User-Centered Actuation of Lower Limb Prosthetic Devices

Visiting Imperial College, London, UK

October 16th 2013

Philipp Beckerle

TU Darmstadt, IMS and ... our cooperations in prosthetics, robotics etc.

Outline

- Motivation & key research issues
- User-centered design approach
- Compliant actuator design
- Variable stiffness control
- Conclusion & outlook

Motivation and challenge

North american study:

- 1.6 million amputees in 2005
- 66% lower limb amputation
- Forecast for 2050: 3.6 million amputees

A prosthesis should copy function and appearance of a lost body part

Biomechanical and psychological factors

TECHNISCHE UNIVERSITÄT DARMSTADT

High joint torques & powers (100Nm/250W) Variable stiffness, nonlinear behaviour Power dissipation and generation

Satisfaction (SAT): Acceptance of dissatisfaction Feeling of security (FOS): Flexibility - felt stability Body scheme integration (BSI): Appearance function Biomechanica

User-Centered Prosthetic Actuation | TU Darmstadt, Germany | Institute for Mechatronic Systems | P. Beckerle | 5

State-of-the-art (**Powered**) lower limb prosthetic systems

enium.ottobock.com

Commercial products

- (Semi-)active knee and ankle joints
- First systemic solutions
- Series elastic ankle designs

Research approaches

- Advanced series elastic designs
- Complex mechanisms, active overall systems

Challenges

- Gait flexibility still limited (speed, direction, stairs, slopes)
- Technical concepts lack structured user-orientation
- Trade-off between active and passive dynamics
- General design methodology / assessment scores
- Realization of energy storage

Key research issues and approaches

A synergistic design requires consideration of user and prosthesis!

Technical solutions are mainly designed based on biomechanical criteria. **User-Centered Design:** Identification and consideration of human factors.

Actuation tries to mimic sound biomechanics ignoring changed dynamics. Holistic modeling including drive and gait simulation with prosthesis.

Stiffness is optimized to biomechanical data. Adaptation frequency unclear.

Adjustment laws considering drive dynamics.

Power analysis including model of variation mechanism.

Outline

- Motivation & key research issues
- User-centered design approach
- Compliant actuator design
- Variable stiffness control
- Conclusion & outlook

Design methodology Integration of user experience & assessment

Objective assessment criteria based on subjective user assessment

 \rightarrow usability

Windrich, 2012. Beckerle et al., TAR 2013.

Analysis User stereotypes and evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT

Schürmann et al..

BNF-PRM 2013.

- (Female) active person
- Person w/ limited activity

Questionnaire optimization (85 Items)

Factor modeling: SAT, FOS, BSI, Support (SUP), Socket (SOC), Mobility (MOB), Outer Appearance (OUT)

SAT	13	SUP	10
FOS	14	SOC	15
BSI	11	MOB	16
REJ	2	OUT	4

Transfer Quality function deployment

TECHNISCHE UNIVERSITÄT DARMSTADT

Aim

Connect users & engineers POV

Assessment

Progressive scale (0 - 1 - 3 - 9)

Result

QFD-value = scale of influence

 \rightarrow Development focus

First indications regarding SAT with active prostheses based on Legro 1999

Actuators and variable stiffness are relevant, socket issues remain (underranked)

Development System integration

Psychological factors Rubber Hand Illusion

- \rightarrow Illusion in which tactile sensations are referred to an alien limb
- \rightarrow Three-way interaction between vision, touch and proprioception

Moseley et al., 2012

Botvinick & Cohen 1998

Experimental approaches

Beckerle et al., SMC2012. Christ et al., BMT2012.

Int²Bot

- Robot finalized, Kinect trajectory issues
- Maintainance of BSI and interfaces

Christ et al., EMBC 2012. Wojtusch et al., EMBC 2012. Beckerle et al., SMC2013.

Prosthesis-User-in-the-Loop

- Simple prototype in development
- Simulation of gait with prosthesis

Outline

- Motivation & key research issues
- User-centered design approach
- Compliant actuator design
- Variable stiffness control
- Conclusion & outlook

Beckerle et

 x_{max}

Counter Bearing

 φ_{o} ,

Series Elastic VTS Actuator Concept

- Actuator 1 is driving the joint via Variable Torsion Stiffness
 - Elastic element in serial configuration

Actuator 2

 X_{min}

Actuator

- Actuator 2 moves counter bearing to adjust stiffness
- → Stiffness varied as function of active elastic length

Elastic Element

 $k_{VTS}(x) = \frac{GI_T(x)}{2}$

Schuy et al., Biorob2012. Beckerle et al., AIM2013.

