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• Exchangeable	
• Finite # of features 
per data point
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• Exchangeable cluster 
distributions are characterized	
!

• What about exchangeable 
feature distributions?
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argminK+,Z,Atr[(X � ZA)�(X � ZA)] + K+�2.

MAD-Bayes
BP-means objective
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MAD-Bayes
BP-means objective

BP-means algorithm

argminK+,Z,Atr[(X � ZA)�(X � ZA)] + K+�2.

Iterate until no changes:	
1. For n = 1, ..., N	
■ Assign point n to features	
■ Create a new feature if it lowers the objective	

2. Update feature means A� (Z ⇥Z)�1Z ⇥X
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MAD-Bayes
Griffiths & Ghahramani (2006) computer vision 
problem “tabletop data”
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MAD-Bayes

18 [Griffiths, Ghahramani 2006]

BP-means features: table and four objects



MAD-Bayes
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BP-means features: table and four objects



MAD-Bayes

Bayesian posterior	
Gibbs sampler BP-means algorithm

8.5 * 103 sec 0.36 sec

Griffiths & Ghahramani (2006) computer vision 
problem “tabletop data”

Still faster by order of magnitude 
if restart 1000 times

19



Face data

Samples

[Thomaz, Giraldi 2010]

Pre-aligned faces
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Samples

4 clusters
(K-means, K=4)

Pre-aligned faces
Face data
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Face data
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MAD-Bayes

Parallelism and optimistic concurrency control

22

DP-means alg.

# data points

BP-means alg.

time per iteration

134M 8M

5.5 min 4.3 min



MAD-Bayes
Bayesian posterior K-means-like objectives

Mixture of K Gaussians

Dirichlet process mixture

Hierarchical Dirichlet process

Beta process

K-means

Unbounded number of 
clusters

Features

... ...

Multiple data sets share 
cluster centers
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MAD-Bayes conclusions
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■ We provide new optimization objectives 
and regularizers	
◊ In fact, general means of obtaining 
more	
◊ Straightforward, fast algorithms	

■ Can the promise of nonparametric Bayes 
be fulfilled?
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BP-means: Tabletop data
JPEG 240x320x3 pictures

[Griffiths, Ghahramani 2006]



BP-means: Tabletop data results

K-means (K=4) cluster centers:
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BP-means features: table and four objects



Samples

3 clusters
(K-means, K=3)

Pre-aligned faces
Face data
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Samples

4 clusters
(K-means, K=4)

Pre-aligned faces
Face data
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