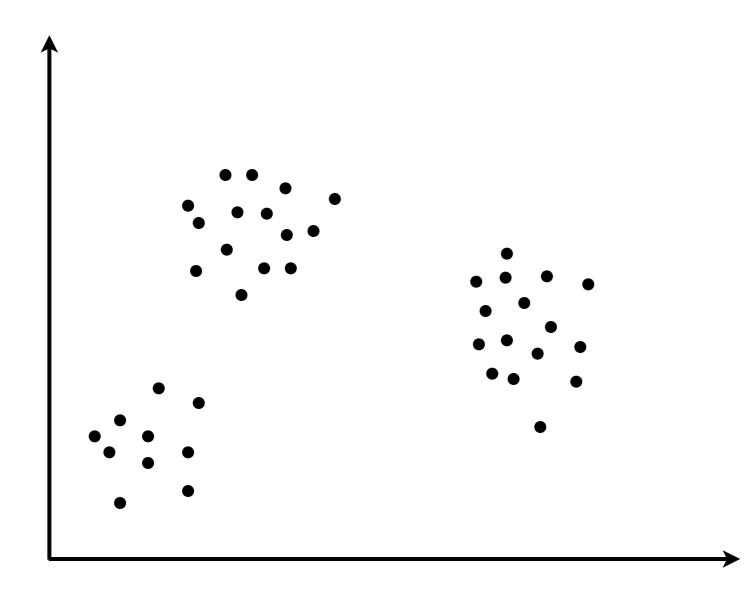
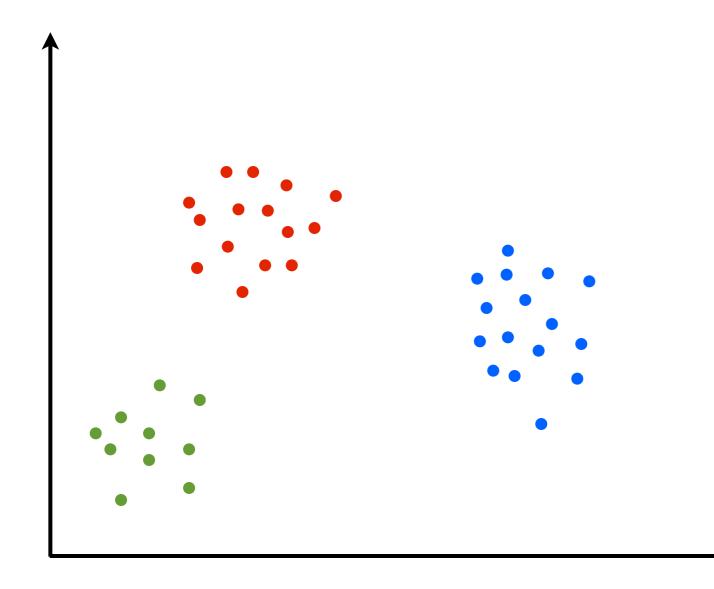


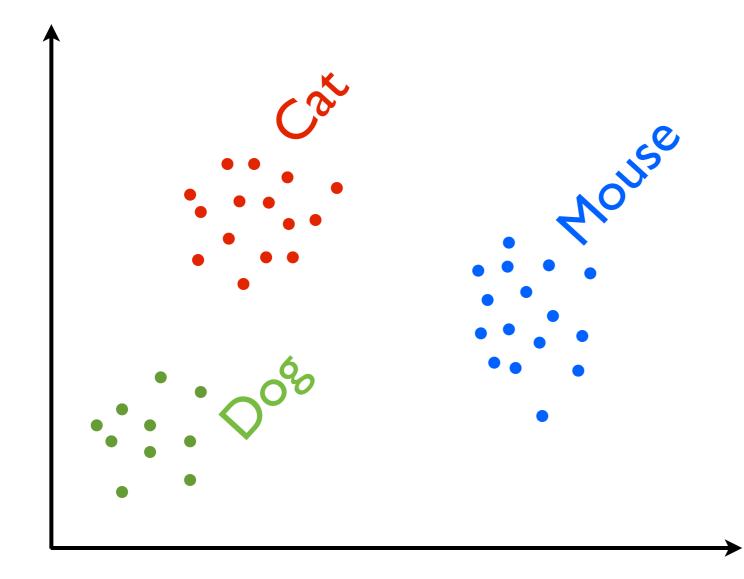
Feature allocations, probability functions, and paintboxes

