
491 Knowledge Representation

Tutorial Exercise

Logic databases (Revision)
SOLUTIONS

Question 1

• William frequents every bar that serves at least one of the beers he likes.

∀b [William frequents b ← ∃d (William likes d ∧ b serves d)]

or equivalently

∀b∀d [William frequents b ← (William likes d ∧ b serves d)]

Why equivalently? Because ∀x (p(x) ← ∃y q(x, y)) is logically equivalent to
∀x ∀y (p(x) ← q(x, y)).

• Harry frequents any bar that does not serve a beer he does not like.

∀b [Harry frequents b ← ¬∃d (b serves d ∧ ¬Harry likes d)]

which is logically equivalent to

∀b [Harry frequents b ← ∀d (b serves d → Harry likes d)]

• Charles frequents every bar that serves all of the beers he likes.

∀b [Charles frequents b ← ∀d (Charles likes d → b serves d)]

which is logically equivalent to

∀b [Charles frequents b ← ¬∃d (Charles likes d ∧ ¬ b serves d)]

• Camilla frequents every bar that Charles frequents, and also any bar that serves
Young’s Special Bitter.

∀b (Camilla frequents b ← Charles frequents b) ∧ ∀b (Camilla frequents b ← b serves Young’s)

which is logically equivalent to

∀b (Camilla frequents b ← (Charles frequents b ∨ b serves Young’s))

1

Question 2 You can declare the infix operators in Prolog like this:

:- op(550, xfx, [likes, serves, frequents]).

Then:

• ∀b∀d [William frequents b ← (William likes d ∧ b serves d)]

’William’ frequents B :-

’William’ likes D, B serves D.

• ∀b [Harry frequents b ← ¬∃d (b serves d ∧ ¬Harry likes d)]

’Harry’ frequents B :-

\+ (B serves D, \+ ’Harry’ likes D).

But:

(1) In what sense is Prolog’s negation-by-failure \+ a correct representation of truth-
functional negation ¬? We are coming to that.

(2) Prolog can’t be used to generate bindings from negation-by-failure calls. So we
need something like:

’Harry’ frequents B :-

B serves _, % generates the name of a bar B

\+ (B serves D, \+ ’Harry’ likes D).

(3) Some Prologs (and other logic programming/deductive database implementa-
tions) don’t allow nested negation-as-failure. So then we have to write something
like this:

’Harry’ frequents B :-

B serves _, % generates the name of a bar B

\+ bad_for_Harry(B).

bad_for_Harry(B) :-

B serves D, \+ ’Harry’ likes D.

• ∀b [Charles frequents b ← ∀d (Charles likes d → b serves d)]

’Charles’ frequents B :-

B serves _, % generates the name of a bar B

\+ (’Charles’ likes D, \+ B serves D).

• ∀b (Camilla frequents b ← (Charles frequents b ∨ b serves Young’s))

’Camilla’ frequents B :- ’Charles’ frequents B.

’Camilla’ frequents B :- B serves ’Youngs’.

% alternatively (equivalently)

% ’Camilla’ frequents B :-

% (’Charles’ frequents B ; B serves ’Youngs’).

2

