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Introducing Emotion Recognition

Automatic emotion recognition is a multi-diverse research area

Machine Learning, Human-Computer Interaction, Computer Vision
but also Psychology, Behavioural & Cognitive Sciences.

The ultimate goal

Is to generate robust, accurate and efficient emotion recognition
systems operating in real-life scenarios.
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Focus of Past Research

Traditionally, research focused on analysing posed emotional
expressions, in controlled laboratory environments focusing on a
set of discrete (basic) emotions (e.g. anger, happiness)

Questions w.r.t. goal

Could the resulting systems be applied to real-life scenarios?
Are these sets of basic emotions representative in everyday life
situations?
Can the systems trained on posed emotions also be used for
spontaneous (i.e. naturalistic) emotion recognition?
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State-of-the-art Research & Our Work

Traditionally, research focused on analysing posed emotional
expressions, in controlled laboratory environments focusing on a
set of discrete (basic) emotions (e.g. anger, happiness)

Recently, research in emotion recognition has shifted to analysing
spontaneous emotion expressions in real-life scenarios, while
continuous emotion recognition (i.e. instead of discrete categories,
a set of latent dimensions) has been gaining interest.

The project follows this shift in the field and explores both discrete
and continuous spontaneous emotion recognition
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Description of Affect & Emotion

Three basic approaches to describing emotion

Set of discrete emotions

Number of latent dimensions

Appraisal-based (context-dependent, person-dependent
evaluations of events)

Will briefly discuss the first two approaches.
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Categorical Approach (Discrete)

Common Approach: A Set of Discrete, Basic Emotions

The approach is based on a set of emotions which are
biologically hard-wired to humans and can be recognised
independently of factors such as culture and race.

Interesting to note that such theories have been around since
the 3rd century B.C. (Stoics, the Li Chi encyclopedia).

Modern theory accepts the following emotions as basic:
Happiness, sadness, surprise, fear, anger and disgust.

+ Intuitive mapping for humans.

− Criticism on whether this model can capture complex
emotional states. Researchers argue that these basic emotions
are a small fragment of more complex & subtle emotions
expressed in every-day life (e.g. boredom, tiredness).
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Dimensional Approach

Much more recent approach, initiated by Wilhelm Wundt (1897)

Russel’s valence/arousal space

Valence: pleasantness (positive) or unpleasantness (negative).

Arousal: relaxed / passive vs. aroused / active.

unhappy

angry

suprised
Arousal

elated

happy

relaxed

tired

bored

Valenceneutral
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Dimensional Approach (2)

Much more recent approach, initiated by Wilhelm Wundt (1897)

Russel’s valence/arousal space

Valence: pleasantness (positive) or unpleasantness (negative).

Arousal: relaxed / passive vs. aroused / active.

+ Much more expressive than discrete labels, allows the
expression of continuous emotional states.

− Certain emotions can become degenerately indistinguishable.

− A set of emotions falls out of this dimensional space.
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Emotion Perception in Humans

Affective information in human-to-human interaction is
communicated over a set of modalities (audio, visual, tactile),
corresponding to human senses. Each modality has a set of
related cues, e.g. facial expressions and body gestures for the
visual.

Fusing sets of cues/modalities can resolve ambiguities, and is
more naturalistic w.r.t. human emotion perception (see figure
below).
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Defining the Project

We use the SAL database: 4 subjects interacting with a virtual
avatar. Each audiovisual session is annotated manually by 3 or 4
trained humans (the coders) in the valence/arousal emotion space.

We extract two sets of audiovisual segments from the database:
the set of negative and positive emotion expressions, along with
the valence/arousal ground truth.

We perform audiovisual emotion recognition by fusing the
audio, shoulder and facial expression cues.

For discrete emotion recognition, we focus on classifying our
audiovisual data into two coarse classes: Positive vs. Negative.

The scenario relating to continuous emotion recognition
(which is our focus) relies on predicting the valence/arousal
distribution of values.
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Learning Techniques

Discrete: Coupled Hidden Markov Models (CHMMs), Support
Vector Machines (SVM).

Continuous: Support Vector Machines for Regression (SVR),
Long Short-Term Memory (LSTM) Recurrent Neural
Networks.

Our focus lies generally in methods for continuous emotion
recognition. We will now briefly describe some of them.
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Support Vector Machines

For a binary classification problem, given a set of training input
vectors xi ∈ Rn and corresponding labels yi ∈ {−1, 1}.

A SVM will return the separating hyperplane which generates the

maximal margin, thus minimising the generalisation error according

to statistical learning theory.

Separating hyperplane 

Margin 

Classify as + Classify as -

Support Vectors
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Non Linearly-separable Datasets

From statistical learning theory: The generalisation error does not
depend on the dimensionality.