Tamara Broderick ITT Career Development Assistant Professor, MIT

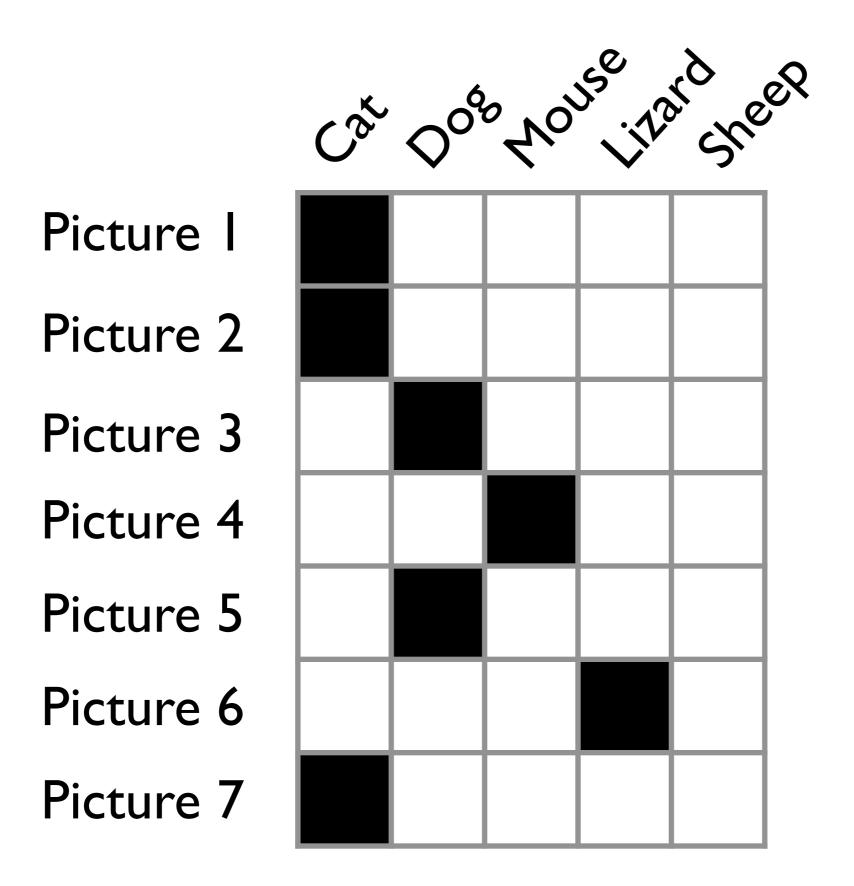




"clusters", "classes", "blocks (of a partition)"



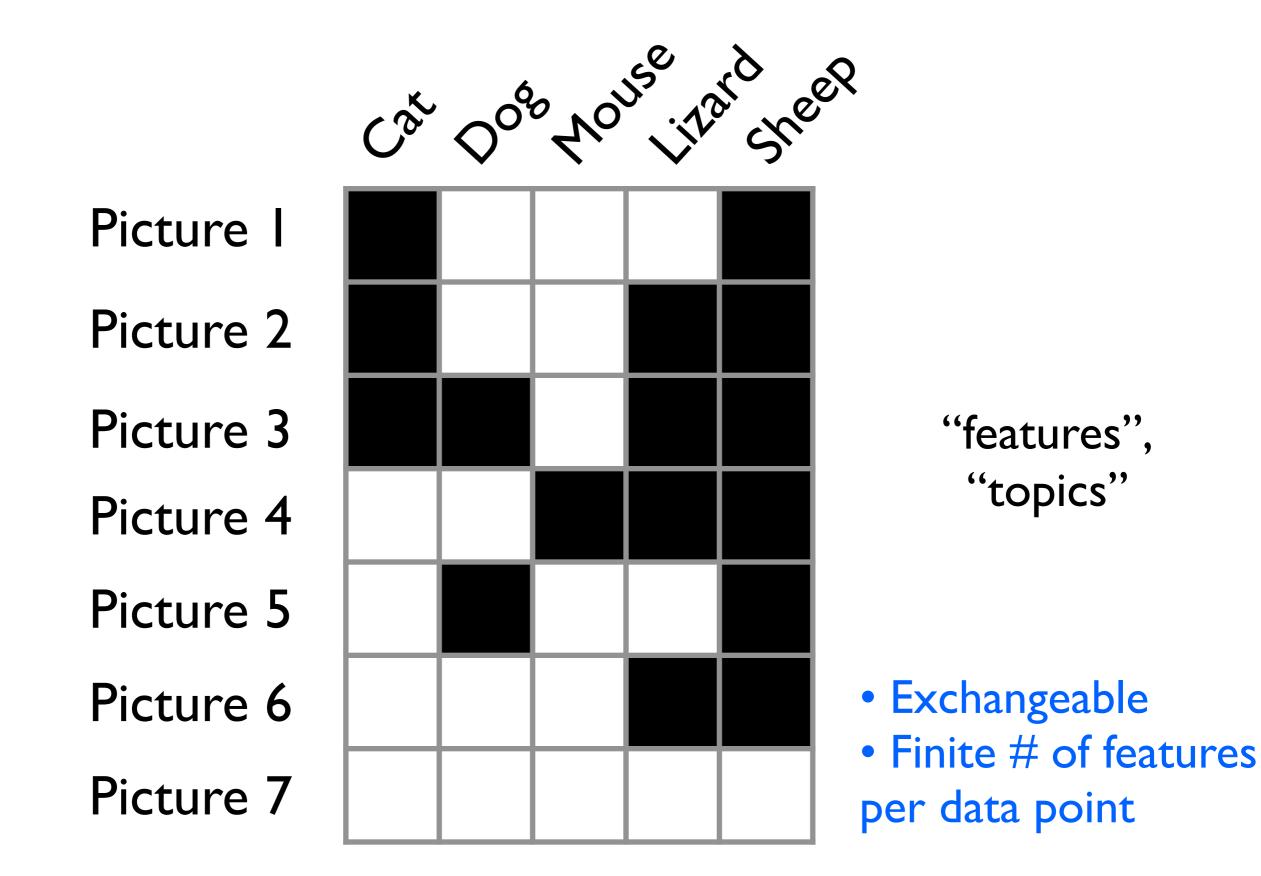
"clusters", "classes", "blocks (of a partition)"



