
DOM:

Towards a Formal Specification

Mark Wheelhouse

MSci Project

June 13, 2007

Abstract

We present an initial attempt at providing a formal specification for a mini-
mal structural subsection of DOM Core Level 1. From this ‘Minimal DOM’ we
show how to extended our specification to cover all of the structural behaviour
of DOM Core Level 1 and more. We first provide a local specification of our
‘Minimal DOM’ and then show how the use of Context Logic gives us a powerful
and expressive reasoning framework with which to take our local specification
to a high level specification. This will be the first time that Context Logic has
been applied to a large, real-world, example. Our hope is that our work will
demonstrate that Context Logic is just as applicable to real problems as its close
sibling Separation Logic.

Supervisor:
Dr. Philippa Gardner

Second Marker:
Ian Hodkinson

Department of Computing
Imperial College London

1

Acknowledgements

First and foremost I would like to thank Philippa Gardner for agreeing to be
my supervisor. She has been a great inspiration throughout the course of the
whole project, providing both words of wisdom and a kick in the right direction
whenever I needed it.

Secondly I would like to give special thanks to Gareth Smith and Uri Zarfaty for
their seemingly endless patience and willingness to make time to help. Without
their opinions and assistance this report would have met but a ghost of its true
potential.

Finally I would like to thank Ian Hodkinson for his input, especially for his
insights into providing examples that make this report clearer for those who do
not specialise in logic.

2

Contents

1 Background 6
1.1 Introduction . 6
1.2 What is DOM? . 6
1.3 Why Context Logic? . 9
1.4 Minimal DOM . 11

1.4.1 Node . 12
1.4.2 NodeList . 13
1.4.3 Commands . 13

1.5 Data Structure . 14
1.5.1 Previous Work - Node level 14
1.5.2 Pure Trees . 17
1.5.3 Final Structure . 18
1.5.4 Context Application . 19

1.6 Goals of the Project . 20

2 Operational Semantics 22
2.1 Simple Operational Semantics Example 22
2.2 The Program State . 23
2.3 Rules for Append . 23
2.4 The Commands . 26
2.5 Evaluation of Operational Semantics 29

3 The Logic 30
3.1 Formulae . 30
3.2 Classical Formulae . 30
3.3 Structural Formulae . 34
3.4 Logic Examples . 37

4 Hoare Reasoning 41
4.1 The Reasoning Framework . 41

4.1.1 Hoare Rules . 43
4.1.2 Local Commands . 44

4.2 Formulating DOM . 45
4.2.1 Append Axiom . 46
4.2.2 Axioms . 46
4.2.3 Use of Notation Overload 47
4.2.4 Axiom Evaluation . 47
4.2.5 Soundness Theorem: . 48

3

5 Deriving the Weakest Pre-conditions 49
5.1 Notation and Proof Structure . 49
5.2 append - a Detailed Proof . 50
5.3 The Derivations . 51

5.3.1 createNode . 51
5.3.2 getNodeName . 51
5.3.3 getChildNodes . 52
5.3.4 getParentNode . 52
5.3.5 insertBefore . 53
5.3.6 removeChild . 53
5.3.7 getLength . 54
5.3.8 getItem . 54

6 Building Simple Programs 55
6.1 replaceChild . 55
6.2 cloneNode . 56
6.3 hasChildNodes . 57
6.4 DOM Core Level 1 - Evaluation 59

7 Going Further 60
7.1 insertAfter . 60
7.2 Equality . 61

8 Evaluation 63
8.1 Success of the Project . 63

8.1.1 Pleasing the DOM Community 63
8.1.2 Pleasing the W3C Community 64
8.1.3 The Data Structure . 64
8.1.4 The Logical Framework 65
8.1.5 The Axioms . 66
8.1.6 Conclusion . 66

8.2 Future Work . 66
8.2.1 Verification Tool . 67
8.2.2 Specifying More of DOM 67
8.2.3 Recursion . 67
8.2.4 Small Axioms . 68
8.2.5 Multi-holed Contexts . 68
8.2.6 Concurrent DOM . 68

9 References 69

4

10 Appendix I - Constructing Minimal DOM 70
10.1 Node . 70
10.2 NodeList . 71
10.3 Constructors . 72
10.4 Commands . 72

5

1 Background

1.1 Introduction

In the modern industrial-sector programming-environment companies spend
huge amounts of time and money testing and correcting the programs that
they produce. The use of formal verification languages, capable of automated
code verification against a specification, is rare and still in its infancy, but one
can see that the time and money saved would be significant in a world where
every minute and every pound seem to matter so much. In order for these veri-
fication programs to make it into mainstream use their utility and applicability
need to be shown on real programs.

Behind every verification tool there must be a logic capable of expressing pro-
gram properties and states, then checking these against a suitably formulated
specification. During this project we have been looking at the use of Context
Logic, a relatively new development in the field, for just this purpose. Con-
text Logic has been proved correct and sound, and has also been shown to
work on several toy example languages, but it has yet to be applied to a large,
real-world, language. We take DOM, a widely used and well established XML
update languages with a rather loose specification, and unite it with Context
Logic. Our aim is to both prove the full utility of Context Logic and to bring
formal verification to a language that has no nope of it in its current state.

1.2 What is DOM?

DOM, or the Document Object Model, is one of the most widespread XML
update languages in use on the Internet. It is a World Wide Wed Consortium
(more commonly referred to as W3C) specification of a library for manipulating
XML documents. DOM attempts to provide a platform and language neutral
interface that allows programs and scripts to dynamically access and update the
content, style and structure of XML documents. The idea is that whatever kind
of language you are using to modify your XML code, be it imperative, func-
tional, object orientated or any other, the DOM interface at the heart of the
code will be the same. This enables a very high degree of portability between
platforms which is a valuable property on the World Wide Web.

DOM closely resembles the structure of the document it represents. Each doc-
ument is represented as a hierarchy of Node objects that are capable of imple-
menting other, more specialised, interfaces. So for example a Text Node would
contain textual information, whilst an Attribute Node would contain the at-
tribute value for a list, table or other XML object, but both would be interfaces
on top of the same basic structural Node object. The overall DOM keeps track
of an unordered set of all the document trees.

6

DOM Structure Example:

The XML code,

<TABLE>
<TBODY>
<TR>
<TD>Name</TD>
<TD>Project</TD>

</TR>
<TR>
<TD>Mark Wheelhouse</TD>
<TD>DOM</TD>
</TR>

</TBODY>
</TABLE>

is represented by the DOM tree in Figure 1.

Figure 1: DOM Tree Structure

An interesting feature of DOM is that it is a live update language. This means
that an update to one reference of a Node will enforce silent update on all refer-
ences of that Node without further input from the user. That is, if two processes
hold a reference to an object, as soon as one process modifies that object the
second process will now be operating upon this modified object.

As we progress through the different sections of this report we shall carry with
us a single example, the append() command, to show how each stage of our
work helps us to progress towards our goal of a more formal specification of
DOM.

7

The append command is called upon a node, lets call this parent, and takes as
an argument a target node. This target node, lets call it newChild, is then cut
out of its current place in the tree and is added to the end of the parent’s list
of children. Figure 2 shows how this can be viewed.

Figure 2: Append Example

Note that we require our target node, newChild, to not be an ancestor of the
parent node. If we try to move a node which is an ancestor of the node parent,
then the command will return an exception instead of executing. This is a
necessary feature of DOM to prevent the user from accidently cutting off parts
of a document tree so that they become unreachable. To understand this fully
consider the example in figure 3,

This requirement that the Node to be moved must not be an ancestor of its
destination will cause us to make some tricky decisions later in our work when

8

Figure 3: Cutting off a branch

trying to keep the specifications of our commands local. More on this later.

1.3 Why Context Logic?

Context Logic has already been proved to be correct [3] and has been applied
to a number of toy examples [3, 9], now it is time to show that Context Logic
can be applied to real-world situations.

The current specification of DOM is written using a mixture of IDL (Inter-
face Definition Language), which is an international standard for describing
the interface of an Object Model, and a lot of English. The tree structure of
the XML is specified with the object structure of an arbitrary object oriented
programming language in mind. The operations over this data structure are
specified as methods over these objects.

There are two main issues with the current approach.
Firstly, the English language is imprecise and verbose, and therefore so is the
specification. DOM has had the benefit of being in use for several years, and
there is a large group of volunteers who regularly look for bugs, inconsistencies
and undesirable behaviour in DOM, so the specification has grown more accu-
rate over time. However, the still imprecise nature of the specification means
that a DOM implementation cannot be precisely verified against the specifica-
tion.
Secondly, the fact that DOM is written with an arbitrary object orientated
programming language in mind somewhat defeats the communities own aim of
being platform free. Using object methods to carry out operations prevents the

9

language from being truly platform free as some languages cannot carry out this
kind of parameter passing strategy.

Specification Example:

Looking at the current specification for the append command we find the fol-
lowing specification:

appendChild
Adds the node newChild to the end of the list of children of this node. If
the newChild is already in the tree, it is first removed.

Parameters
newChild The node to add.
If it is a DocumentFragment object, the entire contents of the document
fragment are moved into the child list of this node.

Return Value
The node added.

Exceptions
DOMException
HIERARCHY REQUEST ERR: Raised if this node is of a type that does
not allow children of the type of the newChild node, or if the node to ap-
pend is one of this node’s ancestors.

WRONG DOCUMENT ERR: Raised if newChild was created from a dif-
ferent document than the one that created this node.

NO MODIFICATION ALLOWED ERR: Raised if this node is readonly.

This specification tells us roughly how the append command works, and as far
as English specifications go it is quite precise, but we can never hope to use
such a specification as part of a formal verification system.
The one specific issue with this specification is working out what happens in the
case where the target child to append is an ancestor of the target parent node.
We know that this case results in a DOMException being thrown, but where is
this in this specification? If you look long and hard you’ll find it buried at the
end of the definition of HIERARCHY REQUEST ERR. We mention this as it
took our group several attempts to locate this case. That it has fooled several
intelligent minds leads us to conclude that the specification must be poorly laid
out. In fact we feel that this exceptional case really ought to be specified sepa-
rately as it is very significant in practice.

It turns out that this type of criticism is not rare in commands of the DOM
specification. Often the special cases where the commands do not behave as ex-
pected are left out or not fully documented. This is in part due to the iterative

10

nature in which DOM has been built up over the years where exceptional cases
and unexpected behaviour are only documented once they have been discovered.

The append command above takes just a single input, the child in question,
but throughout the rest of this paper we shall refer to an append command
that takes two inputs, the parent node and the child node. This is because the
append command in DOM is called as a method upon the parent node, and so
the parent is passed as an implicit argument. We choose to make this implicit
argument passing explicit for the duration of our work, as we feel this leads to
a clearer understanding of our work.

Context Logic is a spatial logic for structurally reasoning about data. A Con-
text Logic for trees will provide a more precise language with which to specify a
library like DOM. We want to use Context Logic to give a less ambiguous, more
formal specification for DOM that can be used to verify DOM implementations,
hopefully in an automated fashion (although that is outside the scope of this
project). In doing so we must be careful not to discard any of DOM’s aimed for
platform free nature. Creating this specification is a true test of the expressive
power of Context Logic.

By using Context logic will will address our two main criticisms of the cur-
rent DOM specification. Namely, by eliminating the English language from
the specification we will remove countless occurrences of ambiguity and greatly
increase the precision of the specification. The new specification aims to be
formal and precise enough to allow formal verification tools to be built. Also,
we will attempt to move away from the solely object orientated viewpoint of
the current DOM specification so that we provide a specification which is truly
platform independent as the DOM community originally intended. However, at
this stage we will not be attempting to tackle the entirety of DOM in one go,
but we shall concentrate on a suitable subsection of DOM. We will take care to
work in such a fashion that our work can be scaled up to the full DOM at a
later point, but complete DOM is too large for the scope of this project. Also,
at this stage, we are not in a position to provide a verification tool. It is our
hope that the results of this project will allow the easy construction of a formal
verification tool for the subsection of DOM that we are going to consider, but
again, time pressures prevent us from including that work in the scope of this
project.

1.4 Minimal DOM

The entirety of DOM is far too large to consider in one go, so we have decided
to begin our specification looking at just the core parts of DOM. Specifically
we are restricting our investigation to DOM Core Level 1 [12], a minimal set of
objects and interfaces for accessing and manipulating document objects. The

11

Core functionality specified should be sufficient to allow software developers
and web script authors to access and manipulate parsed XML content inside all
conforming products.

In fact, even DOM Core Level 1 is more expressive than we desire as a staring
point. Choosing to restrict ourselves to structural considerations only, we can
create a smaller minimal subsection of DOM. We shall refer to this henceforth
as Minimal DOM. We will fully specify this minimal subsection and show that
the remaining behaviour of DOM Core Level 1 can be derived from it. Further
we hope to show that higher levels of DOM may also be derived from this min-
imal subset with a minimal number of extensions made to encompass the new
concepts in these higher levels of DOM.

In the following section we shall summarise what we have identified as Minimal
DOM. A full and detailed discussion of our reasoning can be found in ’Appendix
I - Constructing Minimal DOM’, but we just present our results here.

1.4.1 Node

The principle data-type we choose to deal with is the Node element. This is a
single element of the DOM tree which can be viewed as in figure 4,

Figure 4: Minimal DOM Node

Each Node has the following attributes:

id: a unique identifier for the Node. This can be thought of as a memory
location that we can point to.

tag: a flat representation of the data associated with the Node.

fid: a unique identifer for the list of children of the Node.

forest: an ordered list of pointers to other Nodes, the children of this
Node.

12

1.4.2 NodeList

We choose to use a separate data-type for the ordered list of nodes. This
NodeList can be viewed as in figure 5

Figure 5: Minimal DOM NodeList

Each NodeList has the following attributes:

fid: a unique identifier for the NodeList. Just as for Nodes, this can be
thought of as a memory location that we point to.

length: the number of items in the list is tracked explicitly.

For convenience we assume that our lists are 0 indexed, that is that the first
element is at position 0 of the list.

1.4.3 Commands

In Appendix I we give a detailed discussion of which commands we are choosing
to work with. Given below is the full list of commands that we shall be using
in our specification along with a brief English description, obtained from the
existing DOM specification, of the behaviour of each command.

