
491 Knowledge Representation

Negation as failure

(Normal logic programs)

Marek Sergot
Department of Computing
Imperial College, London

January 2001; January 2010 v1.3f

Contents

• Negation as failure (NBF): Summary

The original declarative semantics of NBF is in terms of the Clark completion,
comp(D) of a logic program/database D. The SLDNF proof procedure, which is
the most common way of executing normal logic programs (pure Prolog is a special
case) is sound, but not complete, with respect to this semantics.

• Defaults and exceptions with NBF

Normal logic programs (and negation by failure) provide a simple and practical for-
malism for expressing defaults and exceptions, and other forms of non-monotonic
reasoning. There are some limitations however.

(Another motivation: how do we build a deductive database incorporating a form of
‘Closed World Assumption’?)

• Semantics for negation as failure (separate handouts)

Various alternative semantics for negation by failure give a better account of the
meaning of certain commonly occurring forms of logic programs than does the Clark
completion, and also provide links to special-purpose non-monotonic reasoning sys-
tems. We cover:

– stratified programs

– stable models and answer sets

There are various other semantics – ‘perfect’ models, ‘well founded’ models – which
have connections to other non-monotonic reasoning methods, which we shall not
cover.

These notes assume some familiarity with negation as failure and normal logic programs.
Here is a summary.

1

Negation as failure: Summary

A normal logic program is a set of clauses (sometimes called ‘extended definite clauses’) of
the form:

• A← L1, . . . , Ln (n ≥ 0)

where A is an atom and each Li is a literal. A literal is either an atom (a ‘positive literal’)
or of the form not B where B is an atom. (not B is a ‘negative literal’).

A clause with no occurrences of not is called a definite clause.

The atom A is the head of the clause; the literals L1, . . . , Ln are the body of the clause.
When the body is empty (n = 0 above) the arrow ← is usually omitted.

I will use (or try to remember to use) the Prolog convention that strings beginning with
uppercase letters are variables.

not is negation by failure (NBF): not B succeeds when all attempts to prove B fail in
finite time. (There are more precise ways of saying this, but this will do for the purposes
of this brief summary.)

In addition to ‘normal logic programs’, there are also:

• disjunctive logic programs, in which clauses are of the form

A1 ∨ · · · ∨ Ak ← B1, . . . , Bm, not C1, . . . , not Cn (k ≥ 1,m ≥ 0, n ≥ 0)

Ai, Bi, Ci all atoms.

• extended logic programs which combine classical, truth-functional negation ¬ with
negation by failure not . Clauses have the form

L ← L1, . . . , Lm, not Lm+1, . . . , not Ln (m ≥ 0, n ≥ m)

where L and each Li are (classical) literals, i.e., of the form A or ¬A where A is an
atom.

We will look at extended logic programs later in the course.
We will not cover disjunctive logic programs.

In Deductive databases :

• DATALOG — definite clauses without function symbols

Sometimes DATALOG means no recursion allowed, and DATALOG+ is DATALOG with
recursion. Sometimes DATALOGn means DATALOG with negation (by failure).

2

Operational semantics

(Usually) the SLDNF proof procedure. There are other ways of executing normal logic
programs, e.g., top-down (goal-directed) like SLDNF, top-down with tabulation of partial
computations, ‘all answers at a time’, bottom-up, bottom-up with ‘magic sets’. These will
not be covered in this course, except for ‘answer set programming’ (and in passing, a brief
mention of bottom-up methods).

SLDNF: The computation of a goal/query G = L1, . . . , Lm is a series of derivation steps:

← G
θ1
← G1

θ2
← G2

...

← Gn−1
θn

2 the empty goal

The θi are the unifiers (m.g.u.’s) produced by each derivation step. The answer computed
θ is the composition of these unifiers θ = θ1 · · · · · θn.

There are two kinds of derivation steps.