Latent feature allocation



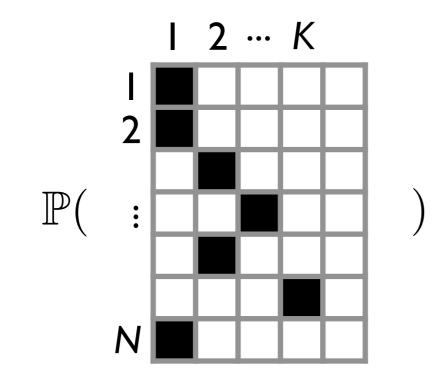
Latent feature allocation

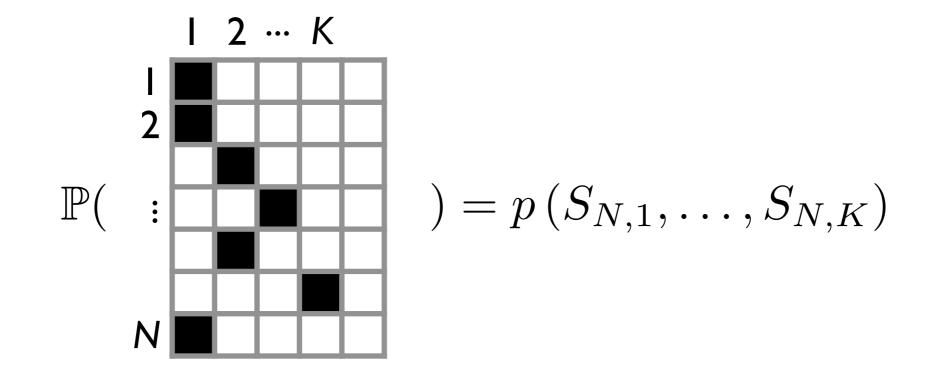


Characterizations

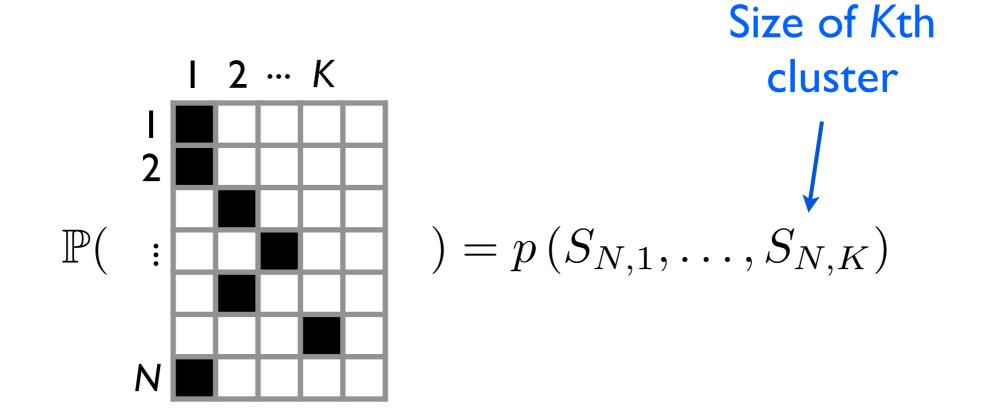
• Exchangeable cluster distributions are characterized

• What about exchangeable feature distributions?