1. createNode(String: tag)
creates a new Node with fresh id’s and its tag (the flat representation of
the data associated with this new Node) is set to the input string

2. getNodeName(Node: node)
returns the sting stored in the tag of the Node with the input identifier

3. getChildNodes(Node: parent)
returns the identifier of the NodeList of children for the Node with the
input identifier

4. getParentNode(Node: child)
returns the parent Node of the Node with the input identifier

13

5. insertBefore(Node: parent, Node: newChild, Node: ref)
inserts the Node with identifier newChild before the Node with identifier
ref in the NodeList associated with the Node with identifier parent

6. removeChild(Node: parent, Node: child)
removes the Node with identifier child to the top level of the DOM tree
from the NodeList of the Node with identifier parent and returns the Node
identifier for the removed child

7. append(Node: parent, Node: newChild)
puts the Node with identifier newChild at the end of the NodeList of the
Node with identifier parent

8. getLength(NodeList: fid)
returns the length of the NodeList with identifier fid

9. getItem(Int: length, NodeList: fid)
returns the identifier of the Node at position length of the NodeList with
identifier fid

1.5 Data Structure

The next step in specifying DOM is to define the data structure that our com-
mands will operate over. The current DOM specification makes no attempt to
give an explicit data structure, leaving it to the user to think in whatever style
seems natural to themselves. Clearly, if we are to produce a more formal spec-
ification, we must provide the definitions of this data structure. However, in
doing so we must be careful to avoid making any assumptions that will inhibit
the platform free nature of DOM implementations. The following section details
the data structures which were considered during the course of this project, the
reasons for making our decisions and the final data structure that was settled
upon.

1.5.1 Previous Work - Node level

The logical place to start our search for a suitable data structure is to begin
by looking at the work of Cheung [6]. Cheung decided to aim his reasoning at
a low level, concentrating on the structure of the DOM tree from the point of
view of the Nodes . The standard Node element which he designed appears in
figure 6.

14

Figure 6: Cheung Node

From this basic element, Cheung defined a set of Node level commands. When
combined together these provide a similar functionality to the commands which
we have chosen to consider. Cheung chose to operate over the data structure as
defined below:

forest φ ::= ∅ empty/null element

a[φ] | φ node composition

forest segment c ::= context hole

a[φ] | c right sibling context

a[c] | φ child context

The structure of the child nodes is ordered, with the composition operator ‘|’
being associative and non-commutative with identity ∅.

We found that this data structure was not suitable for our intended purpose.
Firstly, we want to carry out our reasoning at the high level, linking to estab-
lished low level reasoning at a later point. Cheung’s work found itself having
to make some very tricky decisions due to low level complications that we will
not be confronted with at the high level. Some of these decisions may actually
make it harder for us, at the high level, rather than easier.
Secondly, we want to keep the footprints of our commands as simple as possible.
The footprint of a command is the portion of the data structure that is required
or affected by the commands. With a sibling approach to the structure of the
DOM tree the footprint is the complex combination of the Node the method is
called upon and the Node the method returns, if it exists. Picking out these
two chunks of the DOM tree is not a simple thing to specify. We would prefer
a neater solution.
Finally, Cheung’s data structure has a severe limitation in the construction of
contexts. It is not possible to place a context hole at any location in our data
structure, we may only have holes to the right of a Node or below a Node. To

15

clarify this limitation let us consider some examples.

Context Hole Limitations:

The context definition allows us to construct (1): a[∅] | b[∅] |
and (2): a[∅] | b[] | c[∅], see figure 7, where the context hole occurs at the
rightmost sibling or first child respectively.

Figure 7: We can construct these

However we cannot construct (3): a[∅] | | c[∅] or (4): | b[∅] | c[∅], see figure
8, where the context hole appears in a more arbitrary position of the tree.

Figure 8: We can’t construct these

The work of Kearns [7] shows a possible solution to this limitation by introducing
a left adjunct c | a[φ] of the sibling context definition. This allows the placement
of a context hole at any point in the tree. However, there are a number of
complex subtleties that arise from this seemingly trivial extension of the data
structure. Rather than grappling with this increased complexity when making
use of contexts, we instead choose to maintain our aim of finding a simpler data
structure and turn our attention to higher level data structures where these
subtleties no longer concern us.

16

1.5.2 Pure Trees

An initial suggestion of a way to move to a higher level model was to consider
using an ordinary tree structure similar to that found in [3], the idea being
that keeping the data structure as simple and general as possible would also
make the specification simple and general, and therefore more portable across
different platforms. The suggested structure was defined intuitively as follows:

Tree T ::= ∅ empty/null tree

ntag[T] tree node

T | T parallel tree composition

Tree Context C ::= context hole

ntag[C] subtree context

T | C right context

C | T left context

Here ∅ represents the null tree, n represents the Node identifier and ‘tag’ is the
flat representation of the data contained within the Node. The list of children
is an ordered and indexed list and the context definition allows a list of trees
containing a context hole at any location in the list.

This representation, however, also turned out to not represent all of the fea-
tures of the DOM data structure. Specifically, it is still not possible for us to
represent the top level of the DOM data structure, namely that DOM stores
an unordered set of trees for different documents. We can extend the definition
of our Tree with some commutative parallel composition operator for trees, but
this would have to be restricted to use at the top level only. It would be very
cumbersome indeed to have to carry around some notion of the depth of the tree
we are working at and we would loose any hope of keeping our reasoning local to
the subtree we are operating over, as we would always have to be counting our
depth from the root of the tree. Clearly, we need to search for a more specific
data structure than can be given by a single data data type, and its context
analogue, alone.

17

1.5.3 Final Structure

Finally, we turned our attention to a multi-typed data structure. Starting from
the work of Smith [8] we constructed a Grove, Tree and Forest data structure.
Smith proposed that instead of trying to use a single data type that we instead
use three. Namely that we have a Grove of trees at the top level of the DOM
data structure, and a hierarchy of Trees containing Forests of Trees beneath this.
After many discussions together, we arrived at the following data structure

Grove G ::= ∅ empty grove (empty set)

G⊕G grove composition

T tree

Tree T ::= tagid[F]fid tree node - no empty tree

Forest F ::= ∅ empty forest (empty list)

F × F forest composition

T tree

Grove Context CG ::= context hole

CG⊕G sibling context

CT tree context

Tree Context CT ::= tagid[CF]fid subtree context

Forest Context CF ::= context hole

CF × F left context

F × CF right context

CT tree context

As before ‘tag’ is the flat representation of the data contained within the Node,
but we now have an ‘id’ representing the Node identifier and ‘fid’ representing
the identifier for the forest of children. We choose to identify the forest of chil-
dren within a Node explicitly as this is closer to the current DOM specification.
The ⊕ operation used above is addition over sets and hence is both associative
and commutative. The × operation used above is list concatenation and hence
is associative, but is not commutative. Both treat ∅ as their identity element.
This data structure gives us the ability to place our empty context anywhere
in the tree without the need for complex context predicates and is therefore a
significant improvement upon the previous attempts.
The biggest change made to [8] was to overload the ∅ element. It now represents

18

both the empty tree and the empty list. The reason for this significant change
is to remove the empty tree element. An empty tree is a difficult to describe
object. Whist it is commonly understood what the empty list ,[], represents,
what is meant by the empty tree? It is possible to think of this as a pointer
to some null object that can occurs whenever an empty tree is referred to, but
this seems a bit contrived. It is also possible to think of a reference to an empty
tree as a dangling pointer, that is a pointer that points nowhere. However this
notion will be confusing when we begin to apply context logic to our data struc-
ture, as a notion of dangling pointers already exists here. Since both empty sets
and empty lists are well understood and commonplace concepts which are easy
to explain it seems natural to use them instead.
In practice it is always obvious from our program context wether the empty set
or empty list is being referred to and the notational benefits from overloading
are substantial as we shall see later.

1.5.4 Context Application

The use of Contexts above leads us to define a context application function
ap(context, data) which will define how the different contexts are applied to the
different data types. However to do this we in fact need to define a number of
sub-functions for each type of context application.

19

apg×g(, G) → G

apg×g(CG⊕G
′, G) → apg×g(CG,G)⊕G

′

apg×t(, T) → T

apg×t(CG⊕G,T) → apg×t(CG, T)⊕G

apg×t(CT, T) → apt×t(CT, T)

apg×f (CG⊕G,F) → apg×f (CG,F)⊕G

apg×f (CT, F) → apt×f (CT, F)

apf×t(, T) → T

apf×t(CF × F, T) → apf×t(CF, T)× F

apf×t(F × CF, T) → F × apf×t(CF, T)

apf×t(CT, T) → apt×t(CT, T)

apf×f (, F) → F

apf×f (CF × F
′, F) → apf×f (CF,F)× F

′

apf×f (F
′ × CF,F) → F ′ × apf×f (CF,F)

apf×f (CT, F) → apt×f (CT, F)

apt×t(tagid[CF]fid, T) → tagid[apf×t(CF, T)]fid

apt×f (tagid[CF]fid, F) → tagid[apf×f (CF,F)]fid

Any combinations of contexts and data that have not been expressed above are
not legal over our defined data structure. It does not make sense to apply grove
data to a forest context, for example, so we shall not define such applications.
For the rest of the paper we shall refer only to one application function, ap(), but
it will always be obvious, in context, which of the specific application functions
is being applied.

1.6 Goals of the Project

The rest of this report follows our work as we build towards a complete specifi-
cation of Minimal DOM.
In Section 2 we will use the current DOM Specification to produce Operational
Semantics for each of the commands of Minimal DOM. Whilst these give a much
more formal specification of DOM they are not compositional enough for our

20

needs and are also very hard to read. They do however provide us with a useful
stepping stone in our path to an understandable and complete specification for
Minimal DOM.
Section 3 of this report details the Logic that we will be using to describe the
pre- and post-conditions of our commands. We give a full definition of the logic
along with several examples of how the logic can be used.
In Section 4 we introduce Hoare Reasoning which allows us to use context logic
in a powerful way. By specifying the Local Hoare Triples of our minimal com-
mands we can create ’building blocks’ of logic which can go on to provide the
pre- and post-conditions for bigger and more complicated programs. We give
Axioms for each of our commands and discuss locality in more detail.
Section 5 concerns the formal derivations of the weakest pre-conditions for each
of our minimal commands. The proofs for each command are given in full along
with a discussions of the salient points of our append example.
In section 6 of the report we use our fully specified set of minimal commands to
show how we can produce the complete specification for the structural parts of
DOM Core Level 1.
Section 7 shows how we can in fact go further than this and fully specify a much
larger set of commands.
Finally, section 8 provides a detailed analysis of the project and suggests possi-
ble paths that might be followed for future research.

The successful outcome of the end goal of a complete specification for DOM
will have several benefits.
Firstly, a formal, unambiguous specification will allow verification of DOM im-
plementations which will be a desirable outcome for the DOM community.
Secondly, the W3C community will have a more rigorous specification which
should make the use and future extensions of DOM a much easier task than is
currently the case.
Finally, by satisfying the demands of both of these communities we will have
demonstrated that Context Logic can be used in real-world situations, not only
on toy examples.

21

2 Operational Semantics

Now that we have provided a formal definition of the data structure underlying
DOM Core level 1, we wish to turn our attention to the identified minimal subset
of commands. The first step here, in providing a more formal specification, is
to define the Operational Semantics of our commands. The behavior of the
commands was interpreted from the current English specification and converted
into Operational Semantics following standard notation similar to that set out
in [15]. For those of you not familiar with Operational Semantics we shall first
consider a simple example that illustrates the intended meaning of this notation
and then give a detailed explanation of the semantics for the append command.

2.1 Simple Operational Semantics Example

Let us consider the simple command add(x, n) operating over a program state s
capable of storing only integer variables. The command simply adds the integer
value n to the value stored in variable x. The Operational Semantics for this
would look like,

s(x) = m
add(x, n), s⇒ s[x 7→ [[m+ n]]]

The top line of the rule defines any precondition that must be true for the se-
mantics to hold. It is possible for a command to behave differently depending
upon its input, this would be represented by the command having multiple rules
associated with it, each with a different precondition. If none of the rules for a
command have a pre-condition that holds for a given input, then the command
will fault on that input.
Everything below the line describes the postcondition of the command. This
will be of the form (command, state ⇒ newstate) where state tells us what
the program state looks like before the command is run and newstate tells us
what the program state looks like after the command has been successfully run.
So in the above rule for the add command, the pre-condition tells us that the
variable x must exist in the program state s before the command is run. More-
over it tells us that the value stored in x in state s is some integer m.
So the command add(x, n) carried out in this state s will evaluate to ⇒ the
new state s[x 7→ [[m+ n]]]
where,
[[m+ n]] evaluates the value of the arithmetic expression m+ n, call this a,
and s[x 7→ a] tells us that the value of variable x in the state s is now a.

Note that if the state s were able to contain other types of variables other
than just Integers, then we would need to quantify in the precondition that m is
indeed an Integer. Any other case would simply result in a program fault. For
the duration of this paper we shall be using typed variables, which implicitly
verify that their value is of the same data type as themselves.

22

2.2 The Program State

Our first step in producing the Operational semantics for our commands is to
define the program state that the commands will operate over. We will be using
the tuple (s,G), where we have a Grove (unordered set of trees) G, which is
just as defined in the previous section and also a stack s in which we will store
our variables. It is important to note that we can only store pointers to Grove
objects in the stack, and never the objects themselves. DOM does not allow
the storage of Nodes or NodeLists within the stack and in order to keep our
specification as close to DOM as possible we must also maintain this restriction.

So, we define the stack that the semantics will operate over as a partial function
from variables to values:

s : (tag→ tag)× (id→ id)× (n→ n)× (bool→ bool)

where tag is a String, id is the identifier of an object in the grove, n is a natural
number, and bool ∈ {true, false}.

2.3 Rules for Append

The key to understanding the operational semantics in this section is to under-
stand the ap(context, data) function. This function is merely a formal way
of representing context application. it tells us that the data is placed inside the
context in place of the context’s hole element ‘ ’. So if we have a grove context

CG ≡ tagparent []fid

and we apply it to some data, lets say a node

D ≡ tag′child [∅]fid′

then this node would be put into the context in place of the ‘ ’ element to give
us the resulting tree

ap(CG,D) ≡ tagparent [tag
′
child [∅]fid′]fid

This can be viewed as shown in figure 9.

Let us now consider the append command in detail. As we discussed before, the
append command will only execute correctly so long as the child to be moved
is not above the parent node in the tree. However this still leaves four cases of
where the child can be located in the tree, each of which has a separate rule
associated with it. Figure 10 shows these four cases.

23

Figure 9: Context Application

Figure 10: The cases of Append

The first case to consider is where the child and parent occur in completely
separate DOM trees, that is that their trees are connected only at the top level.
The rule for this case is as follows,

G ≡ ap(CG, (ap(CG′, tags(parent)[F]fid)⊕ ap(CG
′′, tag′s(newChild)[F

′]fid′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F × tag
′
s(newChild)[F

′]fid′]fid)⊕ ap(CG′′, ∅)))

append(parent, newChild), s, G⇒ s, G′

The bottom of this rule tells us that the only thing the append command affects
is the data structure. Before the command is run we have the grove G, and after
it is run we have the grove G′. Above the line we have the definitions of the
forms that G and G′ must take in order for this rule to hold.
In G the parent and child must be in different groves which are joined by the
⊕ operator, so these trees must be joined at the top level. The use of contexts
allows these groves to be of any arbitrary size or shape, the only condition is
that parent and child must not be in the same tree. Since ⊕ is a commutative
operator it does not matter which side of the parent the child occurs on as there
is no ordering in the top level set of trees.
In the resulting tree G′ the child has moved to be at the end of the list of parent’s

24

children. Note also that the child has been removed entirely from the grove it
was originally a part of and has been replaced by the ∅ element. The overloading
of notation here saves us from having separate cases for when the child comes
from the top level and when it comes from deeper in a tree as ∅ will be typecast
to whichever empty element it needs to be. Note also that no other parts of the
overall context grove are affected by the command, it is said to be acting locally.