(a) Computation rule selects a positive literal Li = B:

← L1, . . . , Li−1, B , Li+1, . . . Ln

resolve with clause B′ ←M1, . . . ,Mk where B.θ = B′.θθ

← (L1, . . . , Li−1,M1, . . . ,Mk, Li+1, . . . Ln)θ

(b) Computation rule selects a negative literal Li = not B:

← L1, . . . , Li−1, not B ,Li+1, . . . Ln

sub-computation: all ways of computing B fail (in finite time)ι

← L1, . . . , Li−1, Li+1, . . . Ln

ι is the identity substitution (the NBF sub-computation does not generate bindings
for variables).

The computation rule picks out one of the literals of the current goal (query). The compu-
tation rule must be safe: it must not pick a negative literal containing a variable. This is
necessary for soundness. If the current goal contains only negative literals with variables
then the computation cannot proceed: it ‘flounders’.

3

Declarative semantics

In the original declarative semantics, the meaning of a normal logic program/database D
is given by the Clark completion:

comp(D)

comp(D) is intended to capture the meaning of negation by failure not in terms of
ordinary, classical, truth-functional negation ¬.

The content of the program/database is Th(comp(D)).

The Clark completion comp(D)

• replaces all occurrences of not in D by ordinary (truth-functional) negation ¬.

A clause A← B1, . . . , Bn is shorthand for the universally quantified formula

∀(B1 ∧ · · · ∧Bn → A)

that is, ∀x1∀x2 . . . ∀xm(B1 ∧ · · · ∧ Bn → A) where x1, x2, . . . , xm are the variables
appearing the clause. (→ is material implication.)

• and adds to the clauses in D the following additional formulas:

– ‘only if’ counterparts to the clauses in D;

– the Clark equality theory (CET): (axioms for =)

‘only if’ The ‘definition’ of a predicate p is the set of clauses with p in their heads: these
are the clauses defining p. To construct the ‘only if’ part of the definition of p:

First re-write every clause
p(t1, . . . , tm)← L1, . . . , Ln

in ‘homogenised form’

p(x1, . . . , xm)← x1 = t1, . . . , xm = tm, L1, . . . , Ln

x1, . . . , xm are new variables not occurring in any clause with predicate p in its head.

Suppose the homogenised clauses defining p are:

p(x1, . . . , xm) ← E1

p(x1, . . . , xm) ← E2

...

p(x1, . . . , xm) ← Ek

The ‘completed definition’ of p is obtained by adding the sentence:

∀x1 . . . ∀xm (p(x1, . . . , xm)→ (E ′1 ∨ E ′2 ∨ · · · ∨ E ′k))

Each E ′i is obtained from Ei by (1) replacing the commas separating literals by ∧ and all
occurrences of negation by failure not by classical, truth-functional negation ¬, and then
(2) prefixing existential quantifiers ∃y1 . . . ∃yt for any remaining variables y1, . . . , yt in Ei

besides those x1, . . . , xm already in the head.

The completion comp(D) of D contains such an ‘only if’ clause for every predicate defined
in D.

Finally, for any predicate q of arity n appearing in the body of a clause of D but not
defined in D, add the sentence:

∀x1 . . . ∀xn ¬ q(x1, . . . , xn)

4

Clark equality theory (CET) Axioms for =:

• unique name axioms

– c 6= d for each pair of distinct constants c and d

and more generally (constants can be regarded as function symbols of arity 0):

– ∀x1 . . . ∀xn∀y1 . . . ∀ym (f(x1, . . . , xn) 6= g(y1, . . . , ym)) for each pair of distinct
function symbols f and g.

• axioms for equality (=): reflexivity, symmetry, transitivity, substitutivity;

∀x (x = x)

∀x∀y (x = y → y = x)

∀x∀y∀z (x = y ∧ y = z → x = z)

and (substitutivity) for every n-ary predicate p:

∀x1 . . . ∀xn∀y1 . . . ∀yn (x1 = y1 ∧ · · · ∧ xn = yn → (p(x1, . . . , xn)↔ p(y1, . . . , yn))

• an axiom schema corresponding to the occurs check of the unification algorithm:
x 6= t[x] for any term t[x] containing variable x.