The xi’s of the input problem define the input space. Map into a

(higher) dimensionality space (the feature space) using a kernel to

replace the dot product in the quadratic optimisation equations of

SVM. In the figure, this solves the XOR problem by mapping to 3D.
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Soft Margins and Slack Variables

Previously, no points were allowed to fall in the margin (hard
margin constraint).

The model would then have to fit the noise in the training set.

Remedy: use a set of slack variables ξ in order to allow some
points to fall inside the margin.

Assuming Φm is the function that maximises the margin when
minimised, the optimisation problem for SVMs becomes:

min[Φm + C
m∑

i=1

ξi ]

The error penalty is the constant C > 0, which balances the
tradeoff between maximising the margin and tolerating
training errors. The higher it is the less errors.
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Support Vector Machines for Regression

Use a loss function to weight the error of the point with respect to
the distance from the correct prediction. Using ε insensitive
regression, there is no charge for a band ε from the estimation to
the actual training instance.

Other concepts generalise directly from SVM.
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Recurrent Neural Networks (RNNs)

Recurrent neural networks, in contrast to feedforward neural networks
allow feedback connections which implicitly maintain an internal state of
the network representing past inputs.

A typical training algorithm is Back-Propagation Through Time
(BPTT), where the network is unfolded for n time steps (figure).
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RNNs vs Long Short-Term Memory (LSTM) RNNs

Hochreiter (1991) shows that in traditional RNNs, the error
flowing backwards either vanishes or grows exponentially. Thus,
long-range dependencies can not be learnt.

LSTMs offer a solution:

Use a basic unit called Constant Error Carousel (CEC):
Essentially a node with one feedback connection to itself, with
a weight of 1 and a linear activation function. This keeps the
local error flow constant.
A memory cell contains a CEC and the input/output gates,
which are multiplicatively involved in determining the
activation and the output of the cell. They are supposed to
learn when to propagate the error backwards and when to
allow activations to enter/exit the cell.
This way LSTMs can learn long-range dependencies in the
input data.
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The Memory Cell

An LSTM memory cell along with the input gates, the CEC and the
nonlinear squashing/scaling functions. The cell state is sc .

inj

inj

out j

out j

w ic j

wi c j

yc j

g h1.0

net
w i w i

yinj yout j

net c j

g yinj

= g+sc j
sc j

yinj

h yout j

net

Some extensions:
Forget Gates: Avoid the states sc growing unboundedly by
replacing the CEC weight with the activation of a gate (Learn
to forget).
Peephole Connections: Connect the CEC with the gates.
Bidirectional: Train two networks, one with the sequence
forwards and the other in backwards, in order to learn
dependencies not only w.r.t. the past but also w.r.t. the future.
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LSTMs vs SVM(R)

A comparison of basic characteristics also taking into account issues
specific to emotion recognition:

LSTMs are dynamic learning techniques, SVM(R) are static.
Dynamic learning allows us to capture ”emotional history” -
LSTMs can capture long-range dependencies. Crucial w.r.t.
the temporal dynamics of human emotion expression.

Both methods can capture non-linear correlations due to using
non-linear kernel functions (kernels for SVM(R),
squashing/scaling functions for LSTMs).

SVM(R)s optimise a convex function; they have no problems
of getting stuck in local optima, unlike methods for learning in
neural networks.

SVM(R)s training does not only rely on the training error for
stopping, as the goal is to maximise the margin. Neural
networks are prone to overfitting.
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Pre-processing & Segmentation

We have a set of audiovisual sessions, annotated by 3-4 coders in
the valence/arousal emotion space.

The goal for our segmentation is to produce audiovisual segments
belonging to the set of positive/negative emotions, with a set of
valence/arousal values to be used as ground truth.

We also attempt to capture a baseline - a condition against which
the classifier can learn to compare against.

The experimentation was an iterative procedure:

Determine normalisation/segmentation procedure.

Segment according to above, generate ground truth.

Evaluate ground truth, inspect video segments.

Segmentation & Feature-Extraction Pre-processing 21/47
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Pre-processing: Our final selection

To ensure a common time scale

We bin the annotations per video frame (0.4 seconds, 25 fps)

To suppress inter-coder variances

We normalise each set of annotations to have a zero mean locally.

To fill-in missing values in annotations

We perform cubic interpolation, maintaining the shape and the
maxima of the distributions.
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Pre-processing: Normalisation Example

Normalising to zero mean locally reduces the inter-coder MSE
from 0.083 to 0.055. Figure (b) is normalised.
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Segmentation

We will provide the segmentation procedure on an intuitive level, for
extracting a positive emotion expression (the negative case is similar)

For all coders c which annotate each session, find each set of
transitions to a positive emotional state which are within a
predefined offset of 0.5 seconds.

