
Quicksort Revisited

Verifying Alternative Versions of Quicksort

Razvan Certezeanu1, Sophia Drossopoulou1, Benjamin Egelund-Muller1,
K. Rustan M. Leino1,2, Sinduran Sivarajan1, and Mark Wheelhouse1

rc2514@imperial.ac.uk, scd@imperial.ac.uk, be514@imperial.ac.uk,
leino@microsoft.com, ss7213@imperial.ac.uk, mjw03@imperial.ac.uk

1Imperial College London 2Microsoft Research
Department of Computing Redmond

Abstract. We verify the correctness of a recursive version of Tony
Hoare’s quicksort algorithm using the Hoare-logic based verification
tool Dafny. We then develop a non-standard, iterative version which is
based on a stack of pivot-locations rather than the standard stack of
ranges. We outline an incomplete Dafny proof for the latter.

Keywords: automated verification, algorithms, quicksort, program trans-
formation

1 Introduction

In 1959, while working on a project for automated translation from Russian to
English, Tony Hoare found a recurring need to be able to sort word sequences
into alphabetical order. To tackle this problem he invented an algorithm that was
significantly faster than existing alternatives. The publication of this algorithm
in 1961 as “Quicksort” [7] revolutionised the way we sort, and more generally,
the way we think about and develop algorithms.

Since then, quicksort has inspired practitioners and researchers alike, includ-
ing the recipient of this Festschrift. The algorithm has been modified and im-
plemented millions of times by experienced programmers and students alike in
several programming languages, and has even been choreographed as a Hungar-
ian dance [16]. As well as the fascination for its elegant and succinct presentation,
it is also interesting because it involves two inner recursive calls, and thus rea-
soning and program transformations applied to the algorithm are non-trivial.

In 1971, Foley and Hoare presented a hand-proof of the correctness of quick-
sort [5], and several proofs have been developed since. Proofs for the recursive
as well as the iterative setting have also been proposed by de Boer and his
co-authors in [1]. Recently, in his Turing Award lecture, Lamport showed an ab-
stract derivation of iterative quicksort [9]. More recently, and rather surprisingly,
de Gouw et al. discovered a subtle bug in Timsort, a sorting algorithm proposed
in 2002, and which is the implementation of java.util.Arrays.sort [13] for
non-primitive types, and part of the Android platform. They discovered the bug

while trying to prove the correctness of Timsort using the Hoare-logic based
tool Key [2].

In this paper, we reason about the correctness of two versions of quicksort: a
recursive version and an iterative version. We too use a Hoare logic-based tool,
namely Dafny [10].

Our recursive quicksort method deviates slightly from the standard version
presented in the literature, in that we split the array into three sub-arrays, the
middle one of length one, and then call the function recursively on the first and
third sub-arrays.

Our iterative quicksort method is, to our knowledge, novel, in that rather
than storing ranges (i.e. pairs of values) in a stack, we only store the locations
of the pivots (i.e. one value), thus saving both space and time.

We have used the tool Dafny to check our implementations. To facilitate the
proofs, we have defined and used lemmas in the proof of the code. We have
proven some, but not all of these lemmas in Dafny.

1.1 Contributions

The key contributions of our paper are as follows:

– A proof of correctness for our variant of recursive quicksort in Dafny.
– A new, iterative version of quicksort based on the pivot locations.
– A proof outline for the correctness of our iterative quicksort in Dafny.

The complete Dafny code for our work can be found at [3]. To the best of our
knowledge, there is no existing proof of imperative recursive quicksort in Dafny
before our work. However, Leino has recently developed a proof in Dafny of
the standard functional recursive algorithm, as well as an alternative version of
the iterative algorithm based on ranges. Both can be found in the Dafny test
suite [11]. Also, to the best our knowledge, there is no exiting version of iterative
quicksort based on pivots. A comparison of its efficiency with other algorithms
is future work.

The rest of this paper is organized as follows:

– Section 2 presents the notation and lemmas we will be using to specify and
prove quicksort.

– Section 3 shows three recursive versions quicksort:
1) Recursive quicksort as proposed in Hoare’s original paper.
2) Recursive quicksort as commonly seen in the literature.
3) Recursive quicksort with the variation that the two sub-ranges are off

by one, and an outline of its proof of correctness.
– Section 4 shows two iterative versions of quicksort:

1) Iterative quicksort with a stack simulation of recursion.
2) Novel iterative quicksort based on a stack of pivot locations, and outline

of its proof of correctness.
– Section 5 concludes the paper with an evaluation of our work and an iden-

tification of future directions of research.

2 Specifying Quicksort

We now turn to one of the most important parts of automated program verifi-
cation: specifying the program we wish to implement.

2.1 Sorting – The Task

Let’s start by defining the task of sorting the contents of an array.

Given an array a of integers1 we want to rearrange the array so that the
elements of the array are arranged in ascending order. Additionally, we
must ensure that no elements are added to or removed from the array.

2.2 Notation, Predicates and Lemmas

Throughout this paper we adopt the Dafny convention of treating arrays as
pointers to sequences of values. That is, we think of the array a as a pointer to
the sequence a[0], a[1], a[2], ..., a[|a| − 1], where |a| is the length of array a.

