
491 Knowledge Representation

Tutorial Exercise

The Action Language C+

Question 1 (based on a fragment from 2007 exam)

How are the following expressed as static and/or fluent dynamic laws of the action language
C+? (Write the laws in the general form, without using any C+ abbreviations such as
‘inertial’ and ‘causes’.) In each case, what is the translation to (time-stamped) causal
rules and logic program? (The original exam question did not ask for the logic programs.)

1. The default value of fluent f is v.

2. The fluent g is inertial. (g is not necessarily Boolean.)

3. There is no state in which a particular (spring-loaded) door is both open and closed
(though it is always one or the other).

4. The action of pushing the door causes it to become open if is closed; pushing the
door is not possible (executable) if the door is open.

5. If the door is closed, it remains closed by default (‘inertia’); if it is open, it will be
closed in the next state, by default.

Question 2 (Yale Shooting Problem, with targets)

Consider the following variant of the ‘Yale Shooting Problem’ (YSP). There are actions of
loading a gun, aiming the gun at a person x, who then becomes the ‘target’, and shooting
(i.e., pulling the trigger). Shooting a loaded gun when it is aimed at x results in x being
dead (not alive). Shooting the gun also unloads it. The gun can be shot when it is not
loaded but that has no effect, whether the target is alive or not.

Formulate this version of the YSP as an action description in the language C+.

Use a multivalued fluent target=x. You should allow for the possibility that there is no
target (e.g., by including none in the domain of target). For the action of aiming, you can
either use Boolean action constants aim(x) or a single multi-valued action constant aim
whose domain is the same as that of target. (It doesn’t make much difference.)

Assume for simplicity that targets do not move. Aiming the gun at x means pointing it at
x. And loading it means ensuring it is loaded: one can ‘load’ a gun that is already loaded.

Further: a gun cannot be loaded and aimed at the same time; a gun cannot be loaded and
shot at the same time; a gun cannot be shot and aimed at the same time.

Assuming the action description has been translated to a logic program, how would you
formulate a query to determine whether the sequence of actions aim at a, load, aim at b,
shoot results in fluent alive(b) being false when in the initial state the gun is not loaded
(and both a and b are alive)?

Suppose the (anonymous) shooter is happy if (and only if) everyone is dead.

How would you get a ‘plan’ for the goal where the shooter is happy?

Use a Boolean statically determined fluent happy.

Question 3 (Yale Shooting Problem, with lights)

Suppose there is also a light (represented by the Boolean fluent on).

• Shooting a gun when it is loaded kills the target, but only if the light is on. If the
light is off, it is possible to shoot the gun but it will have no effect on the target,
loaded or not.

• It is possible to load the gun while the light is off but not possible to aim the gun
while the light is off.

• Whenever the light is off, there is no target (target=none).

Consider two variations: there is a Boolean action toggle: it switches the light to on if it
is off, and to off if it is on.

Another possibility: the status of the light is exogenous.

Question 4 (Yale Shooting Problem, trigger-happy)

Suppose the person with the gun is trigger-happy: whenever the gun is loaded, this person
shoots, whether there is currently a target or not.

Question 5

Make up your own variations. For instance . . .

Yale Shooting Problem, with moving targets. Suppose that targets can move. There are
(Boolean) action constants move(x). They represent that x moves (it does not matter
where).

What happens if the target moves? What happens if the target moves as the gun is being
shot?
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Question 1

(1) default f = v is shorthand for

caused f = v if f = v

which translates to (for paths of length m):

f [i] = v ⇐ f [i] = v (0 ≤ i ≤ m)

In clingo syntax, and depending on the chosen representation for atoms, the logic program
rule would be:

val(f,T,v) :- not -val(f,T,v), T = 0..maxT.

Whether definitions of -val(f,T,v) are required in addition depends on whether f is
Boolean or multivalued and what its possible values (dom(f)) are. They are not specified
in the question. (The original exam question did not ask for the logic program.)