Match this set (giving precedence to the number of agreeing
coders) and time-shift to produce final averaged values for frames,
valence and arousal.

Where there are only two coders, weight by using their correlation
w.r.t. the rest of the coders in order to propagate information from
all the coders to the agreeing subset.

The transition to a positive emotional state is determined by a sign

change of the valence values turning positive. We detect the turning

back to a non-positive emotional state when the sign changes again.
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Segmentation: Time Shifting
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Feature Extraction

We extract the following features from the segments produced:

Audio Cues: We extract the MFC coefficients and prosody
features related to pitch, energy, leading to a set of 15
features. We removed the background speech and suppressed
the noise in the clips.
Facial Expression Cues: Tracking 20 2D points, generating 40
features.
Shoulder Cues: Five 2D points are tracked, producing a 10
dimension feature vector.
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Discrete Emotion Recognition

Classify resulting segments into positive/negative

Subject-Independent: Leave one subject at each fold.

Subject-Dependent: Perform typical 10-fold cross validation.

Results show that subject-independent is difficult with just 4
subjects.

We gained 10% accuracy by noise reduction/background speech
removal for the audio cues.

We present the results attained from using CHMMs for subject
dependent (which can also be theoretically justified)

F S A FS SA FA FSA

73.13% 73.88% 61.19% 78.36% 68.66% 70.9% 79.1%

Experimental Results Discrete Emotion Recognition 27/47
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Classification in the Likelihood Space (1)

(C)HMMs are generative models. We have one model for
each of the two classes that we perform recognition on.

Given the sequence of features, the observations, each HMM
returns a likelihood for that specific model having produced
the specific sequence.

The maximum likelihood (ML) principle assumes that the
correct network is the one with the maximum likelihood; this
assumes that the learnt distribution is the true distribution,
something that is not always the case.

Let us consider the 2D space of points (l1, l2), with each
dimension corresponding to the likelihood of each network.

The ML classification can be imagined as a line that bisects
the space.
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Classification in the Likelihood Space (2)

We shift the line to better fit the training data. This does not
produce consistent results, leading us to conclude that the
training data is not always linearly separable or that more
complex functions would represent the distribution better.

We apply SVM classification on the 2D points that belong to
the likelihood space, by using a radial basis function (RBF)
kernel:

K (x, x′) = e(−γ‖x−x′‖2)

Where γ determines the width of the function; the bigger the
gamma the smaller the width, the closer the function follows
the distribution - and more prone it is to overfitting.

Audio cues γ = 8.65, for all other cues: γ < 0.3.
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The Distribution of Likelihood points

...for the training data is not always linearly separable:
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The RBF Decision Surface

...accurately classifies the testing data:
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SVR-RBF vs. ML

F S A FS SA FA FSA

RBF 87.53% 79.07% 66.92% 85.05% 74.07% 86.65% 88.19%
ML 73.13% 73.88% 61.19% 78.36% 68.66% 70.90% 79.10%

The more subtle spontaneous emotion expressions produce a distribution
better classified by RBF kernels. In 4 cases performance is over 85%,
reaching 88.2%.
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Continuous Emotion Recognition

Where we do not only have the audiovisual segments and the
classification, but also continuous values for valence & arousal.

Metrics we use include the mean squared error (MSE)
( 1
n

∑n
i=1 err2), the correlation coefficient (COR), as well as

the agreement (AGR).

The agreement metric essentially translates to the percentage
of each sequence where the predication w.r.t. the sign of the
ground truth was correct. For valence this translates to
predicting the correct emotion in terms of positive/negative.

Where not otherwise mentioned, we use feature-level fusion,
i.e. merge all features into one vector and train.

We will present an overview of our results/conclusions...
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Mean Squared Error Evaluation

First experiments show the LSTMs overperforming SVR-RBF and SVR-P
on average. Very good MSE results for SVRs with polynomial kernel, but
we should not only trust the MSE:
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The optimal evaluation metric(s) are still an open research issue.
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MSE, Correlation & Agreement (1)

For the rest of the presentation, we will focus on the correlation
performance, ignoring very small variations in the MSE (≈ 0.01).

On average, LSTMs overperform SVR, achieving correlations
of up to 0.511 while the maximum correlation attained by
SVRs is 0.376.
Compared to facial expressions, the audio cues perform better
for both arousal (0.511 vs. 0.237) and valence (0.397 vs.
0.205).
Audio features are extracted at the double video frame rate. If
we extract both cues at the same frame rate, the facial
expressions overperform the audio cues for valence, as
theoretically expected (audio drops from 0.4 to 0.08), while
are still better for arousal. One justification is that the longer
sequences for audio generate more long-range dependencies
captured by LSTMs.
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MSE, Correlation & Agreement (2)

In general, the shoulder cues seem to perform bad (correlation of
0.06-0.02). We assume that the variations in shoulder movements
are not continuous/enough to be mapped to real, continuous
values.