More formally, we define a notation for describing a range. For integers i, m
and n:

i∈ [m..n) ≡def m ≤ i < n

This notation then has a natural lifting to sequences. For a sequence a, value
v and integers m and n:

v∈a[m..n) ≡def ∃i∈ [m..n). [0 ≤ i < |a| ∧ a[i] = v]

where a[i] is the ith value of the sequence. Note above that the range m..n is
capped by the length of the sequence to ensure that no invalid dereferences take
place. We refer to a[m..n) as a slice. A slice is treated as a subsequence of the
original sequence and can be dereferenced as follows:

a[m..n)[i] =

{
a[m + i] if 0 ≤ m + i < |a|
undefined otherwise

This slice notation allows us to elegantly describe interesting properties about
arrays and sequences, such as:

a[m..n) ≤ x ≡def ∀v∈a[m..n). v ≤ x

a[m..n) ≤ b[p..q) ≡def ∀v∈a[m..n).∀v′∈b[p..q). v ≤ v′

For ease of notation, we introduce the short-hands a[..), a[..m), a[m..) which
describe a complete sequence, a sequence up to m and a sequence from m on-
wards, respectively. That is:

a[..) ≡def a[0..|a|) a[..m) ≡def a[0..m) a[m..) ≡def a[m..|a|)
1 The sorting task can actually be defined for an array of any type that has a less-

then-or-equal relation ≤.

We further adopt the notation that whenever an array reference a occurs in a
context expecting a slice, it should be interpreted as the slice a[..).

Note that Dafny represents sequences with the syntax a[m..n], which is equiv-
alent to the meaning of a[m..n) from our notation. Therefore, whenever the terms
a[m..n] or a[..] appear in our Dafny code, their meaning should be interpreted
as a[m..n), or a[..), respectively.

We introduce a notion of deep equality on sequences, denoted ≈. This de-
scribes when two sequences have exactly the same contents. That is:

a[..) ≈ b[..) ≡def |a| = |b| ∧ ∀i∈ [0..|a|). a[i] = b[i]

We define the concatenation of two sequences a ++ b such that:

|a ++ b| = |a|+ |b|

(a ++ b)[i] =

a[i] if 0 ≤ i < |a|
b[i− |a|] if |a| ≤ i < |a|+ |b|
undefined otherwise

We define a predicate that describes when a sequence is sorted. For a sequence
a and natural numbers i and j:

Sorted(a[i..j)) ≡def ∀m,n∈ [0..|a|). [i ≤ m ≤ n < j −→ a[m] ≤ a[n]]

We also define some other useful predicates over sequences and slices. For
sequences a and b, integers i, j, m and n and an arbitrary value v:

Count(a[i..j), v) ≡def |{k | k∈ [i..j) ∧ a[k] = v}|
a[i..j) ∼ b[m..n) ≡def ∀x.Count(a[i..j), x) = Count(b[m..n), x)

Swapped(a[..), b[..), i, j) ≡def |a| = |b| ∧ i, j∈ [0..|a|)
∧ b[i] = a[j] ∧ b[j] = a[i]
∧ ∀k∈ [0..|a|)\{i, j}. a[k] = b[k]

In the above:

– Count(a[i..j), v) tracks the number of times that v occurs in the slice a[i..j).
– a[i..j) ∼ b[m..n) states that slice a[i..j) is a permutation of slice b[m..n).
– Swapped(a[..), b[..), i, j) states that the sequences a[..) and b[..) are exactly

the same except that the elements at positions i and j have been swapped.

All the operators and predicates above are available, or can be easily encoded,
in Dafny. However, they cannot always be written in infix or symbolic notation.

Finally, we present some useful properties of sequences and their related
predicates. The following hold for all sequences a and b and for all integers i, j,
k, l, m and n:

Deep Equality:

a ≈ b −→ b ≈ a a ≈ b ∧ b ≈ c −→ a ≈ c

a ≈ b −→ |a| = |b| a ≈ b −→ a ∼ b

Ranges:

a ≈ b[0..i)++a[i..j)++b[j..|b|) ∧ m≤i≤j≤n −→ a ≈ b[0..m)++a[m..n)++b[n..|b|)
a ≈ b[0..i)++a[i..j)++b[j..|b|) ∧ a[i..j) ∼ b[i..j) −→ a ∼ b

a ≈ a[0..i)++b[i..j)++a[j..|a|) ∧ b ≈ c −→ a ≈ a[0..i)++c[i..j)++a[j..|a|)

Permutation:
a ∼ b −→ b ∼ a

a ∼ b ∧ b ∼ c −→ a ∼ c

a ∼ b −→ |a| = |b|

Swapping:
Swapped(a, b, i, i) −→ a ≈ b

Swapped(a, b, i, j) −→ a ∼ b

Sorting:

Sorted(a[i..j)) ∧ i ≤ m ∧ n ≤ j −→ Sorted(a[m..n))

2.3 Specifying Methods

Method specifications consist of a Precondition, expected to hold before the
method is executed, and a Postcondition, that the code must ensure holds after
the method terminates. We use the Dafny keywords requires and ensures to
refer to the precondition and postcondition of a method respectively. We use
the Dafny keyword assert within our code to introduce assertions, or mid-
conditions. We also use the Dafny keywords decreases and invariant to intro-
duce variants and invariants for loops and recursive methods.