The second case to consider is where the child occurs somewhere to the right of
the parent. In this case we get the rule,

G ≡ ap(CG, (ap(CG′, tags(parent)[F]fid)× ap(CG
′′, tag′s(newChild)[F

′]fid′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F × tag
′
s(newChild)[F

′]fid′]fid)× ap(CG′′, ∅)))

append(parent, newChild), s, G⇒ s, G′

As before only the data structure is affected by the command. Again we have
that parent and child must be in separate trees before the command is called,
but these trees now diverge somewhere within a single DOM tree and not at
the top level. Since the × operator is not commutative it is important that the
child is on the right of the parent in this case. Also note that the order of the
rest of the tree is still preserved after the command has executed. By symmetry
the case where the child is on the left works in exactly the same way, so we will
not cover it here.

All that we are left to explain is the case where the child occurs in the tree
somewhere beneath the parent. The rule in this case is,

G ≡ ap(CG, tags(parent)[ap(CF, tag
′
s(newChild)[F

′]fid′)]fid)

G′ ≡ ap(CG, tags(parent)[ap(CF, ∅)× tag
′
s(newChild)[F

′]fid′]fid)

append(parent, newChild), s, G⇒ s, G′

The layout of the above rule is somewhat different to that of the other rules
for append. We no longer have the composition of two trees, instead we have
that the child lies somewhere in the subtree beneath the parent node. So the
parent node contains a forest context which contains the child, rather than some
arbitrary forest. As with all the append rules, once the command has executed
the child has been placed at the end of the list of children of parent, which in
this case means it is appended onto the end of a forest context.

Since we do not provide semantics for the case where the child occurs as an
ancestor of the parent, this program state would result in an error if it was
encountered. Whilst we could explicitly create separate error cases for each for
the different error states this adds little to the semantics and is a trivial exten-
sion. We instead choose to assume that if a program state is encountered that
we do not have operational semantics for this results in a DOMException being
returned and the program would halt.

25

2.4 The Commands

Listed below are the full operational semantics for Minimal DOM as identified
above. We have included all four cases of append for reference and we give a
brief explanation of each command.

createNode

When we create a new Node in DOM it is created at the top, grove level, of the
DOM tree. So our new Node, which has fresh id and fid to preserve uniqueness,
is joined to the existing (possibly empty) grove by a ⊕ operation. Note that we
also store a pointer to the Node in the variable node.

G′ ≡ G⊕ s(tag)id[∅]fid (id,fid fresh)

node = createNode(tag), s, G⇒ s[node 7→ id], G′

getNodeName

The get methods of DOM do not change the data structure of the DOM tree,
but simply return a value from the tree. In this case we require that some Node
with identifier id exists in the grove. We return the tag of this Node to the tag′

variable.

G ≡ ap(CG, tags(id)[F]fid)
tag′ = getNodeName(id), s, G⇒ s[tag′ 7→ tag], G

getChildNodes

Much the same as getNodeName, we require that a Node with the correct iden-
tifier does exist in the graph and then return its forest identifier fid in the forest
variable.

G ≡ ap(CG, tags(parent)[F]fid)
forest = getChildNodes(parent), s, G⇒ s[forest 7→ fid], G

getParentNode

The last of the get methods for Nodes, once again we require existence of the
correct Node, and assign the return value to the parent’ variable.

G ≡ ap(CG, tagparent[F1 × tag
′
s(child)[F]fid′ × F2]fid)

parent′ = getParentNode(child), s, G⇒ s[parent′ 7→ parent], G

26

insertBefore

This move command is very similar to the append command. The only difference
is that the child is inserted before a specific element of the parents list of children,
rather than at the end of the list. Just as for the append command, there are
four cases for where the parent and child are in relation to one another in the
DOM tree. The first case has the parent and child in separate trees in the grove,
the second and third cases have the child to the right, or left, of the parent and
in the last case the child is in the subtree beneath the parent. The structure of
these rules is very similar to those of append, only the last case is significantly
different. The condition,

(F1 × tag
′
s(ref)[F]fid′ × F2) = ap(CF, tag

′′
s(newChild)[F

′]fid′′)

simply specifies that the child node is somewhere in the subtree beneath the
parent node before the command is executed. It could be in any part of F1,
F2 or F

′, but by using the above condition we can avoid writing three more
rules for this command. Similarly we use this notation again for the program
state after the execution of the command, where the child node has now been
removed from its original place in the tree.

G ≡ ap(CG, (ap(CG′, tags(parent)[F1 × tag
′
s(ref)[F]fid′ × F2]fid)⊕ ap(CG

′′, tag′′s(newChild)[F
′]fid′′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F1 × tag
′′
s(newChild)[F

′]fid′′ × tag′s(ref)[F]fid′ × F2]fid)⊕ ap(CG
′′, ∅)))

insertBefore(parent, newChild, ref), s, G⇒ s, G′

G ≡ ap(CG, (ap(CG′, tags(parent)[F1 × tag
′
s(ref)[F]fid′ × F2]fid)× ap(CG

′′, tag′′s(newChild)[F
′]fid′′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F1 × tag
′′
s(newChild)[F

′]fid′′ × tag′s(ref)[F]fid′ × F2]fid)× ap(CG
′′, ∅)))

insertBefore(parent, newChild, ref), s, G⇒ s, G′

G ≡ ap(CG, (ap(CG′′, tag′′s(newChild)[F
′]fid′′)× ap(CG′, tags(parent)[F1 × tag

′
s(ref)[F]fid′ × F2]fid)))

G′ ≡ ap(CG, (ap(CG′′, ∅)× ap(CG′, tags(parent)[F1 × tag
′′
s(newChild)[F

′]fid′′ × tag′s(ref)[F]fid′ × F2]fid)))

insertBefore(parent, newChild, ref), s, G⇒ s, G′

G ≡ ap(CG, tags(parent)[F1 × tag
′
ref[F]fid′ xF2]fid)

(F1 × tag′s(ref)[F]fid′ × F2) = ap(CF, tag
′′
s(newChild)[F

′]fid′′)

G′ ≡ ap(CG, tags(parent)[F
′
1 × tag

′′
s(newChild)[F

′]fid′′ × tag′s(ref)[F
′′]fid′ × F ′2]fid)

(F ′1 × tag
′
ref[F

′′]fid′ × F ′2) = ap(CF, ∅)
insertBefore(parent, newChild, ref), s, G⇒ s, G′

removeChild

DOM never explicitly deletes Nodes form a tree, but assumes that garbage
collection will remove all unused Nodes in good time. The only method it does

27

provide is the removeChild method which allows us to take a single Node out
of any part of a DOM tree and move it to the grove level. The precondition
here is merely that we have such a child, and the post condition simply states
that we indeed pull the child out of the tree, along with its subtree, and add it
to the grove level. We also store a pointer to the removed Node in the variable
node for later use if we wish to refer to this Node again. At this time we are
not explicitly modelling garbage collection, so if we do not want to use a Node
again we will simply discard the variable that points to it.

G ≡ ap(CG, tags(parent)[F1 × tag
′
s(child)[F]fid′ × F2]fid)

G′ ≡ ap(CG, tags(parent)[F1 × F2]fid)⊕ tag
′
s(child)[F]fid′

node = removeChild(parent, child), s, G⇒ s[node 7→ s(child)], G′

append

We have already discussed this command in detail at the beginning of this
section. Below we have all four rules for this command given together.

G ≡ ap(CG, (ap(CG′, tags(parent)[F]fid)⊕ ap(CG
′′, tag′s(newChild)[F

′]fid′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F × tag
′
s(newChild)[F

′]fid′]fid)⊕ ap(CG′′, ∅)))

append(parent, newChild), s, G⇒ s, G′

G ≡ ap(CG, (ap(CG′, tags(parent)[F]fid)× ap(CG
′′, tag′s(newChild)[F

′]fid′)))

G′ ≡ ap(CG, (ap(CG′, tags(parent)[F × tag
′
s(newChild)[F

′]fid′]fid)× ap(CG′′, ∅)))

append(parent, newChild), s, G⇒ s, G′

G ≡ ap(CG, (ap(CG′′, tag′s(newChild)[F
′]fid′)× ap(CG′, tags(parent)[F]fid)))

G′ ≡ ap(CG, (ap(CG′′, ∅)× ap(CG′, tags(parent)[F × tag
′
s(newChild)[F

′]fid′]fid)))

append(parent, newChild), s, G⇒ s, G′

G ≡ ap(CG, tags(parent)[ap(CF, tag
′
s(newChild)[F

′]fid′)]fid)

G′ ≡ ap(CG, tags(parent)[ap(CF, ∅)× tag
′
s(newChild)[F

′]fid′]fid)

append(parent, newChild), s, G⇒ s, G′

getLength

The getLength command returns the length of a forest of children in variable
length. This get method makes no modification to the grove, but does require
that a forest with identifier fid exists somewhere in the DOM tree. There are 2
cases for this command, one where the list is non-empty and one where the list
is empty. Although ‘...’ is not a formally defined concept, it is sufficient for our

28

purposes here. If the Operational Semantics were to be our final product this
concept would need to be more rigourously defined.

G ≡ ap(CG, tagid[T1 × ...× Tn]s(fid))
length = getLength(fid), s, G⇒ s[length 7→ n], G

G ≡ ap(CG, tagid[∅]s(fid))
length = getLength(fid), s, G⇒ s[length 7→ 0], G

getItem

The last command we consider, getItem, is similar to the other get methods.
It does not modify the grove, it returns to variable node and it requires the
existence of the Node it is asked for. Note that we also require the integer input
to be within the list bounds.

G ≡ ap(CG, tagid[T0 × ...× Tn]s(fid))
Ts(int) = tag

′
id′ [F]fid′ (0 ≤ s(int) ≤ n)

node = getItem(fid, int), s, G⇒ s[node 7→ id′], G

2.5 Evaluation of Operational Semantics

Now that we have given the operational semantics for Minimal DOM we are
part of the way towards our final goal. Hopefully you can now see that the
Operational semantics are not that complicated to understand and do indeed
give a much tighter specification of Minimal DOM than the existing specifi-
cation. However, despite the fact that we have added accuracy and precision
using this form of specification, there is nothing new here. All of this behaviour
could be retrieved from the existing specification, though it might take a bit
more decoding and intuition than we would prefer. We would have to write
entirely new Operational semantics for new commands as this style of specifica-
tion does not lend itself to easy composition. We turn our attention to logical
languages, rather than this very computation driven approach so that we may
produce an easily extendable specification that we could later hope to expand
to cover the whole of DOM. The use of logic will also lead to more succinct pre-
and post-conditions for our commands without the need for multiple rules for
each of the more complicated move commands. We appreciate that the oper-
ational semantics are not easy for the untrained eye to read and this provides
another motivation for us to move onto the use of logical languages to provide
a specification for Minimal DOM.

29

3 The Logic

The Operational Semantics defined above, whilst giving us a precise definition
of each command, are not flexible enough to provide us with a method of DOM
implementation verification. Since we have to define new Operational semantics
for every new command we add, and there is no compositional method for doing
this, we choose to move on to the use of logic to express the program state and
its properties. In order to provide a strong formalisation of our model we need
to be able to express formulae describing the properties of the Groves, Trees
and Forests defined in our data structure.

3.1 Formulae

We will introduce the formulae for our logic in two stages. First, we shall be
looking at the classical logic formulae which operate over our data structures.
Secondly, we will be describing the formulae that give the structure of our pro-
gram states and the contexts that we shall be using. As well as defining these
formulae will shall also be giving their satisfaction semantics, ie. what it means
for a given data structure to satisfy a logical formula of each type. Finally, we
shall construct a number of examples from our fully defined logic, concentrating
on the formalisms that we shall be utilising in the remaining parts of this report.

In our Logic we define the following types of formulae,

Grove Data PG

Tree Data PT

Forest Data PF

Grove Contexts KG

Tree Contexts KT

Forest Contexts KF

The data formulae describe the various parts of a DOM grove, whilst the context
formulae describe contexts over the data structure that have a single hole which
we can put data into.

3.2 Classical Formulae

The first set of formulae we shall look at are the classical logic formulae. We
wish to be able to use standard results of first order logic, so we must be able to
define this logic over our data and context structures. We will need to define the
classical connectives over each formula type separately due to the multi-typed
Grove, Tree and Forest data structure we are using. Note that we need only
define the implies and false relations as the other first order logical relations,
true, ∧, ∨, ¬ and ⇔, can be derived from these. Due to the multi-typed data

30

structure we are using, we will need a different false element for each of our
formulae types. Whilst we list all six of these below, in practice we overload a
single false element to represent false for all of the data formula types and a
single False element to represent false for all of the context formula types, so
we only refer to these overloaded elements in our satisfactions. From these we
are able to define true for data and True for contexts in our logic.

Notation: We attach a type to each of our formula definitions so that it is
always clear what kind of formula we are dealing with. This will be very impor-
tant when we are dealing with context formula which can have different types
depending on how the contexts are being used and what we are putting into our
contexts. The formula definition form : T states that the formula form is of
type T.

Our logic provides the following classical formulae:

PG1 ⇒ PG2 : PG KG1 ⇒ KG2 : KG
PT1 ⇒ PT2 : PT KT1 ⇒ KT2 : KT
PF1 ⇒ PF2 : PF KF1 ⇒ KF2 : KF

falsePG : PG FalseKG : KG
falsePT : PT FalseKT : KT
falsePF : PF FalseKF : KF

Notation: For the rest of this section we will be giving the forcing semantics
for each of the different cases of formula satisfaction. To save space and needless
repetition we choose to give the satisfactions in a parametric fashion. We will
use variables A and B to represent any of G, the Grove formula, T , the Tree
formula, or F , the Forest formula when the definitions are equivalent for each of
the formula types. Note that KA, KB are the context formula versions of these
variables. The forcing semantics are then given using 2 satisfaction relations.
The judgement e, s, a |=DA PA states the the data formula PA holds for a given
environment e, stack s and data a of type A, whilst judgement e, s, ca |=CA KA
states that the context formula KA holds for the environment e, the stack s
and Context ca of type CA.