(2) Suppose dom(g) = {v1, . . . , vn}. The Boolean case is easy.

inertial g is shorthand for

caused g = v1 if g = v1 after g = v1
...

caused g = vn if g = vn after g = vn

which translates to:

g[i+1] = v1 ⇐ g[i+1] = v1 ∧ g[i] = v1 (0 ≤ i < m)

...

g[i+1] = vn ⇐ g[i+1] = vn ∧ g[i] = vn (0 ≤ i < m)

In clingo syntax, the logic program would include rules:

val(g,T+1,v1) :- not -val(g,T+1,v1), not -val(g,T,v1), T = 0..maxT-1.

:

val(g,T+1,vn) :- not -val(g,T+1,vn), not -val(g,T,vn), T = 0..maxT-1.

or equivalently:

val(g,T+1,v1) :- not -val(g,T+1,v1), val(g,T,v1), T = 0..maxT-1.

:

val(g,T+1,vn) :- not -val(g,T+1,vn), val(g,T,vn), T = 0..maxT-1.

We would also need n(n− 1) rules to define the -val(g,T,v1), . . . -val(g,T,vn) literals.

-val(g,T,v1) :- val(g,T,v2), T = 0..maxT.

:

-val(g,T,v1) :- val(g,T,vn), T = 0..maxT.

:

:

-val(g,T,vn) :- val(g,T,v1), T = 0..maxT.

:

-val(g,T,vn) :- val(g,T,vx), T = 0..maxT. % vx denotes n-1’th value in dom(g)

(The original exam question did not ask for the logic program. No exam question would
ask for logic programs with non-Boolean constants simply because of the amount of writing
it would require.)

(3) There is no state in which a particular (spring-loaded) door is both open and closed
(though it is always one or the other).

One way: let the (multi-valued) fluent door have domain {open, closed}.
Another way (it comes to the same thing): use a Boolean fluent open, and let ‘closed’ be
represented by ¬open. (Or the other way round, obviously.) A fluent such as open(door)
would also be OK.

With two Boolean fluents open and closed we would need to add the following additional
constraints explicitly:

caused ⊥ if open ∧ closed

caused ⊥ if ¬open ∧ ¬closed

The logic program, clingo syntax, for third possibility (two separate Boolean fluents):

:- open(T), closed(T), T=0..Tmax. % not both

:- -open(T), -closed(T), T=0..Tmax. % but one or the other

Parts (4) and (5) are discussed in the lecture notes on translation from C+ to logic program
(‘Addendum’).



Question 2 In what follows x ranges over agent names a, b, c, . . . .

Fluent constants: alive(x), loaded (Boolean), target (domain: a, b, c, . . . , none).

Action constants: load, shoot, aim(x) (all Boolean).

Instead of many Boolean constants aim(x) you might prefer to use a single constant aim
with domain the same as target : a, b, c, . . . , none.

inertial target
inertial loaded
inertial alive(x)

Instead of inertial alive(x) you might prefer to say that alive(x) persists by default but
¬alive(x) persists, and no default about it:

caused alive(x) if alive(x) after alive(x)
caused ¬ alive(x) after ¬ alive(x) (once you are dead, you are dead)

It doesn’t make any difference in this example. (Because there is no action which brings a
dead x back to life.)

And the rest:

load causes loaded
aim(x) causes target=x (or aim=x causes target=x )
shoot causes ¬ alive(x) if loaded ∧ target=x
shoot causes ¬ loaded
nonexecutable load ∧ aim(x) (or nonexecutable load ∧ aim=x )
nonexecutable load ∧ shoot
nonexecutable shoot ∧ aim(x) (or nonexecutable shoot ∧ aim=x )

You might perhaps prefer to write the shoot causes . . . rule like this:

shoot causes ¬ alive(x) if loaded ∧ target=x ∧ ¬ alive(x)

Personally I don’t like these references to ‘causes’ anyway. If you write it out as a fluent
dynamic law in full you get

caused ¬ alive(x) if > after loaded ∧ target=x

which makes sense whether or not you add the extra ¬ alive(x) condition to the body. (It
makes no difference in this example.)