Given some code C with precondition P and postcondition Q, we adopt the
total correctness interpretation of such a specification[12], whereby

For all program states that satisfy the precondition P , the code C will
run without faulting and will terminate in a program state that satisfies
the postcondition Q.

Sometimes, in our specifications, we need to refer to both the current and
initial values of some variables. For example, in the code snippet x := x+3, the
new value of x depends on its previous value. By default, all of our specifications
refer to the current values of variables. As in Dafny, we use the keyword old(.)
to indicate the value before a method call. For example, old(x) represents the
value of the program variable x before the call to the current method. Notice that
arrays are pointers to sequences. So, if we have an array a, the term old(a) is the
value of the pointer before the call, old(a)[..) represents the current contents of
the pointer before the call, while old(a[..)) represents the contents of the array
before the call.

When writing specifications we use both Dafny syntax and normal mathe-
matical notation as well as our sequence notation as developed in section 2.2.
For example, we write ∀ and ∧ rather than forall and &&.

2.4 The Specification

Sorting is specified as follows

method quicksort(a:array<int>)

requires a 6= null ∧ |a| > 0
ensures a[..) ∼ old(a[..)) ∧ Sorted(a[..))

This specification requires that the input be a non-null, non-empty array
(to rule out pathological input) and ensures that the resulting array is sorted.
Additionally, the specification states that no elements are added to or deleted
from the array.

3 Recursive Quicksort

Having identified the task that we need to solve, we now provide several different
implementations of quicksort, ranging from classic to more inventive solutions.

The fundamental idea behind the quicksort algorithm is “divide-and-conquer”:

1. Choose an element in the list – this element serves as the pivot. Set it aside
(e.g. move it to the beginning or end).

2. Partition the array of elements into two sets – those less than the pivot and
those greater than or equal to the pivot

3. Repeat steps 1 and 2 on each of the two resulting partitions until each set
has one or fewer elements.

3.1 The Original Quicksort

Hoare’s original quicksort program, as published in [7], is given as:

1 method quicksort(a:array<int>, from:nat, to:nat) {

2 if (from < to) then {

3 var i,j := partition(a, from, to);

4 quicksort(a, from, i);

5 quicksort(a, j, to);

6 }

7 }

To sort the whole array, from should be set to 0 and to should be set to |a|.
The code presented above makes use of a variant partition method that

does not require the caller to provide a pivot value and returns a pair rather than
a single value. The pivot value is selected arbitrarily from the range [from..to).
The returned pair specifies a range [i..j) of values that are equal to the chosen
pivot, with elements in the range [from..i) less than the chosen pivot and [j..to)
greater than the chosen pivot. More formally this can be specified as:

a[m..i) < a[i..j) < a[j..n) ∧ ∃v. [a[i..j) = v]

The standard version has also been studied in [1]. More recently, the original
version is not seen that often. This is perhaps due to the fact that when the
array has no duplicate elements, then the middle range will have length 1. i.e.
j = i + 1. The algorithm then behaves like the “standard” quicksort, which
we discuss next.

3.2 The Standard Quicksort

Usually [15], quicksort is presented with a method wrapper and uses a variant
of partition which requires a pivot and returns only one value.

1 method quicksort(a:array<int>){

2 quicksort(a, 0, a.Length)

3 }

4

5 method quicksort(a:array<int>, from:nat, to:nat) {

6 if (from < to) then {

7 var mid:int := partition(a, from, to, a[from]);

8 quicksort(a, from, mid);

9 quicksort(a, mid, to);

10 }

11 }

Partition: The partition method rearranges an array within set bounds ac-
cording to a pivot value, whilst leaving the rest of the array unmodified. This
rearrangement places all elements that are smaller than the pivot before all ele-
ments that are greater than or equal to the pivot. The method returns the array
index of the first element in the slice which is greater than or equal to the pivot.
It is specified as follows:

method partition(a:array<int>, from:nat, to:nat, pivot:int)

returns (r:nat)

requires a 6= null ∧ 0 ≤ from ≤ to ≤ |a|
ensures from ≤ r ≤ to

∧ a[from..r) < pivot ≤ a[r..to) ∧ a[..) ∼ old(a[..))
∧ a ≈ old(a[0..from)) ++ a[from..to) ++ old(a[to..|a|))

Note that in the case where all elements in the range are smaller than the pivot,
the method will return r = to. Similarly, when all elements in the range are
greater than or equal to the pivot, the method will return r = from.

3.3 Quicksort – Our Version

Below we show our version of recursive quicksort. In fact, this version was
shown to us by Krysia Broda. It is very similar to the standard version, but

with a little twist added: our version splits the array into three, rather than two
parts: one part that is smaller than, one part that is equal to, and one part that
is greater than or equal to, the pivot. Then, the recursive calls need only be
called on the first and the third sub-part; the pivot remains where it was placed
by swap in the current iteration.

