Use splitting sets to compute stable models of the following:

1. \[p \leftarrow q, \text{not } s \]
 \[r \leftarrow p, \text{not } q, \text{not } s \]
 \[s \leftarrow \text{not } q \]
 \[q \leftarrow \text{not } s \]

2. \[p \]
 \[r \leftarrow p, \text{not } q \]
 \[q \leftarrow p, \text{not } r \]
 \[s \leftarrow r, \text{not } s \]

3. (a) \[p \leftarrow \text{not } q \]
 \[r \leftarrow q \]
 (b) \[p \leftarrow \text{not } q \]
 \[r \leftarrow q \]
 \[r \]
 (c) \[p \leftarrow \text{not } q \]
 \[r \leftarrow q \]
 \[r \]

4. \text{can_fly} \leftarrow \text{bird}, \text{not ab_bird}
 \text{can_fly} \leftarrow \text{bird}, \text{ab_bird}
 \text{ab_bird} \leftarrow \text{ostrich}
 \text{bird} \leftarrow \text{ostrich}

5. Suppose that logic program \(P \) contains a clause
 \[p \leftarrow r, \text{not } p \]
 where \(p \) does not occur anywhere else in \(P \). (In particular, \(p \) is not defined in \(P \).)

Show that there is no stable model of \(P \) that contains \(r \).

Question 1
Let’s take the splitting set \(U = \{ q, s \} \). \(\{ p, q, s \} \) is also a splitting set. We’ll look at that one later.

\[
\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
\end{align*}
\]

\[U = \{ q, s \} \]

The bottom part has two stable models: \(\{ q \} \) and \(\{ s \} \). Consider them in turn.

1. \(\{ q \} \) Simplifying the top part gives the program \(\{ p \} \). This obviously has just one stable model, \(\{ p \} \).
 A stable model of the original program is therefore \(\{ q \} \cup \{ p \} \).

2. \(\{ s \} \) Simplifying the top part gives \(\emptyset \). This obviously has just one stable model, \(\emptyset \).
 A stable model of the original program is \(\{ s \} \cup \emptyset = \{ s \} \).

There are no other stable models.

Just to check, suppose we started with the other splitting set \(U = \{ p, q, s \} \).

\[
\begin{align*}
 p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
\end{align*}
\]

\[U = \{ p, q, s \} \]

We need to find stable models of the bottom part. We can split again:

\[
\begin{align*}
 p & \leftarrow q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
\end{align*}
\]

\[U' = \{ q, s \} \]

One can see there are two stable models: one is \(\{ p, q \} \) and the other is \(\{ s \} \).

In both cases, simplifying the top part of the original program gives us \(\emptyset \). So the original program has two stable models: \(\{ p, q \} \) and \(\{ s \} \). (Same as above.)
Question 2 (Note in passing that there is no stable model containing \(r \). Why? See Question 5.)

There are two splitting sets: \(\{ p \} \) and \(\{ p, q, r \} \). The first seems easier to handle. So we have:

\[
\begin{align*}
 r & \leftarrow p, \not q \\
 q & \leftarrow p, \not r \\
 s & \leftarrow r, \not s \\
 p & \quad \quad U = \{ p \}
\end{align*}
\]

The bottom part obviously has one stable model: \(\{ p \} \). Simplifying the top part gives:

\[
\begin{align*}
 r & \leftarrow \not q \\
 q & \leftarrow \not r \\
 s & \leftarrow r, \not s
\end{align*}
\]

This program can be split thus:

\[
\begin{align*}
 s & \leftarrow r, \not s \\
 r & \leftarrow \not q \\
 q & \leftarrow \not r \\
 U' & = \{ q, r \}
\end{align*}
\]

There are two stable models for the bottom part: \(\{ q \} \) and \(\{ r \} \). Simplifying \(\{ s \leftarrow r, \not s \} \) with \(\{ q \} \) relative to \(U' = \{ q, r \} \) gives \(\emptyset \). This has one stable model, \(\emptyset \). So one stable model for the original program is \(\emptyset \cup \{ q \} \cup \{ p \} = \{ p, q \} \).