Notation: The stack s is just as defined for the Operational semantics above
and the environment e is a partial function over the DOM grove which sends
Grove, Tree and Forest variables to their values.

e : (G→ G)× (T→ T)× (F→ F)× (CG→ CG)× (CT→ CT)× (CF→ CF)

31

So we have the following obvious satisfactions for our classical formulae:

e, s, a |=DA PA1 ⇒ PA2 ⇔ e, s, a |=DA PA1 implies e, s, a |=DA PA2
e, s, ca |=CA KA1 ⇒ KA2 ⇔ e, s, ca |=CA KA1 implies e, s, ca |=CA KA2

e, s, a |=DA false never

e, s, ca |=CA False never

We also want to be able to talk about the equality of variable values, so we
need to define the ‘=’ operator which returns true if and only if the values
on both side of the equality are the same. This is the only expression we are
interested in, but we must be sure to define this over all four of our variable
types: strings, pointers, integers and boolean values. We therefore provide the
following expression formulae:

tag = tag′ : PG id = id′ : PG
tag = tag′ : PT id = id′ : PT
tag = tag′ : PF id = id′ : PF

n = n′ : PG bool = bool′ : PG
n = n′ : PT bool = bool′ : PT
n = n′ : PF bool = bool′ : PF

We are only interested in comparing data, not contexts, so it is therefore not
necessary for us to define these expressions over context structures. Below we
give the satisfactions for data formulae using the same parametric notation as
set out above:

e, s, a |=DA tag = tag
′ ⇔ s(tag) = s(tag′)

e, s, a |=DA id = id
′ ⇔ s(id) = s(id′)

e, s, a |=DA n = n
′ ⇔ s(n) = s(n′)

e, s, a |=DA bool = bool
′ ⇔ s(bool) = s(bool′)

In order to be able to refer to the actual DOM grove, we need to define variables
in our environment e. The reason for this is that DOM does not allow the storage
of groves, trees or forests on the stack. We therefore need to use an environment
whenever we wish to refer to an actual instance of a node in the grove. So we
provide the following formulae for environments:

G : PG CG : KG
T : PT CT : KT
F : PF CF : KF

We give the satisfactions of these formulae using our parametric notation again:

e, s, a |=DA A ⇔ a ≡ e(A)

e, s, ca |=CA CA ⇔ ca ≡ e(CA)

32

Finally, for the classical formulae, we wish to define quantifiers for our variables.
Note that we need only formally define ∃ as we can derive ∀ from existence since
∀x.P = ¬∃x.(¬P). As before we must take care to define the quantifiers over all
of our variable types, both for stack variables and for environment variables. Due
to the large number of possible formula types we can construct using quantifiers,
we shall make use of our parametric notation to define which formulae we can
construct:

∃ tag.PA : PA ∃ tag.KA : KA
∃ id.PA : PA ∃ id.KA : KA
∃n.PA : PA ∃n.KA : KA

∃bool.PA : PA ∃bool.KA : KA

∃G.PA : PA ∃G.KA : KA
∃T.PA : PA ∃T.KA : KA
∃F.PA : PA ∃F.KA : KA

∃CG.PA : PA ∃CG.KA : KA
∃CT.PA : PA ∃CT.KA : KA
∃CF.PA : PA ∃CF.KA : KA

Sticking to our parametric notation we can show that we have the expected
satisfactions:

e, s, a |=DA ∃ tag.PA ⇔ ∃ tag.(e, s[tag 7→ tag], a |=DA PA)

e, s, a |=DA ∃ id.PA ⇔ ∃ id.(e, s[id 7→ id], a |=DA PA)

e, s, a |=DA ∃n.PA ⇔ ∃ n.(e, s[n 7→ n], a |=DA PA)

e, s, a |=DA ∃bool.PA ⇔ ∃ bool.(e, s[bool 7→ bool], a |=DA PA)

e, s, ca |=CA ∃ tag.KA ⇔ ∃ tag.(e, s[tag 7→ tag], ca |=CA KA)

e, s, ca |=CA ∃ id.KA ⇔ ∃ id.(e, s[id 7→ id], ca |=CA KA)

e, s, ca |=CA ∃n.KA ⇔ ∃ n.(e, s[n 7→ n], ca |=CA KA)

e, s, ca |=CA ∃bool.KA ⇔ ∃ bool.(e, s[bool 7→ bool], ca |=CA KA)

e, s, a |=DA ∃G.PA ⇔ ∃G.(e[G 7→ G], s, a |=DA PA)

e, s, a |=DA ∃T.PA ⇔ ∃T.(e[T 7→ T], s, a |=DA PA)

e, s, a |=DA ∃F.PA ⇔ ∃F.(e[F 7→ F], s, a |=DA PA)

e, s, a |=DA ∃CG.PA ⇔ ∃CG.(e[CG 7→ CG], s, a |=DA PA)

e, s, a |=DA ∃CT.PA ⇔ ∃CT.(e[CT 7→ CT], s, a |=DA PA)

e, s, a |=DA ∃CF.PA ⇔ ∃CF.(e[CF 7→ CF], s, a |=DA PA)

33

e, s, ca |=CA ∃G.KA ⇔ ∃G.(e[G 7→ G], s, ca |=CA KA)

e, s, ca |=CA ∃T.KA ⇔ ∃T.(e[T 7→ T], s, ca |=CA KA)

e, s, ca |=CA ∃F.KA ⇔ ∃F.(e[F 7→ F], s, ca |=CA KA)

e, s, ca |=CA ∃CG.KA ⇔ ∃CG.(e[CG 7→ CG], s, ca |=CA KA)

e, s, ca |=CA ∃CT.KA ⇔ ∃CT.(e[CT 7→ CT], s, ca |=CA KA)

e, s, ca |=CA ∃CF.KA ⇔ ∃CF.(e[CF 7→ CF], s, ca |=CA KA)

So far we have not defined anything that is new or surprising. This style of logic
is well defined and has been used many times before. However, what we go on
to define next is new and specific to our needs.

3.3 Structural Formulae

We turn our attention to the structure of the data and contexts provided by our
Grove, Tree and Forest approach to viewing the DOM data structure. First we
need to be able to describe the layout of any grove that we can construct from
our data structure definition. We give the following formulae:

∅ : PG : KG
PG1 ⊕ PG2 : PG KG⊕ PG : KG

PT : PG KT : KG

tagid[PF]fid : PT tagid[KF]fid : KT

PF ::= ∅ : PF : KF
PF1 × PF2 : PF KF × PF : KF

PT : PF PF ×KF : KF
KT : KF

We have an exact correspondence here between the above formulae and the data
structure definitions given in section 1.5.3. For example PG1 ⊕ PG2 describes
a grove which we can split using the ⊕ operator to give a grove that satisfies
PG1 and a grove which satisfies PG2. Similarly tagid[PF]fid describes a node
with a tag, identifier and forest identifier as given and with a forest of children
which satisfies PF .

34

We provide the satisfactions of these formulae in the following fashion:

e, s,G |=DA ∅ ⇔ G ≡ ∅

e, s,G |=DA PG1 ⊕ PG2 ⇔ ∃G1, G2.(e, s,G1 |=DA PG1 and e, s,G2 |=DA PG2 and G ≡ G1 ⊕G2)

e, s,G |=DA PT ⇔ ∃T.(e, s, T |=DA PT and G ≡ T)

e, s, T |=DA tagid[PF]fid ⇔ ∃F.(e, s, F |=DA PF and T ≡ s(tag)s(id)[F]s(fid))

e, s, F |=DA ∅ ⇔ F ≡ ∅

e, s, F |=DA PF1 × PF2 ⇔ ∃F1, F2.(e, s, F1 |=DA PF1 and e, s, F2 |=DA PF2 and F ≡ F1 × F2)

e, s, F |=DA PT ⇔ ∃T.(e, s, T |=DA PT and F ≡ T)

e, s, CG |=CA ⇔ CG ≡

e, s, CG |=CA KG⊕ PG ⇔ ∃CG′, G.(e, s, CG′ |=CA KG and e, s,G |=DA PG and CG ≡ CG
′ ⊕G)

e, s, CG |=CA KT ⇔ ∃CT.(e, s, CT |=CA KT and CG ≡ CT)

e, s, CT |=CA tagid[KF]fid ⇔ ∃CF.(e, s, CF |=CA KF and CT ≡ s(tag)s(id)[CF]s(fid))

e, s, CF |=CA ⇔ CF ≡

e, s, CF |=CA KF × PF ⇔ ∃CF ′, F.(e, s, CF ′ |=CA KF and e, s, F |=DA PF and CF ≡ CF
′ × F)

e, s, CF |=CA PF ×KF ⇔ ∃F,CF ′.(e, s, F |=DA PF and e, s, CF
′ |=CA KF and CF ≡ F × CF

′)

e, s, CF |=CA KT ⇔ ∃CT.(e, s, CT |=CA KT and CF ≡ CT)

What remains is for us to logically define the use of contexts. We require
formulae which specify how we can apply the different contexts to the different
data and context types. There are 3 types of context formulae. The simplest
of these is context application KA(PB), which describes a grove which we can
split into a context satisfying KA and some data satisfying PB. This results
in a completed context of type PA. We have the formulae definitions:

KG(PG) : PG KT (PT) : PT KF (PT) : PF
KG(PT) : PG KT (PF) : PT KF (KF) : PF
KG(PF) : PG

Notice that we do not allow the insertion of a grove into a tree or forest context.
This is simply because these cases cannot occur. Recall that the top level
of DOM is an unordered set of DOM trees and that all nodes beneath this
contain forests that are ordered lists of trees. It does not make sense to put
an unordered set of trees into an ordered list, so we do not allow this context
construction. In effect, it is this omission which allows us to reason over the

35

DOM tree structure without having to carry around a notion of tree depth. Since
the context application for each context type follows the same simple structure
we once again make use of our parametric notation to give the satisfaction,

e, s, a |=DA KA(PB) ⇔ ∃ca ∈ CA, b ∈ PB.(ap(ca, b) = a and e, s, ca |=CA KA and e, s, a |=DA PB)

The next type of context formulae are the . or ‘right triangle’ formulae.
PB . PA describes a context where, whenever we put data satisfying PB into
the context, the resulting completed context satisfies PA. This is context logic’s
adjoint to separation logic’s −∗ operator [2]. These formulae are of type KA
and we give the following formulae definitions:

PG1 . PG2 : KG PT1 . PT2 : KT PT . PF : KF
PT . PG : KG PF . PT : KT PF1 . PF2 : KF
PF . PG : KG

As in the previous case we do not allow the construction of any formulae which
would describe a tree or forest context where a grove can be place inside it. We
can give the satisfaction for formulae of this kind thusly,

e, s, ca |=CA PB . PA ⇔ ∀b ∈ PB.(e, s, b |=DA PB implies e, s, ap(ca, b) |=DA PA)

The final type of context formulae are the / or ‘left triangle’ formulae.
KA / PA describes a piece of data where, whenever we warp a context satisfying
KA around the data, we get a completed context that satisfies PA. These
formulae can be of any type PB except that we must remember that we cannot
put a grove into a tree or forest context. Keeping this in mind we can define
the following formulae:

KG / PG : PG KT / PT : PT KF / PF : PT
KG / PG : PT KT / PT : PF KF / PF : PF
KG / PG : PF

We give the satisfaction for these formulae as,

e, s, b |=DA KA / PA ⇔ ∀ca ∈ CA.(e, s, ca |=CA KA implies e, s, ap(ca, b) |=DA PA)

We now have a logic that is just as precise as our operational semantics, which
is expressible enough to describe our new data structure and, as we will show in
the next sections, is capable of being used in a compositional manor that allows
us to very easily build up a complete specification for DOM Core Level 1 from
Minimal DOM.

36

3.4 Logic Examples

Before we get on to using this logic, let us first consider some examples to
illustrate how we will be using this logic in the following sections of this report.
We will start with some very simple examples to show the basic ways in which
we use this logic and we shall go on to give a few, more complex, examples of
formula styles we will be using throughout the remaining sections of this report.

Example 1 - Small Tree

To start we will consider the very simple tree, consisting of just 3 nodes, as
given in figure 11.

Figure 11: Small Tree

We would represent figure 11 by the formula:

ai1[bi2[∅]f2 × ci3[∅]f3]f1

This is exactly the same style as we would get using our data structure defini-
tions, but we now have a logical formula expressing the same information. Only
a grove with the exact structure given in figure 11 can satisfy this formula.

Example 2 - Top Node

We now move onto a more interesting example, where instead of describing
exactly what our tree looks like we give a property we wish our tree to possess.
Referring to Figure 11 again we now wish to give a formula that specifies that
our tree has Node i1 at its top level. To do this we make use of the fact that
the expression ‘true’ is always satisfied. So we express this property as,

ai1[true]f1

37

Any grove which has the Node ai1[F]f1 at its top level can satisfy this formula,
figure 11 is just one possible case. The use of true means that the forest F can
be anything, from the empty forest to a wide and deep subtree.

Example 3 - Middle Node

Similarly we can use the formula,

∃ (tag, id,fid).tagid[true× ci3[true]f3]fid

to describe a grove where the node i3 is at the second level to the far right of
the list of children it appears in. Again figure 11 is just one possible grove which
satisfies this formula.

Example 4 - Node Existence

One of the key properties that we will want to be able to express about groves
is that a specific Node exists in the grove. All of our commands require the
existence of the Node(s) they are called to operate upon, so we need to be able
to describe groves which contain specific Nodes. To do this for the general case
we need to make use of context formulae. One way that we are able to define
such a grove is as follows,

True(ci3[true]f3)

This says that the Node i3 occurs somewhere in the grove, specifically we have
some arbitrary context which has the Node i3 in its hole with an arbitrary sub-
tree beneath the Node i3. Whilst this formula correctly describes the existence
property we desire, it makes no constraints upon the rest of the grove.

Example 5 - Context Variables

The style of formula presented above in Example 4 is not constraining enough
for our purposes. We could, for example, give the pre-condition for some get
command that does not modify the grove in the above form. Naively we might
assume that the post-condition would be the same formula, plus the description
of the information we have retrieved. This, however, is not the case. The True
formula imposes no restriction on the data that satisfies it, specifically True in
the pre-condition could be satisfied by a different grove context to the True in
the post-condition. Likewise for true. So we are not actually guaranteeing that
the grove is unchanged by the command at all. In order to correctly state that
the grove has not changed by the command, we instead require a formula of the
form,

CG(ci3[F]f3)

38

Here we make use of a context variable CG and a forest variable F which have
values assigned to them in the environment e. The use of such variables in the
pre- and post-conditions does indeed specify that the command does not modify
the grove so long as the environment e is unchanged. Note that since we do
not put any constraints on the values of these variables, we still have a formula
which is satisfied by any grove that contains the Node i3 somewhere in it. This
formula makes no assumptions about the depth of Node i3, so it could appear
at the top level or at any level deeper than this.

