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Acquiring Reward Functions

• Reward functions are hard to design by hand. 

➡Let the robot learn a reward model. 

➡Human rates skill executions.
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Bayesian Regression Model
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Input: Information loss tolerance ✏, improvement threshold �,
acquisition function u
Initialize ⇡ using a single Gaussian with random mean. GP with
zero mean prior.
while not converged

Set sample policy:
q(!|s) = ⇡old(!|s)

Sample: collect samples from the sample policy
{si ⇠ p(s),!i ⇠ q(!|si),oi}, i 2 {1, . . . , N}

Define Bellman Error Function
�(s,!) = R(o)� V (s)

Minimize the dual function
[↵

⇤, ⌘⇤] = argmin[↵,⌘] g (↵, ⌘)
Determine base line

V (s) = ↵

T⇤
�(s)

Policy update:
Calculate weighting
p(si,!i) _ q(si,!i) exp

⇣
1
⌘⇤ �⇤(si,!i)

⌘

Estimate distribution ⇡(!|s) by
weighted maximum likelihood estimates

Reward model update:
FindNominee = true
while FindNominee

Nominate outcome:
o

+
= argmaxu(o)

if
�
o

+ /2 D
�
^
�
�(o+

)/� > �
�

Demonstrate Corresponding Trajectory ⌧

+

Query Expert Reward R+

D = D [ {o+, R+}
else

FindNominee = false
Update reward model p(R|o,D)

Optimize GP-hyper parameters ✓

Output: Policy ⇡(!|s), reward model p(R|o,D)

TABLE I: We show the algorithmic form of active reward learning
with REPS. We specify the information loss tolerance ✏ as well
as an initial sampling policy and an improvement threshold �. In
each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].

A. Active Reward Learning

Our goal is to find a model p(R|o,D) that predicts the
reward given an observed outcome and training data D, which
is obtained from an expert. When modelling the reward, we
have to take into account that the expert can only give noisy
samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
regression problem

R(o) = f(o) + ⌘, ⌘ ⇠ N (0,�) ,

where we assume zero mean Gaussian noise. Such a regression
problem can, for example, be solved with Gaussian Process
(GP) regression

f(o) ⇠ GP (m(o), k(o,o0
)) ,

where m(o) is the mean function and k(o,o0
) is the covari-

ance function of the GP. For the remainder of this paper we

use the standard squared exponential covariance function

k(o,o0
) = ✓

2
0 exp

✓
� ||o� o

0||2

2✓

2
1

◆
.

The set of hyper parameters ✓ = {✓0,✓1,�} is found through
optimization [29]. Given a training set D = {o1:n,R1:n},
we can write down the covariance matrix between previously
observed rewards and outcomes

K =

2

64
k(o1,o1) . . . k(o1,on)

...
. . .

...
k(on,o1) . . . k(on,on)

3

75+ �I.

Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
new unrated observation is given by


R1:n

R+

�
⇠ N

✓
0,


K k̂

k̄ k(o+,o+
)

�◆
,

with k̂ = [k(o1,o+
) . . . k(on,o+

)]

T and k̄ =

[k(o+,o1) . . . k(o+,on)]. The predictive posterior reward
p(R+|o,D) of a new outcome o

+ is then given by a Gaussian

p(R+|o,D) ⇠ N
�
µ(o+

),�2
(o

+
)

�
,

with mean and variance

µ(o+
) = k

T
K

�1
R1:n,

�2
(o

+
) = k(o+,o+

)� k

T
K

�1
k,

by conditioning the GP on the observed outcome o

+. Using
the GP, we can represent both our expected reward µ(o+

),
which is provided to the policy learner, and the variance of
the reward �2

(o

+
) which is essential to the active learning

component. The reward variance �2
(o

+
) depends on the

distance of the outcome o

+ to all outcomes in the training set
D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
ˆ

⌧ which yield the outcome ˆ

o = �(ˆ⌧ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,

We want to model the reward given an 
outcome.

