
491 Knowledge Representation

Stratified logic programs

Marek Sergot
Department of Computing
Imperial College, London

January 2005 v1.0c

Several groups of people — Apt, Blair, and Walker, Przymusiński, van Gelder, Naqui,
Topor (and others) — came up with the same idea at about the same time. Some of them
were working in logic programming, some of them were working in databases. Either way,
the same basic idea:

• restrict attention to a special class of stratified logic programs/databases;

• then show that every stratified logic program/database has a unique model which is
minimal and supported, and moreover which can be obtained by modifying the usual
fixpoint construction TP↑ω in a very natural way.

I follow Apt, Blair and Walker’s (ABW) presentation here. I omit most proofs and con-
centrate on motivating the basic ideas and stating the key results.

Apt, K.R., Blair, H.A. and Walker, A. Towards a Theory of Declarative Knowledge.
In Foundations of Deductive Databases and Logic Programming, Minker, J., ed.
Morgan Kaufmann Publishers Inc., 1988, pp 89–148.

The notion of stratified program/database is very important. Very similar ideas have
appeared elsewhere (‘separability’ in the literature on circumscription, for example).

Minimal supported (Herbrand) models

As already observed, a normal logic program/database such as P :

p(1)←
q(2)←
r(X)← not q(X)

has two different minimal Herbrand models:

{p(1), q(2), r(1)} and {p(1), q(2), q(1)}
The first of these is supported and the second one is not. (The atom q(1) in the second
model has no support.)

A natural candidate for the semantics of a normal logic program/database is the

supported minimal (Herbrand) model.

We just need to figure out when such a model exists, and when it is unique.

1

We know that, even for a normal logic program P :

• TP (I) ⊆ I means that I is a model of P (I is closed under TP);

• TP (I) ⊇ I means that I is supported.

Unfortunately, we cannot find a fixpoint TP (I) = I just by constructing TP↑ω (or T ′P↑ω(∅))
because TP is not sufficiently well behaved when P contains clauses with occurrences of
negation-by-failure not in the body. TP is not even monotonic in that case. But imposing a
reasonable restriction on the form of P allows us to devise a natural means of constructing
fixpoints of TP .

Stratified programs/databases: outline

Suppose we do the following:

P0 – any set of definite clauses (no negation), whose unique minimal model is M(P0) =
TP0↑ω (as usual – no problem). Call this model M0.

P1 – any set of clauses (including negative literals in bodies) that define new predicates,
except that negative literals are only allowed to refer to predicates that are already
defined in P0. Let M1 be the closure of facts M0 under the rules P1: since all negative
conditions in clauses of P1 are fully determined by M0, we can expect that this closure
will be M1 = T ′P1

↑ω(M0).

P2 – any set of clauses that define new predicates, except that negative literals are only
allowed to refer to predicates that are already defined in P0 ∪ P1. Let M2 be the
closure of facts M1 under the rules P2: we can expect that this closure will be
M2 = T ′P2

↑ω(M1).

...

etc

We would end up with a normal logic program/database P that is made up of several
distinct strata, like this:

P = P0 ∪ P1 ∪ · · · ∪ Pn (Pi and Pj disjoint for all i 6= j)

Such a program/database P is stratified. If our intuition is correct, then the last Mn =
T ′Pn
↑ω(Mn−1) will be a model of P . This remains to be checked. (Mn will turn out to be a

minimal supported model of P .)

The above description suggests we construct a stratified program/database P by succes-
sively constructing a sequence of strata. But this is not necessary. A stratified pro-
gram/database P is one that could have been constructed in this way. It is only necessary
that it can be partitioned into strata as described above, not that it was actually con-
structed in this way.

2

Stratified programs/databases

There are several alternative (and equivalent) definitions of stratified. Here below is one.
Note the key feature: a stratified program forbids recursion ‘inside negation’. For example,
any program containing a clause of the form

p← q, not p

is not stratified. Nor is any program containing clauses of the form

p← q, not r
r ← s, p

And so on.

Preliminary definitions

• If P contains a clause of the form

A← . . . , p(. . .), . . .

then predicate p occurs positively in the clause.

• If P contains a clause of the form

A← . . . , not p(. . .), . . .

then predicate p occurs negatively in the clause.

