
491 Knowledge Representation

Preliminaries:
Models, theories, consequence relations

Marek Sergot
Department of Computing
Imperial College, London

January 2005 v1.0h

Notation

L is some (logical) language, usually propositional or (a fragment of) first-order predicate
logic. Unless stated otherwise, L is closed under truth-functional operations. (Thus, if
α ∈ L then ¬α ∈ L, and if α ∈ L and β ∈ L then α ∨ β ∈ L, α ∧ β ∈ L, α→ β ∈ L, etc.)

Lower-case Greek letters α, β, . . . range over formulas, lower-case Latin letters, p, q, r, . . .
represent atomic formulas.

Upper-case letters A,B,C, . . ., X, Y, . . . represent sets of formulas.

(Sometimes I say ‘sentence’ instead of ‘formula’.)

M is a model∗ for L.

M |= α means that formula α evaluates to true in model M; M is a model of α.
|= α means that formula α evaluates to true in all models for L.

A |= α means that α is true in all models of A, i.e. |= (
∧
A→ α) when A is finite.

(
∧
A denotes the conjunction of all formulas of A.)

M is a model of a set of formulas A when M |= α for every formula α in A. I will write
M |= A. (So: A |= α means M |= α for every M such that M |= A.)

For convenience (laziness) I will sometimes write A |= B when B is a set of formulas.
A |= B means A |= β for all β ∈ B, i.e. A |= ∧

B.

Th(A) stands for the set of all classical truth-functional consequences of A, i.e.

Th(A)
def
= {α ∈ L | A |= α}

∗Excuse my terminology. By ‘M is a model for a L’ I mean M is a structure in which
formulas of L can be evaluated — so it’s an interpretation of formulas of L.

1

Consequence operators

Th is an example of a consequence operator. It can be regarded as an operator mapping
sets of formulas of L to sets of formulas of L.

We will be looking at many other kinds of consequence operators presently.

In general, I will write Cn(A) for the set of all consequences of A. (We will look at various
examples of Cn.)

A ` α means the same as α ∈ Cn(A). ` is then a consequence relation.

For convenience (laziness): When B is a set of formulas, A ` B means A ` β for all β ∈ B,
i.e., B ⊆ Cn(A).

It is convenient to use both notations. For example, transitivity of Cn (a property of some
consequence relations but not all) is easier to see when written

• if A ` B and B ` C then A ` C

than when written in the form

• if B ⊆ Cn(A) and C ⊆ Cn(B) then C ⊆ Cn(A)

which is also equivalent to

• if B ⊆ Cn(A) then Cn(B) ⊆ Cn(A)

I will sometimes write A `PL α for α ∈ Th(A) by analogy with ` and Cn.

Note: many authors use the notation Cn where I use Th, and then something like C for
a consequence operator in general. However, many of the papers in AI have employed
Th and for that reason I have adopted it here. That leaves Cn as a natural choice for
consequence operators generally.

Some properties of Th

It is easy to check that Th has the following properties (among others). I leave the checking
as a simple exercise. (The only one that isn’t obvious is ‘compactness’.) Some of the
properties have names. (It is not necessary to memorize them.)

• A ⊆ Th(A) (inclusion)
A `PL A (reflexivity)

• Th(Th(A)) = Th(A) (idempotence)

• if A ⊆ B then Th(A) ⊆ Th(B) (monotony)
if A `PL α then A ∪X `PL α

• if B ⊆ Th(A) then Th(B) ⊆ Th(A) (transitivity/syllogism)
if A `PL B and B `PL C then A `PL C

2

• if A ⊆ B ⊆ Th(A) then Th(B) ⊆ Th(A) (‘cut’)
if A ∪B `PL α and A `PL B then A `PL α (‘cumulative transitivity’)

• β ∈ Th(A ∪ {α}) iff (α→ β) ∈ Th(A) (deduction)
A ∪ {α} `PL β iff A `PL (α→ β)

• if α ∈ Th(A) then α ∈ Th(A′) for some finite A′ ⊆ A (compactness)

• Th(∅) 6= ∅ (because e.g. p ∨ ¬p ∈ Th(∅))
Th(∅) is the set of all tautologies.

• Th({p,¬p}) = L
{p,¬p} `PL α any α

• {α, β} ⊆ Th(A) iff (α ∧ β) ∈ Th(A)
A `PL α and A `PL β iff A `PL α ∧ β
• if {α, α→ β} ⊆ Th(A) then β ∈ Th(A)

• if ∅ `PL α↔ β then A `PL α iff A `PL β

• Th(∅) ⊆ Th(A) (every Th(A) contains all tautologies)

• α ∨ β ∈ Th({α})
• ‘disjunction in the premises’ (‘OR’)

if A ∪ {α} `PL γ and A ∪ {β} `PL γ then A ∪ {α ∨ β} `PL γ
Th(A ∪ {α}) ∩ Th(A ∪ {β}) ⊆ Th(A ∪ {α ∨ β})

(And many others)

Classical consequence operators (Tarski)

A consequence operator Cn is ‘classical’ if it satisfies the following three properties.