Modeling of VTS

Drive Train Model

$$M(\varphi_o)\ddot{\varphi}_o + G(\varphi_o) + K(\varphi_o - \varphi_i) = 0$$

$$J\ddot{\varphi}_i - K(\varphi_o - \varphi_i) = \tau_i$$

 $C(\dot{\varphi}_o,\varphi_o)=0$

Beckerle et al., AIM2013.

Stiffness Adjustment Model

$$F_f = -\mu \frac{k_{VTS}(x)}{r_n} \vartheta_x$$

Coulomb-type friction

Dimensioning of elastic element in VTS

0.15

Dimensioning regarding outer geon

Tube:

$$R = \sqrt[4]{\frac{2 \ k_{VTS,max} \ x_{min}}{\pi \ G \ (1 - \lambda^4)}}$$
$$b = \sqrt[4]{\frac{k_{VTS,max} \ x_{min}}{\pi \ G \ (1 - \lambda^4)}}$$

Hexagon:

$$= \sqrt[4]{\frac{k_{VTS,\max} x_{min}}{c_g G}}$$

Static stiffness evaluation

- Coupling and gears: $k_{cg} = \frac{k_c k_g}{k_c + k_g}$
- Calculation: $k_{vts} = \frac{mgl\sin(\varphi_0)}{\varphi_i \varphi_0 \frac{mgl\sin(\varphi_0)}{r}}$

0.05

0.1

Active Length /m

Schuy et al., Biorob2012. Beckerle et al., AMAM2013. Schuy et al., AIM2013.

Power analysis considering system dynamics

- Areas of low power are shifted \rightarrow Appropriate specification of operating range
- Additional power minimum occurs \rightarrow Increased versatility in stiffness selection

In progress: System upgrades

Automation of stiffness adjusment

Simulation of biomechnical loads

Outline

- Motivation & key research issues
- User-centered design approach
- Compliant actuator design
- Variable stiffness control
- Conclusion & outlook

Position Control

Feedback Linearization

- Suitable for low stiffness due to Spong et al. 1989
- Stiffness adaptation considering adjustment
- Robustness extension

Alternative appraoch

Passivity based control

• Drive sided behaviour $\frac{\varphi_i(s)}{\tau_i(s)} = \frac{Ms^2 + K + mgl}{c_4 s^4 + c_2 s^2 + c_0}$ $\stackrel{\text{N}}{=} 2$

Link sided behaviour

Linearized transfer functions @ 0°

$$\frac{\varphi_o(s)}{\tau_i(s)} = \frac{K}{c_4 s^4 + c_2 s^2 + c_0}$$

 $K_{a,e}(\omega) = M\omega^2 - mgl$

 \rightarrow Two natural frequencies $\omega_{0,e1/2}$ and one antiresonance mode $\omega_{a,e}$.

 \rightarrow Previous concepts mainly tune stiffness to $\omega_{a,e}$. Two options available:

 $K_{0,e2}(\omega) = -\frac{JM\omega^4 - Jmgl\omega^2}{-(I+M)\omega^2 + mgl}$

TECHNISCHE UNIVERSITÄT DARMSTADT

- Spectral analysis with bank of Goertzel filters \rightarrow major frequency component
- Stiffness selection to match natural frequency or antiresonance

Beckerle et al., HUMASCEND2013.

TECHNISCHE UNIVERSITÄT

Variable stiffness control strategy (2)

Forward Dynamics Simulation Results (1)

- Sinus 10° @ 2.0 Hz
- 160 to 60 Nm/rad
 - Antiresonance: 123.41 Nm/rad
 - 2nd natural freq.: 73.59 Nm/rad
- Control error reduced by K-adaptation
- Minimum power for antires. / 2nd natural

Beckerle et al., AIM2013.

Forward Dynamics Simulation Results (2)

- Sweep 1.0 to 4.0 Hz
- Stiffness adjusted to
 - Antiresonance
- Increased control error for transient K
- Power increased for transient K and unexact extrapolation

Beckerle et al., HUMASCEND2013.

Outline

- Motivation & key research issues
- User-centered design approach
- Compliant actuator design
- Variable stiffness control
- Conclusion & outlook

Conclusion & Outlook

Development

Technologies

Framework for User-Centered Design

Approach based on QFD and V-model prepared.

Relevant human factors: SAT, FOS, BSI, SUP, SOC, MOB, OUT.

Open: Final QFD regarding development focus. Int²Bot experiments.

Actuator design

Different specification of **operating range** to minimize power consumption.

Open: Gait simulation with prosthesis to estimate real biomechnical loads...

Variable Stiffness Control

More versatile adjustment by laws considering drive dynamics.

Open: Power analysis with extended model. Experiments with VTS.

Thank you

Janis Wojtusch (Computer Science)

Jochen Schuy (Mech. Engineering)

Oliver Christ (Psychology)

Questions? \rightarrow Feel free to ask!

