491 KNOWLEDGE REPRESENTATION

Tutorial Exercise

Nonmonotonic consequence relations

Question 1 Look again at the earlier exercise sheet *Consequence relations*. Solutions to those exercises were handed out. Many of those questions did not assume that the consequence relations referred to were monotonic.

Question 2

Show that the following hold for any supraclassical cumulative operator Cn. (Cn is cumulative when $A \subseteq B \subseteq Cn(A)$ implies Cn(B) = Cn(A).)

i) $\operatorname{Th}(\operatorname{Cn}(A)) = \operatorname{Cn}(A)$

ii) If $B \subseteq Cn(A)$ then $Th(B) \subseteq Cn(A)$.

(Or equivalently, if $B \subseteq Cn(A)$ and $C \subseteq Th(B)$ then $C \subseteq Cn(A)$.)

- iii) If $\{canary, \neg(yellow \land blue)\} \vdash yellow then \{canary, \neg(yellow \land blue)\} \vdash \neg blue (where A \vdash \alpha \text{ iff } \alpha \in Cn(A)).$
- PS: Make sure you understand why part (ii) can say 'Or equivalently ...'.

${\bf Question} \ {\bf 3} \quad {\rm Check} \ {\rm that} \ {\rm the} \ {\rm following} \ {\rm set} \ {\rm of} \ {\rm default} \ {\rm rules}$

 $\frac{a:}{c} \qquad \frac{:\neg b}{a} \qquad \frac{c:\neg a}{b}$

provides an example to show that cautious monotony does not hold for (sceptical, cautious) Reiter default logic.

In other words: suppose (D, W) is a Reiter default theory.

Let Cn_D be the consequence operator corresponding to the 'sceptical' or 'cautious' consequences of W under the default rules D: that is, α is in $\operatorname{Cn}_D(W)$ iff α is in the intersection of all the extensions of the default theory (D, W).

Let $W \models_D \alpha$ be shorthand for $\alpha \in \operatorname{Cn}_D(W)$.

Now suppose D is the set of default rules above. Find formulas α and β (and a set of formulas W) such that $W \models_D \alpha$ and $W \models_D \beta$ but $W \cup \{\beta\} \not\models_D \alpha$.

(Construct the extensions.)

Because of the relationship between logic programs and Reiter default theories, you can, if you prefer, consider the following logic program instead:

 $f a \leftarrow not f b \ c \leftarrow f a \ b \leftarrow c, not f a$

Question 4

Let $\operatorname{Cn}_D(W)$ and $W \succ_D \alpha$ be as in the previous question. Show each of the following, for any sets of formulas A and B:

i) $A \subseteq \operatorname{Cn}_D(A)$

ii) When $A \subseteq B \subseteq Cn_D(A)$, if E is an extension of (D, A) then E is an extension of (D, B).

iii) From part (ii), it follows that ${\rm Cn}_D$ satisfies the following property 'cumulative transitivity':

If $A \subseteq B \subseteq \operatorname{Cn}_D(A)$ then $\operatorname{Cn}_D(B) \subseteq \operatorname{Cn}_D(A)$

(Part(i) is very easy. Part (ii) is quite hard, but not if you keep a clear head. Part (iii) follows from part (ii) quite easily.)

491 KNOWLEDGE REPRESENTATION

Tutorial Exercise

Nonmonotonic consequence relations SOLUTIONS

 ${\bf Question} \ 1 \quad ({\rm Handed} \ {\rm out} \ {\rm with} \ {\rm earlier} \ {\rm sheet})$