Example 6 - Not An Ancestor

You may recall that in section 1 we mentioned that the move commands of
Minimal DOM will only execute correctly if the child to be move is not an
ancestor of the parent it is to be moved beneath. We will now show how our
logic allows us to neatly express this property of a grove. As in the previous
example, it is the use of context formulae that allows us to describe this property
in a formal fashion.
We begin by considering the grove context formula,

(∅ .CG(tagparent[F]fid))

Remember that the P . Q operator defines a context that satisfies the formula
Q whenever we put into it data satisfying the formula P. So the above context
satisfies CG(tagparent[F]fid) whenever we put the empty data (i.e. no data)
into the context hole. As we just explained in Example 5, this describes the
grove that contains the Node parent somewhere within it. In effect, what we
are really saying here is that the context hole cannot be above the Node parent.
By our construction of contexts we do not allow anything to occur beneath a
context hole, so all context holes must occur as a leaf of a tree (i.e. they have
no children). The context we are describing must have both a context hole and
the Node parent somewhere within itself. Now if we place some other data into
the context hole instead of ∅, say the child we wish to move, then this data still
cannot be an ancestor of the Node parent because we have not changed the
structure of the context, just the structure of the data. The formula,

(∅ .CG(tagparent[F]fid))(tag
′
child[F

′]fid′)

specifies just that. This can only be satisfied by a grove which contains both the
parent and child Nodes and, moreover, must have the child in the tree so that
it is not an ancestor of the parent. Note that the use of context variable CG
and forest variables F and F′ allows for any arbitrary grove to be built around
the parent and child Nodes. This formula would also be suitable for use as a
pre- or post-condition for a command which does not modify the parts of the
grove contained in the CG, F or F′.

39

Example 7 - Weakest Pre-condition

In section 5 we will properly introduce the concept of a weakest pre-condition,
along with formally deriving the weakest pre-conditions for each of the com-
mands of Minimal DOM, but as a final example of the logic we have defined
for our data structure let us look at the weakest pre-condition for the append
command.

(CG(tagparent[F× tag
′
newChild[F

′]fid′]fid) . P)((∅ .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′))

The post-condition for the command is P , so the above pre-condition is the
weakest, or least constraining, pre-condition that will guarantee P after the
append command has executed. To understand what this pre-condition is de-
scribing, let us break it down into smaller pieces. First note that the last half
of this pre-condition,

((∅ .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′))

is exactly the formula we considered in Example 6 above. This grove data
formula describes a grove which contains both some Node parent and some
Node newChild where newChild is not an ancestor of parent. Now this
grove is contained inside a context which is described by the first half of the
formula. The context formula,

(CG(tagparent[F× tag
′
newChild[F

′]fid′]fid) . P)

states that if the data it is wrapped around were to satisfy

CG(tagparent[F× tag
′
newChild[F

′]fid′]fid)

then the resulting grove would satisfy P . But this data formula simply states
that the newChild Node is the last child of the parent Node. So what the
entire pre-condition says is - currently we have a grove which contains the Nodes
newChild and parent where newChild is not an ancestor of parent, but if
newChild were to be moved to be the last child of parent then the grove
would now satisfy the data formula P . Since the append command takes such
a Node newChild and moves it to the end of the list of children for parent,
after the command has executed we will indeed have a grove which satisfies the
data formula P . Notice that the careful use of grove and forest variables CG,
F and F′ describes that the rest of the grove is not modified by the append
command, i.e. the command behaves in a local fashion.

40

4 Hoare Reasoning

We mentioned previously that we wanted to create a specification in a compo-
sitional manor. To create this compositional power we turn to the use of Hoare
reasoning. Hoare reasoning is concerned with the definition and derivation of
Hoare Triples over a set of commands. The first step is to reason about the local
behaviour of our commands, that is their behaviour over the parts of the grove
that are modified by their execution. We then use the general Hoare reasoning
framework to take our reasoning to the complete data structure and produce a
full specification of our commands.

4.1 The Reasoning Framework

First we give the reasoning framework for Hoare logic. We start by looking at
Local Hoare Triples, which are of the form,

{pre-condition}
Command
{post condition}

As usual, the pre-condition specifies the state of the data structure before the
command has been called and the post-condition specifies the state of the data
structure after the command has been fully executed. However a Local Hoare
Triple has a stronger meaning than this alone. For any Grove G and stack s,
then for any of our commands C we have the Triple,

{P}C{Q} ⇔ s,G |= P ⇒ (C, s,G 6 fault) and ∃ s′, G′ |= Q.(C, s,G s′, G′)

In other words, for any Grove and stack that satisfy the pre-conditions of the
commands, the command will not fail and moreover the resulting Grove and
stack after the command will satisfy the post-condition.

Simple Example

For a toy example of how these commands are intended to be read let us consider
a state capable of storing integers and the add1(var) command which increments
the value stored at var by 1. This command would have the following Local
Hoare Triple associated with it:

{x = n}

add1(x)

{x = n+ 1}

In the obvious fashion, x = n specifies a state which has the value n stored in
variable x.

41

The above command is in fact what we call the “Small Axiom” for the add1
command. A command’s Small Axiom is the associated Local Hoare Triple with
the smallest possible footprint for that command. Recall that the footprint of
a command is the part of the data structure that the command needs to know
about if it is to run correctly and also any part of the data structure that is
modified by the command. In the above example the smallest footprint of the
add1 command is just the value of the variable var itself. We will see later
that from these axioms it is easy to define the behavior of the command on the
overall data structure.

Once we have the Local Hoare Triples for each command, we can see how mul-
tiple commands will affect the data structure. This is a simple task for Hoare
reasoning as we can build up the more complex commands from a number of
smaller commands and obtain the behaviour of the new command with little
extra reasoning. To show what we mean by this let us consider an extension of
the toy example given above.

Example: Using Local Hoare Triples:

Suppose we want to specify the Local Hoare Triple of the command add2(var)
which behaves in exactly the same manor as add1(var), except that it adds 2
to the variable var instead of 1. Rather than defining the Local Hoare Triple
directly, we could instead note that add2(var) ≡ {add1(var); add1(var)}. This
notion can be carried through the Local Hoare Triples of the command as fol-
lows:

{x = n}

add1(x)

{x = n+ 1}

add1(x)

{x = n+ 1 + 1}

{x = n+ 2}

This composition gives us the following Small Axiom for the add2 command:

{x = n}

add2(x)

{x = n+ 2}

Now with such a trivial example as given above we haven’t really saved ourself
any work, but with bigger and more complex commands the utility of this

42

procedure is invaluable. We will demonstrate the power of this technique later
when we show how to derive the specification for the remainder of structural
DOM Core level 1, and more, from Minimal DOM. In effect we are looking to
specify the local behavior of the building blocks for Minimal DOM that will
then allow us to define the entire structural behaviour of DOM Core level 1 via
the general context logic framework.

4.1.1 Hoare Rules

Although Context Logic is still a relatively new subject area, it already has a
well established framework for dealing with the move from local reasoning to
higher level reasoning. We shall now discuss the rules which will be central to the
movement from our local Axioms to the more general Weakest Pre-conditions.
Hoare Reasoning has several general inference rules for Local Hoare Triples
which are detailed below. In the statement of these rules we assume sets of free
variables free(C) and modified variables mod(C)of a command C. Intuitively
the set free(C) is the set of variables that may affect the execution of command
C and mod(C) is the set of variables that the command C may modify. We
express these properties formally as follows:

if x 6∈ free(C) then,

C, s,G fault⇒ C, s[x 7→ v], G fault

C, s,G s′, G′ ⇒ C, s[x 7→ v], G s′[x 7→ v], G′

if x 6∈ mod(C) then,

C, s,G s′, G′ ⇒ s(x) = s′(x)

Our rules require that these properties of free(C) and mod(C) be satisfied for
them to be sound.

Consequence Rule:

The Consequence rule gives us the ability to derive pre- and post- conditions
from one another. P ′ ⇒ P is classical consequence which means that P ′ logically
entails P . The rule is given as,

P ′ ⇒ P {P}C{Q} Q⇒ Q′

{P ′}C{Q′}

which allows us to weaken the pre-condition and tighten the post-condition.
This is very important for our ability to derive the weakest pre-conditions for
our commands from their axioms.

43

Auxiliary Variable Elimination Rule:

Variable elimination simply allows us to quantify over our variables so that our
reasoning can be made applicable to the general case.

{P}C{Q}

{∃x.P}C{∃x.Q} x 6∈free(C)

Sequencing Rule:

Sequencing provides us with the compositional power of Local Hoare Reasoning,
allowing us to bolt together the axioms for our commands so that we may derive
the axioms for larger, more complex, commands with little extra reasoning
required.

{P}C1{Q} {Q}C2{R}

{P}C1;C2{R}

The only work that needs to be done is using Consequence to enable us to make
the post-condition of one command be in the correct form for the pre-condition
for the next command.

Frame Rule:

The final, and most important, of our rules is the Frame Rule. This rule gives
us the ability to take our reasoning from the local, axiom, level up to the full
DOM grove by the application of contexts.

{P}C{Q}

{K(P)}C{K(Q)} mod(C)∩free(K)=∅

4.1.2 Local Commands

Whilst the first three of these rules are standard Hoare logic rules, the use of
the Frame Rule relies on the fact that all of our commands behave locally. That
is that they satisfy both the “Safety-Monotonicity Property” and the “Frame
Property”.

Safety-Monotonicity Property

For any Grove G, any Grove Context CG and any of our commands C, we have,

C, s,G 6 fault ∧ ap(CG, G) ↓ ⇒ C, s, ap(CG, G) 6 fault

This simply states that if our commands do not fault on some data and we have
a defined application of some context to that data, then the commands will

44

still not fault when run in that context on the same data. In other words, our
commands will still work on some data, even if we wrap a context around that
data, so long as that context application is defined.

Frame Property

For any Groves G and G′, any Grove Context CG, any stacks s and s′ and any
of our commands C we have,

C, s,G 6 fault ∧ ap(CG, G) ↓ ∧ C, s, ap(CG, G) s′, G′ ⇒ ∃G′′.(C, s,G s′, G′′ ∧G′ = ap(CG, G′′))

This states that if our commands do not fault on some data, we have a defined
application of some context to that data and the command run in this context
goes to some program state, then there exists some third data which is the result
of the command run on our original data and applying our context to this third
data type gives the same result as the command run in the context applied to
the original data type. In other words, if we apply a context to some data and
run the command, we get the same end data as if we run the command on some
data and then apply the context to the data output of the command, so long as
the context application is defined.

It has been shown [9] that commands specified by Local Hoare Triples do in
fact satisfy both of these properties, so all of the above rules are sound.

4.2 Formulating DOM

Now that we have a reasoning framework in place we can move on to formu-
lating a full specification for Minimal DOM. We already have a logic capable
of of expressing program states for Minimal DOM, so using this logic we can
provide pre- and post-conditions for our commands. As with the example given
above we wish to specify just the local behaviour of each command. We give
pre- and post-conditions over the smallest footprints of each command. These
command axioms will then enable us to derive the full weakest- pre-conditions
for each command which will provide the full specification for Minimal DOM.
To illustrate the meaning of our axioms we will first take the append command
as an example.

45

4.2.1 Append Axiom

The axiom for our append command can be given as,

{(∅ . CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′)}
append(parent, newChild);
{CG(tagparent[Fx tag

′
newChild[F

′]fid′]fid)}

The pre- and post-conditions here share a lot in common with Examples 6 and
7 of the previous section. The pre-condition specifies a grove where both of the
Nodes parent and newChild exist and where newChild is not an ancestor or
parent. The postcondition specifies a grove where these two Nodes still exist,
but now newChild is the last child of parent.

4.2.2 Axioms

The Axioms for all of the commands of Minimal DOM are given below,

{∅}
node′ = createNode(tag);
{∅ ⊕ tagnode′ [∅]fid}

{tagnode[F]fid}
tag′ = getNodeName(node);
{tagnode[F]fid ∧ tag

′ = tag}

{tagparent[F]fid}
forest = getChildNodes(parent);
{tagparent[F]fid ∧ forest = fid}

{tagparent[F1x tag
′
child[F]fid′ x F2]fid}

parent′ = getParentNode(child);
{tagparent[F1x tag

′
child[F]fid′ x F2]fid ∧ parent

′ = parent}

{(∅ . CG(tagparent[F1x tag
′
ref[F]fid′ x F2]fid))(tag

′′
newChild[F

′]fid′′)}
insertBefore(parent, newChild, ref);
{CG(tagparent[F1x tag

′′
newChild[F

′]fid′′ x tag
′
ref[F]fid′ x F2]fid)}

{CT(tagparent[F1x tag
′
child[F]fid′ x F2]fid)}

node = removeChild(parent, child);
{CT(tagparent[F1x F2]fid) ⊕ tag

′
child[F]fid′ ∧ node = child}

{(∅ . CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′)}
append(parent, newChild);
{CG(tagparent[Fx tag

′
newChild[F

′]fid′]fid)}

46

To assist with the definition of the Small Axioms for the Nodelist structure,
we add the the lng predicate, for list length, to our logic. This predicate ex-
tends the logic of integers in the obvious fashion enabling us to check the equality
of the predicate with other integer variables or values. The definition of the lng
predicate is given below:

lng(∅) = 0
lng(T× F) = 1 + lng(F)

Recall that we have assumed our lists to be 0 indexed.

{tagnode[F]fid}
length = getLength(fid);
{tagnode[F]fid ∧ length = lng(F)}

{tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length}
node = getItem(length, fid);
{tagnode[F1 × tag

′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length ∧ node = item}

4.2.3 Use of Notation Overload

You will recall that earlier we mentioned how the ∅ element is overloaded in our
notation to express both the empty Grove (or set) and the empty Forest (or list).
We have made use of this notation overload above to provide simpler axioms.
Consider the commands with preconditions of the form ∅ . P . The notational
overload means that this single pre-condition expresses both the cases ∅g . P
and ∅f . P , where ∅g and ∅f represent the empty set and empty list respectively.
So rather than needing a complex condition on these contexts splitting apart
the cases where the context hole appears at the top level or within some subtree
of the grove, we use our notational overload to express both of these cases in
one neat formula.

4.2.4 Axiom Evaluation

The main point of interest that should be mentioned here is that the above
axioms are not all strictly small in the normal sense. Specifically the axioms
provided for the move commands “insertBefore”, “removeChild” and “append”
can potentially have very large footprints due to the context variables used to
define them. To explain the implications of this further let us take the “append”
command and look at its axiom in more detail.

Append - A Closer Look:

As we discussed earlier, in order to both specify that the Node newChild is
not an ancestor of the Node parent and that the append command does not
modify any other part of the grove other than the position of the newChild

47

Node, we have to make use of context and forest variables. However, the very
general nature of these variables, which allows us to specify that the rest of
the grove is unmodified, also causes the footprint of this command to be of an
arbitrary size. The smallest footprint would be the subtree of the grove which
contains both newChild and parent with as little of the rest of the grove as
possible. Unfortunately, the use of a context variable CG only requires that
the grove be big enough to contain both newChild and parent. Specifically
this variable allows the footprint to be anything from the smallest footprint to
the entire DOM grove.