Simplifying \(\{ s \leftarrow r, \not s \} \) with \(\{ r \} \) relative to \(U' = \{ q, r \} \) gives \(\{ s \leftarrow \not s \} \). This has no stable model. (Check: there are only two candidates, \(\{ s \} \) and \(\emptyset \), and neither is stable.) So \(\{ r \} \) for the bottom part does not yield a stable model for the original program.

There is only one stable model for the original program, viz. \(\{ p, q \} \).

(We already knew there could not be one containing \(r \).) (Thanks to Tim Pierce and Robin Bennett for pointing out some errors in earlier versions of this handout.)

Question 3 In each case take the splitting set \(U = \{ r, q \} \).

1. \(p \leftarrow \not q \\
 r \leftarrow q \\
 U = \{ r, q \}
\]

The (unique) stable model of the bottom part is \(\emptyset \).

Simplifying the top part gives \(\{ p \} \). This has one stable model \(\{ p \} \).

So the only stable model of the original program is \(\emptyset \cup \{ p \} = \{ p \} \).

2. \(p \leftarrow \not q \\
 r \leftarrow q \\
 U = \{ r, q \}
\]

The (unique) stable model of the bottom part is \(\{ r \} \).

Simplifying the top part gives \(\{ p \} \). This has one stable model \(\{ p \} \).

So the only stable model of the original program is \(\{ r \} \cup \{ p \} = \{ r, p \} \).

3. \(p \leftarrow \not q \\
 r \leftarrow q \\
 \emptyset \\
 U = \{ r, q \}
\]

The (unique) stable model of the bottom part is \(\{ r, q \} \).

Simplifying the top part gives \(\emptyset \). This has one stable model, \(\emptyset \).

So the only stable model of the original program is \(\emptyset \cup \{ r, q \} = \{ r, q \} \).

Question 4 Take the splitting set \(U = \{ \text{bird, ostrich, ab_bird} \} \).

\[
\begin{align*}
 \text{can_fly} & \leftarrow \text{bird, not ab_bird} \\
 \text{can_fly} & \leftarrow \text{bird, ab_bird} \\
 \text{can_fly} & \leftarrow \text{ab_bird} \leftarrow \text{ostrich} \\
 \text{bird} & \leftarrow \text{ostrich} \\
 U & = \{ \text{bird, ostrich} \}
\end{align*}
\]

The stable model of the bottom part is obviously \(\{ \text{bird} \} \). Simplifying the top part with \(\{ \text{bird} \} \) and relative to \(U = \{ \text{bird, ostrich} \} \) gives:

\[
\begin{align*}
 \text{can_fly} & \leftarrow \not \text{ab_bird} \\
 \text{can_fly} & \leftarrow \text{ab_bird} \\
 \text{can_fly} & \leftarrow \text{can_fly}
\end{align*}
\]

This has the same form as part (b) of the previous question. There is thus one stable model, \(\{ \text{can_fly, can_fly} \} \), and so one stable model for the original program: \(\{ \text{bird} \} \cup \{ \text{can_fly, can_fly} \} \).

(As an expression of default rules about flying birds and ostriches, the above formulation is obviously inadequate.)

Question 5 \(P \) contains a clause

\[
\begin{align*}
 p & \leftarrow r, \not p \\
 r & \leftarrow q \\
 U & = \{ r, q \}
\end{align*}
\]

where \(p \) does not occur anywhere else in \(P \). (In particular, \(p \) is not defined in \(P \).)

Clearly \(P \) can be split with the clause above in the top part and everything else in \(P \) in the bottom part. (The splitting set is all atoms of \(P \) except \(p \).)

If \(r \) belongs to a stable model of \(P \), it must belong to a stable model of the bottom part.

Suppose there is such a model. Then simplifying the top part using this stable model will give us

\[
\begin{align*}
 \{ p \leftarrow \not p \}
\end{align*}
\]

But that program has no stable model. (Easy to check.)