Note that a predicate could occur both positively and negatively, even in the same clause.

Definition A normal logic program/database P is stratified when there is a partition

P = P0 ∪ P1 ∪ · · · ∪ Pn (Pi and Pj disjoint for all i 6= j)

such that, for every predicate p

• the definition of p (all clauses with p in the head) is contained in one of the parti-
tions/strata Pi

and, for each 1 ≤ i ≤ n:

• if a predicate occurs positively in a clause of Pi then its definition is contained within
⋃

j≤i Pj

• if a predicate occurs negatively in a clause of Pi then its definition is contained within
⋃

j<i Pj

Note that a program/database is stratified if there is any such partition.

Notice also that the above definition does allow normal logic programs in the bottom
stratum, as long as the negated predicates are undefined.

3

Example Logic program/database P :

p(X)← q(X), not r(X)
p(X)← q(X), not t(X)
r(X)← s(X), not t(X)

t(a)←
s(a)←
s(b)←
q(a)←

Here is one stratification of P :

P ={p(X)← q(X), not r(X), p(X)← q(X), not t(X)} ∪
{r(X)← s(X), not t(X)} ∪
{t(a)←, s(a)←, s(b)←, q(a)←}

Here is another stratification of P :

P ={p(X)← q(X), not r(X), p(X)← q(X), not t(X)} ∪
{r(X)← s(X), not t(X)} ∪
{t(a)←} ∪
{s(a)←, s(b)←, q(a)←}

Here is another:

P ={p(X)← q(X), not r(X), p(X)← q(X), not t(X)} ∪
{r(X)← s(X), not t(X), s(a)←, s(b)←, q(a)←} ∪
{t(a)←}

etc, etc.

Example Logic program/database P :

p← not q, not r
q ← not s
r ← not t
s←
t←

Here is one stratification of P :

P ={p← not q, not r} ∪
{q ← not s} ∪
{r ← not t} ∪
{s←, t←}

4

Here is another stratification of P :

P ={p← not q, not r} ∪
{q ← not s, r ← not t} ∪
{s←, t←}

etc, etc.

Example Logic program/database P :

p← q, not r
r ← s, not p
q ←
s←

This program cannot be stratified. Notice that it contains a ‘recursion through negation’.

Example Logic program/database P :

p← q
q ← not r

P is stratified. One stratum is enough:

P = {p← q, q ← not r}

It is easy to check that the stratification criteria are satisfied, because r is undefined in P .

If you prefer, you could think of this as if there were a bottom stratum ∅, and r is ‘defined’
in ∅.

5

Dependency graphs

Here is a way of visualising the stratification conditions which some people find helpful.

Apt, K.R., Blair, H.A. and Walker, A. Towards a Theory of Declarative Knowledge. In Foundations of

Deductive Databases and Logic Programming, Minker, J., ed. Morgan Kaufmann, 1988, pp 89–148.

• If program P contains a clause of the form

p(. . .)← . . . , q(. . .), . . .

then predicate p refers (+) to q (or ‘depends (+) on q’ if you prefer).

• If P contains a clause of the form

p(. . .)← . . . , not q(. . .), . . .

then predicate p refers (-) to q (or ‘depends (-) on q’).

Now the dependency graph for P :

• predicates at nodes;

• refers to edges labelled (+/−) between nodes.

Example

q

t

s

r

p
+

−

+

+

+

−

p← q, r
p← not q, s
q ← q, not t

Example

q

t

s

r

p
+

+

+

−

+−

p← q, r
q ← not p, s
q ← q, not t

(Thanks to Silvia Dobrota (MEng4, 2013-14) for correcting a mistake in the original graph.)

Lemma The logic program P is stratified iff the dependency graph for P contains no
cycles containing a negative edge.

6

Fixpoint semantics for stratified programs

TP is the immediate consequence operator for the normal logic program/database P . We
use the ‘progressive’ version:

T ′P (I)
def
= TP (I) ∪ I

Here is the recipe:

• Stratify the program

P = P0 ∪ P1 ∪ · · · ∪ Pn (Pi and Pj disjoint for all i 6= j)

• Now construct

M0 = T ′P0
↑ω(∅) only the clauses in P0 !!

