Question 1 (based on a fragment from 2007 exam)

How are the following expressed as static and/or fluent dynamic laws of the action language C+? (Write the laws in the general form, without using any C+ abbreviations such as ‘inertial’ and ‘causes’.) In each case, what is the translation to (time-stamped) causal rules and logic program? (The original exam question did not ask for the logic programs.)

1. The default value of fluent f is v.
2. The fluent g is inertial. (g is not necessarily Boolean.)
3. There is no state in which a particular (spring-loaded) door is both open and closed (though it is always one or the other).
4. The action of pushing the door causes it to become open if it is closed; pushing the door is not possible (executable) if the door is open.
5. If the door is closed, it remains closed by default (‘inertia’); if it is open, it will be closed in the next state, by default.

Question 2 (Yale Shooting Problem, with targets)

Consider the following variant of the ‘Yale Shooting Problem’ (YSP). There are actions of loading a gun, aiming the gun at a person x, who then becomes the target, and shooting (i.e., pulling the trigger). Shooting a loaded gun when it is aimed at x results in x being dead (not alive). Shooting the gun also unloads it. The gun can be shot when it is not loaded but that has no effect, whether the target is alive or not.

Formulate this version of the YSP as an action description in the language C+.

Use a multivalued fluent $target = x$. You should allow for the possibility that there is no target (e.g., by including $none$ in the domain of $target$). For the action of aiming, you can either use Boolean action constants $aim(x)$ or a single multivalued action constant aim whose domain is the same as that of $target$. (It doesn’t make much difference.)

Assume for simplicity that targets do not move. Aiming the gun at x means pointing it at x. And loading it means ensuring it is loaded: one can ‘load’ a gun that is already loaded.

Further: a gun cannot be loaded and aimed at the same time; a gun cannot be loaded and shot at the same time; a gun cannot be shot and aimed at the same time.

Assuming the action description has been translated to a logic program, how would you formulate a query to determine whether the sequence of actions aim at a, load, aim at b, shoot results in fluent $alive(b)$ being false when in the initial state the gun is not loaded (and both a and b are alive)?

Suppose the (anonymous) shooter is happy if (and only if) everyone is dead. How would you get a ‘plan’ for the goal where the shooter is happy?

Use a Boolean statically determined fluent $happy$.

Question 3 (Yale Shooting Problem, with lights)

Suppose there is also a light (represented by the Boolean fluent on).

- Shooting a gun when it is loaded kills the target, but only if the light is on. If the light is off, it is possible to shoot the gun but it will have no effect on the target, loaded or not.
- It is possible to load the gun while the light is off but not possible to aim the gun while the light is off.
- Whenever the light is off, there is no target ($target = none$).

Consider two variations: there is a Boolean action $toggle$: it switches the light to on if it is off, and to off if it is on.

Another possibility: the status of the light is exogenous.

Question 4 (Yale Shooting Problem, trigger-happy)

Suppose the person with the gun is trigger-happy: whenever the gun is loaded, this person shoots, whether there is currently a target or not.

Question 5

Make up your own variations. For instance ...

Yale Shooting Problem, with moving targets. Suppose that targets can move. There are (Boolean) action constants $move(x)$. They represent that x moves (it does not matter where).

What happens if the target moves? What happens if the target moves as the gun is being shot?
Knowledge Representation

Tutorial Exercise

The Action Language C+

Question 1

(1) default $f = v$ is shorthand for

\[
\text{caused}\ f = v \iff f = v
\]

which translates to (for paths of length m):

\[
f[i] = v \iff f[i] = v \quad (0 \leq i \leq m)
\]

In clingo syntax, and depending on the chosen representation for atoms, the logic program rule would be:

\[
\text{val}(f, T, v) :- \neg \text{val}(f, T, v), T = 0..\text{maxT}.
\]

Whether definitions of $\neg \text{val}(f, T, v)$ are required in addition depends on whether f is Boolean or multivalued and what its possible values ($\text{dom}(f)$) are. They are not specified in the question. (The original exam question did not ask for the logic program.)