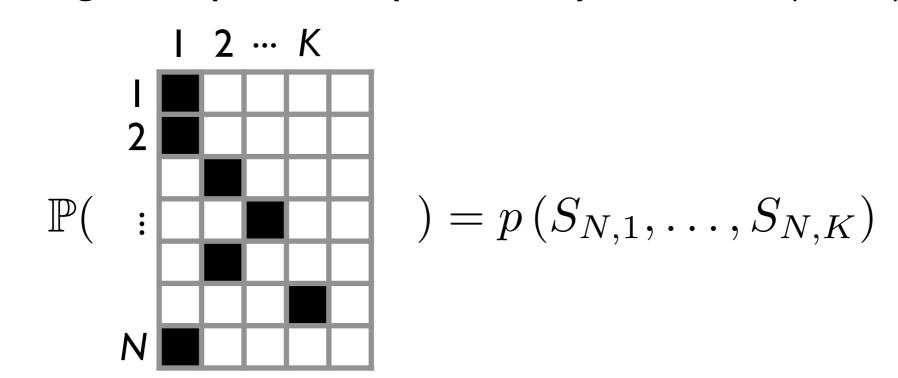




5

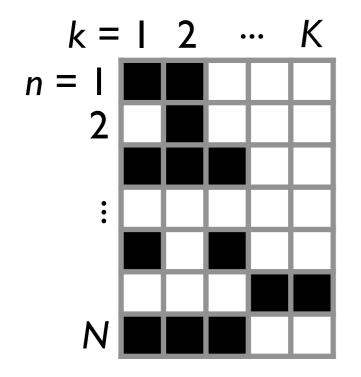


Exchangeable partition probability function (EPPF)

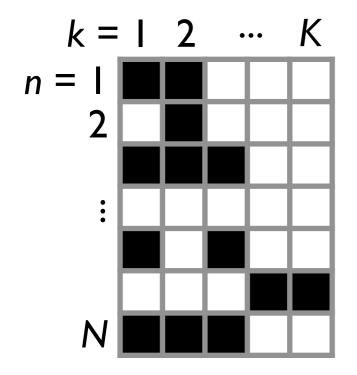


"Exchangeable feature probability function" (EFPF)?

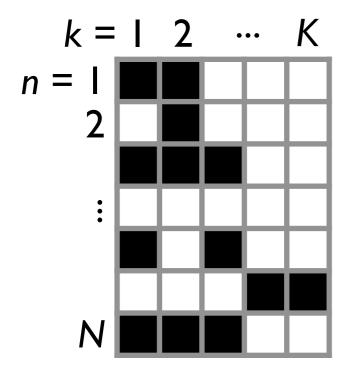
7



7

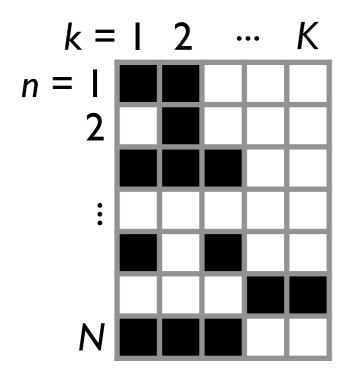


7

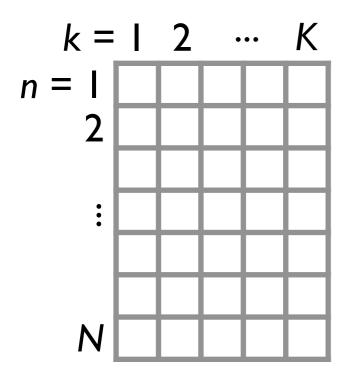


7

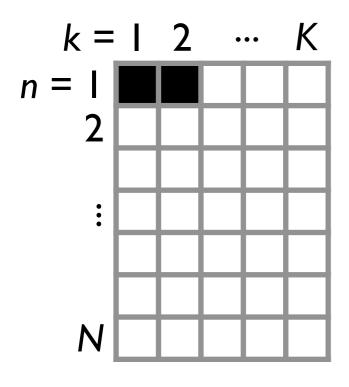
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$



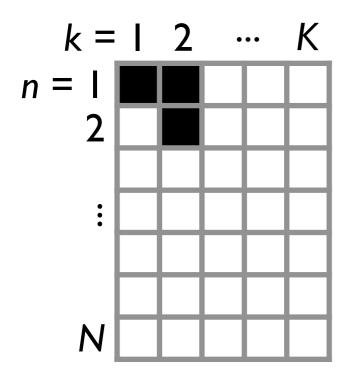
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