M1 = T ′P1
↑ω(M0) only the clauses in P1 !!

...

Mn = T ′Pn
↑ω(Mn−1)

• Take MP = Mn as the intended semantics of P .

I often refer to this as the ‘ABW iterated fixpoint construction’.

It still remains to establish that MP is a model of P . This and other key results follow
after some examples.

Example Logic program/database P :

p(X)← q(X), not r(X)
r(X)← s(X), not t(X)

t(a)←
s(a)←
s(b)←
q(a)←

One possible stratification of P :

P ={p(X)← q(X), not r(X)} ∪ “P2”

{r(X)← s(X), not t(X)} ∪ “P1”

{t(a)←, s(a)←, s(b)←, q(a)←} “P0”

7

Applying the recipe:

M0 = T ′P0
↑ω(∅) = {t(a), s(a), s(b), q(a)}

M1 = T ′P1
↑ω(M0) = {r(b), t(a), s(a), s(b), q(a)}

M2 = T ′P2
↑ω(M1) = {p(a), r(b), t(a), s(a), s(b), q(a)}

M2 is a fixpoint of TP . (Check it!) So M2 is a supported model of P .

Suppose we take some other stratification of P? (Some were given earlier for this example.)
If you apply the recipe, you will see that you get the same model, whatever stratification
of P you take. This is not a coincidence.

Example Here is another of the earlier examples. Logic program/database P :

p← q
q ← not r

To stratify P , one stratum is enough (because r is not defined in P).

Applying the recipe:

T ′P↑0(∅) = ∅
T ′P↑1(∅) = {q}
T ′P↑2(∅) = {p, q}

...

T ′P↑ω(∅) = {p, q}

{p, q} is a fixpoint of TP (check) and so a supported model of P .

8

Stratified programs: Key results

Theorem For a stratified normal logic program/databaseP , the ‘ABW iterated fixpoint’
construction described above constructs a set of ground atoms MP such that:

• MP is a fixpoint of TP

• MP is a model of P

• MP is supported

• MP is a minimal model of P

Theorem MP is independent of the way the program P is stratified.

That’s good! And finally there is a link to the Clark completion.

Theorem MP is a model of the Clark completion comp(P).

Implications for SLDNF

Implication 1

MP is only one model of comp(P). There may be other models. So: in general, more
answers to a query will be correct with respect to the ABW semantics MP (true in the
model MP) than are correct with respect to comp(P) (where we require true in all models
of comp(P) and not just MP).

We know that SLDNF is incomplete with respect to the Clark completion comp(P) – there
may be consequences of comp(P) that cannot be computed using the SLDNF procedure.
So SLDNF is ‘even more incomplete’ with respect to the ABW semantics MP of P .

Implication 2

Since MP is a model of comp(P), for every stratified program P

• comp(P) is consistent.

9

Locally stratified programs

Consider this program

p(a)← not p(c)
p(b)← not p(c)

It is clearly not stratified. But suppose it had been written with three different 0-ary
predicates instead of one unary predicate, like this:

pa ← not pc
pb ← not pc

This program is stratified.

This suggests that we could have a slightly more general notion of stratification – locally
stratified (Przymusiński). Locally stratified does to ground atoms and ground instances of
clauses what stratified does to predicates and clauses with variables.

Locally stratified program/database P :

• Replace P by all ground instances of its clauses.

• Instead of assigning every predicate to a partition/stratum of P , assign every ground
atom to a partition/stratum of P : the definition of that atom (the ground clauses
with that atom as head) are put in this partition/stratum.

• Re-express the stratification criteria in terms of ground atoms rather than predicates:
if a ground atom occurs positively in a clause in partition/stratum Pi, the definition
of that ground atom must be contained in

⋃
j≤i Pj; and if a ground atom occurs

negatively in a clause in partition/stratum Pi, the definition of that ground atom
must be contained in

⋃
j<i Pj.

Theorem (Obvious)

Every stratified program is locally stratified.

Remark The generalisation to locally stratified is not particularly useful in practice, but
there are references to it in the literature, and it can be a very useful device when trying
to prove, e.g., the existence of a supported minimal model of a logic program/database.

10

‘Preferential entailment’

Here is an idea that comes up frequently in the study of non-monotonic and default rea-
soning.