(These axioms make = correspond to unification.)

Note: You sometimes see references to the domain closure axiom. If the language contains
constants a1, a2, . . . , am, the domain closure axiom is

∀x (x = a1 ∨ x = a2 ∨ · · · ∨ x = am)

The domain closure axiom is not part of the Clark completion.

Example Here is a little program D to illustrate:

p(Y) ← q(Y), not r(a,Y)

p(f(Z)) ← not p(Z)

p(b)

r(a,b) ← q(b)

In ‘homogenised’ form:

p(X) ← X=Y, q(Y), not r(a,Y)

p(X) ← X=f(Z), not p(Z)

p(X) ← X=b

r(X,Y) ← X=a, Y=b, q(b)

5

The completion comp(D) contains the clauses

p(Y) ← q(Y), ¬r(a,Y)
p(f(Z)) ← ¬p(Z)
p(b)

r(a,b) ← q(b)

and the following ‘only if’ sentences:

∀X (p(X)→ ∃Y (X=Y ∧ q(Y) ∧ ¬r(a,Y)) ∨
∃Z (X=f(Z) ∧ ¬p(Z)) ∨
X=b)

∀X∀Y (r(X,Y)→ X=a ∧ Y=b ∧ q(b))

∀X¬q(X) % because q is not defined in D

together with the Clark equality theory for D.

Example Propositional programs are much simpler, because there are no quantifiers, no
need for ‘homogenisation’, no need for the equality theory. Consider this little example D:

p ← not q

p ← r

q

comp(D) = { p↔ (¬q ∨ r), q, ¬r }
Strictly speaking, according to the definition above, that is not correct. Strictly speaking:

comp(D) = { p← ¬q, p← r, q } ∪ { p→ (¬q ∨ r), ¬r }

But it is usual to write the completion in the equivalent, simpler form using ‘iff’s.

Example Similarly, consider this little example D:

p(X) ← r(X), not q(X,Y)

p(X) ← not t(X)

q(a,b)

We would normally write (CET is the Clark equality theory):

comp(D) = { ∀X (p(X)↔ ((r(X) ∧ ∃Y¬q(X,Y)) ∨ ¬t(X)),

∀X∀Y (q(X,Y)↔ X=a ∧ Y=b),

∀X¬t(X), ∀X¬r(X)} ∪ CET

Small point: Note the quantification in ∃Y¬q(X,Y). Prolog’s unsound implementation of
negation-by-failure (picking a not literal even if it contains a variable) would treat it as
¬∃Y q(X,Y) (which is wrong).

Thanks to Xu Zhao (MSc MAC, 2015–16) who spotted that many earlier versions of these
notes stupidly omitted ∀X¬r(X).

6

Soundness and completeness

Soundness (of SLDNF) For normal logic program/database D, if SLDNF computes an
answer substitution θ (using a safe computation rule) for the goal L1, . . . , Ln, then

comp(D) |= ∀((L′1 ∧ · · · ∧ L′n)θ)

where each L′i is obtained from Li by replacing all occurrences of not by classical, truth-
functional negation ¬. (The ∀ is necessary in these statements since the answer substitution
θ may be not ground.)

Soundness (of NBF for SLDNF) For normal logic program/database D, if the SLDNF
computation of goal L1, . . . , Ln fails finitely (precise definition of this omitted here), then

comp(D) |= ∀(¬(L′1 ∧ · · · ∧ L′n)) (equivalently: comp(D) |= ¬∃(L′1 ∧ · · · ∧ L′n))

where as usual each L′i is obtained from Li by replacing all occurrences of not by ¬.

But SLDNF is not complete

(1) because of the possibility of floundering;

(2) because of infinite computation trees (‘loops’).