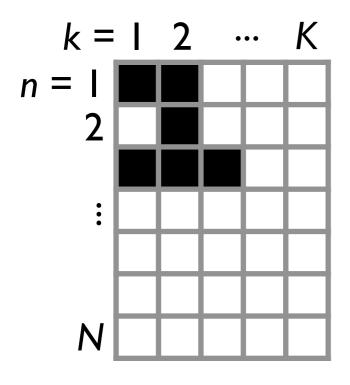
For n = 1, 2, ..., NI. Data point *n* has an existing feature *k* that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point *n*: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



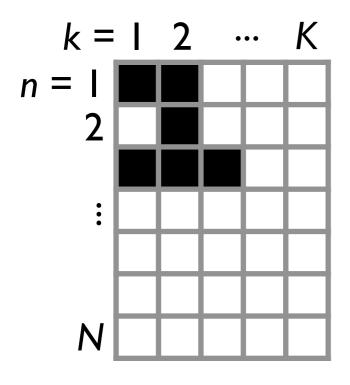
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



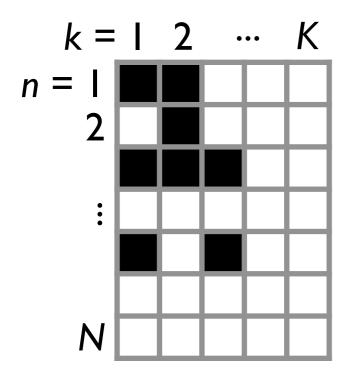
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



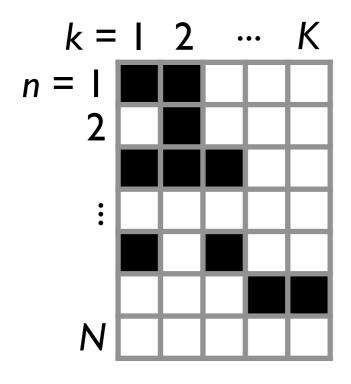
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



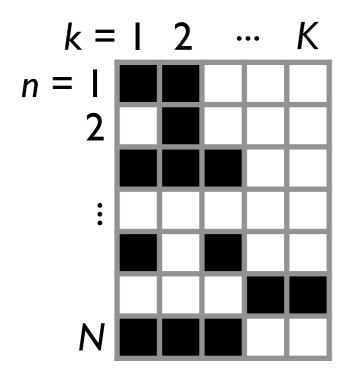
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$



For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

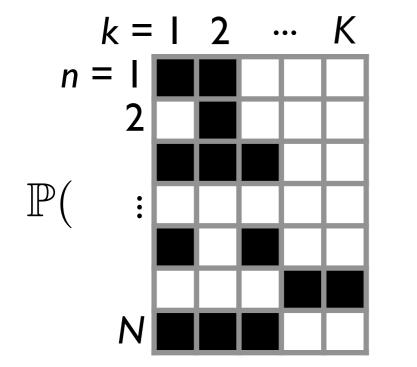


For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

"Exchangeable feature probability function" (EFPF)?

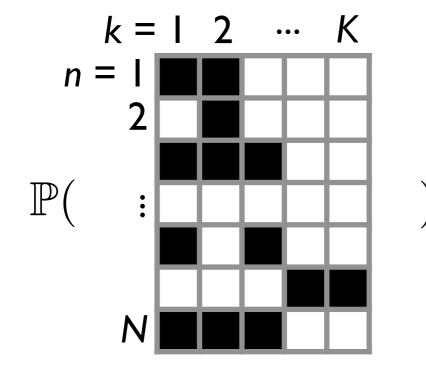
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



"Exchangeable feature probability function" (EFPF)?

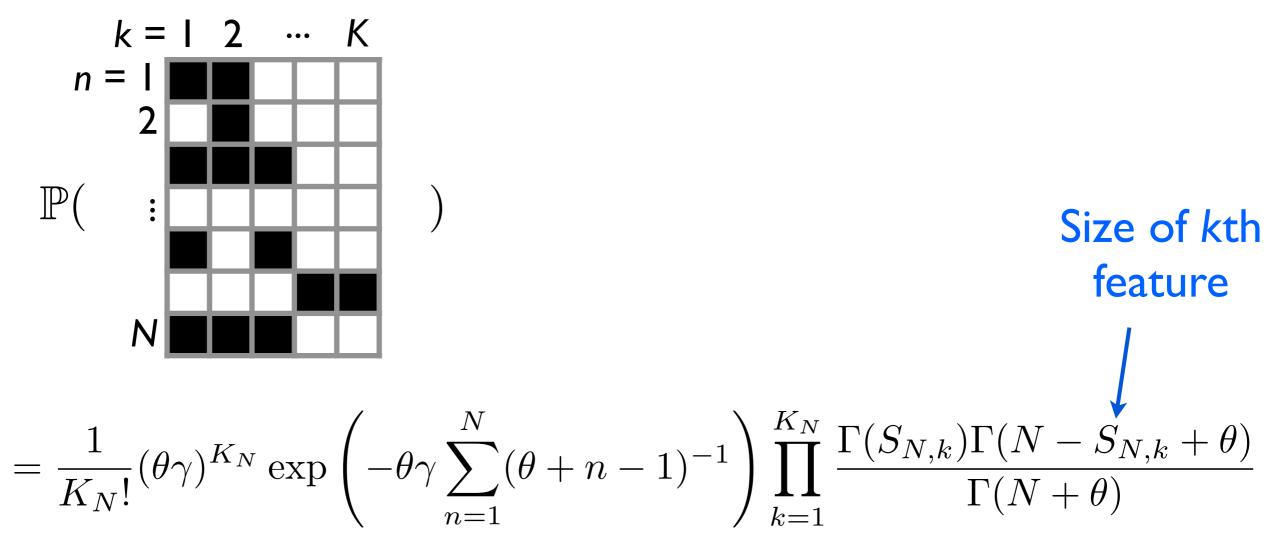
Example: Indian buffet process (IBP)



