved.

For our purposes it does not matter what 'continuous' means. Here follows all the technical background that we need.
Operators, closures

We will keep seeing many of the same properties over and over again. This next bit of material will come later but you might find it helpful to see some of it now. If you don’t find it helpful, ignore it for now.

Here is a summary of the theory of operators in a set U. The first part is very general. U can be any set. Operators are just mappings of $\wp(U)$ into itself.

Definition

1. An operator in U is any mapping $F : \wp(U) \to \wp(U)$.
2. An operator F is called monotonic (sometimes: monotone) if, for all subsets S_1, S_2 of U, $S_1 \subseteq S_2 \Rightarrow F(S_1) \subseteq F(S_2)$.
3. An operator F is called anti-monotonic (sometimes: anti-monotone) if, for all subsets S_1, S_2 of U, $S_1 \subseteq S_2 \Rightarrow F(S_2) \subseteq F(S_1)$.
4. An operator F is called compact (sometimes: finitizable) if, for all subsets S of U, if $\alpha \in F(S)$ then $\alpha \in F(S')$ for some finite subset $S' \subseteq S$.
5. An operator F is called progressive if, for all subsets S of U, $S \subseteq F(S)$.

Examples

- The immediate consequence operator T_P for a definite logic program P is an operator in $\wp(\text{atoms}(P))$ (the set of atoms of P), i.e. $T_P : \wp(\text{atoms}(P)) \to \wp(\text{atoms}(P))$.

The immediate consequence operator T_P is

- monotonic: $I_1 \subseteq I_2 \Rightarrow T_P(I_1) \subseteq T_P(I_2)$.
- not progressive: e.g. $P = \{p \leftarrow q\}$. $T_P(\{q\}) = \{p\}$. $\{p\} \not\subseteq \{q\}$.
- compact, because the body of every clause has a finite number of conditions. Spelled out in detail: if $A \in T_P(I)$ then there is a ground instance $A \leftarrow B_1, \ldots, B_m$ of a clause in P such that $\{B_1, \ldots, B_m\} \subseteq I$. And so $A \in T_P(I')$ for a finite subset $I' = \{B_1, \ldots, B_m\}$ of I.

We can also define an operator $T_P(I) = \cup T_P(I)$. T_P is obviously monotonic, progressive, and compact (if P has a finite number of atoms).

- Classical propositional consequence $\text{Th} : \wp(\mathcal{L}) \to \wp(\mathcal{L})$ maps sets of formulas of \mathcal{L} to sets of formulas of \mathcal{L}.

Th is monotonic, progressive (since $W \subseteq \text{Th}(W)$), and compact.

Theorem (Knaster-Tarski lemma) Let $F : \wp(U) \to \wp(U)$ be a monotonic operator.

1. The operator F possesses a least fixpoint. This least fixpoint is equal to $F^\omega(0)$ for some ordinal α.
2. If, in addition, F is compact then the least fixpoint of F is equal to $F^\omega(0)$.

Theorem Let $F : \wp(U) \to \wp(U)$ be a monotonic and progressive operator. Then for every subset $X \subseteq U$, there is a least set S such that $X \subseteq S$ and S is a fixpoint of F. This set S is of the form $F^\omega(X)$. If, in addition, F is compact then this set S is equal to $F^\omega(X)$.

$$F^0(X) \overset{\text{def}}{=} X$$
$$F^{n+1}(X) \overset{\text{def}}{=} F(F^n(X))$$
$$F^\omega(X) \overset{\text{def}}{=} \bigcup_{n \geq 0} F^n(X)$$

Examples

- Let P be a definite logic program (i.e., no negation by failure not, no negation \neg).

$T_P(I) \subseteq I$ means that I is a model of P. It is easy to check that $T_P(I) \subseteq I \iff T_P(I) = I$. Since $I \subseteq T_P(I)$, the least (unique, smallest) model of P is also the least fixpoint of T_P, i.e. (Knaster-Tarski) $T_P^\omega(\emptyset)$.

The least (unique, smallest) model of P that contains atoms E is $T_P^\omega(\emptyset)$.

The original fixpoint semantics for definite logic program P is given in terms of the least fixpoint of T_P, which is T_P^ω.

How does $T_P^\omega(\emptyset)$ compare to T_P^ω?

$T_P^\omega(\emptyset) = \emptyset = T_P^0(\emptyset)$, $T_P^\omega(\emptyset) \subseteq T_P^\omega(\emptyset)$, $T_P^\omega(\emptyset) \subseteq T_P^\omega(\emptyset) \cup T_P^\omega(\emptyset)$, $T_P^\omega(\emptyset) = T_P^\omega(T_P^\omega(\emptyset)) \cup T_P^\omega(\emptyset) = T_P^\omega(T_P^\omega(\emptyset)) \cup T_P^\omega(\emptyset)$, $T_P^\omega(\emptyset) = T_P^\omega(T_P^\omega(\emptyset)) \cup T_P^\omega(\emptyset)$.