Experiments witha dimensionality reduction and PCA have shown
the shoulder cues performance to increase when only the 4
dimensions with the greatest variances are used. It is a sign that
not all feature dimensions we extract are useful for continuous
emotion recognition. A relevant increase was also observed in the
fusion of the facial expression/shoulder cues.

aIt is noted that from now and on we will experiment with LSTMs

Experimental Results Continuous Emotion Recognition 36/47



Discrete & Continuous Audiovisual Recognition of Spontaneous Emotions

Capturing Temporal Patterns

It is reasonable to assume that the valence/arousal predictions
exhibit temporal patterns also found in the ground truth.

How can we enforce the presence of such patterns?

How can we suppress the false patterns emerging?
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Capturing Correlations Between Valence/Arousal

It is also logical to assume that there exist correlations of
co-occuring patterns between the valence/arousal estimations.
Again, we want to detect such correlations which correspond to
events in the ground truth and ignore the false ones:
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Capturing Correlations/Temporal Patterns: Conclusion

In cases where the correlation was already good enough (0.2 and
above, no less than 0.04), an improvement was observed.

E.g. for audio/arousal:

Original Prediction: 0.51

Capturing Temporal Patterns: 0.53

Capturing Temporal Patterns & Correlations: 0.58

But let’s explore this notion at decision-level fusion...
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Decision-level fusion

Our previous experiments applied feature level fusion: Merge all
features from available cues into one feature vector and train.

With decision-level fusion we train one classifier for each set of
cues and then fuse their estimation.
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Decision-level fusion and Capturing Correlations

As with single cues, we attempt to capture and enforce correlations
between valence and arousal by using both of the values as inputs
at decision-level.

LSTM
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Decision-level fusion/Correlations Results

Improvement of Dec-Lev & Dec-Lev VACorr w.r.t:

Dec-Lev Dec-Lev VACorr

Valence Arousal AVG Valence Arousal AVG
PCA 22.83% 21.55% 22.19% 22.91% 25.65% 24.28%

fLSVR 23.11% 27.40% 25.26% 23.19% 31.50% 27.35%
FeatLEV 21.59% 12.20% 16.90% 21.68% 16.30% 18.99%

f-level SVR < f-level LSTM < d-level LSTM < d-level/cor LSTM

For discrete emotion recognition, decision-level fusion has been
criticised for being unable to learn correlations between cues.

For continuous emotion recognition, each of the classifiers fused at
decision-level produce a real number and not just a label. We
believe that this could implicitly propagate enough information to
capture inter-cue (and inter-estimation) correlations and patterns.
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Continuous-to-Discrete Emotion Recognition

A final experiment...

The idea is to go from the continuous valence estimation, which
measures the positiveness/negativeness of an emotional state, into
the discrete positive vs. negative classification we performed with
CHMMs. We experimented with the audio valence estimation.

We separated the estimation into n windows, extracted features
such as the standard deviation and the mean value. We fed these
features in a SVM. The results slightly overperformed the ML
HMM performance (61.4% - 61.2%).

The approach seems promising for future work with more cues and
can be a means to evaluate the estimation itself.
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Conclusions

We have already provided a description of our experiments in
an observation/conclusion style.

For more details please refer to the report.

Continuous emotion recognition is still at its infancy, with just
3 papers for previous work, all in the past year (2008-2009).

It should be stressed that discrete and continuous emotion
recognition are two vastly different problems.

Sequence (dynamic) learning techniques appear to be very
promising. We have approximated the average coder correlation for
valence and the maximum coder correlation for arousal by 3%,
while the system performs 8% better than the average coder
correlation for arousal.
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Future Work

Further experimentation with continuous to discrete emotion
recognition.

Model individual coders with learning techniques instead of
the produced ground truth.

Longer sequences / higher video frame rate to enforce
sequence learning techniques.

Is a baseline required for continuous emotion recognition?

Experiment with other techniques (e.g. Conditional Random
Fields) & other fusion methods (e.g. linear combinations etc.)

Improve our normalisation/segmentation procedure.
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Thank You. Questions?
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Comment: Aphasic Patients

In The President’s Speech from the book The Man Who Mistook
his Wife for a hat by Oliver Sacks, the writer refers to how aphasic
patients who were incapable of understanding words as such, could
not realise that they were aphasic, because when they were
addressed they grasped most of the meaning from the cues
communicated by natural human interaction.

One had to remove all extraverbal cues - tone of voice, intonation,
suggestive emphasis as well as all visual cues (expressions, gestures,
posture) in order to make the patient sure of their aphasia.

An indication of how with no context - similarly to how the
majority of emotion recognition systems works - human to human
communication conveys a most significant amount of information.
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