$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp\left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

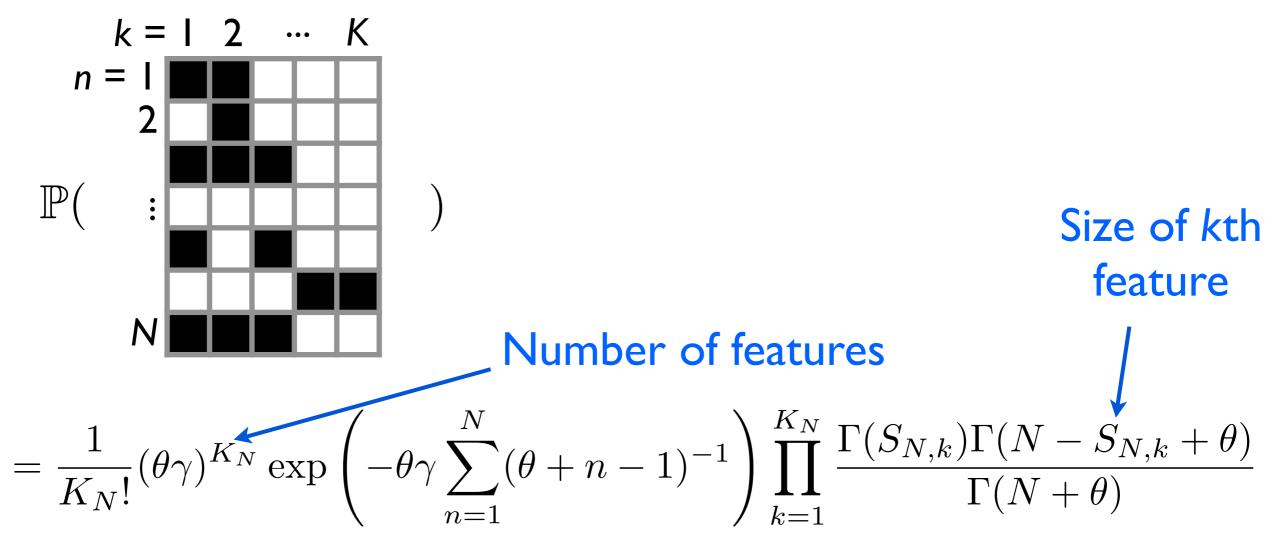
Example: Indian buffet process (IBP)



8

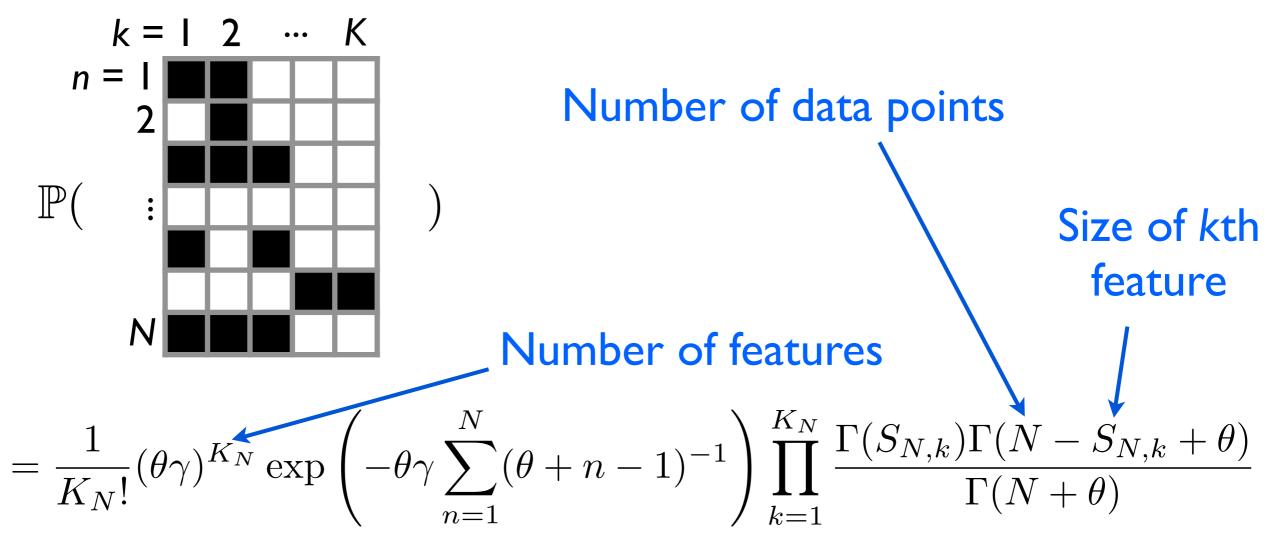
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