The potentially large nature of these footprints does not stop the Local Hoare
Triples from holding, it just means that the axioms are not truly small in the
three move cases. Some work has been undertaken at providing strengthened
Local Hoare Triples that include an assertion that the contexts for these com-
mands must be as small as possible, but we have yet to produce satisfactory
results that maintain our neat notation style. However, it is agreed that these
“Medium Axioms” are still sufficient for the purpose of specifying the behaviour
of the move commands and as such we will put any concerns about the footprint
size of these commands to one side at this time.

4.2.5 Soundness Theorem:

The small axioms are sound.

proof: This result follows directly from the operational semantics of the com-
mands.

48

5 Deriving the Weakest Pre-conditions

In [9] there is a detailed discussion of how the weakest pre-condition for a com-
mand can be derived from its Small Axiom. Making use of this style of reasoning
we will now show the derivations for the weakest pre-conditions of each com-
mand in Minimal DOM. Obtaining the Weakest Pre-conditions from the axioms
of our commands guaranties the safety of the commands. This means they will
not fault so long as the data structure satisfies the pre-conditions of the Local
Hoare Triples.

The proofs in this section make use of the fact that our data structure is precise.
This gives us the following property:

(Q . P)(Q)⇔ True(Q) ∧ P

The reverse part of this property ⇐, is not true in general, but it is true in the
case of a precise data structure.

5.1 Notation and Proof Structure

Throughout this section we shall be using the reasoning framework set out in
the previous section. Specifically there shall be a reference to which Hoare Rule
was applied at each proof step in order to derive the next pre-, post-condition
pair:

cons - refers to the consequence rule

aux - refers to the auxiliary variable elimination rule

seq - refers to the sequencing rule

frame - refers to the frame rule

The derivation for each command will follow a series of proof steps, starting from
the axioms as set out in the previous section, and ending with the weakest pre-
condition for that command. Each proof step will be separated by a horizontal
line and what is above the line will directly entail what is beneath the line using
the Hoare Rule noted. So for example,

{P} C {Q} (frame)

{K(P)} C {K(Q)}

states that we use the Frame Rule to wrap context K around the pre-condition
P and the post-condition Q.

49

5.2 append - a Detailed Proof

Before we give the full set of derivations, let us first take the append command
and give each of the proof steps in full detail. This detailed derivation should
serve as a guideline for the reasoning in the remaining cases.

We begin with the axiom for the append command,

{(∅ . CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′)}

append(parent, newChild);

{CG(tagparent[Fx tag
′
newChild[F

′]fid′]fid)} }

Now in order for us to be able to derive a post-condition P , we need to ensure
that once the append command has executed, that P is satisfied by a grove
where newChild is the last child under parent. Now if you recall, from the
examples of our logic, we were able to define a context that described just that.
Namely the formula,

K = (CG(tagparent[F× tag
′
newChild[F

′]fid′]fid) . P)

So using the Frame Rule, we can apply this context to the grove we have
already described in the axiom of the command. This gives us the new pre-,
post-condition pair

{
(CG(tagparent[F× tag

′
newChild[F

′]fid′]fid) . P)((∅ .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′))
}

append(parent, newChild);
{
(CG(tagparent[F× tag

′
newChild[F

′]fid′]fid) . P)(CG(tagparent[F× tag
′
newChild[F

′]fid′]fid))
}

Notice that we apply the context K to both the pre- and post-condition of the
command. The next step makes use of the Consequence Rule. Notice that
in the post-condition the data within the context is,

(CG(tagparent[F× tag
′
newChild[F

′]fid′]fid)) (1)

Which means that the post-condition is in the form (Q . P)(Q) and this ⇒
True(Q) ∧ P ⇒ P as we mentioned above. Since we always have that F ⇒ F ,
for any formula F , we do not need to change the pre-condition. So we apply
cons to get,

{
(CG(tagparent[F× tag

′
newChild[F

′]fid′]fid) . P)((∅ .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′))
}

append(parent, newChild);

{P}

We now have the post-condition P , so the pre-condition is the weakest it can
be and still guarantee P , i.e. it is the weakest pre-condition for the command.
This completes the derivation for the append command.

50

5.3 The Derivations

We now give the derivations for the remaining commands of Minimal DOM.
Recall that each proof begins with the command’s axiom and that each step
uses one of our Hoare Rules as noted. In each case the pre-condition of the final
step, where the post-condition is just P , is the weakest pre-condition for that
command.

5.3.1 createNode

{∅}

node′ = createNode(tag);

{∅ ⊕ tagnode′ [∅]fid} (frame)

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(∅)}

node′ = createNode(tag);

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(∅ ⊕ tagnode′ [∅]fid} (cons)

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(∅)}

node′ = createNode(tag);

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(tagnode′ [∅]fid)} (cons)

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(∅)}

node′ = createNode(tag);

{P [node/node′]} (cons)

{(∀node,fid(tagnode[∅]fid) . P [node/node
′])(∅)}

node′ = createNode(tag);

{P}

5.3.2 getNodeName

{tagnode[F]fid}

tag′ = getNodeName(node);

{tagnode[F]fid ∧ tag
′ = tag} (frame)

{(tagnode[F]fid . P [tag/tag
′])(tagnode[F]fid)}

tag′ = getNodeName(node);

{(tagnode[F]fid . P [tag/tag
′])(tagnode[F]fid ∧ tag

′ = tag)} (cons)

{(tagnode[F]fid . P [tag/tag
′])(tagnode[F]fid)}

tag′ = getNodeName(node);

{(tagnode[F]fid . P [tag/tag
′])(tagnode[F]fid) ∧ (tag

′ = tag)} (cons)

{True(tagnode[F]fid) ∧ P [tag/tag
′]}

tag′ = getNodeName(node);

{P [tag/tag′] ∧ (tag′ = tag)} (cons/aux)

{∃tag(True(tagnode[F]fid) ∧ P [tag/tag
′])}

tag′ = getNodeName(node);

{P}

51

5.3.3 getChildNodes

{tagparent[F]fid}

forest = getChildNodes(parent);

{tagparent[F]fid ∧ forest = fid} (frame)

{(tagparent[F]fid . P [fid/forest])(tagparent[F]fid)}

forest = getChildNodes(parent);

{(tagparent[F]fid . P [fid/forest](tagparent[F]fid ∧ forest = fid)} (cons)

{(tagparent[F]fid . P [fid/forest])(tagparent[F]fid)}

forest = getChildNodes(parent);

{(tagparent[F]fid . P [fid/forest](tagparent[F]fid) ∧ (forest = fid)} (cons)

{True(tagparent[F]fid) ∧ P [fid/forest]}

forest = getChildNodes(parent);

{P [fid/forest] ∧ (forest = fid)} (cons/aux)

{∃fid(True(tagparent[F]fid) ∧ P [fid/forest])}

forest = getChildNodes(parent);

{P}

5.3.4 getParentNode

{tagparent[F1 × tag
′
child[F]fid′ × F2]fid}

parent′ = getParentNode(child);

{tagparent[F1 × tag
′
child[F]fid′ × F2]fid ∧ parent

′ = parent} (frame)

{(tagparent[F1 × tag
′
child[F]fid′ × F2]fid . P [parent/parent

′])

(tagparent[F1 × tag
′
child[F]fid′ × F2]fid)}

parent′ = getParentNode(child);

{(tagparent[F1 × tag
′
child[F]fid′ × F2]fid . P [parent/parent

′])

(tagparent[F1 × tag
′
child[F]fid′ × F2]fid ∧ parent

′ = parent)} (cons)

{(tagparent[F1 × tag
′
child[F]fid′ × F2]fid . P [parent/parent

′])

(tagparent[F1 × tag
′
child[F]fid′ × F2]fid)}

parent′ = getParentNode(child);

{(tagparent[F1 × tag
′
child[F]fid′ × F2]fid . P [parent/parent

′])

(tagparent[F1 × tag
′
child[F]fid′ × F2]fid) ∧ (parent

′ = parent)} (cons)

{True(tagparent[F1 × tag
′
child[F]fid′ × F2]fid) ∧ P [parent/parent

′]}

parent′ = getParentNode(child);

{P [parent/parent′] ∧ (parent′ = parent)} (cons/aux)

{∃parent(True(tagparent[F1 × tag
′
child[F]fid′ × F2]fid) ∧ P [parent/parent

′])}

parent′ = getParentNode(child);

{P}

52

5.3.5 insertBefore

{(∅ .CG(tagparent[F1 × tag
′
ref[F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′)}

insertBefore(parent,newChild, ref);

{CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref[F]fid′ × F2]fid)} (frame)

{(CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref[F]fid′ × F2]fid) . P)

((∅ .CG(tagparent[F1 × tag
′
ref[F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′))}

insertBefore(parent,newChild, ref);

{(CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref[F]fid′ × F2]fid) . P)

(CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref[F]fid′ × F2]fid))} (cons)

{(CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref[F]fid′ × F2]fid) . P)

((∅ .CG(tagparent[F1 × tag
′
ref[F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′))}

insertBefore(parent,newChild, ref);

{P}

5.3.6 removeChild

{CT(tagparent[F1 × tag
′
child[F]fid′ × F2]fid)}

node = removeChild(parent, child);

{CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ ∧ node = child} (frame)

{(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × tag
′
child[F]fid′ × F2]fid))}

node = removeChild(parent, child);

{(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ ∧ node = child)} (cons)

{(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × tag
′
child[F]fid′ × F2]fid))}

node = removeChild(parent, child);

{(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′) ∧ (node = child)} (cons)

{(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × tag
′
child[F]fid′ × F2]fid))}

node = removeChild(parent, child);

{P [child/node] ∧ (node = child)} (cons/aux)

{∃child(CT(tagparent[F1 × F2]fid)⊕ tag
′
child[F]fid′ . P [child/node])

(CT(tagparent[F1 × tag
′
child[F]fid′ × F2]fid))}

node = removeChild(parent, child);

{P}

53

5.3.7 getLength

{tagnode[F]fid}

length = getLength(fid);

{tagnode[F]fid ∧ length = lng(F)} (frame)

{(tagnode[F]fid . P [lng(F)/length])(tagnode[F]fid)}

length = getLength(fid);

{(tagnode[F]fid . P [lng(F)/length])(tagnode[F]fid ∧ length = lng(F))} (cons)

{(tagnode[F]fid . P [lng(F)/length])(tagnode[F]fid)}

length = getLength(fid);

{(tagnode[F]fid . P [lng(F)/length])(tagnode[F]fid) ∧ (length = lng(F))} (cons)

{True(tagnode[F]fid) ∧ P [lng(F)/length]}

length = getLength(fid);

{P [lng(F)/length] ∧ (length = lng(F))} (cons/aux)

{∃F(True(tagnode[F]fid) ∧ P [lng(F)/length])}

length = getLength(fid);

{P}

5.3.8 getItem

{tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length}

node = getItem(length,fid);

{tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length ∧ node = item} (frame)

{(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length . P [item/node])

(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length)}

node = getItem(length,fid);

{(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length . P [item/node])

(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length ∧ node = item)} (cons)

{(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length . P [item/node])

(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length)}

node = getItem(length,fid);

{(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length . P [item/node])

(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length) ∧ (node = item)} (cons)

{True(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length) ∧ P [item/node]}

node = getItem(length,fid);

{P [item/node] ∧ (node = item)} (cons/aux)

{∃item(True(tagnode[F1 × tag
′
item[F

′]fid′ × F2]fid ∧ lng(F1) = length) ∧ P [item/node])}

node = getItem(length,fid);

{P}

It is easy to verify that the pre-conditions derived above are indeed the weakest
pre-conditions for these commands.

54

6 Building Simple Programs

So far we have specified the entire behavior of Minimal DOM. In this section
we will show that we can use the specification of Minimal DOM to generate the
specification for the structural behaviour of DOM Core Level 1. Namely we will
show that we can now specify the behaviour of the commands “replaceChild”,
“cloneNode” and “hasChildNodes”. It is the compositional power of the Se-
quencing Rule that allows us to build up the specification axioms for these new
commands. Since we have already derived the weakest per-conditions for the
commands of Minimal DOM, we know that these commands are safe. This
safety property can be carried over to the new commands so long as they are
specified using just the commands of Minimal DOM. As we shall show in this
section, we are able to do just this.

6.1 replaceChild

The replaceChild method operates on some parent Node and takes two other
Nodes as arguments, newChild and oldChild. It replaces the Node oldChild
with the newChild Node in the list of children of parent and returns a pointer
to oldChild which is moved to the top level of the DOM grove. If newChild is
already in the tree, it is first removed. As with all of our methods, we pass the
Node the method is called upon explicitly as the first argument. We can build
this command from the commands of Minimal DOM as illustrated in figure 12
and as described below:

node = replaceChild(parent, newChild, oldChild){

insertBefore(parent, newChild, oldChild);
node = removeChild(parent, oldChild);

}

We specify the Axiom for this command as:

{(∅ .CG(tagparent[F1 × tag
′
oldChild[F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′)}
node = replaceChild(parent, newChild, oldChild);{
CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × F2]fid)⊕ tag′oldChild[F]fid′ ∧ node = oldChild
}

We prove this by taking the pre-condition above and then, by applying the
Local Hoare Triple axioms of our existing commands, show that we can get to
the post-condition given above. The Sequencing Rule of our reasoning frame-
work gives us the power to make these logical steps, although some use of the
Consequence Rule may be necessary to take the post-condition of one command
to the correct form to be the pre-condition of the next command.