Additionally, we want to model the 
noise of the human experts.  

Input: Information loss tolerance ✏, improvement threshold �,
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as an initial sampling policy and an improvement threshold �. In
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minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].
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reward given an observed outcome and training data D, which
is obtained from an expert. When modelling the reward, we
have to take into account that the expert can only give noisy
samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
regression problem

R(o) = f(o) + ⌘, ⌘ ⇠ N (0,�) ,

where we assume zero mean Gaussian noise. Such a regression
problem can, for example, be solved with Gaussian Process
(GP) regression
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Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
new unrated observation is given by


R1:n

R+

�
⇠ N

✓
0,


K k̂

k̄ k(o+,o+
)

�◆
,

with k̂ = [k(o1,o+
) . . . k(on,o+

)]

T and k̄ =

[k(o+,o1) . . . k(o+,on)]. The predictive posterior reward
p(R+|o,D) of a new outcome o

+ is then given by a Gaussian

p(R+|o,D) ⇠ N
�
µ(o+

),�2
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with mean and variance

µ(o+
) = k

T
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) = k(o+,o+
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T
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by conditioning the GP on the observed outcome o

+. Using
the GP, we can represent both our expected reward µ(o+

),
which is provided to the policy learner, and the variance of
the reward �2

(o

+
) which is essential to the active learning

component. The reward variance �2
(o

+
) depends on the

distance of the outcome o

+ to all outcomes in the training set
D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
ˆ

⌧ which yield the outcome ˆ

o = �(ˆ⌧ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,

➡Use Gaussian Processes (GPs)

R(o) ⇠ GP (m(o), k(o,o0))
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Bayesian Regression Model

Probabilistic model with explicit representation of the noise:
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Input: Information loss tolerance ✏, improvement threshold �,
acquisition function u
Initialize ⇡ using a single Gaussian with random mean. GP with
zero mean prior.
while not converged

Set sample policy:
q(!|s) = ⇡old(!|s)

Sample: collect samples from the sample policy
{si ⇠ p(s),!i ⇠ q(!|si),oi}, i 2 {1, . . . , N}

Define Bellman Error Function
�(s,!) = R(o)� V (s)
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Policy update:
Calculate weighting
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weighted maximum likelihood estimates
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TABLE I: We show the algorithmic form of active reward learning
with REPS. We specify the information loss tolerance ✏ as well
as an initial sampling policy and an improvement threshold �. In
each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].
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samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
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where we assume zero mean Gaussian noise. Such a regression
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Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
new unrated observation is given by


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✓
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
K k̂
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)
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,

with k̂ = [k(o1,o+
) . . . k(on,o+

)]

T and k̄ =

[k(o+,o1) . . . k(o+,on)]. The predictive posterior reward
p(R+|o,D) of a new outcome o

+ is then given by a Gaussian

p(R+|o,D) ⇠ N
�
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+
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�
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by conditioning the GP on the observed outcome o

+. Using
the GP, we can represent both our expected reward µ(o+

),
which is provided to the policy learner, and the variance of
the reward �2

(o

+
) which is essential to the active learning

component. The reward variance �2
(o

+
) depends on the

distance of the outcome o

+ to all outcomes in the training set
D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
ˆ

⌧ which yield the outcome ˆ

o = �(ˆ⌧ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,
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each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
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(GP) regression

f(o) ⇠ GP (m(o), k(o,o0
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where m(o) is the mean function and k(o,o0
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Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
new unrated observation is given by
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by conditioning the GP on the observed outcome o

+. Using
the GP, we can represent both our expected reward µ(o+

),
which is provided to the policy learner, and the variance of
the reward �2

(o

+
) which is essential to the active learning

component. The reward variance �2
(o

+
) depends on the

distance of the outcome o

+ to all outcomes in the training set
D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
ˆ