• A ⊆ Cn(A) (inclusion)

• Cn(Cn(A)) ⊆ Cn(A) (closure)

• if A ⊆ B then Cn(A) ⊆ Cn(B) (monotony)

Note that inclusion and closure together imply

• Cn(Cn(A)) = Cn(A) (idempotence)

Expressed in terms of the corresponding consequence relation ` the three defining condi-
tions are:

• if α ∈ A then A ` α (reflexivity)

• if A ` B and A ∪B ` α then A ` α (‘cut’)

• if A ⊆ B then A ` α implies B ` α (monotony)
(Or: if A ` α then A ∪X ` α, any X)

3

‘cut’ and ‘closure/idempotence’

Expressed in terms of Cn, ‘cut’ is

• if B ⊆ Cn(A) then Cn(A ∪B) ⊆ Cn(A)

or equivalently (assuming A ⊆ Cn(A))

• if A ⊆ B ⊆ Cn(A) then Cn(B) ⊆ Cn(A)

Easy to check that ‘closure’ is a special case of ‘cut’:

• A ⊆ Cn(A) ⊆ Cn(A) (‘inclusion’);

• ‘cut’ gives Cn(Cn(A)) ⊆ Cn(A) (‘closure’).

(It is in the Tutorial Exercise sheet.)

Side remark: In fact, inclusion with monotony make cut equivalent to closure.

(Show ‘closure’ implies ‘cut’: Suppose A ⊆ B ⊆ Cn(A). Then by monotony, Cn(B) ⊆
Cn(Cn(A)). But Cn(Cn(A)) ⊆ Cn(A) (‘closure’), so we get Cn(B) ⊆ Cn(A) as required.)

In summary: ‘cut’ is more general than closure, though for monotonic consequence relations
(with inclusion/reflexivity) they are equivalent.

When we look at non-classical consequence relations later in the course, ‘cut’ will be a
more useful property than ‘closure’.

Examples

• identity Id(A) = A is a classical consequence operator.

• absurdity Abs(A) = L is a classical consequence operator.

Check these claims. (Easy exercise)

For identity Id(A) = A, three things to check (all trivial). For all A:

• ‘inclusion’: A ⊆ A.

• ‘closure’: Id(Id(A)) ⊆ Id(A) is just A ⊆ A.

• ‘monotony’: if A ⊆ B then A ⊆ B (trivial).

For absurdity Abs(A) = L, three things to check (all trivial). For all A:

• ‘inclusion’: A ⊆ L.

• ‘closure’: Abs(Abs(A)) ⊆ Abs(A) is just L ⊆ L.

• ‘monotony’: if A ⊆ B then L ⊆ L (trivial).

(Thanks to David Tuckey, MSc 2017, for spotting a typo.)

4

Classical truth-functional consequence Th

Classical truth-functional consequence Th is a classical consequence operator. Check:

• A ⊆ Th(A)

• Th(Th(A)) ⊆ Th(A)

• if A ⊆ B then Th(A) ⊆ Th(B)

In addition, Th has the following properties:

• β ∈ Th(A ∪ {α}) iff (α→ β) ∈ Th(A) (deduction)

• if α ∈ Th(A) then α ∈ Th(A′) for some finite A′ ⊆ A (compactness)

Some consequence operators Cn have the additional properties of deduction and compact-
ness, some do not.

A consequence relation Cn which includes classical truth-functional consequence

Th(A) ⊆ Cn(A)

is called ‘supraclassical’. Most of the consequence relations that come up later are supra-
classical, but some are not.

Non-monotonic consequence relations

Many consequence relations used in knowledge representation fail monotony: they are
non-monotonic.

{coffee} ` tastes-nice BUT {coffee, diesel-oil} 6` tastes-nice

We will look at a variety of non-monotonic consequence relations later in the course.

It is nevertheless possible to identify some general properties that (non-)monotonic con-
sequence relations can have. We will look at some after we have looked at some specific
non-monotonic reasoning systems and logics. If you are curious in the meantime:

Further reading:

David Makinson, General Patterns in Nonmonotonic Reasoning.
Handbook of Logic in Artificial Intelligence and Logic Programming (Vol 3), Gabbay,
Hogger, Robinson (eds). Oxford University Press, 1994.

5