Note that: use of a single multi-valued action constant aim with the same domain as
target automatically builds in the constraint that one can’t aim at two different targets
simultaneously. I chose to use (Boolean) action constants aim(x) instead. You might think
that we would therefore need to add some further constraints, viz:

nonexecutable aim(x) ∧ aim(y) if x 6= y

It would not be wrong to do this — indeed, I included them in my first attempt — but then
I noticed that they are unnecessary. This is because aim(x) causes target=x and aim(y)
causes target=y ; but target can’t have two different values simultaneously, so there can’t
be a transition with aim(x) and aim(y) for any x 6= y.

For the query: the details obviously depend on the chosen clingo representation of atoms.

First, formulate what is given:

problem_1 :-

alive(a,0), alive(b,0), -loaded(0),

val(aim,0,a), load(1), val(aim,2,b),

shoot(3).

To determine whether this necessarily implies -alive(b,4) we try to satisfy the con-
straints:

:- not problem_1.

:- not -alive(b,4).

We set constant maxT=4. If there is no answer set (‘unsatisfiable’) then all paths of length
4 satisfying problem 1 (assuming there are some) must have -alive(b,4).

Because every answer set of the translated C+ rules must give a (consistent and) complete
valuation to all constants at all time stamps, the constraint could also be expressed:

:- not problem_1.

:- alive(b,4).

If there is no answer set (‘unsatisfiable’) then no path of length 4 satisfying problem 1 can
have alive(b,4), and so (assuming there is one) must have -alive(b,4).

If we try instead the constraints:

:- not problem_1.

:- -alive(b,4).

we generate all paths in which b is alive at time 4.

If we just use the constraint:

:- not problem_1.

we generate all paths satifying problem 1 and so discover (amongst other things) whether
b is alive at time 4 or not.

I tried the above in iCCalc. All paths of length 4 had -alive(b,4) (as you would expect)
but there were many such paths, depending on how many potential targets there are. For
instance, with dom(target) = {a, b, c, none} there are two paths: one in which c is alive at
time 0 and then throughout, and one in which c is not alive at time 0, and throughout.
With another target d we get four paths, with another target e we get eight paths, and so
on.



To get rid of all these combinations I defined a (statically determined) Boolean fluent:

default all alive
caused ¬ all alive if ¬alive(x)

Defined this way, all alive does not depend on how many potential targets there are: x
ranges over a, b, . . . . The logic program looks like this:

all_alive(T) :- not -all_alive(T), T=0..maxT.

-all_alive(T) :- target(X), -alive(X,T), T=0..maxT.

Now I looked for answer sets satisfying:

problem_2 :-

all_alive(0), -loaded(0),

val(aim,0,a), load(1), val(aim,2,b),

shoot(3).

:- not problem_2.

iCCalc produced just one path, no matter how many potential targets were specified, with
-alive(b,4) in each.

Planning example: happy is a Boolean statically determined fluent constant.

default happy
caused ¬ happy if alive(x)

As for all alive, this definition does not depend on how many potential targets there are:
x ranges over a, b, . . . . (happy is not equivalent to ¬all alive.)

The logic program:

happy(T) :- not -happy(T), T=0..maxT.

-happy(T) :- target(X), alive(X,T), T=0..maxT.

For the ‘plan’, formulate what is wanted:

plan_1 :-

loaded(0), happy(maxT).

:- not plan_1.

Pick some maximum length m for runs/paths/traces and then iteratively set constant
maxT = 0..m and look for answer sets (paths).

I tried this in iCCalc, with a guessed value of m = 10, and with dom(target) = {a, b, c, none}.
iCCalc produced four plans of length 0. All of them had happy (everyone dead) in the
initial state, and differed only in the value of target in the initial state. That is obvious in
hindsight — those are clearly the shortest ‘plans’.

So then I asked for answer sets satisfying

plan_2 :-

all_alive(0), loaded(0), happy(maxT).

:- not plan_2.

iteratively, for maxT = 0..10. With dom(target) = {a, b, c, none} as before this produced
24 solutions at time=8; again, many differed simply in the value of target in the initial
state. Again, this was obvious in hindsight. Also obvious in hindsight is that none of these
plans had target = none in the initial state — target = none in the initial state would force
one more action to aim the gun, making the plan 9 steps long instead of 8 and by looking
iteratively we find the shortest paths first.