And you can easily check (by induction on n) that

$T_P^\omega(\emptyset) = \bigcup_{n \geq 0} T_P^n(\emptyset)$

So then we have $T_P^\omega(\emptyset) = \bigcup_{n \geq 0} T_P^n(\emptyset) = \bigcup_{n \geq 0} T_P^n(\emptyset) \overset{\text{def}}{=} T_P^\omega(\emptyset)$.

The immediate consequence operator T_P for definite logic programs has other properties (e.g. it is ‘continuous’) which we won’t go into here.

- What is the least fixpoint of Th? Since Th is monotonic, progressive and compact, the least fixpoint is $\text{Th}^\omega(\emptyset)$. But since $\text{Th}(\emptyset) = \emptyset$, $\text{Th}^\omega(\emptyset) = \emptyset$. So the least fixpoint of Th is \emptyset (the set of all propositional tautologies). Exactly as we should expect. And the least fixpoint of Th containing the set of formulas W is just $\text{Th}(W)$. Again, exactly as we would expect.
Definition Let F be an operator in U and let X be a subset of U. The closure of X under the operator F — denoted $\text{Cl}_F(X)$ — is the smallest subset S of U such that:

$$X \subseteq S \quad \text{and} \quad F(S) \subseteq S$$

How do we know that $\text{Cl}_F(X)$ exists and/or is unique?

Proposition U satisfies the closure conditions (1)--(2) of $\text{Cl}_F(X)$.

Proposition If F is monotonic, then if subsets S_1 and S_2 of U both satisfy the closure conditions (1)--(2) of $\text{Cl}_F(W)$, then so does their intersection $S_1 \cap S_2$.

Proposition If F is monotonic, $\text{Cl}_F(X)$ is the intersection of all sets S satisfying the closure conditions (1)--(2).

$\text{Cl}_F(X)$ is the least set S satisfying $X \subseteq S$ and $F(S) \subseteq S$. If in addition F is progressive, $S \subseteq F(S)$. So then $\text{Cl}_F(X)$ is the least fixpoint of F that contains X.

Proposition If F is progressive, then $\text{Cl}_F(X)$ is the least fixpoint of F that contains X. If F is monotonic and progressive and compact, then

$$\text{Cl}_F(X) = F^\omega(X)$$

(There is more about operators, closures, etc; later in the course.)

Note the notation and terminology:

- $\text{Cl}_{\text{IDB}}(\text{EDB})$ — closure of EDB under the rules IDB
- $\text{Cl}_F(X)$ — closure of X under the operator F

(They are different things. Sorry about that but it’s convenient to use the same word and similar notation.)

Example: definite deductive databases

By definition, $\text{Cl}_{\text{IDB}}(\text{EDB})$ is the least set of atoms X such that:

- $\text{EDB} \subseteq X$
- $T_{\text{IDB}}(X) \subseteq X$

It is very easy to check that $T_{\text{IDB}}(X) \subseteq X$ if $T_{\text{IDB}}(X) \subseteq X$.

So, $\text{Cl}_{\text{IDB}}(\text{EDB})$ is the least set of atoms X such that

- $\text{EDB} \subseteq X$
- $T_{\text{IDB}}(X) \subseteq X$

For definite clauses IDB, T_{IDB} is obviously progressive, monotonic and compact. So then $\text{Cl}_{\text{IDB}}(\text{EDB}) = \text{Cl}_{T_{\text{IDB}}}^{\omega}(\text{EDB})$.

Note the notation and terminology:

- $\text{Cl}_{\text{IDB}}(\text{EDB})$ — closure of EDB under the rules IDB
- $\text{Cl}_{T_{\text{IDB}}}^{\omega}(\text{EDB})$ — closure of EDB under the operator T_{IDB}

(I hope there’s no confusion. Sorry about that but it’s convenient.)

Note also

- $\text{Cl}_{\text{IDB}}(\text{EDB}) = \text{Cl}_{T_{\text{IDB}}}^{\omega}(\text{EDB})$ (because $T_{\text{IDB}}(X) \subseteq X$ if $T_{\text{IDB}}(X) \subseteq X$)
- But $\text{Cl}_{T_{\text{IDB}}}^{\omega}(\text{EDB}) \neq T_{\text{IDB}}^{\omega}(\text{EDB})$ (because T_{IDB} is not necessarily progressive). (However: $\text{Cl}_{\text{IDB}}(\text{EDB}) = \text{Cl}_{T_{\text{IDB}}}^{\omega}(\text{EDB}) = T_{\text{IDB}}^{\omega}(\text{EDB})$.)

Exercise Cl_{IDB} maps sets of atoms to sets of atoms. If IDB is definite then Cl_{IDB} is a classical consequence operator (Tarski):

- $X \subseteq \text{Cl}_{\text{IDB}}(X)$
- $\text{Cl}_{\text{IDB}}(\text{Cl}_{\text{IDB}}(X)) \subseteq \text{Cl}_{\text{IDB}}(X)$
- if $X_1 \subseteq X_2$ then $\text{Cl}_{\text{IDB}}(X_1) \subseteq \text{Cl}_{\text{IDB}}(X_2)$

-