55

Figure 12: replaceChild(parent, newChild, oldChild)

So the proof for replaceChild goes as follows:

{(∅ .CG(tagparent[F1 × tag
′
oldChild[F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′)}
insertBefore(parent, newChild, oldChild);
{CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × tag′oldChild[F]fid′ × F2]fid)}
node = removeChild(parent, oldChild);{
CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × F2]fid)⊕ tag′oldChild[F]fid′ ∧ node = oldChild
}

6.2 cloneNode

The cloneNode command returns a duplicate of the Node it is called upon. For
our purposes this means that the new Node will have the same tag as the old
Node. The command is not a deep clone, so it does not copy the Node’s children
or any of the subtree beneath it. The new Node will have different, fresh, iden-
tifiers for both its Node and list identifiers. The duplicate Node has no parent,
i.e. it is created at the top level in our grove. We can build this command from
the commands of Minimal DOM as shown in figure 13 which is as follows:

node = cloneNode(id){

tag’ = getNodeName(id);
node = createNode(tag’);

}

56

Figure 13: cloneNode(id)

We specify the Axiom for this command as:

{tagid[F]fid}
node = cloneNode(id);
{tagid[F]fid ⊕ tagid′ [∅]fid′ ∧ node = id

′}

Using the same style of proof as set out for the replaceChild command, we can
prove that this axiom is correct thusly:

{tagid[F]fid}
tag′ = getNodeName(id);
{tagid[F]fid ∧ tag

′ = tag}
@n = createNode(tag′);
{tagid[F]fid ⊕ tag

′
id′ [∅]fid′ ∧ tag

′ = tag ∧ node = id′}
{tagid[F]fid ⊕ tagid′ [∅]fid′ ∧ node = id

′}

6.3 hasChildNodes

The hasChildNodes command is the last command we need to consider to fully
specify the structural behaviour of DOM Core Level 1. It is a convenience
method which allows quick determination of whether a Node has any children.
Note that this program uses boolean tests which we included in our logic def-
inition, but have not used until this point. We can build this command from
the commands of Minimal DOM as follows:

bool = hasChildNodes(id){

forest = getChildNodes(id);
length = getLength(forest);
bool = not(length = 0);

}

57

Since there is no manipulation of the DOM grove in this command, we do not
feel that a diagram adds to the explanation of the command. The Axiom for
this command is specified as:

{tagid[F]fid}
bool = hasChildNodes(id);
{tagid[F]fid ∧ ((lng(F) = 0 ∧ bool = false) ∨ (lng(F) 6= 0 ∧ bool = true))}

Note that the length of a list cannot be a negative number, so the 6= 0 con-
dition is sufficient to express > 0. There are two cases for the proof, which we
give below:

Case 1: F = ∅

{tagid[∅]fid}
forest = getChildNodes(id);
{tagid[∅]fid ∧ forest = fid}
{tagid[∅]forest ∧ forest = fid}
length = getLength(forest);
{tagid[∅]forest ∧ forest = fid ∧ length = lng(∅)}
{tagid[∅]forest ∧ forest = fid ∧ length = 0}
bool = not(length = 0);
{tagid[∅]forest ∧ forest = fid ∧ length = 0 ∧ bool = ¬(length = 0)}
{tagid[∅]forest ∧ forest = fid ∧ bool = ¬(0 = 0)}
{tagid[∅]forest ∧ forest = fid ∧ bool = ¬(true)}
{tagid[∅]forest ∧ forest = fid ∧ bool = false}
{tagid[∅]fid ∧ bool = false}
{tagid[∅]fid ∧ (lng(∅) = 0 ∧ bool = false)}
{tagid[∅]fid ∧ ((lng(∅) = 0 ∧ bool = false) ∨ (lng(∅) 6= 0 ∧ bool = true))}
{tagid[F]fid ∧ ((lng(F) = 0 ∧ bool = false) ∨ (lng(F) 6= 0 ∧ bool = true))}

58

Case 2: F 6= ∅

{tagid[F]fid}
forest = getChildNodes(id);
{tagid[F]fid ∧ forest = fid}
{tagid[F]forest ∧ forest = fid}
length = getLength(forest);
{tagid[F]forest ∧ forest = fid ∧ length = lng(F)}
{tagid[F]forest ∧ forest = fid ∧ length 6= 0}
bool = not(length = 0);
{tagid[F]forest ∧ forest = fid ∧ length 6= 0 ∧ bool = ¬(length = 0)}
{tagid[F]forest ∧ forest = fid ∧ length 6= 0 ∧ bool = true}
{tagid[F]fid ∧ length 6= 0 ∧ bool = true}
{tagid[F]fid ∧ (lng(F) 6= 0 ∧ bool = true)}
{tagid[F]fid ∧ ((lng(F) = 0 ∧ bool = false) ∨ (lng(F) 6= 0 ∧ bool = true))}
{tagid[F]fid ∧ ((lng(F) = 0 ∧ bool = false) ∨ (lng(F) 6= 0 ∧ bool = true))}

6.4 DOM Core Level 1 - Evaluation

We have shown that we can give a complete specification for the structural
behaviour of DOM Core Level 1 from the specification of Minimal DOM. This
should be evidence enough to justify our earlier claim that Minimal DOM is
indeed sufficient to provide the structural specification that we desire. The
derivation of the weakest pre-conditions shows that this specification is safe, so
we do indeed now have a more formal specification that could be the basis of
a verification engine, at least over commands that are only concerned with the
structure of a DOM grove. The actual implementation of such a verification
engine falls outside of the scope of this project, but with our strong reasoning
framework in place it should now be a relatively easy task.

59

7 Going Further

Showing that we can derive the structural behaviour of DOM Core Level 1
from Minimal DOM, whilst useful, does not demonstrate the true power of our
specification. We shall show that even some commands not specified in DOM
Core Level 1 can still be easily specified from the commands of Minimal DOM
using the same techniques as set out above in section 6.

7.1 insertAfter

As a simple example let us consider a command which behaves much like insert-
Before, only the newChild Node is inserted into the list of parent’s children
after the Node ref rather than before it. Figure 14 shows how we can construct
this command using Minimal DOM, namely that we have the following,

insertAfter(parent, newChild, ref){

insertBefore(parent, newChild, ref);
insertBefore(parent, ref, newChild);

}

Figure 14: insertAfter(parent, newChild, ref)

Similar to the axiom for insertBefore, the axiom that we would expect for in-
sertAfter is:

{(∅ .CG(tagparent[F1 × tag
′
ref [F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′)}
insertAfter(parent, newChild, ref);
{CG(tagparent[F1 × tag

′
ref [F]fid′ × tag

′′
newChild[F

′]fid′′ × F2]fid)}

Using the Local Hoare Triple axiom for insertBefore in a sequential manor we
can show that the above Triple is indeed correct for the insertAfter command.
The proof is as follows:

60

{(∅ .CG(tagparent[F1 × tag
′
ref [F]fid′ × F2]fid))(tag

′′
newChild[F

′]fid′′)}
insertBefore(parent, newChild , ref);
{CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × tag′ref [F]fid′ × F2]fid)}
{(∅ .CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × ∅ × F2]fid))(tag′ref [F]fid′)}
{(∅ .CG(tagparent[F1 × tag

′′
newChild[F

′]fid′′ × F2]fid))(tag′ref [F]fid′)}
insertBefore(parent, ref, newChild);
{CG(tagparent[F1 × tag

′
ref [F]fid′ × tag

′′
newChild[F

′]fid′′ × F2]fid)}

The applications of the insertBefore axiom are trivial, but producing the correct
pre-condition for the second call to insertBefore is a bit trickier. Let us look at
these steps in more detail. After we have called insertBefore for the first time
we have the post-condition,

CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × tag
′
ref [F]fid′ × F2]fid)

Now this formula give us more information than we require for the pre-condition
of the next insertBefore command. Not only do we have that the Nodes parent,
newChild and ref exist where ref is not above parent, but we also know
exactly where ref is. In order to get this into the correct from we need to loose
information. So we split apart the subtree beginning at ref from the rest of the
tree with the context,

(∅ .CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × ∅ × F2]fid))

Here we state that if we replace ref with ∅ then the grove satisfies,

CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × ∅ × F2]fid)

but this is equivalent to,

CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × F2]fid)

Hence we are able to conclude that our grove satisfies,

(∅ .CG(tagparent[F1 × tag
′′
newChild[F

′]fid′′ × F2]fid))(tag
′
ref [F]fid′)

which is in the correct form for us to be able to apply the axiom for the insert-
Before command once again.

7.2 Equality

If we want to provide some kind of tree equality test, that checks if two trees
have the same structure and data content, we would need to introduce some
form of recursion into our reasoning. However, the case of testing if two nodes
contain the same data, i.e. have the same tag, is simpler and can be speci-
fied directly from our current specification for Minimal DOM. We would need

61

a command of the form,

bool = nodeEquality(id1, id2){

tag = getNodeName(id1);
tag’ = getNodeName(id2);
bool = (tag = tag’)

}

We would expect the Local Hoare Triple for this command to be as follows:

{CG(data1id1[F]fid) ∧CG
′(data2id2[F

′]fid′)}
bool = nodeEquality(id1, id2);
{CG(data1id1[F]fid) ∧CG

′(data2id2[F
′]fid′)

∧ ((data1 = data2) ∧ (bool = true)) ∨ ((data 6= data2) ∧ (bool = false))}

We can prove that this Local Hoare Triple is correct in the following fashion:

{CG(data1id1[F]fid) ∧CG
′(data2id2[F

′]fid′)}
tag = getNodeName(id1);
{CG(data1id1[F]fid) ∧CG

′(data2id2[F
′]fid′) ∧ (tag = data1)}

tag’ = getNodeName(id2);
{CG(data1id1[F]fid)∧CG

′(data2id2[F
′]fid′)∧(tag = data1)∧(tag′ = data2)}

bool = (tag = tag’);
{CG(data1id1[F]fid) ∧CG

′(data2id2[F
′]fid′)

∧ (tag = data1) ∧ (tag′ = data2) ∧ (bool = (tag = tag′))}
{CG(data1id1[F]fid) ∧CG

′(data2id2[F
′]fid′)

∧ (bool = (data1 = data2))}
{CG(data1id1[F]fid) ∧CG

′(data2id2[F
′]fid′)

∧((bool = true)∧(data1 = data2))∨(((bool = false)∧(data1 6= data2)))}

Note that in the final step, rather than giving two separate proofs, we have
combined the information in the obvious fashion to arrive at our desired post-
condition. We could have laid out this proof over two cases, one where data1
= data2 and one where data1 6= data2, but we felt that this only served to
delay an already obvious conclusion.

One final point to make is the meaning of the condition,

CG(data1id1[F]fid) ∧CG
′(data2id2[F

′]fid′)

The ∧ simply specifies that both of the existence properties of the grove are
true. Namely that both the nodes id1 and id2 exist somewhere in the grove.
Note that in this case we do not require that id2 is not an ancestor of id1.

62

8 Evaluation

We have generally provided details of our work in a progressive story-like fashion,
making adjustments as we are going and providing justification for our choices
as well as some brief evaluation of our results. However, in the following section
we will pull all of this together to give an overall evaluation of the success of
the project. We also discuss the various possibilities for future work that follow
on naturally from this project.

8.1 Success of the Project

When we talk about the success of the project we need to be careful to remember
that we had several different aims in mind throughout this project. As such it
seems only sensible to address these in turn. Before we try to sum up the specific
successes and failings of our project, we will first consider the two broader,
more general aims. Specifically why our work matters to the DOM and W3C
communities. After this we shall move on to a more detailed analysis of what
our logical specification has provided.

8.1.1 Pleasing the DOM Community

As our work has progressed we have always been careful to make the same
choices that DOM currently makes, or stay as close to DOM as we can. However
this is a tricky task as the very nature of the current DOM specification is to
only specify what they have to. Such details as the data structure are left to
the user to define. If we had stuck with such a style all the way, we would never
have been able to get anywhere with our reasoning. We are confident that our
specification is correct, but it may not match up to exactly what the DOM
community may expect. It is at this point we have to make a hard choice. Do
we stick to our guns and try to get the DOM community to adapt their way
of thinking to our specification, or do we have to accept that this might not
happen and try to change our specification. Our suspicion is that we need to do
a little of both. Clearly we can’t expect to change the way DOM works in one
fell swoop, but we can hope to show the DOM community how perhaps they
should be thinking of DOM. Our specification leads itself to easy extension,
and automated verification, two big things that the current specification simply
cannot do. However, we have sacrificed some of the ease of understanding
that the English specification provides. However, we feel that the removal of
ambiguities from the specification is well worth this cost. So do we think the
DOM community will be pleased? Well, as with all communities the answer will
be a mixture of yes and no. Some will herald the introduction of formalism to
the world of DOM, but equally others might argue that everything we’ve have
done is already there. Perhaps true, but we are confident that the clarity and
possibilities that a formal specification bring forth will win through in time.

63

8.1.2 Pleasing the W3C Community

The W3C (World Wide Web Consortium) Community, on the other hand, ought
to be pleased as a whole with the specification we have produced. The W3C
organisations principle aim is to ‘develop interoperable technologies (specifica-
tions, guidelines, software, and tools) to lead the Web to its full potential’. We
have shown that our specification for Minimal DOM is highly expressive, highly
formal, and highly extendable. These are exactly the kinds of properties that
the W3C was set up to try and bring into commonplace web applications. So
long as we can maintain these properties throughout our future work to bring
our specification up to the whole of DOM, then we are confident that the W3C
community will be very interested in our final product. The only criticism we
might expect from the W3C community is that our work is still very much
a shadow of an object orientated implementation of DOM. Although we have
done our best to keep our reasoning platform free, our specification still makes
some key object orientated assumptions. In future it would make more sense to
specify XML update at the XML level.

8.1.3 The Data Structure

The Grove, Tree and Forest data structure that we have chosen to operate over
could, by some, be deemed over complicated or contrived. However, we believe
that this is far from the case. In our search for a suitable data structure we
were unable to find a simpler structure that did not add significant difficulties
to our logic. It is the very nature of the top level, or grove level as we choose to
call it, of DOM which causes the problems with other, simpler, data structures.
The fact that this top set is unordered, where as the list of children of a node
is ordered, leads to a necessary difference in composition operator. To define
this over single inductive data type means that we would need to carry around
a notion of tree depth in order to know when our tree compositions are commu-
tative and when they are not. Using the three typed structure set out by Smith
[8] implicitly encodes this information into the data structure in a simple and
neat fashion.

Another point that could come under some criticism is the choice of overloading
the notation of ∅ to be both the empty set and the empty list. Again though we
are able to defend our choice based on the complexities that arise from any other
approach. Clearly, if we choose to treat the empty set and empty list as sepa-
rate entities then we will have to deal with them separately as well. This would
cause a great deal of problems when we get to defining our Local Hoare Triples.
Instead of the one neat, if slightly complicated, pre-condition we currently have
for our move commands,

(∅ .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′)

we would instead have the disjunction of two equally complicated formulae.

64

(∅g .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′) ∨ (∅f .CG(tagparent[F]fid))(tag
′
newChild[F

′]fid′)

The first half here specifying that the hole can be at the top level, the other
specifying that it can be within a forest somewhere. Not only does this lead to
much more complex notation, but it also makes the composition of our Axioms
much harder than it is at current. So from a practical point of view our choice
makes sense and so it does logically too. Both the empty set and the empty list
describe what it means to have nothing. But nothing is the same, no matter
what kind of nothing it is. Only when we add something to nothing can we get
an effect, but at this point we can pick the nothing that fits with the added
data type. This, in essence, is what our overloading of notation achieves.

A final point to address, that was raised by a discussion with Ian Hodkinson, is
why we have chosen to work with a list composition operator × instead of the
more widespread : operator as seen in many languages such as Haskell. The
issue with the latter approach, where we view lists as head:tail, is how we rep-
resent items at an arbitrary position of the list. No notion of list:element:list
exists in this new data structure, we would have to explicitly list out all of the
elements of the first list. This makes the use of context’s untenable, much as
in Cheung’s work [6] due to the inability to express the arbitrary positioning
of context holes without significantly more reasoning effort. In effect, Haskell’s
view of a list is closer to the node level sibling relation than it is to our, higher
level, reasoning. The same reasons that caused us to move away from Cheung’s
style of reasoning are behind our decision to work with our list structure instead
of another form of list representation.