So then finally I tried finding answer sets

plan_3 :-

val(target,0,none), all_alive(0), loaded(0), happy(maxT).

:- not plan_3.

iteratively, for maxT = 0..10. Now, for targets a, b, c, there are 48 solutions, of length
9. Why so many solutions? Partly it is because the targets can be shot in any order:
with three targets a, b, c to kill, there are 6 possible permutations. The other variation is
whether, for each victim, one first loads the gun then aims, or first aims and then loads
the gun. To see the effect suppose we add one further constraint:

caused shoot if loaded

This is an action dynamic law which says that the gun is fired whenever (as soon as) loaded
is true. One could also write instead (equivalently):

nonexecutable ¬shoot if loaded

With this extra constraint, and targets a, b, c, there are indeed 6 solutions, all of length 9.
With targets a, b, c, d, I got 24 = 4! solutions, of length 12. With targets a, b, c, d, e, I got
120 = 5! solutions, of length 15. And so on.

(Naturally I wouldn’t expect you to do these calculations without access to something like
iCCalc or clingo. Many of these points — for instance how to formulate the initial state
— only become obvious when we try it and see what we get.)



Question 3 x ranges over agent names a, b, c, . . . .

The signature is as in Question 2, but we add a fluent constant light (domain: on off ).
(Or, if you prefer, use a Boolean fluent on. It doesn’t make any difference.)

inertial target

inertial loaded

inertial alive(x)

inertial light

load causes loaded

aim(x) causes target=x

shoot causes ¬ alive(x) if loaded ∧ target=x ∧ light= on % modified

% we don’t need that shooting with light off has no effect

nonexecutable load ∧ aim(x)

nonexecutable load ∧ shoot

nonexecutable aim(x) if light= off

caused target=none if light= off % optional but probably worth saying

Now for first version we add a (Boolean) action constant toggle and

toggle causes light= on if light= off

toggle causes light= off if light= on

For the second version, instead of the action toggle we make light ‘exogenous’: its value
varies from state to state but we do not specify how — that is outside the system being
modelled. exogenous light is shorthand for the pair of C+ laws:

caused light= on if light= on

caused light= off if light= off

And we have to get rid of inertial light (otherwise it would never change from state to
state.)

Question 4 (‘trigger-happy ’)

This was already done in the discussion of Question 2. Add either the action dynamic law

caused shoot if loaded

or equivalently (in this example) the fluent dynamic law

nonexecutable shoot if ¬loaded (shoot causes ⊥ if ¬loaded)

Question 5 (‘moving targets ’)

There are many possible variations. What I had in mind was something like this:

move(x) causes target=none if target=x

The above does not deal with the case where the current target x moves, and in moving
exposes some other target y standing behind. Not does it deal with the possibility that y
moves into the line of fire.

So perhaps, instead of the above:

move(x) may cause target = y (for all y ∈ dom(target), including y = none)

that is, in full:

target = y if target = y after move(x)

Similarly, the effects of shooting have to be adjusted. We could try, for example

shoot ∧ ¬move(x) causes ¬ alive(x) if loaded ∧ target=x

that is, in full:

caused ¬ alive(x) if > after shoot ∧ ¬move(x) ∧ loaded ∧ target=x

But again that does not deal with the possibility that someone else moves into the line of
fire, or is exposed when x moves.

So perhaps better (y ranges over a, b, . . . ):

caused no-one-moves if no-one-moves

caused ¬no-one-moves if move(x)

shoot ∧ no-one-moves causes ¬alive(x) if loaded ∧ target =x

shoot ∧move(y) may cause ¬alive(x) if loaded ∧ alive(x)

that is, in full:

caused ¬alive(x) if > after shoot ∧ no-one-moves ∧ loaded ∧ target =x

caused ¬alive(x) if ¬alive(x) after shoot ∧move(y) ∧ loaded ∧ alive(x)

You can, if you prefer, add another condition ¬alive(x) to the first of the laws above, and
in the second write ¬no-one-moves in place of move(y).

Of course there are many other possibilities.