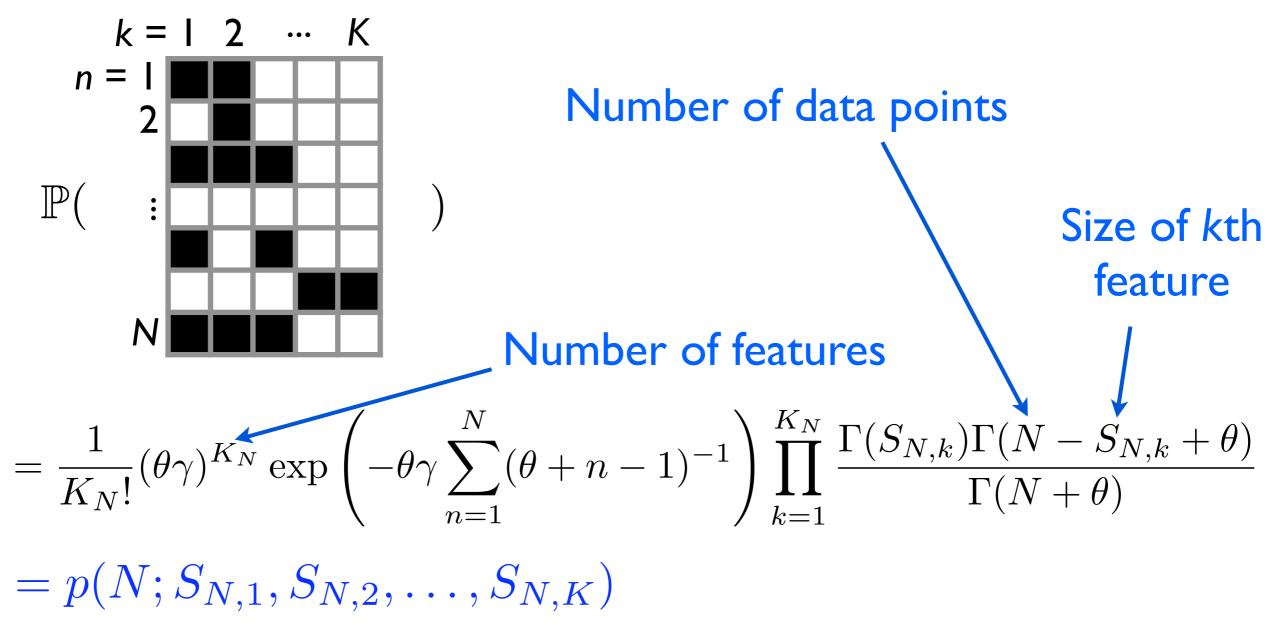
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



"Exchangeable feature probability function" (EFPF)?