Swap: The swap method switches the places of two elements within an array,
while leaving the rest of the array unmodified. It is specified, making use of our
Swapped predicate defined in section 2.2, as follows:

method swap(a:array<int>, i:nat, j:nat)

requires a 6= null ∧ i, j∈ [0..|a|)
ensures Swapped(a[..), old(a[..)), i, j)

The Code: In the listing below we give assertions about the state of the vari-
ables at the corresponding program points, shown in green. The full Dafny code
for the example below, together with the definitions of all the predicates used
can be found at [3].

1 method quicksort(a:array<int>, from:nat, to:nat)

2 requires a 6= null ∧ 0 ≤ from ≤ to ≤ |a|
3 modifies a

4 ensures a ≈ old(a[0..from)) ++ a[from..to) ++ old(a[to..|a|))
5 ∧ a[..) ∼ old(a[..)) ∧ Sorted(a[from..to))
6 decreases to− from

7 {

8 var a0:seq<int> := a[..];

9 if (from + 1 < to) {

10 var pivot:int := a[from];

11 assert a ≈ a0 ∧ pivot = a[from] ∧ a[..) ∼ old(a[..))
12

13 var mid:int := partition(a, from + 1, to, pivot);

14 assert from + 1 ≤ mid ≤ to ∧ pivot = a[from]

15 ∧ a[from + 1..mid) < pivot ≤ a[mid..to)

16 ∧ a ≈ a0[0..from + 1) ++ a[from + 1..to) ++ a[to..|a|)
17 ∧ a[..) ∼ old(a[..))
18

19 swap(a, from, mid - 1);

20 assert from ≤ mid− 1 ≤ to

21 ∧ a[from..mid− 1) < a[mid-1] ≤ a[mid..to)

22 ∧ a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
23 ∧ a[..) ∼ old(a[..))
24

25 quicksort(a, from, mid - 1);

26 assert from ≤ mid− 1 ≤ to

27 ∧ a[from..mid− 1) < a[mid-1] ≤ a[mid..to)

28 ∧ a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
29 ∧ a[..) ∼ old(a[..)) ∧ Sorted(a[from..mid− 1))
30

31 quicksort(a, mid, to);

32 assert a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
33 ∧ a[..) ∼ old(a[..)) ∧ Sorted(a[from..to))
34 }

35 }

In Fig. 1. we show the assertions at several program points diagrammatically:

– PRE: before the method call (i.e. the precondition)
– MID 2: after the call of partition (i.e. at line 14)
– MID 3: after the call of swap (i.e. at line 20)
– MID 4: after the first recursive call of quicksort (i.e. at line 26)
– MID 5: after the second recursive call of quicksort (i.e. at line 32)
– POST: as an implication of the previous assertion (i.e. again at line 32)

We use F, T for from and to, and K as a shorthand for mid-1.

Fig. 1. Diagrammatic assertions for our recursive quicksort program.

Verification: We have verified the above code using Dafny. In order to do this,
we defined and used four lemmas. We show below how the verification works:
we have included in green the definition of auxiliary variables (lines 8, 12, 17,
21 and 25 below), and the calls of the lemmas (lines 18, 22, 26 and 27 below).
The complete Dafny code can be found at [3].

1method quicksort(a:array<int>, from:nat, to:nat)

2 requires a 6= null ∧ 0 ≤ from ≤ to ≤ |a|
3 modifies a

4 ensures a ≈ old(a[0..from)) ++ a[from..to) ++ old(a[to..|a|))
5 ∧ a[..) ∼ old(a[..)) ∧ Sorted(a[from..to))
6 decreases to− from

7 {

8 var a0:seq<int> := a[..];

9 if (from + 1 < to) {

10 var pivot:int := a[from];

11 var mid:int := partition(a, from + 1, to, pivot);

12 var a1:seq<int> := a[..];

13

14 swap(a, from, mid - 1);

15 var a2:seq<int> := a[..];

16 L swap impl sameUpTo(a2, a1, from, mid -1);

17

18 quicksort(a, from, mid - 1);

19 var a3:seq<int> := a[..];

20 L sameUpTo prsrv less(a3, a2, pivot, mid, to);

21

22 quicksort(a, mid, to);

23 var a4:seq<int> := a[..];

24 L sameUpTo prsrv grEq(a4, a3, pivot, mid, to);

25 L conc impl Sorted(a4, from, mid, to);

26 }

27 }

From the eighteen assertions mentioned in the code, Dafny only needed help
with the proofs of four, and needed no help at all for the case where from+1 ≥ to.
We now list the lemmas used above, using the convention that a, b, c stand for
sequences of type T , while elem∈T is a possible value, and i, j, k, l, m and n
are natural numbers.

L swap impl sameUpTo(a, b, i, j,):

|a| = |b| ∧ i ≤ j < |a| ∧ a[..) ∼ b[..) ∧ Swapped(a, b, i, j)
−→ a ≈ b[0..i) ++ a[i..j + 1) ++ b[j + 1..) ∧ a[..) ∼ b[..)