(2) Suppose $\text{dom}(g) = \{v_1, \ldots, v_n\}$. The Boolean case is easy.

inertial g is shorthand for

\[
\text{caused}\ g = v_i \text{ if } g = v_i \text{ after } g = v_1 \quad \ldots
\]

\[
\text{caused}\ g = v_n \text{ if } g = v_n \text{ after } g = v_1
\]

which translates to:

\[
g[i+1] = v_1 \iff g[i+1] = v_1 \land g[i] = v_1 \quad (0 \leq i < m)
\]

\[
\ldots
\]

\[
g[i+1] = v_n \iff g[i+1] = v_n \land g[i] = v_n \quad (0 \leq i < m)
\]

In clingo syntax, the logic program would include rules:

\[
\text{val}(g, T+1, v_1) :- \neg \text{val}(g, T+1, v_1), \text{val}(g, T, v_1), T = 0..\text{maxT}-1.
\]

\[
\text{val}(g, T+1, v_n) :- \neg \text{val}(g, T+1, v_n), \text{val}(g, T, v_n), T = 0..\text{maxT}-1.
\]

We would also need $n(n-1)$ rules to define the $\neg \text{val}(g, T, v_1), \ldots, \neg \text{val}(g, T, v_n)$ literals.

\[
\text{val}(g, T, v_1) :- \text{val}(g, T, v_2), T = 0..\text{maxT}.
\]

\[
\text{val}(g, T, v_1) :- \text{val}(g, T, v_2), T = 0..\text{maxT}.
\]

\[
\text{...}
\]

\[
\text{val}(g, T, v_n) :- \text{val}(g, T, v_1), T = 0..\text{maxT}.
\]

\[
\text{val}(g, T, v_n) :- \text{val}(g, T, v_1), T = 0..\text{maxT}. \quad \% v_x \text{ denotes } n-1^{\text{th}} \text{ value in } \text{dom}(g)
\]

(The original exam question did not ask for the logic program. No exam question would ask for logic programs with non-Boolean constants simply because of the amount of writing it would require.)

(3) There is no state in which a particular (spring-loaded) door is both open and closed (though it is always one or the other).

One way: let the (multi-valued) fluent door have domain \{open, closed\}.

Another way (it comes to the same thing): use a Boolean fluent open, and let ‘closed’ be represented by \negopen. (Or the other way round, obviously.) A fluent such as open(\text{door}) would also be OK.

With two Boolean fluents open and closed we would need to add the following additional constraints explicitly:

\[
\text{caused} \bot \text{ if open} \land \text{closed}
\]

\[
\text{caused} \bot \text{ if } \neg\text{open} \land \neg\text{closed}
\]

The logic program, clingo syntax, for third possibility (two separate Boolean fluents):

\[
:- \text{open}(T), \text{closed}(T), T=0..\text{Tmax} \quad \% \text{not both}
\]

\[
:- \neg\text{open}(T), \neg\text{closed}(T), T=0..\text{Tmax} \quad \% \text{but one or the other}
\]

Parts (4) and (5) are discussed in the lecture notes on translation from C+ to logic program (‘Addendum’).
Question 2 In what follows \(x \) ranges over agent names \(a, b, c, \ldots \).

Fluent constants: alive(\(x \)), loaded (Boolean), target (domain: \(a, b, c, \ldots, \text{none} \)).

Action constants: load, shoot, aim(\(x \)) (all Boolean).