Consider this program P :

r(a) ← p(a)

r(a) ← not p(a)

p(X) ← p(f(X))

Clearly comp(P) |= r(a). But no SLDNF computation of ?- r(a) will fail finitely
(they all get ‘stuck in an infinite branch’).

SLDNF is complete for some special cases : for example, for definite programs, logic pro-
grams where there is no negation not .

More pertinent for present purposes is the following problem.

7

comp(D) can be inconsistent

Consider
D = {p← not p}

for which
comp(D) = {p↔ ¬p}

which is clearly inconsistent (has no models).

(Strictly speaking, as defined above, comp(D) = {p ← ¬p, p → ¬p}, which is equivalent
to {p↔ ¬p}.)

There are two problems:

(1) How can we determine, by looking at the form of program D, whether its completion
comp(D) is consistent or inconsistent?

The completion comp(D) is guaranteed to be consistent for certain classes of pro-
gram/database D, of which stratified is the most important. We shall examine those
presently.

(2) There are intuitively well-behaved and coherent logic programs/databases which arise
naturally in practice but for which the Clark completion is inconsistent. (Examples
to follow.) Clearly, for those programs, the Clark completion is an inadequate for-
malisation of their intended meaning.

We will look at some alternative semantics for NBF later in the course.

Question Do we have comp(D) |= D, i.e. D ⊆ Th(comp(D)) ?

Strictly speaking no, but only because we have to remember to replace negation-by-failure
not in D by classical negation ¬.

We have the following properties of Th

• A ⊆ Th(A)

• Th(A) ⊆ Th(A ∪B) (monotony)

and so

• A ⊆ Th(A ∪B)

So what we do have is

• D′ ⊆ Th(comp(D)), i.e. comp(D) |= D′

where D′ is D with all occurrences of not replaced by ¬.

(A trivial point really. I just wanted to illustrate that remembering to convert not to ¬
is a nuisance.)

8

General rules and exceptions with NBF

Normal logic programs (and negation by failure) provide a simple and practical formalism
for expressing defaults and exceptions, and other forms of non-monotonic reasoning.

Example

• Typically (by default, unless there is reason to think otherwise, . . .) a bird can fly.

• Except that ostriches, which are birds, typically cannot fly.

• Also penguins, which are birds, cannot fly.

• Except that magic ostriches can fly (in general).

Formulation:

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X), not abnormal ostrich(X)

bird(X) ← penguin(X)

abnormal bird(X) ← penguin(X), not abnormal penguin(X)

ostrich(X) ← magic ostrich(X)

abnormal ostrich(X) ← magic ostrich(X), not abnormal magic ostrich(X)

Check we get the intended behaviour:

• bird(bill). We conclude (by NBF) can fly(bill).

• ostrich(bill). We conclude (by NBF) abnormal bird(bill). And so (again by
NBF) ¬can fly(bill).

But note that this negative information is implicitly represented.

• magic ostrich(bill). We conclude (by NBF) abnormal ostrich(bill). And so
now we do not have the conclusion abnormal bird(bill), and so can fly(bill)

again.

9

Example (Extension of the previous one)

• Typically (by default, unless there is reason to think otherwise, . . .) a bird can fly.

• Except that ostriches, which are birds, typically cannot fly.

• Also penguins, which are birds, cannot fly.

• Except that magic ostriches can fly (in general).

• Jim is an ostrich (an ordinary ostrich) who can fly.

• Frank is a magic ostrich who cannot fly.

• No bird can fly if it is dead (no exceptions!).

Basic formulation (as before):

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X), not abnormal ostrich(X)

bird(X) ← penguin(X)

abnormal bird(X) ← penguin(X), not abnormal penguin(X)

ostrich(X) ← magic ostrich(X)

abnormal ostrich(X) ← magic ostrich(X), not abnormal magic ostrich(X)

To represent that

• Jim is an ostrich (an ordinary ostrich) who can fly.

we have choices. We can write:

ostrich(jim)

abnormal ostrich(jim)

or simply just

ostrich(jim)

can fly(jim)

Which is better? Take your pick. (I think I might go for the second in this example, all
things being equal. But that can also be dangerous — comments later.)