Let A be any set of formulas (not necessarily clauses) of some language and α any formula
of that language.

Standard logical consequence:

• A |= α — α is true in all models of A

‘Preferential entailment’:

• A |=pref α — α is true in all special preferred models of A

Since the special ‘preferred’ models of A are a subset (usually a proper subset) of the set
of all models of A, more formulas will be ‘preferentially entailed’ by A than are logical
consequences of A.

The exact specification of special/preferred differs depending on context and application.

Here are some possibilities straightaway. Let P be a normal logic program/database. The
special, preferred models of P could be, e.g.

• the models of comp(P)

• the minimal models of P

• the minimal supported models of P

• the ABW iterated fixpoint model, if it exists

(There are other possibilities)

11

Example

Compare some alternative semantics for the following databases/programs, in each case
considering what answers are correct for queries ?-p and ?-q.

DB1 = {q ← not p}

i) logical consequences of the Clark completion comp(DB1)

comp(DB1) = {q ↔ ¬p, ¬p}.
comp(DB1) |= ¬p, comp(DB1) |= q.

So ?-q gets ‘yes’ and ?-p gets ‘no’.

ii) minimal Herbrand models

{p} and {q} are the minimal models. p is true in one and false in the other. So p
is not ‘preferentially entailed’ by the minimal model semantics, and neither is ¬p.
Likewise for q and ¬q.
Queries ?-p and ?-q both get ‘don’t know’.

iii) minimal supported Herbrand models

Of the two minimal models, only {q} is supported. So according to this semantics:
?-q gets ‘yes’ and ?-p gets ‘no’.

iv) ABW iterated fixpoint model

T ′DB1
↑ω(∅) = {q}.

So ?-q gets ‘yes’ and ?-p gets ‘no’.

DB2 = {q ← not p, p← p}

i) logical consequences of the Clark completion comp(DB2)

comp(DB2) = {q ↔ ¬p, p↔ p}.
Neither p nor ¬p are consequences of comp(DB2). Likewise for q and ¬q.
So queries ?-p and ?-q both get ‘don’t know’.

ii) minimal Herbrand models

{p} and {q} are the minimal models. So just as for DB1.

?-p and ?-q both get ‘don’t know’.

iii) minimal supported Herbrand models

Unlike DB1, now both minimal models {p} and {q} are supported. So:

?-p and ?-q both get ‘don’t know’.

12

iv) ABW iterated fixpoint model

DB2 can be stratified: P0 = {p← p}, P1 = {q ← not p}.
T ′P1
↑ω(T ′P0

↑ω(∅)) = T ′P1
↑ω(∅) = {q}. Same as DB1.

DB3 = {q ← not p, p← not q}

i) logical consequences of the Clark completion comp(DB3)

comp(DB3) = {q ↔ ¬p, p↔ ¬q}.
Neither p nor ¬p are consequences of comp(DB3). Likewise for q and ¬q.
So queries ?-p and ?-q both get ‘don’t know’.

ii) minimal Herbrand models

{p} and {q} are the minimal models. Same as DB2.

Queries ?-p and ?-q both get ‘don’t know’.

iii) minimal supported Herbrand models

{p} and {q} are the minimal models. Both are supported. Same as DB2.

Queries ?-p and ?-q both get ‘don’t know’.

iii) ABW iterated fixpoint model

DB3 is not stratified. The ABW semantics is not defined.

13

Final remark

Theorem For any finite normal logic program P , a set of atoms is a model of comp(P)
iff it is a supported model of P .

The proof is easy:

Proof comp(P) consists of the following, for every atom α:

α← Body1
...

α← Bodyk
α→ Body1 ∨ · · · ∨ Bodyk

where α← Bodyi (1 ≤ i ≤ k) are all the clauses in P with atom α in the head, or

¬α

if there are no clauses in P with atom α in the head.

So, a set X of atoms satisfies (is a model of) comp(P) iff for every atom α:

(1) for every clause α← Bodyi in P , if X |= Bodyi then α ∈ X;

(2) if α ∈ X then X |= Bodyi for some clause α← Bodyi in P .

(1) says that X is a model of P (X is closed under the clauses of P); (2) says that X is
supported by P .

14