This lemma says that swapping creates a permutation of the original array,
leaving the [..i) and the [i + 1..) range unmodified. The proof follows by
unfolding the definitions.

L sameUpTo prsrv less(a, b, elem, m, n):

|a| = |b| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..) ∧ a[..) ∼ b[..)
∧ b[m..n) < elem

−→ a[m..n) < elem

This lemma says that if an array a is a permutation of an array b, and is
identical with b in the ranges [..m) and [n..), then b is smaller than elem in
the range [m..n), then a is also smaller than elem in the range [m..n). The
proof follows by establishing that a[m..m) ∼ b[m..m).

L sameUpTo prsrv grEq(a, b, elem, m, n):

|a| = |b| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..) ∧ a[..) ∼ b[..)
∧ elem ≤ b[m..n)

−→ elem ≤ a[m..n)

This lemma says that if an array a is a permutation of an array b, and is
identical with b in the ranges [..m) and [n..), then b is greater or equal to
elem in the range [m..n), then a is also greater or equal to elem in the range
[m..n). The proof follows by establishing that a[m..m) ∼ b[m..m).

L conc impl Sorted(a, i, j, k):

i < j ≤ k ≤ |a| ∧ i < |a| ∧ Sorted(a[i..j − 1)) ∧ Sorted(a[j..k))
∧ a[i..j − 1) < a[j − 1] ≤ a[j..)

−→ Sorted(a[i..k))

This lemma says that concatenation of two sorted sub-ranges [i..j − 1) and
[j..k), where the left sub-range contains smaller elements than the element
at a[j − 1], and where a[j − 1] is smaller or equal to the elements at [j..k)
produces a sorted range [i..k). The proof follows by unfolding the definitions.

4 Iterative Quicksort

An iterative version of quicksort can be obtained from the recursive one directly
by applying the standard transformation of recursion. This is shown in section
4.1. A more interesting (and more efficient) iterative version can be obtained if
we observe some properties of the first version. This is shown in section 4.2.

4.1 Iterative Quicksort Version 1 – Simulating Method Arguments

The Code: We use a stack, here called memos, to keep track of the parame-
ters of the recursive method. We simulate the push/pop operations by decre-
menting/incrementing the value of top. We start by pushing 0 and |a| onto
memos (lines 9 and 10). Then, we read the values of from and to iteratively
from the stack (lines 13 and 14), until the stack is empty. The first recur-
sive call, quicksort(a,f,mid-1), is represented by pushing the values from

and mid − 1 onto the stack (lines 21 and 22), and the second recursive call,
quicksort(a,mid,to), is represented by pushing the values to and mid onto
the stack (lines 23 and 24).

1 method quicksort(a:array<int>)

2 requires a 6= null ∧ |a| > 0
3 modifies a

4 ensures a[..) ∼ old(a[..)) ∧ Sorted(a[..))
5 {

6 var len:int := 2 * a.Length

7 var memos:array<int> := new int[len];

8 var top:int := len - 2;

9 memos[top] := 0;

10 memos[top + 1] := a.Length;

11

12 while(top < len){

13 var from:int := memos[top];

14 var to:int := memos[top + 1];

15 top := top + 2;

16 if (from + 1 < to) {

17 var pivot:int := a[from];

18 var mid:int := partition(a, from + 1, to, pivot);

19 swap(a, from, mid - 1);

20 top := top - 4;

21 memos[top] := from;

22 memos[top + 1] := mid - 1;

23 memos[top + 2] := mid;

24 memos[top + 3] := to;

25 }

26 }

27 }

We sketch the loop invariant for this version of quicksort in Fig. 2., but
do not discuss the verification in more detail.

Fig. 2. Invariant sketch for our iterative “simulated recursion” quicksort program.

4.2 Iterative Quicksort Version 2 – Pivot Storage

Preliminaries: We now discuss the second version of iterative quicksort,
which, to the best of our knowledge, is novel. Rather than just translating the
recursion into iteration, as we did in section 4.1, we instead draw inspiration
from observing the following two facts about the code from section 4.1: Firstly,
neighbouring to and from values are off by 1 - this can be seen in lines 22 and
23. Secondly, after swapping the array elements at from and (mid− 1) (line 19),
the contents of the array at (mid− 1) never changes.

This led us to the idea that, rather than pushing and popping the ranges on
which we operate (i.e. the values from and to) we can instead work with the
final location of the pivot (mid− 1). We know that the contents of the array at
this location will not change, and we also know that the next range to operate on
will start at the location succeeding the location of the current pivot. Therefore,
we use an array of pivot locations, called pivs.

We know that pivs contains strictly increasing values:

∀i, j∈ [0..|pivs|). [i < j → pivs[i] < pivs[j]]

We also know the pivot locations delineate array segments with increasing
values and that the contents of array a at location pivs[i] will not change in
subsequent iterations, since all the values preceding it are smaller, and all values
coming after it are greater of equal. We encode these two properties as follows:2

∀i∈ [top..|a|). a[..pivs[i]) < a[pivs[i]] ≤ a[pivs[i] + 1..)