To represent that

• Frank is a magic ostrich who cannot fly.

we can write:

magic ostrich(frank)

abnormal magic ostrich(frank)

10

Notice that we can’t write directly (cf. can fly(jim) above):

¬can fly(frank)

because this is not a valid clause in a normal logic program. (It would be allowed in an
extended logic program.)

To represent that

• No bird can fly if it is dead (no exceptions!)

we have to be careful. One possible solution:

abnormal bird(X) ← dead(X)

Why do we have to be careful? Because if we chose to represent that Jim is an ostrich
who can fly as abnormal ostrich(jim) then dead(jim) means that Jim cannot fly (which
seems right, given the way the rule was formulated). But if we had written can fly(jim)

then Jim still flies even if dead. We would have to revise the clause to say instead:

can fly(jim) ← not dead(jim)

There are other solutions. One can see that

• it is reasonably straightforward to formulate these general rule and exception struc-
tures using NBF, but

• the formulation gets complicated and unwieldy quickly, and then it becomes easy to
make a mistake.

Is this difficulty inherent in exception structures or is it a side-effect of using something as
simple as NBF? We shall look at other formalisms presently.

Further complications A dead bird is abnormal from the point of view of flying (and
singing) but not necessarily from the point of view of having feathers.

feathers(X) ← bird(X), not abnormal bird feathers(X)

can sing(X) ← bird(X), not abnormal bird singing(X)

% frank the magic ostrich can’t fly because he lost his feathers

abnormal bird feathers(frank)

% ostriches can’t sing (typically)

abnormal bird singing(X) ← ostrich(X), not abnormal ostrich singing(X)

% except that Italian ostriches can sing (in general)

abnormal ostrich singing(X) ← italian ostrich(X), not ab it ost sing(X)

...

11

Further Examples

(On Tutorial Exercise sheet)

Example 1 (from an example by Bob Kowalski)

(r1) Except as provided for by r2, all thieves should be punished.

(r2) Except as provided for by r3, thieves who are minors should be rehabilitated and not
punished.

(r3) Any thief who is violent should be punished.

Reasonably straightforward:

punish(X) ← thief(X), not exception by r2(X)

rehab(X) ← thief(X), minor(X), not exception by r3(X)

exception by r2(X) ← thief(X), minor(X), not exception by r3(X)

exception by r3(X) ← thief(X), violent(X)

Much the same comments apply to this example as to the abnormal ostriches discussed
earlier. In particular, note that the formulation of rule (r2) only gives the conclusion ‘not
punish’ implicitly.

Example 2

• Europeans are typically civilised in behaviour. Except that . . .

• Football supporters are typically not civilised in behaviour, unless they are educated.

• Even educated football supporters, on the other hand, are not civilised in behaviour
if they are drunk.

These statements are quite ambiguous and can be interpreted in different ways.

Assuming that ‘unless’ in these rules is to be read as ‘unless it is known that . . . ’ (as
suggested by the qualification ‘typically’) the first two rules could be formulated like this:

civil(X) ← european(X), not ab civil european(X)

ab civil european(X) ← football supporter(X), not educated(X)

Again, ‘not civilised’ is here represented only implicitly: the query civil(X) will fail for
any X who is a football supporter not known to be educated, or who is educated and drunk.

12

Now for the third rule. My reading of the third rule is that it is intended to give an
exception to the second. So one possibility is to re-formulate like this:

civil(X) ← european(X), not ab civil european(X)

ab civil european(X) ← football supporter(X), not ab football supporter(X)

ab football supporter(X) ← educated(X), not drunk(X)

The last clause could be made more general and more flexible re-written as:

ab football supporter(X) ← educated(X), not ab educ football supporter(X)

ab educ football supporter(X) ← drunk(X)

What about educated football supporters who are not European? Are they (typically)
civilised or not? The rules as expressed in their natural language formulation are not clear
on this point. Perhaps it is intended that all educated football supporters, European or
not, are typically civilised. If so we could add the following clause:

civil(X) ← football supporter(X), educated(X),

not ab educ football supporter(X)

What if ‘unless’ is not intended to be read as ‘unless it is known that . . . ’ but as ordinary,
classical ‘not’? Cannot be represented in a normal logic program, since there is no other
kind of negation but negation by failure not .