Instead of many Boolean constants aim(\(x \)) you might prefer to use a single constant aim with domain the same as target: \(a, b, c, \ldots, \text{none} \).

\[
\begin{align*}
\text{inertial target} \\
\text{inertial loaded} \\
\text{inertial alive}(\!x)
\end{align*}
\]

Instead of inertial alive(\(x \)) you might prefer to say that alive(\(x \)) persists by default but \(-\text{alive}(\!x)\) persists, and no default about it:

\[
\begin{align*}
\text{caused alive}(\!x) \text{ if alive}(\!x) \text{ after alive}(\!x) \\
\text{caused } \neg \text{alive}(\!x) \text{ if } \neg \text{alive}(\!x) \\
\text{ (after once you are dead, you are dead)}
\end{align*}
\]

It doesn’t make any difference in this example. (Because there is no action which brings a dead \(x \) back to life.)

And the rest:

\[
\begin{align*}
\text{load causes loaded} \\
\text{aim}(\!x) \text{ causes target}=\!x \quad \text{(or aim}=\!x \text{ causes target}=\!x) \\
\text{shoot causes } \neg \text{alive}(\!x) \text{ if loaded } \land \text{ target}=\!x \\
\text{shoot causes } \neg \text{loaded} \\
\text{nonexecutable load } \land \text{ aim}(\!x) \quad \text{(or nonexecutable load } \land \text{ aim}=\!x) \\
\text{nonexecutable load } \land \text{ shoot} \\
\text{nonexecutable shoot } \land \text{ aim}(\!x) \quad \text{(or nonexecutable shoot } \land \text{ aim}=\!x)
\end{align*}
\]

You might perhaps prefer to write the shoot causes ... rule like this:

\[
\text{shoot causes } \neg \text{alive}(\!x) \text{ if loaded } \land \text{ target}=\!x \land \neg \text{alive}(\!x)
\]

Personally I don’t like these references to ‘causes’ anyway. If you write it out as a fluent dynamic law in full you get

\[
\text{caused } \neg \text{alive}(\!x) \text{ if } \top \text{ after loaded } \land \text{ target}=\!x
\]

which makes sense whether or not you add the extra \(\neg \text{alive}(\!x) \) condition to the body. (It makes no difference in this example.)

Note that: use of a single multi-valued action constant aim with the same domain as target automatically builds in the constraint that one can’t aim at two different targets simultaneously. I chose to use (Boolean) action constants aim(\(x \)) instead. You might think that we would therefore need to add some further constraints, viz:

\[
\text{nonexecutable } \text{aim}(\!x) \land \text{ aim}(\!y) \text{ if } x \neq y
\]

It would not be wrong to do this — indeed, I included them in my first attempt — but then I noticed that they are unnecessary. This is because aim(\(x \)) causes target=\(x \) and aim(\(y \)) causes target=\(y \), but target can’t have two different values simultaneously, so there can’t be a transition with aim(\(x \)) and aim(\(y \)) for any \(x \neq y \).

For the query: the details obviously depend on the chosen clingo representation of atoms.

First, formulate what is given:

\[
\begin{align*}
\text{problem}_1 &::= \text{alive}(\!a,0), \text{alive}(\!b,0), \neg \text{loaded}(0), \text{val}(\!\text{aim},0,a), \text{load}(1), \text{val}(\!\text{aim},2,b), \\
& \quad \text{shoot}(3)
\end{align*}
\]

To determine whether this necessarily implies \(\neg \text{alive}(\!b,4) \) we try to satisfy the constraints:

\[
\begin{align*}
\neg &\text{ problem}_1. \\
\neg &\text{ -alive}(\!b,4).
\end{align*}
\]

We set constant \(\text{maxT=4} \). If there is no answer set (‘unsatisfiable’) then all paths of length 4 satisfying problem1 (assuming there are some) must have \(\neg \text{alive}(\!b,4) \).

Because every answer set of the translated C++ rules must give a (consistent and) complete valuation to all constants at all time stamps, the constraint could also be expressed:

\[
\begin{align*}
\neg &\text{ problem}_1. \\
&\text{ -alive}(\!b,4).
\end{align*}
\]

If there is no answer set (‘unsatisfiable’) then no path of length 4 satisfying problem1 can have \(\text{alive}(\!b,4) \), and so (assuming there is one) must have \(\neg \text{alive}(\!b,4) \).