We use the variable top with values from the interval [0..|a| + 1), to range
over the indices of the array pivs, so that the contents of the slice pivs[top+1..)
is always defined. We initialize top with |a|. We increment top in order to pop
a pivot location, and decrement it in order to push a pivot location. This gives
us the invariant:

0 ≤ top ≤ |a|
We also use variables from and to to delineate the range we are currently

operating on. We have the invariants that

0 ≤ top ≤ |a| ∧ 0 ≤ from ≤ to = pivs[top] ∧ pivs[|a|] = |a|

that the array is sorted up to and including the index from, and that all values
before from are smaller or equal to those starting from and onwards:

Sorted(a[..from + 1)) ∧ a[..from) ≤ a[from..)

Note: while the contents of array a at location pivs[i] will not change in subse-
quent iterations, the contents of a at location from might change at subsequent
iterations, as it is possible that a[from] > a[from+k] for some k∈ IN.

2 The careful reader will notice that the array look-up a[pivs[i]+1] is not always
defined. Nevertheless, the assertion is well-formed, because it stands for
∀i∈ [top..|a|).∀j∈ [0..pivs[i]).∀k∈ [pivs[i]+1..|a|). a[j] < a[pivs[i]] ≤ a[k]

The Code: The deliberations from above lead us to the code below. Essentially,
we have a loop which either increases from, or decreases the distance between
to and from. The loop terminates when a.Length− from ≤ 1, which, given the
invariants from above, implies that Sorted(a[..|a|)). The loop invariant consists
of nine conjuncts.

1 method quicksort(a:array<int>)

2 requires a 6= null ∧ |a| > 0
3 modifies a

4 ensures a[..) ∼ old(a[..)) ∧ Sorted(a[..))
5 {

6 var pivs:array<int> := new int[a.Length+1];

7 pivs[a.Length]:= a.Length;

8 var from, to, top := 0, a.Length, a.Length;

9

10 while (a.Length - from > 1)

11 invariant 0 ≤ top ≤ |a| ∧ 0 ≤ from ≤ to = pivs[top]

12 ∧ pivs[|a|] = |a| ∧ ∀i∈ [top..|a|+ 1). pivs[i] ≤ i + 1
13 ∧ ∀i, j∈ [top..|a|+ 1). [i < j → pivs[i] < pivs[j]]
14 ∧ ∀i∈ [top..|a|). a[..pivs[i]) < a[pivs[i]] ≤ a[pivs[i]..)
15 ∧ a[..from) ≤ a[from..)
16 ∧ a[..) ∼ old(a[..)) ∧ Sorted(a[..from + 1))
17 decreases |a| − from, to− from

18 {

19

20 if ((to - from) <= 1) {

21 L sorted combine(a, from, to);

22 L prsrv pivot(a,to);

23

24 from := to + 1;

25 top := top + 1;

26 to := pivs[top];

27 } else {

28 var a2:seq<int> := a[..];

29

30 var pivot:int := a[from];

31 var mid:nat := partition(a, from + 1, to, pivot);

32 var a2:seq<int> := a[..];

33

34 swap(a, from, mid - 1);

35 var a3:seq<int> := a[..];

36 L swap prsrv less(a3, a2, from, mid);

37 L sameUpTo trans(a3, a2, a1, from, to);

38 L sameUpTo prsv sorted(a3, a1, from, to);

39

40 top := top - 1;

41 pivs[top] := mid - 1;

42 to := mid - 1;

43 }

44 }

45 }

We sketch the loop invariant for this version of quicksort in Fig. 3..

Fig. 3. Invariant sketch for our iterative “pivot storage” quicksort program.

Verification: In our Dafny proof we wrote twenty-four assert statements to
guide the prover, and called five lemmas at the code locations listed above. The
lemmas are given below and proven in the next subsection. In the following, a,
b and c stand for sequences, while i, j, k, m and n are natural numbers.

L sorted combine(a, m, n):

m ≤ n ≤ m + 1 ∧ Sorted(a[..m + 1)) ∧ a[..n) < a[n] ≤ a[n + 1..)
−→ Sorted(a[..m + 2))

The lemma above increases the range for which we know that an array a is
sorted.

L prsrv pivot(a, m):

m < |a| ∧ a[..m) < a[m] ≤ a[m + 1..) −→ a[..m + 1) ≤ a[m + 1..)

The lemma above increases the range for which we know that elements are
smaller than the elements in the remaining array.

L swap prsrv less(a, b, m, n):

m < n ≤ |b| ∧ b[..m) < b[m..) ∧ b[m + 1..n) < b[m] ∧ |a| = |b|
∧ Swapped(a, b, m, n− 1)

−→ a[..m) < a[m..) ∧ a[m..n− 1) < a[n− 1]

The lemma above asserts that, after swapping, a pivot correctly partitions
the array. The left subsequence is smaller than the right subsequence and
the middle subsequence is smaller than the element a[n− 1].