The point of this example is to show (a) that normal logic programs can be used to express
general rules and exceptions but (b) it is sometimes awkward and often not particularly
clear. It is easy to make a mistake, i.e., express something other than what was intended.

We will look at some better — higher-level and more expressive — formalisms later.

13

Example 3

• A person who is big is assumed to be strong, unless there is reason to think (s)he is
weak.

• A person who is small is assumed to be weak, unless there is reason to think that
(s)he is strong, except that . . .

• A person who is small and muscular is assumed to be strong unless there is reason
to think that (s)he is weak.

This example is straightforward to formulate in the same style, but then difficult to figure
out what is being said.

One possibility (1):

strong(X) ← big(X), not weak(X)

weak(X) ← small(X), not strong(X), not abnormal small(X)

abnormal small(X) ← small(X), muscular(X), not weak(X)

strong(X) ← small(X), muscular(X), not weak(X)

Another possibility (2):

strong(X) ← big(X), not weak(X)

weak(X) ← small(X), not strong(X)

strong(X) ← small(X), muscular(X), not weak(X)

Possibly even (3):

strong(X) ← big(X), not weak(X)

weak(X) ← small(X), not muscular(X), not strong(X)

strong(X) ← small(X), muscular(X), not weak(X)

I don’t like this last one — it is not close to the way the original rules were expressed, and
it does not generalise well.

What conclusions do these representations give for the various combinations of big/small
and muscular/not muscular?

Let us assume that we never have, for any x, big(x) and small(x) at the same time.
(How might one formalize such an important assumption?)

In each case, we have only two tools available (so far): the operational semantics (what
will be computed by SLDNF); the Clark completion of the representation. Of these, the
latter is very awkward to apply.

14

Suppose first that big(jim) (say) is added to the program (but not small(jim)). In all
three formulations the computation is straightforward. This is because small(jim) fails
so the other clauses play no role.

Suppose now that small(mary) is added to the program, but not muscular(mary) (and
not big(mary)). Again it seems straightforward because the only clause that needs to be
considered is the one defining weak: the others all have conditions which must fail for this
set of data.

Suppose finally that both small(jack) and muscular(jack) are added to the program
(but not big(jack)).

For the first formulation (1): the computation loops so we must look at the completion to
determine what the answers would be.

One can see that the following are all implied by the completion (of program + data):

weak(jack)↔ ¬strong(jack) ∧ ¬abnormal small(jack)

abnormal small(jack)↔ ¬weak(jack)
strong(jack)↔ ¬weak(jack)

(and the first is implied by the other two).

This suggests that the completion has two kinds of models: one in which strong(jack) is
true and weak(jack) is false (and abnormal small(jack) is true), and another in which
strong(jack) is false and weak(jack) is true (and abnormal small(jack) is false). This
is easy to confirm. So we can reach no conclusion from this program about whether jack

is strong or weak.

The second formulation (2): the computation loops. The completion (of program + data)
implies:

weak(jack)↔ ¬strong(jack)
strong(jack)↔ ¬weak(jack)

It is easy to confirm that the completion has two kinds of models, one in which jack is
weak and the other in which jack is strong.

The third formulation (3) is not very interesting, but for the sake of completeness: this
one can be computed straightforwardly, because now only one clause (the third one) can
play any role for jack: the first two all have conditions which fail for small muscular jack.

(Which shows that formulation (3) is not equivalent to (1) or (2), according to the com-
pletion semantics).

