491 Knowledge Representation

Tutorial Exercise

Fixpoint semantics for definite programs

Question 1

- (a) Let $IDB = \{ p \leftarrow q, r; q \leftarrow s \}$ and $EDB = \{ r, s \}$. Check that $Cl_{IDB}(EDB) = T'_{IDB} \uparrow^{\omega} (EDB) \neq T_{IDB} \uparrow^{\omega} (EDB)$.
- (b) Same again but for $IDB = \{ p \leftarrow q, r; q \leftarrow s; r \}$ and $EDB = \{ s \}$.

Question 2 (Optional) Following on from the previous question. Let P be a set of definite clauses and X any set of atoms of P.

(a) Show (by induction on n) that for all $n \geq 0$:

$$T_P \uparrow^n(X) \subseteq T_P' \uparrow^n(X)$$

and hence that $T_P \uparrow^{\omega}(X) \subseteq T_P' \uparrow^{\omega}(X)$.

(b) We know (e.g., from the example in Question 1) that in general $T_P \uparrow^{\omega}(X) \neq T_P' \uparrow^{\omega}(X)$. But show (by induction on n) that for all $n \geq 0$, $T_P \uparrow^n(\emptyset) \subseteq T_P \uparrow^{n+1}(\emptyset)$, and hence

$$T_P' \uparrow^n(\emptyset) = T_P \uparrow^n(\emptyset)$$

from which follows $T_P \uparrow^{\omega}(\emptyset) = T_P' \uparrow^{\omega}(\emptyset)$.

Question 3

Suppose IDB is a set of definite clauses and EDB is a set of atoms. Show that $Cl_{IDB}(EDB)$ is the least Herbrand model of $IDB \cup EDB$.

 Hint : if EDB is a set of atoms, then $T_{\mathit{EDB}}(X) = \mathit{EDB}$. And clearly $T_{P_1 \cup P_2}(X) = T_{P_1}(X) \cup T_{P_2}(X)$.

Question 4

 Cl_{IDB} maps sets of atoms to sets of atoms. Show that if IDB is definite then Cl_{IDB} is a classical consequence operator (Tarski):

- $X \subseteq Cl_{IDB}(X)$
- $Cl_{IDB}(Cl_{IDB}(X)) \subseteq Cl_{IDB}(X)$
- if $X_1 \subseteq X_2$ then $Cl_{IDB}(X_1) \subseteq Cl_{IDB}(X_2)$

 ${\bf Question~5} \quad {\bf Consider~the~following~set~of~(normal,~not~definite)~clauses~\it IDB: \\$

$$p \leftarrow r$$
, not q
 $q \leftarrow r$, not p

What is $Cl_{IDB}(\{r\})$? (Hint: there isn't one.)