L sameUpTo trans(a, b, c, m, n):

|a| = |b| = |c| ∧ m < n ≤ |a| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..)
∧ a[..) ∼ b[..) ∧ b ≈ c[..m + 1) ++ b[m + 1..n) ++ c[n..)
∧ b[..) ∼ c[..)

−→ a ≈ c[..m) ++ a[m..n) ++ c[n..) ∧ a[..) ∼ c[..)

The lemma above asserts that permutation, and array composition from sub-
arrays are transitive relations.

L sameUpTo prsv sorted(a, b, i, j):

|a| = |b| ∧ i < j ≤ |b| ∧ Sorted(b[..i + 1)) ∧ a[..i) ≤ a[i..)
∧ a ≈ b[..i) ++ a[i..j) ++ b[j..)

−→ Sorted(a[..i + 1))

This lemma ensures that swapping preserves sortedness of sub-ranges of the
array.

4.3 Proofs

We now show the proofs of these lemmas.

Proof of L sorted combine(a, m, n):

Given
(1) m ≤ n ≤ m + 1
(2) Sorted(a[..m + 1))
(3) a[..n) < a[n] ≤ a[n + 1..)

To show
(A) Sorted(a[..m + 2))

From (1), we obtain that either m = n or m + 1 = n. We proceed by case
analysis.

1st Case:
(4) m = n
Then we have
(5) a[..m) < a[m] ≤ a[m + 1..) from (3) and (4)
(6) a[m] < a[m + 1] from (5)
(A) Sorted(a[..m + 2)) from (2) and (6)

2nd Case:
(4) m + 1 = n
Then we have
(5) a[..m + 1) < a[m + 1] from (3) and (4)
(A) Sorted(a[..m + 2)) from (2) and (5)

Proof of L prsrv pivot(a, m): by unfolding the definitions.

Proof of L swap prsrv less(a, b, m, n):

Given
(1) m < n ≤ |b|
(2) b[..m) < b[m..)
(3) b[m + 1..n) < b[m] ≤ b[n + 1..)
(4) |a| = |b|
(5) Swapped(a, b, m, n− 1)

To Show
(A) a[..m) < a[m..)
(B) a[m..n− 1) < a[n− 1] ≤ a[n..)

We obtain
(6) a[..m) ≈ b[..m) from (5)
(7) a[m] = b[n− 1] from (5)
(8) a[m + 1..n− 1) ≈ b[m + 1..n− 1) from (5)
(9) a[n− 1] = b[m] from (5)
(10) a[n..) ≈ b[n..) from (5)
(A) a[..m) < a[m..) from (2), (7)-(10)
(11) a[m..n− 1) ≈ b[n− 1] ++ b[m + 1..n− 1) from (7), (8)
(12) a[m..n− 1) < b[m] from (11), (2) and (3)
(13) a[m..n− 1) < a[n− 1] from (12), (9)
(14) a[n− 1] ≤ a[n..) from (3), (9) and (10)
(B) a[m..n− 1) < a[n− 1] ≤ a[n..) from (13) and (14)

Proof of L sameUpTo trans(a, b, c, m, n):

Given
(1) |a| = |b| = |c|
(2) m < n ≤ |a|
(3) a ≈ b[..m) ++ a[m..n) ++ b[n..)
(4) a[..) ∼ b[..)
(5) b ≈ c[..m + 1) ++ b[m + 1..n) ++ c[n..)
(6) b[..) ∼ [..c)

To Show
(A) a ≈ c[..m) ++ a[m..n) ++ c[n..)
(B) a[..) ∼ c[..)

We obtain
(B) a[..) ∼ c[..) from (4) and (6)
(7) b[..m) ≈ c[..m) from (5), and by m < m + 1
(8) b[n..) ≈ c[n..) from (5)
(A) a ≈ c[..m) ++ a[m..n) ++ c[n..) from (3), (7) and (8)

Proof of L sameUpTo prsv sorted(a, b, i, j):

Given
(1) |a| = |b|
(2) i < j ≤ |b|
(3) Sorted(b[..i + 1))
(4) a[..i) ≤ a[i..)
(5) a ≈ b[..i) ++ a[i..k) ++ b[k..)

To Show
(A) Sorted(a[..i + 1))

We obtain
(6) Sorted(b[..i)) from (3) and because i < i + 1
(7) Sorted(a[..i)) from (5) and (6)
(8) i > 1 → a[i− 1] ≤ a[i] from (4)
(A) Sorted(a[..i + 1)) from (7) and (8)

5 Experiences, Conclusions and Future Work

Despite extensive testing and hand-written proofs, it was reassuring when Dafny
confirmed the correctness of our quicksort. We found array-sequence infix op-
erators to be useful in the development of both the algorithm and reasoning.

Dafny was extremely effective in helping us iron out many little, fiddly bugs
at the original stages of our work. As we progressed, the process became both
slow and addictive. Those of us new to Dafny were often surprised to see that
Dafny/Z3 could automatically discharge proof obligations which were, in our
opinion, non-trivial, while it was often unable to discharge what we considered
trivial ones. This was due to our limited previous understanding of Z3.