Question 2

i) One half: $Cn(A) \subseteq Th(Cn(A))$ (inclusion Th). For the other half: Cn is cumulative (given) so $A \subseteq Cn(A) \subseteq Cn(A)$ implies $Cn(Cn(A)) \subseteq Cn(A)$. Cn is supraclassical (given) so we have: $\operatorname{Th}(\operatorname{Cn}(A)) \subset \operatorname{Cn}(\operatorname{Cn}(A)) \subset \operatorname{Cn}(A).$ ii) $B \subseteq Cn(A) \Rightarrow Th(B) \subseteq Th(Cn(A))$ (Th monot.) $\operatorname{Th}(\operatorname{Cn}(A)) \subseteq \operatorname{Cn}(A)$ (proved above). So: $B \subset Cn(A) \Rightarrow Th(B) \subset Th(Cn(A)) \subset Cn(A)$. PS: $B \subseteq Cn(A) \Rightarrow Th(B) \subseteq Cn(A)$ is equivalently stated as if $B \subseteq Cn(A)$ and $C \subseteq Th(B)$ then $C \subseteq Cn(A)$ You might find this easier to read when written like this: $A \sim B$ and $B \vdash C$ implies $A \sim C$ There is nothing deep here. 'If P and Q then R' is equivalent to 'if P then (if Q then R)'. For any sets A and B, $X \subseteq A \Rightarrow X \subseteq B$ for any X is equivalent to saying $A \subseteq B$. iii) This just applies the previous part and inclusion of Cn. $\{canary, \neg(yellow \land blue)\} \succ yellow$ (given). $\{yellow\} \subset Cn(\{canary, \neg(yellow \land blue)\})$ $\{canary, \neg(yellow \land blue)\} \vdash \neg(yellow \land blue)$ (because $A \subset Cn(A)$) $\{\neg(yellow \land blue)\} \subset Cn(\{canary, \neg(yellow \land blue)\})$ So: $\{yellow, \neg(yellow \land blue)\} \subset Cn(\{canary, \neg(yellow \land blue)\})$ Now just apply part (ii): $\{\neg blue\} \subseteq \text{Th}(\{yellow, \neg(yellow \land blue)\})$ So: $\{\neg blue\} \subset Cn(\{canary, \neg(yellow \land blue)\})$ $\{canary, \neg(yellow \land blue)\} \vdash \neg blue.$

Question 3

Let
$$D = \{\frac{a:}{c}, \frac{:\neg b}{a}, \frac{c:\neg a}{b}\}, \qquad W = \emptyset.$$

The default theory (D, \emptyset) has one extension: Th $(\{a, c\})$. (And since the extension is unique, $\emptyset \succ_D c$.)

 $(D, \{c\})$ has two extensions: Th $(\{a, c\})$ and Th $(\{b, c\})$. a which was in the unique extension of (D, \emptyset) is not in the intersection of these two.

In terms of the logic program: the original program obtained by translating (D, \emptyset) has one stable model (answer set) $\{a, c\}$. (I found this by trying all the possible interpretations. I couldn't see a quicker way to do it.)

Add $c \leftarrow$. Now we get two stable models (answer sets): $\{a, c\}$ and $\{b, c\}$.

Question 4

Part (i) is easy. A is a subset of every extension of (D, A) by definition, so $A \in \bigcap ext(D, A)$.

Part (ii). (Actually the essence of the argument is in Question 6 of the exercise sheet on default logic. Anyway, here it is again.)

Suppose $A \subseteq B \subseteq \bigcap ext(D, A)$. Suppose $E \in ext(D, A)$. Then by definition $E = \operatorname{Cn}_{D^E}(A)$.

We need to show $E \in ext(D, B)$, i.e., $E = \operatorname{Cn}_{D^E}(B)$. Equivalently $\operatorname{Cn}_{D^E}(A) = \operatorname{Cn}_{D^E}(B)$. We do it in two separate parts.

 Cn_{D^E} is monotonic so $A \subseteq B$ implies $\operatorname{Cn}_{D^E}(A) \subseteq \operatorname{Cn}_{D^E}(B)$.

It just remains to show $\operatorname{Cn}_{D^E}(B) \subseteq \operatorname{Cn}_{D^E}(A)$. First, notice that $B \subseteq E$ (because $B \subseteq \operatorname{Cn}_D(A)$ (assumed) means that B is a subset of all extensions of (D, A), and E is one such). Cn_{D^E} is monotonic so we have:

 $\operatorname{Cn}_{D^E}(B) \subseteq \operatorname{Cn}_{D^E}(E) = \operatorname{Cn}_{D^E}(\operatorname{Cn}_{D^E}(A)) \subseteq \operatorname{Cn}_{D^E}(A).$

Given part (ii), part (iii) is also easy. Part (ii) is equivalently stated as

 $A \subseteq B \subseteq \operatorname{Cn}_D(A) \Rightarrow ext(D,A) \subseteq ext(D,B)$

So when $A \subseteq B \subseteq \operatorname{Cn}_D(A)$, $\bigcap ext(D, B) \subseteq \bigcap ext(D, A)$.

Or in words: Suppose $A \subseteq B \subseteq \operatorname{Cn}_D(A)$. Suppose $\alpha \in \operatorname{Cn}_D(B)$. Then α is in every extension of (D, B).

Now suppose E is some extension of (D, A). Then E is also an extension of (D, B) by part(ii). But α is in all extensions of (D, B), so α is also in E.