In summary, we believe that the data structure we have provided is both the
simplest that is possible, and also utilises a clear form of notation that lends
itself to more readable Axioms for our commands.

8.1.4 The Logical Framework

The logical framework that we provide for our specification is one of the most
important features of this project. It is the framework that allows us to build
up bigger commands from our commands of Minimal DOM and derive their
specification without having to directly compute their weakest pre-conditions.
It is because these bigger commands are built from our Minimal DOM com-
mands that we can instantly deduce that the new commands will also be safe.
If a new command were not safe, then some step of the command must not be
safe, but all of the steps of the new command are provably safe commands from
Minimal DOM. Therefore the new command must also be safe. The composi-
tional construction of new commands that our logical framework allows lets us
derive more than just DOM Core Level 1, as we saw above, so our specification
is far more expressive than the existing one. It also lends itself naturally to

65

extensions, which makes it far more useful than the current specification for the
purposes of understanding how one might extend DOM itself, a task that many
programmers find tricky with the current specification.

8.1.5 The Axioms

The one failing of our work to date is that the axioms for our commands are
not all ‘Small’. Specifically, the move commands, append, insertBefore and
removeChild, all have footprints that can be arbitrarily large as we discussed
before. Some work has gone into producing a pre-condition which ensures that
the footprint is as small as possible. A formula of the form,

∧¬((¬)(∅ . true(tagparent[F]fid))(tag’newChild[F
′]fid’))

can be added to the current pre-condition. The example above is for the append
command. The formula inside the outer ¬ describes a grove where the context
around the parent Node must include newChild and also be bigger than this.
Adding the extra ¬ around this formula stops the grove being any bigger than it
needs to be to include both the parent and newChild Nodes. However, there
are two main issues with this approach. The first is that the readability of our
axioms is significantly reduced with this extra condition added to our axioms.
Whilst this is not a logical problem, we must remember that we are trying to
make our specification readable by people who may not have a huge amount
of experience with logic. In order to achieve this we need to try and keep our
axioms as notationally simple as possible. The second issue is that it is tricky to
derive this condition when composing axioms of Minimal DOM together. Since
we have already seen how powerful composing our commands can be, we do not
want to throw this away. So, at present, we do not have a neat solution to this
problem.

8.1.6 Conclusion

Overall we have provided more than we set out to achieve in the scope of this
project. We had hoped to be able to specify the structure of Minimal DOM, but
in fact we have shown that we are able to specify much more than that from
our specification for Minimal DOM. The framework we have defined should
also be easily extendable to higher levels of DOM without loosing any of the
clarity it currently possesses. All in all we believe that our new specification is
far more precise and generally useful than the current specification and shows
great promise for being scaled up to cover the whole of DOM.

8.2 Future Work

There are many possible directions that we could take this work in future as we
have created a very expressive and powerful logical framework for the structural

66

behaviour of DOM. However there are also a few issues that we have not com-
pletely resolved in the course of this project that should be correctly addressed.
We shall briefly discuss the possible future extensions that we believe to be of
greatest interest, or greatest necessity, to the DOM, W3C and Context Logic
communities.

8.2.1 Verification Tool

The most obvious extension to this project would be the provision of an auto-
mated verification tool for DOM Core Level 1. This would be a program that
is capable of taking some DOM program, which uses just the commands from
DOM Core Level 1, and being able to check that the program behaves as ex-
pected. Providing the pre- and post-conditions of the program, we can see if
these match up to our expected program behaviour. We have already provided
a complete specification for all of the structural behaviour, and there is only a
small amount of detail on top of this in the Core Level. As such, we would hope
that the task of creating such a verification tool should now be fairly easy.

8.2.2 Specifying More of DOM

Whilst having specified all of DOM Core Level 1 is an important achievement
in our goal for a fully formally specified DOM, it is far from the whole story.
There are two more levels of DOM, DOM level 2 and DOM level 3, as well as
DOM HTML Level 1, all of which will need to be specified. Some of the work
will be trivial extensions of Minimal DOM. As we have shown, Minimal DOM
can express more than just DOM Core level 1, and its compositional nature
makes extending the specification to larger programs a fairly straight forward
task. However, at some point it is likely that we will find concepts that we have
not had to consider at the Core Level, and this will require new additions to the
specification. Identifying these concepts, specifying them and combining this
work with Minimal DOM will bring us even closer, perhaps all the way, to a
complete formal specification for the whole of DOM.

8.2.3 Recursion

The current Minimal DOM specification is limited in the sense that it has no
definition for any kind of looping program structure. As we noted above, this
puts a limit on the kinds of programs that we are currently able to specify.
Whilst it could be argued that an investigation of recursive techniques falls
under the previous category of ‘Specifying More of DOM’, we feel that this
case deserves special consideration. Adding the power of recursion to our our
specification will open up a whole new branch of interesting programs that we
will be able to specify. Also picking different styles of recursion, while loops,
do-until loops or for loops for example, will produce different styles of DOM and
limit which programming languages interfaces our specification will be able to

67

handle. The study of this will provide valuable insights into how best to tackle
specifying DOM for all of its different implementations, as we will need to be
able to specify different language implementations which are not guaranteed
to have the same program structures available. We also believe there may be
some interesting logical results about how different recursive styles can provide
identical or vastly different outputs.

8.2.4 Small Axioms

As we have discussed before, our move commands do not currently have Axioms
that are ‘Small’. Whilst we have put the issue of the size of the command’s
footprints to one side for the scope of this project, it is a key point that needs
to be addressed before the specification can hope to become mainstream. It is
possible that the ‘Medium Axioms’ we have given will turn out to be sufficient,
but we find this unlikely. A small amount of work has already gone into looking
for a different way to express the ‘not an ancestor’ property that our move
commands require, but nothing satisfactory gas come out of this work as of yet.
We believe that a concerted effort should be made to investigate these axioms
and come to a conclusion one way or the other.

8.2.5 Multi-holed Contexts

There is currently a great deal of work going in to investigating the definition
of multi-holed contexts, that is contexts that are able to be applied to more
than one piece of data simultaneously. The possible utility of these contexts
to our data structure should be investigated as they may provide a possible
solution to our large footprint issue for the move commands of Minimal DOM.
It is also possible that they may lead to neater Local Hoare Triples in general.
However, until this work is completed, we will have to put this particular avenue
of research on hold.

8.2.6 Concurrent DOM

So far we have only considered the specification of serial XML update, but
there are several concurrent DOM implementations already in existence. These
implementations all conform to the serial DOM specification, but there is no
concurrent DOM specification. The English language is not able to accurately
express the complex word of concurrency, but a more formal specification, such
as ours, should be up to the challenge. O’Hearn has already produced work on
concurrent reasoning for Separation Logic. Bringing similar results to the world
of Context Logic would be a crucial step in providing a Context Logic reasoning
about concurrent tree update.

68

9 References

1. Bornat, R., Calcagno, C., O’Hearn, P.: Local reasoning, separation and
aliasing. SPACE(2004)

2. Reynold, J.: Separation Logic: A Logic for Shared Mutable Data Struc-
tures. IEEE(2002)

3. Calcagno, C., Gardner, P., Zarfaty, U.: Context Logic and Tree Update.
POPL(2005)

4. Gardner, P.: A Note on Context Logic DRAFT. Appsem Summer School
(2005)

5. Ishtiaq, S., O’Hearn, P.: BI as an Assertion Language for Mutable Data
Structures. ACM-SIGPLAN(2001)

6. Cheung, K.: High-Level XML Update: Low-Level Reasoning. MSci Project
(2006)

7. Kearns, B.: Context Logic for Low-Level Update. MSc Project(2007)

8. Smith, G.: First year Report: A context logic approach to analysis and
specification of XML update. (2006)

9. Calcagno, C., Gardner, P., Zarfaty, U.: Local Reasoning about Data Up-
date. Festschrift(2005)

10. W3C: World Wide Web Consortium (2007)
http://www.w3.org/

11. W3C: DOM: Document Object Model (1998)
http://www.w3.org/DOM/

12. W3C: Document Object Model (Core) Level 1 (1997)
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html

13. An Introduction to the W3C DOM (2006)
http://www.slayeroffice.com/articles/DOM/

14. JavaScript tutorial - DOM nodes and tree (2007)
http://www.howtocreate.co.uk/tutorials/javascript/dombasics

15. Wiklicky, H.: Applied Semantics - a 2nd Year Course in DoC at Imperial
College London.
http://www.doc.ic.ac.uk/ herbert/english/e-teaching.html

69

10 Appendix I - Constructing Minimal DOM

10.1 Node

The full IDL definition of a Node is as follows,

interface Node {

//NodeType
const unsigned short ELEMENT NODE = 1;
const unsigned short ATTRIBUTE NODE = 2;
const unsigned short TEXT NODE = 3;
const unsigned short CDATA SECTION NODE = 4;
const unsigned short ENTITY REFERENCE NODE = 5;
const unsigned short ENTITY NODE = 6;
const unsigned short PROCESSING INSTRUCTION NODE = 7;
const unsigned short COMMENT NODE = 8;
const unsigned short DOCUMENT NODE = 9;
const unsigned short DOCUMENT TYPE NODE = 10;
const unsigned short DOCUMENT FRAGMENT NODE = 11;
const unsigned short NOTATION NODE = 12;

readonly attribute DOMString nodeName;
attribute DOMString nodeValue;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;

Node insertBefore(in Node newChild, in Node refChild)
raises(DOMException);

Node replaceChild(in Node newChild, in Node oldChild)
raises(DOMException);

Node removeChild(in Node oldChild)
raises(DOMException);

Node appendChild(in Node newChild)
raises(DOMException);

boolean hasChildNodes();
Node cloneNode(in boolean deep);

70

};

This provides us with a list of the attributes and the methods that the Node
interface provides. The behaviour of these attributes and methods is given in
an English specification. For the scope of this project we are only interested in
manipulating the Nodes within the tree structure of documents and not in their
data content. We require only a single Node type so we omit the NodeType
constants mentioned at the start of the IDL definition. For the same reason we
can also omit the attributes “nodeType”, “nodeValue”, “attributes” and “own-
erDocument”. To represent whatever data is associated with a Node in a flat
fashion we use a single tag which is of the String type.
The remaining attributes are all read only, so in the interests of language inde-
pendence and model simplicity we choose to represent these attributes as a “get-
ter method”. So we have “getNodeName” for “nodeName”, “getParentNode”
for “parentNode” and “getChildNodes” for “childNodes”. By not providing any
set methods, we have in effect made these attributes read only.
Note that because “getChildNodes” returns a “NodeList” we are compelled to
provide the functionality of this interface in our specification. This is detailed
in the next section.
Given that we provide this “NodeList” structure and the method “getChildNodes”,
the attributes “firstChild”, “lastChild”, “previousSibling” and “nextSibling” are
no longer required, as we can obtain this information from the “NodeList” im-
plementation.
We will provide the methods “insertBefore”, “removeChild” and “appendChild”,
but not “replaceChild”, “hasChildNodes” or “cloneNode”, as these commands
can be simulated using the other commands we specify. (This will be proved in
the content of this paper).

10.2 NodeList

The IDL definition of a NodeList is as follows,

interface NodeList {
Node item(in unsigned long index);
readonly attribute unsigned long length;
};

This tells us that a NodeList is made up of indexed items, each of which is
a Node. A NodeList also has an associated length. Notice however that we
have not been given any information about how the list might be stored. It
could be an array, a linked list, or any other kind of list, but this does not
matter to DOM. Likewise we need to ensure that our specification maintains
this platform free nature. For convenience we shall be assuming that NodeLists
are 0 indexed, that is the first element is at position 0 in the list. We shall
provide the method “getItem” for the specified “item” method, and we provide

71

the read only attribute “Length” as a getter method called “getLength”. This
will keep our specification language independent and our model simple.

10.3 Constructors

Reading section 1.1.2 of the DOM Core Level 1 specification [12] we find the
following statement about memory management,

...ordinary constructors (in the Java or C++ sense) cannot be used to
create DOM objects, since the underlying objects to be constructed may
have little relationship to the DOM interfaces. The conventional solution
to this in object-oriented design is to define factory methods that create
instances of objects that implement the various interfaces. In the DOM
Level 1, objects implementing some interface “X” are created by a “crea-
teX()” method on the Document interface; this is because all DOM objects
live in the context of a specific Document.

As mentioned before, we are only interested in the structure of XML documents
in DOM, and we are only working with Nodes in the scope of this project. How-
ever, the Node is an abstract concept in DOM and to construct one we would
have to actually construct one of its concrete subclasses (A Text Node or At-
tribute Node for example). In the IDL definition above there is no mention of
a “createNode” method. In any practical case, one would only be interested
in the various specialised types of Node, however, due to our restriction to the
structural behaviour of DOM we are interested in this generic Node type. A
constructor method “createNode” for this generic Node type will be necessary
for our specification, and we model this on the “createElement” method.
We do not need to provide a constructor for the NodeList interface, as a
NodeList never occurs outside of the context of a Node, so they can be cre-
ated together in the same constructor.

10.4 Commands

Above we briefly discussed which commands we are choosing to work with.
Given below is the full list of commands that we shall be using in our specifi-
cation along with a brief English description, obtained from the existing DOM
specification, as to the behaviour of each command.

1. createNode(String: tag)
creates a new node with fresh id’s and its tag (representing the flat data
associated with this new node) is set to the input string

2. getNodeName(Node: node)
returns the sting stored in the tag of the node with the input identifier

72

3. getChildNodes(Node: parent)
returns the identifier of the nodelist of children for the node with the input
identifier

4. getParentNode(Node: child)
returns the parent node of the node with the input identifier

5. insertBefore(Node: parent, Node: newChild, Node: ref)
inserts the node with identifier newChild before the node with identifier ref
in the NodeList associated with the node with identifier parent

6. removeChild(Node: parent, Node: child)
removes the node with identifier child to the top grove level of the DOM
trees from the NodeList of the node with identifier parent and returns the
node identifier child1

7. append(Node: parent, Node: newChild)
puts the node with identifier newChild at the end of the NodeList of the
node with identifier parent

8. getLength(NodeList: fid)
returns the length of the NodeList with identifier fid

9. getItem(Int: length, NodeList: fid)
returns the identifier of the Node at position length of the NodeList with
identifier fid

You may notice that compared to the current DOM specification some of these
commands have an extra input Node. This is simply because DOM defines these
commands as methods called upon Node objects and we don’t want to concern
ourselves with this style of argument parsing. We choose to pass the Node the
method was called upon as an explicit input to that command.

73