We therefore proceeded in a somewhat experimental fashion. We inserted
assume statements for all the proof obligations, and gradually replaced them by
assert statements. When the verifier was unable to discharge an obligation, we
wrote a lemma, whose validity we checked through hand-written proofs. As a
result, the lemmas we have developed do not seem to be the most interesting or
intuitive ones, and their choice might have been affected by the particular order
in which we happened to require them.

The computational power needed for the proofs to go through was consider-
able. Therefore, we adopted little tricks to focus the tool on particular aspects of
the proof. For example, we would replace part of the code with assume false,
so that the tool would not need to check validity past this point. We also split the
proof of the pivot-based iterative quicksort into two: First we replaced the code
in the else branch by assume false. This let us prove that the initialization
establishes the loop invariant and that the then branch of the loop preserves
it. Then we wrote a function whose body consists of assume statements for all
the loop invariants, followed by the code from the else branch of the loop and
ending in assert statements for all the loop invariants. This let us prove that
the else branch of the loop also preserves the loop invariant.

The experimental fashion for discovering useful lemmas, and the ticks to focus
the tool on certain aspects are often seen in the Verification Corner videos [14].

We believe that Visual Studio should provide more automatic support for steer-
ing the proof effort and more help with interactive program and proof develop-
ment.

As future work, we would like to complete the proofs of the lemmas we
have used, complete the proofs of the other two versions of quicksort, and try
and unify the arguments used in the various proofs. We would also like to run
benchmarks to compare the efficiency of our pivot-based algorithm with that of
other algorithms in the literature. Finally, we want to port the Dafny proofs to
our tool Apollo [4], which maps Java, Haskell code and proof idioms onto Dafny.

Acknowledgments:

We thank Krysia Broda for showing us the recursive, non-standard version of
quicksort, and the anonymous reviewers of this volume for valuable suggestions
and pointers.

Razvan Certezeanu, Benjamin Egelund-Muller and Sinduran Sivarajan thank
the Department of Computing at Imperial College for funding their Undergradu-
ate Research Opportunities Programme (UROP) Placements, undertaken under
Mark Wheelhouse’s supervision, which they spent working on Apollo, and this
paper.

Sophia Drossopoulou thanks Microsoft Research and Judith Bishop for a re-
search gift and her very warm hospitality at Microsoft Research, and the EU
project Upscale, FP7-612985, for supporting part of this work, and for the op-
portunity to collaborate with Frank S. de Boer, the recipient of this Festschrift.

References

1. Apt, K., Boer, F., Olderog, E.: Verification of sequential and concurrent programs.
Springer, Dordrecht (2009).

2. Beckert, B., Hahnle, R., Schmitt, P.: Verification of Object-Oriented Software. The
KeY Approach. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg (2006).

3. Certezeanu, R., Drossopoulou, S., Egelund-Muller, B., Sivarajan, S., Wheelhouse,
M., Leino, K.: Dafny Code for Variations on Quicksort,
http://www.doc.ic.ac.uk/~mjw03/research/quicksort.html.

4. Certezeanu, R., Drossopoulou, S., Egelund-Muller, B., Sivarajan, S., Wheelhouse,
M., Leino, K.: Apollo: An interactive Program and Proof development tool for Java
and Haskell, based on Dafny. --toappear--.

5. Foley, M., Hoare, C.: Proof of a recursive program: Quicksort. The Computer Jour-
nal. 14, 391-395 (1971).

6. Gouw, S., Rot, J., Boer, F., Bubel, R., Hahnle, R.: OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case.
CAV (1), Lecture Notes in Computer Science. 9206, 273-289 (2015).

7. Hoare, C.: Algorithm 64: Quicksort. Communications of the ACM. 4, 321 (1961).

8. Hoare, C.: An axiomatic basis for computer programming. Communications of the
ACM. 12, 576-580 (1969).

9. Lamort, L.: Thinking Above the Code,
https://www.youtube.com/watch?v=-4Yp3j_jk8Q.

http://www.doc.ic.ac.uk/~mjw03/research/quicksort.html
--to appear--
https://www.youtube.com/watch?v=-4Yp3j_jk8Q

10. Leino, K.: Dafny: An Automatic Program Verifier for Functional Correctness.
LNCS Springer. 6355, 348-370 (2010).

11. Leino, K.: Dafny: An Automatic Program Verifier for Functional Correctness,
http://dafny.codeplex.com.

12. Manna, Z.: Mathematical theory of computation. McGraw-Hill, New York (1974).
13. Oracle Documentation: Arrays (Java Platform SE 7),

http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html.
14. The Verification Corner - Microsoft Research,

http://research.microsoft.com/en-us/projects/verificationcorner.
15. Wikipedia: Quicksort, https://en.wikipedia.org/wiki/Quicksort.
16. YouTube: Quick-sort with Hungarian (Kkllmenti legnyes) folk dance,

https://www.youtube.com/watch?v=ywWBy6J5gz8.

http://dafny.codeplex.com
http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
http://research.microsoft.com/en-us/projects/verificationcorner
https://en.wikipedia.org/wiki/Quicksort
https://www.youtube.com/watch?v=ywWBy6J5gz8

	Quicksort Revisited