⌧ which yield the outcome ˆ

o = �(ˆ⌧ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,

Input: Information loss tolerance ✏, improvement threshold �,
acquisition function u
Initialize ⇡ using a single Gaussian with random mean. GP with
zero mean prior.
while not converged

Set sample policy:
q(!|s) = ⇡old(!|s)

Sample: collect samples from the sample policy
{si ⇠ p(s),!i ⇠ q(!|si),oi}, i 2 {1, . . . , N}
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Minimize the dual function
[↵
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Output: Policy ⇡(!|s), reward model p(R|o,D)

TABLE I: We show the algorithmic form of active reward learning
with REPS. We specify the information loss tolerance ✏ as well
as an initial sampling policy and an improvement threshold �. In
each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].
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D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
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need to guarantee that the outcomes requested by the AF to
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to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].
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is obtained from an expert. When modelling the reward, we
have to take into account that the expert can only give noisy
samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
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where we assume zero mean Gaussian noise. Such a regression
problem can, for example, be solved with Gaussian Process
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Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
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distance of the outcome o

+ to all outcomes in the training set
D and the observation noise �, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
so, we would require access to p(⌧ |s,!) such that we can
request the agent to perform actions that result in trajectories
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⌧ which yield the outcome ˆ

o = �(ˆ⌧ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,
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TABLE I: We show the algorithmic form of active reward learning
with REPS. We specify the information loss tolerance ✏ as well
as an initial sampling policy and an improvement threshold �. In
each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for ↵T⇤ and ⌘⇤ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
↵ and ⌘ are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].
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reward given an observed outcome and training data D, which
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samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
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optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ˆ

o to improve our estimate. To do
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Building the Model

• Optimize using acquisition functions o+ = argmax(u(o∊D)). 

• No mapping                 . 

➡Select sample from library of observed outcomes D.
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Minimize Human Interaction
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➡Select candidate  

o+ = argmax(u(o∊D)) 
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Acquisition Functions

9

Hedge

Upper Confidence Bound (UCB):
UCB(o) = µ(o) + �(o)

Z =
µ(o)� f(o⇤)

�(o)
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µ(o)� f(o⇤)�⇠

�(o)
Probability of Improvement (PI):
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�(·) Cumulative Distribution Function (CDF)

Expected Improvement (EI):

�(·) Probability Density Function (PDF)
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Empirical Evaluations

• Programmed noisy expert to help us evaluate 
• Evaluations of different Acquisition Functions 
• Evaluations of Noisy Expert 
• Evaluations of sample efficiency methods 
• Real Robot Evaluations 
• Evaluations of reward function transfer
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Empirical Evaluations
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Five Link Via Point Task

• PI has worst performance but lowest # of user inputs. 
• UCB has best performance but highest # of user inputs. 
➡We use PI for real robot experiments.
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Empirical Evaluations
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• Similar performance 
• Similar # user inputs 
➡Suitable model of human expert for our purposes
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Reasonable trade-off  
at λ = 1.5

• Equivalent 
asymptotic behavior 

• Approx. three times 
less user inputs
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Empirical Evaluations
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Empirical Evaluations
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Robot broke and recovered in trial three
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Empirical Evaluations
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Related Work

Preference learning [Akrour 2011] 
➡Only allows for binary ratings. 
!

Inverse Reinforcement Learning [Ziebart 2008] 
➡Requires access to reasonably good demonstrations. 
!

Trajectory Preferences [Jain 2013] 
➡Requires forward model of the system and environment. 
!
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Conclusion & Future Work

Conclusion: 
• Able to learn a reward model from a small set (~15) of human ratings. 
• Learned reward models are sufficiently generalize to similar objects. 
!
Limitations: 
• Requires access to expressive features. 
!

Future Work: 
• Evaluate effect of different kernels (inspired by human expert data). 
• Investigate specialized acquisition function. 
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Thank you!


