491 KNOWLEDGE REPRESENTATION

Tutorial Exercise

Splitting Sets

Use splitting sets to compute stable models of the following:

1. $p \leftarrow q$, not s $r \leftarrow p$, not q, not s $s \leftarrow \mathsf{not} q$ $q \leftarrow \texttt{not} s$ 2. p $r \leftarrow p$, not q $q \leftarrow p$, not r $s \leftarrow r$, not s 3. (a) $p \leftarrow \text{not } q$ $r \leftarrow q$ (b) $p \leftarrow \text{not } q$ $r \leftarrow q$ r(c) $p \leftarrow \text{not } q$ $r \leftarrow q$ rq4. $can_fly \leftarrow bird$, not ab_bird $cant_fly \leftarrow bird, ab_bird$ ab bird \leftarrow ostrich $bird \leftarrow ostrich$

bird

cant_fly

5. Suppose that logic program P contains a clause

 $p \leftarrow r$, not p

where p does not occur anywhere else in P. (In particular, p is not defined in P.) Show that there is no stable model of P that contains r.

491 Knowledge Representation

Tutorial Exercise

Splitting Sets SOLUTIONS

Question 1 Let's take the splitting set $U = \{q, s\}$. $\{p, q, s\}$ is also a splitting set. We'll look at that one later.

$$\begin{array}{l} p \leftarrow q, \ \mathrm{not} \ s \\ \hline r \leftarrow p, \ \mathrm{not} \ q, \ \mathrm{not} \ s \\ \hline s \leftarrow \ \mathrm{not} \ q \\ q \leftarrow \ \mathrm{not} \ s \end{array} \qquad U = \{q, s\}$$

The bottom part has two stable models: $\{q\}$ and $\{s\}$. Consider them in turn.

1. $\{q\}$ Simplifying the top part gives the program $\{p \leftarrow\}$. This obviously has just one stable model, $\{p\}$.

A stable model of the original program is therefore $\{q\} \cup \{p\}$.

{s} Simplifying the top part gives Ø. This obviously has just one stable model, Ø.
 A stable model of the original progam is {s} ∪ Ø = {s}.

There are no other stable models.

Just to check, suppose we started with the other splitting set $U = \{p, q, s\}$.

$$\begin{array}{c} r \leftarrow p, \ \mathrm{not} \ q, \ \mathrm{not} \ s \\ \hline p \leftarrow q, \ \mathrm{not} \ s \\ s \leftarrow \ \mathrm{not} \ q \\ q \leftarrow \ \mathrm{not} \ s \end{array} \qquad U = \{p, q, s\}$$

We need to find stable models of the bottom part. We can split again:

$$\begin{array}{c} \underline{p \leftarrow q, \ \mathrm{not} \ s} \\ \overline{s \leftarrow \ \mathrm{not} \ q} \\ q \leftarrow \ \mathrm{not} \ s \end{array} U' = \{q, s\}$$

One can see there are two stable models: one is $\{p, q\}$ and the other is $\{s\}$.

In both cases, simplifying the top part of the original program gives us \emptyset . So the original program has two stable models: $\{p, q\}$ and $\{s\}$. (Same as above.)

Question 2 (Note in passing that there is no stable model containing r. Why? See Question 5.)

There are two splitting sets: $\{p\}$ and $\{p, q, r\}$. The first seems easier to handle. So we have:

 $r \leftarrow p$, not q $q \leftarrow p$, not r $s \leftarrow r, \text{ not } s$ $U = \{p\}$ p

The bottom part obviously has one stable model: $\{p\}$. Simplifying the top part gives:

 $r \leftarrow \text{not } q$ $q \leftarrow \mathsf{not} r$ $s \leftarrow r$, not s

This program can be split thus:

 $\underbrace{s \leftarrow r, \text{ not } s}_{r \leftarrow \text{ not } q} U' = \{q, r\}$ $a \gets \texttt{not} \ r$

There are two stable models for the bottom part: $\{q\}$ and $\{r\}$.

Simplifying $\{s \leftarrow r, \text{ not } s\}$ with $\{q\}$ relative to $U' = \{q, r\}$ gives $\{\}$. This has one stable model, \emptyset . So one stable model for the original program is $\emptyset \cup \{q\} \cup \{p\} = \{p, q\}$. Simplifying $\{s \leftarrow r, \text{ not } s\}$ with $\{r\}$ relative to $U' = \{q, r\}$ gives $\{s \leftarrow \text{ not } s\}$. This has no stable model. (Check: there are only two candidates, $\{s\}$ and \emptyset , and neither is stable.) So $\{r\}$ for the bottom part does not yield a stable model for the original program.

There is only one stable model for the original program, viz. $\{p, q\}$.

(We already knew there could not be one containing r.)

(Thanks to Tim Pierce and Robin Bennett for pointing out some errors in earlier versions of this handout.)

Question 3 In each case take the splitting set $U = \{r, q\}$.

 $\begin{array}{cccc} 1. & \underline{p \leftarrow \operatorname{not} q} \\ \hline r \leftarrow q & U = \{r,q\} \end{array}$

The (unique) stable model of the bottom part is \emptyset .

Simplifying the top part gives $\{p\}$. This has one stable model $\{p\}$. So the only stable model of the original program is $\emptyset \cup \{p\} = \{p\}$.

2. $p \leftarrow \operatorname{not} q$ $r \leftarrow q$ $U = \{r, q\}$

The (unique) stable model of the bottom part is $\{r\}$.

Simplifying the top part gives $\{p\}$. This has one stable model $\{p\}$. So the only stable model of the original program is $\{r\} \cup \{p\} = \{r, p\}$. 3. $p \leftarrow \operatorname{not} q$ $r \leftarrow q$ $U = \{r, q\}$ The (unique) stable model of the bottom part is $\{r, q\}$ Simplifying the top part gives \emptyset . This has one stable model, \emptyset . So the only stable model of the original program is $\{r, q\} \cup \emptyset = \{r, q\}$

Question 4 Take the splitting set $U = \{bird, ostrich\}$. One could also use the splitting set {*bird*, *ostrich*, *ab_bird*}.

```
can_flu \leftarrow bird. not ab_bird
cant_fly \leftarrow bird, ab_bird
cant_fly
ab\_bird \leftarrow ostrich
bird \leftarrow ostrich
                                          U = \{bird, ostrich\}
bird
```

The stable model of the bottom part is obviously {bird}. Simplifying the top part with $\{bird\}$ and relative to $U = \{bird, ostrich\}$ gives:

```
can_fly \leftarrow \text{not } ab_bird
cant_fly \leftarrow ab_bird
cant_fly
```

This has the same form as part (b) of the previous question. There is thus one stable model, $\{can_f lu, can_f lu\}$, and so one stable model for the original program: $\{bird\} \cup$ $\{can_fly, cant_fly\}.$

(As an expression of default rules about flying birds and ostriches, the above formulation is obviously inadequate.)

Question 5 P contains a clause

 $p \leftarrow r$, not p

where p does not occur anywhere else in P. (In particular, p is not defined in P.)

Clearly P can be split with the clause above in the top part and everything else in P in the bottom part. (The splitting set is all atoms of P except p.)

If r belongs to a stable model of P, it must belong to a stable model of the bottom part. Suppose there is such a model. Then simplifying the top part using this stable model will give us

 $\{p \leftarrow \text{not } p\}$

But that program has no stable model. (Easy to check.)