If we try instead the constraints:

\[
\begin{align*}
\neg &\text{ problem}_1. \\
&\text{ -alive}(\!b,4).
\end{align*}
\]

we generate all paths in which \(b \) is alive at time 4.

If we just use the constraint:

\[
\begin{align*}
\neg &\text{ problem}_1.
\end{align*}
\]

we generate all paths satisfying problem1 and so discover (amongst other things) whether \(b \) is alive at time 4 or not.

I tried the above in iCCalc. All paths of length 4 had \(\neg \text{alive}(\!b,4) \) (as you would expect) but there were many such paths, depending on how many potential targets there are. For instance, with \(\text{dom(\text{target}) = \{a, b, c, none\} } \) there are two paths: one in which \(c \) is alive at time 0 and then throughout, and one in which \(c \) is not alive at time 0, and throughout. With another target \(d \) we get four paths, with another target \(e \) we get eight paths, and so on.
To get rid of all these combinations I defined a (statically determined) Boolean fluent:

```plaintext
default all_alive
caused ~all_alive if ~alive(x)
```

Defined this way, all_alive does not depend on how many potential targets there are: \(x \) ranges over \(a, b, \ldots \). The logic program looks like this:

```plaintext
all_alive(T) :- not ~all_alive(T), T=0..maxT.
~all_alive(T) :- target(X), ~alive(X,T), T=0..maxT.
```

Now I looked for answer sets satisfying:

```plaintext
problem_2 :-
  all_alive(0), ~loaded(0),
  val(aim,0,a), load(1),
  val(aim,2,b),
  shoot(3).
:- not problem_2.
```

iCCalc produced just one path, no matter how many potential targets were specified, with ~alive(b,4) in each.

Planning example: happy is a Boolean statically determined fluent constant.

```plaintext
default happy
caused ~happy if alive(x)
```

As for all_alive, this definition does not depend on how many potential targets there are: \(x \) ranges over \(a, b, \ldots \). (happy is not equivalent to ~all_alive.)

The logic program:

```plaintext
happy(T) :- not ~happy(T), T=0..maxT.
~happy(T) :- target(X), alive(X,T), T=0..maxT.
```

For the 'plan', formulate what is wanted:

```plaintext
plan_1 :-
  loaded(0), happy(maxT).
:- not plan_1.
```

I tried this in iCCalc, with a guessed value of \(m = 10 \), and with \(dom(target) = \{ a, b, c, none \} \). iCCalc produced four plans of length 0. All of them had happy (everyone dead) in the initial state, and differed only in the value of target in the initial state. That is obvious in hindsight — those are clearly the shortest 'plans'.

So then I asked for answer sets satisfying

```plaintext
plan_2 :-
  all_alive(0), loaded(0), happy(maxT).
:- not plan_2.
```

iteratively, for \(maxT = 0..10 \). With \(dom(target) = \{ a, b, c, none \} \) as before this produced 24 solutions at time=8; again, many differed simply in the value of target in the initial state. Again, this was obvious in hindsight. Also obvious in hindsight is that none of these plans had target = none in the initial state — target = none in the initial state would force one more action to aim the gun, making the plan 9 steps long instead of 8 and by looking iteratively we find the shortest paths first.

