Active Reward Learning C. Daniel*, M. Viering*, J. Metz*, O. Kroemer*, J. Peters*[†] * Technische Universität Darmstadt [†] Max Planck Institut für Intelligente Systeme

Acquiring Reward Functions

- Reward functions are hard to design by hand.
- →Let the robot learn a reward model.
- →Human rates skill executions.

Setup

max: $\mathbb{E}_{s,\omega,\tau}[f(o)] = \int \int \int f(o = \phi(\tau)) p(\tau|s,\omega) \pi(\omega|s) \mu^{\pi}(s) d\tau ds d\omega$

Jointly Learn Reward Model and Policy

Bayesian Regression Model

We want to model the reward given an outcome.

$$R(\boldsymbol{o}) = f(\boldsymbol{o})$$

Additionally, we want to model the noise of the human experts.

$$R(\boldsymbol{o}) = f(\boldsymbol{o}) + \eta, \ \eta \sim \mathcal{N}(0,\beta)$$

➡Use Gaussian Processes (GPs)

 $R(\boldsymbol{o}) \sim \mathcal{GP}(m(\boldsymbol{o}), k(\boldsymbol{o}, \boldsymbol{o}'))$

Bayesian Regression Model

Probabilistic model with explicit representation of the noise:

Gaussian Process

 $\mathcal{GP}\left(m(\boldsymbol{o}), k(\boldsymbol{o}, \boldsymbol{o}')\right)$

Kernel function

$$k(\boldsymbol{o}, \boldsymbol{o}') = \boldsymbol{\theta}_0^2 \exp\left(-\frac{||\boldsymbol{o} - \boldsymbol{o}'||^2}{2\boldsymbol{\theta}_1^2}\right)$$
$$\boldsymbol{K} = \begin{bmatrix} k(\boldsymbol{o}_1, \boldsymbol{o}_1) & \dots & k(\boldsymbol{o}_1, \boldsymbol{o}_n) \\ \vdots & \ddots & \vdots \\ k(\boldsymbol{o}_n, \boldsymbol{o}_1) & \dots & k(\boldsymbol{o}_n, \boldsymbol{o}_n) \end{bmatrix} + \beta \boldsymbol{I}$$

Kernel matrix

Reward prediction

$$p(R^+|\boldsymbol{o}, \mathcal{D}) \sim \mathcal{N}\left(\mu(\boldsymbol{o}^+), \sigma^2(\boldsymbol{o}^+)\right)$$

Mean and variance

Hyperparameters

$$\mu(\boldsymbol{o}^{+}) = \boldsymbol{k}^{T} \boldsymbol{K}^{-1} \boldsymbol{R}_{1:n},$$

$$\sigma^{2}(\boldsymbol{o}^{+}) = k(\boldsymbol{o}^{+}, \boldsymbol{o}^{+}) - \boldsymbol{k}^{T} \boldsymbol{K}^{-1} \boldsymbol{k},$$

6

 $\boldsymbol{ heta} = \{ \boldsymbol{ heta}_0, \boldsymbol{ heta}_1, \boldsymbol{eta} \}$

Human noise estimated through hyper parameter optimization

Building the Model

- Optimize using acquisition functions $o^+ = \operatorname{argmax}(u(o \in D))$.
- No mapping $p(\boldsymbol{\omega}|\boldsymbol{s},\boldsymbol{o})$.
- ➡Select sample from library of observed outcomes *D*.

Minimize Human Interaction

Acquisition Functions

Upper Confidence Bound (UCB):

$$UCB(\boldsymbol{o}) = \mu(\boldsymbol{o}) + \kappa \sigma(\boldsymbol{o})$$
 ledge

- Programmed noisy expert to help us evaluate
- **Evaluations of different Acquisition Functions** •
- **Evaluations of Noisy Expert** •
- Evaluations of sample efficiency methods
- **Real Robot Evaluations** •
- Evaluations of reward function transfer

1000

900

800

700

()

Reward

600

800

200

400

Rollouts

- PI has worst performance but lowest # of user inputs.
- UCB has best performance but highest # of user inputs.

600

800

()

→ We use PI for real robot experiments.

400

Rollouts

200

- Similar performance
- Similar # user inputs
- Suitable model of human expert for our purposes

Pestle and Paper Box

Wrong Orientation

Unstable Grasp

Successful grasps (15/15) in all three trials after 150 rollouts. Performance achieved with an average of 15 user inputs Robot broke and recovered in trial three

Robot learned to grasp new object with the same reward function.

Related Work

Preference learning [Akrour 2011]

 \rightarrow Only allows for binary ratings.

Inverse Reinforcement Learning [Ziebart 2008]

➡ Requires access to reasonably good demonstrations.

Trajectory Preferences [Jain 2013]

➡Requires forward model of the system and environment.

Conclusion & Future Work

Conclusion:

- Able to learn a reward model from a small set (~15) of human ratings.
- Learned reward models are sufficiently generalize to similar objects.

Limitations:

• Requires access to expressive features.

Future Work:

- Evaluate effect of different kernels (inspired by human expert data).
- Investigate specialized acquisition function.

Thank you!

