491 KNOWLEDGE REPRESENTATION

Tutorial Exercise

Logic databases

1. Let p(x), m(x), f(x), h(x, n) represent 'x is a person', 'x is male', 'x is female', 'the home telephone number of x is n'.

Consider databases $Th(D_i)$ for the following examples:

$$D_{1} = \{p(a), p(b), m(a)\}$$

$$D_{2} = \{p(a), p(b), \forall x (p(x) \to (m(x) \lor f(x))) \}$$

$$D_{3} = \{p(a), p(b), m(a), m(b)\}$$

$$D_{4} = \{\}$$

and integrity contraint I1: 'every person is either male or female'.

First, decide which of the databases $\text{Th}(D_i)$ intuitively satisfy the integrity constraint I1. Then try the three definitions of integrity constraint satisfaction (consistency, entailment/theoremhood, metalevel/epistemic) and see what you get for each.

Repeat the above for the databases $Th(D_i)$:

$$\begin{aligned} D_5 &= \{ p(a), p(b), h(a, 123) \} \\ D_6 &= \{ p(a), p(b), \forall x \ (p(x) \to \exists n \ h(x, n) \) \} \\ D_7 &= \{ p(a), p(b), \forall x \ (p(x) \to h(x, 456)) \} \end{aligned}$$

and integrity contraint I2: 'every person has a home telephone number'.

Finally, check again but this time on the databases

 $cwa_{\mathcal{P}}(D_i) = \operatorname{Th}(D_i \cup \{\neg \alpha \mid \alpha \in \mathcal{P}, \ \alpha \notin \operatorname{Th}(D_i)\})$

where $\mathcal{P} = \{p(a), p(b), m(a), m(b), f(a), f(b)\}$ for databases $D_1 - D_4$, and $\mathcal{P} = \{p(a), p(b), h(a, 123), h(a, 456), h(b, 123), h(b, 456)\}$ for $D_5 - D_7$.

2. (More demanding, but instructive.) Check the claim about relative strengths of integrity constraint satisfaction summarised in the lecture notes.

(i) First check that any Cn (with $A \subseteq Cn(A)$) satisfies (for all A, X, Y):

If $X \vdash_{PL} Y$ then $A \vdash X$ implies $A \vdash Y$ $Y \subseteq \text{Th}(X) \Rightarrow (X \subseteq \text{Cn}(A) \Rightarrow Y \subseteq \text{Cn}(A))$

iff Cn is 'closed under truth-functional consequence': $\operatorname{Th}(\operatorname{Cn}(A)) \subseteq \operatorname{Cn}(A)$. (The latter is a very reasonable property.)

- (ii) Now check that, for all α and β , if $(\alpha \to \beta) \in \operatorname{Cn}(D)$ then $\alpha \in \operatorname{Cn}(D)$ implies $\beta \in \operatorname{Cn}(D)$, and further, that as long as $\operatorname{Cn}(D)$ is consistent, if $\alpha \in \operatorname{Cn}(D)$ implies $\beta \in \operatorname{Cn}(D)$ then $\neg(\alpha \to \beta) \notin \operatorname{Cn}(D)$.
- (iii) Now the other direction, if $\operatorname{Cn}(D)$ is *complete* then, for all α and β : $\neg(\alpha \rightarrow \beta) \notin \operatorname{Cn}(D)$ implies if $\alpha \in \operatorname{Cn}(D)$ then $\beta \in \operatorname{Cn}(D)$, and further, if $\alpha \in \operatorname{Cn}(D)$ implies $\beta \in \operatorname{Cn}(D)$ then $(\alpha \rightarrow \beta) \in \operatorname{Cn}(D)$.

How do these observations apply to the databases of Question 1?