So then finally I tried finding answer sets

```plaintext
plan_3 :-
  val(target,0,none), all_alive(0), loaded(0), happy(maxT).
:- not plan_3.
```

iteratively, for \(maxT = 0..10 \). Now, for targets \(a, b, c \), there are 48 solutions, of length 9. Why so many solutions? Partly it is because the targets can be shot in any order: with three targets \(a, b, c \) to kill, there are 6 possible permutations. The other variation is whether, for each victim, one first loads the gun then aims, or first aims and then loads the gun. To see the effect suppose we add one further constraint:

```plaintext
cau sed shoot if loaded
```

This is an action dynamic law which says that the gun is fired whenever (as soon as) loaded is true. One could also write instead (equivalently):

```plaintext
nonexecutable ~shoot if loaded
```

With this extra constraint, and targets \(a, b, c \), there are indeed 6 solutions, all of length 9. With targets \(a, b, c, d \), I got 24 = 4! solutions, of length 12. With targets \(a, b, c, d, e \), I got 120 = 5! solutions, of length 15. And so on.

(Naturally I wouldn’t expect you to do these calculations without access to something like iCCalc or clingo. Many of these points — for instance how to formulate the initial state — only become obvious when we try it and see what we get.)
Question 3

x ranges over agent names a, b, c, . . .
The signature is as in Question 2, but we add a fluent constant light (domain: on off).
(Or, if you prefer, use a Boolean fluent on. It doesn’t make any difference.)

- inertial target
- inertial loaded
- inertial alive(x)
- inertial light

load causes loaded
aim(x) causes target = x
shoot causes ¬ alive(x) if loaded ∧ target = x ∧ light = on % modified
% we don’t need that shooting with light off has no effect

- nonexecutable load ∧ aim(x)
- nonexecutable load ∧ shoot
- nonexecutable aim(x) if light = off
- caused target = none if light = on % optional but probably worth saying

Now for first version we add a (Boolean) action constant toggle and

toggle causes light = on if light = off

toggle causes light = off if light = on

For the second version, instead of the action toggle we make light ‘exogenous’: its value
varies from state to state but we do not specify how — that is outside the system being
modelled. exogenous light is shorthand for the pair of C+ laws:

caused light = on if light = on
caused light = off if light = off

And we have to get rid of inertial light (otherwise it would never change from state to
state.)

Question 4 ('trigger-happy')

This was already done in the discussion of Question 2. Add either the action dynamic law

caused shoot if loaded

or equivalently (in this example) the fluent dynamic law

- nonexecutable shoot if ¬ loaded (shoot causes ⊥ if ¬ loaded)

Question 5 ('moving targets')

There are many possible variations. What I had in mind was something like this:

\[move(x) \text{ causes } target = y \text{ if } target = x \]

The above does not deal with the case where the current target \(x \) moves, and in moving
exposes some other target \(y \) standing behind. Not does it deal with the possibility that \(y \)
moves into the line of fire.
So perhaps, instead of the above:

\[move(x) \text{ may cause } target = y \] (for all \(y \in \text{dom(target)} \), including \(y = \text{none} \))

that is, in full:

\[target = y \text{ if } target = y \text{ after move(x)} \]

Similarly, the effects of shooting have to be adjusted. We could try, for example

\[shoot \land \lnot move(x) \text{ causes } \lnot alive(x) \text{ if loaded} \land target = x \]

that is, in full:

\[\lnot alive(x) \text{ if } \top \text{ after } shoot \land \lnot move(x) \land loaded \land target = x \]

But again that does not deal with the possibility that someone else moves into the line of
fire, or is exposed when \(x \) moves.
So perhaps better (\(y \) ranges over \(a, b, . . . \)):

\[\lnot alive(x) \text{ if } \lnot \text{no-one-moves} \land \lnot \text{no-one-moves} \land loaded \land target = x \land \lnot alive(x) \text{ if loaded} \land \lnot alive(x) \]

that is, in full:

\[\lnot alive(x) \text{ if } \top \text{ after } shoot \land \lnot \text{no-one-moves} \land \lnot \text{no-one-moves} \land target = x \land \lnot alive(x) \]

You can, if you prefer, add another condition \(\lnot alive(x) \) to the first of the laws above, and
in the second write \(\lnot \text{no-one-moves} \) in place of \(move(y) \).

Of course there are many other possibilities.