Can we do any better than this kind of informal analysis? Perhaps the three formulations
can be related in some way to one another? Alternative semantics for NBF comes next.

(As observed on the tutorial question sheet, the last example has the same logical form
as some common patterns that arise in temporal reasoning, though this might not be
apparent.)

15

Default reasoning with NBF: Other examples

Example

innocent(X) ← not guilty(X)

The default reasoning here has the same form as the examples of general rules and excep-
tions, but

• we would not say a person is typically innocent

• we would not say that there is a (defeasible) general rule that everyone is innocent.

In the context of determining whether a given X is innocent or guilty, the rule above says
that we conclude X is innocent whenever it cannot be shown that X is guilty. The NBF
here is a simple way of modelling burden of proof.

Some examples can be read (meaningfully) both ways, depending on context:

entitled to soc security(X) ← not disqualified(X)

could be read, depending on context, as either (or both) of:

• a defeasible general rule with a possible exception, or

• a representation of what is required to establish entitlement (the ‘burden of proof’ is
to show that X is disqualified).

The point is that for all these readings, and others — at this level of detail — the reasoning
is technically the same.

Note also that ‘typically’, ’by default’, . . . , is not necessarily the same as most.

16

Example A simple treatment of default persistence (‘inertia’) of facts over time.

Let holds(F,T) represent that fact (or ‘fluent’) F holds (is true) at time T.

Let Ev initiates F represent that an event of type Ev initiates a period of time for which
fact (‘fluent’) F holds. initiates is a binary predicate written in infix form. For example:

birth(X) initiates alive(X)

hire(X) initiates employee(X)

Let Ev terminates F represent that an event of type Ev terminates a period of time for
which fact (‘fluent’) F holds. terminates is a binary predicate written in infix form. For
example:

death(X) terminates alive(X)

fire(X) terminates employee(X)

We might want to add something like

death(X) terminates employee(X) when employee(X)

but I don’t want to get into such details now.

Let happens(Ev,T) represent that an event of type Ev happens at time T. For example:

happens(birth(jim), 0)

happens(hire(jim), 18)

happens(fire(jim), 19)

happens(hire(jim), 22)

happens(fire(jim), 45)

Here is a general formulation of what facts hold at what times using NBF as the device
for dealing with default persistence (‘inertia’) of facts.

holds(F,T) ← happens(Ev,Ts), Ev initiates F, Ts < T, not broken(F,Ts,T)

broken(F,Ts,T) ← happens(Ev∗,T∗), Ev∗ terminates F, Ts < T∗ < T

This is a simplified form of the event calculus. More about event calculus (perhaps) and
other temporal reasoning formalisms (definitely) later in the course.

17

Example Here is another possible treatment of default persistence (‘inertia’).

(This is just an example. It is not necessarily a good way of expressing default persistence
‘inertial’.)

When F is a time-varying fact (or ‘fluent’), let F represent the negation of F.

Let given(F,T) represent that fact F is known to hold at time T. (This could be because
we know that an event which initiates F happens at time T, or because we observe that F

is true at time T — whatever. F here could be a fluent or the negation of a fluent.)

A possible rule of default persistence (‘inertia’) — a ‘frame axiom’:

holds(F,T) ← given(F,T)

holds(F,T) ← holds(F,T’), next(T’,T), not given(F,T)

For integer time, next(T’,T) means T = T’ + 1. next is more general.

Here is another possible rule:

holds(F,T) ← given(F,T)

holds(F,T) ← holds(F,T’), next(T’,T), not holds(F,T)

(Compare the ‘strong if big and not weak, weak if small and not strong’ example earlier.)

Are these two formulations of persistence (‘inertia’) equivalent (in some sense)? If not, how
are they related? (Ans: it depends in part on the structure of time — on what properties
we assume for next.)

To answer these (and many other) questions we need better ways of characterising NBF.
We consider some of the approaches to semantics of NBF next. Then we shall consider
some more general approaches to formalisation of defeasible reasoning.

18