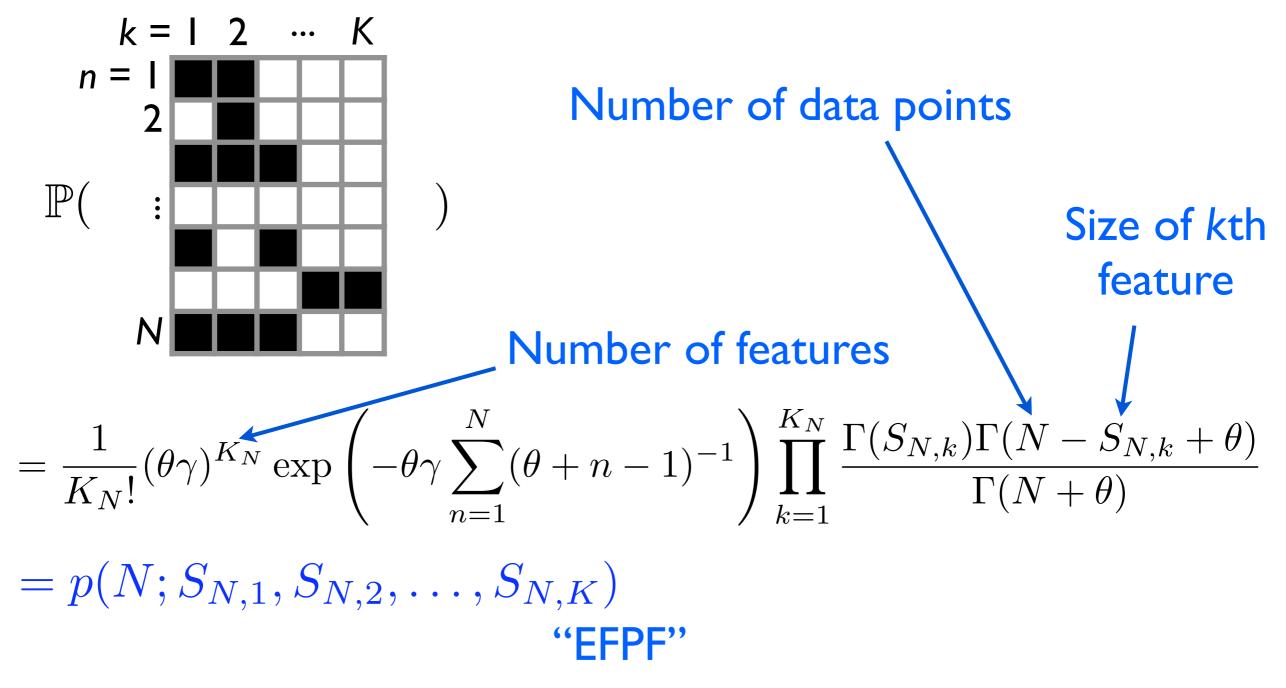
Example: Indian buffet process (IBP)



[Broderick, Jordan, Pitman 2013]

"Exchangeable feature probability function" (EFPF)?

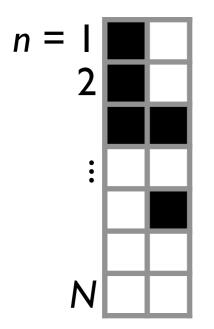
Example: Indian buffet process (IBP)



[Broderick, Jordan, Pitman 2013]

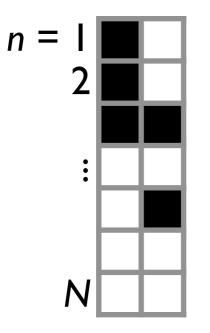
"Exchangeable feature probability function" (EFPF)?

Counterexample



"Exchangeable feature probability function" (EFPF)?

Counterexample

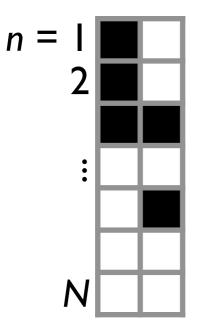


$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_4$$

[Broderick, Jordan, Pitman 2013]

"Exchangeable feature probability function" (EFPF)?

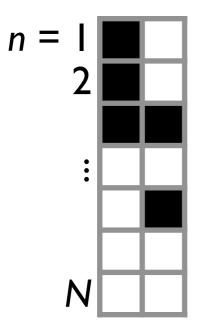
Counterexample



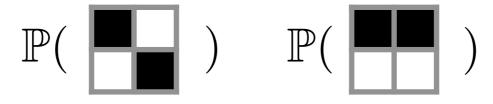
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_4$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

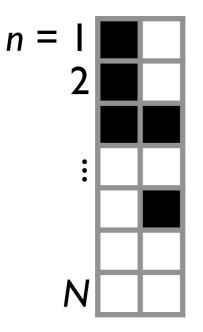


$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

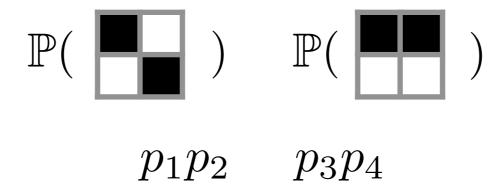


"Exchangeable feature probability function" (EFPF)?

Counterexample

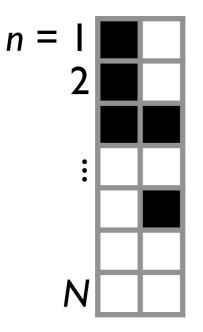


$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$



"Exchangeable feature probability function" (EFPF)?

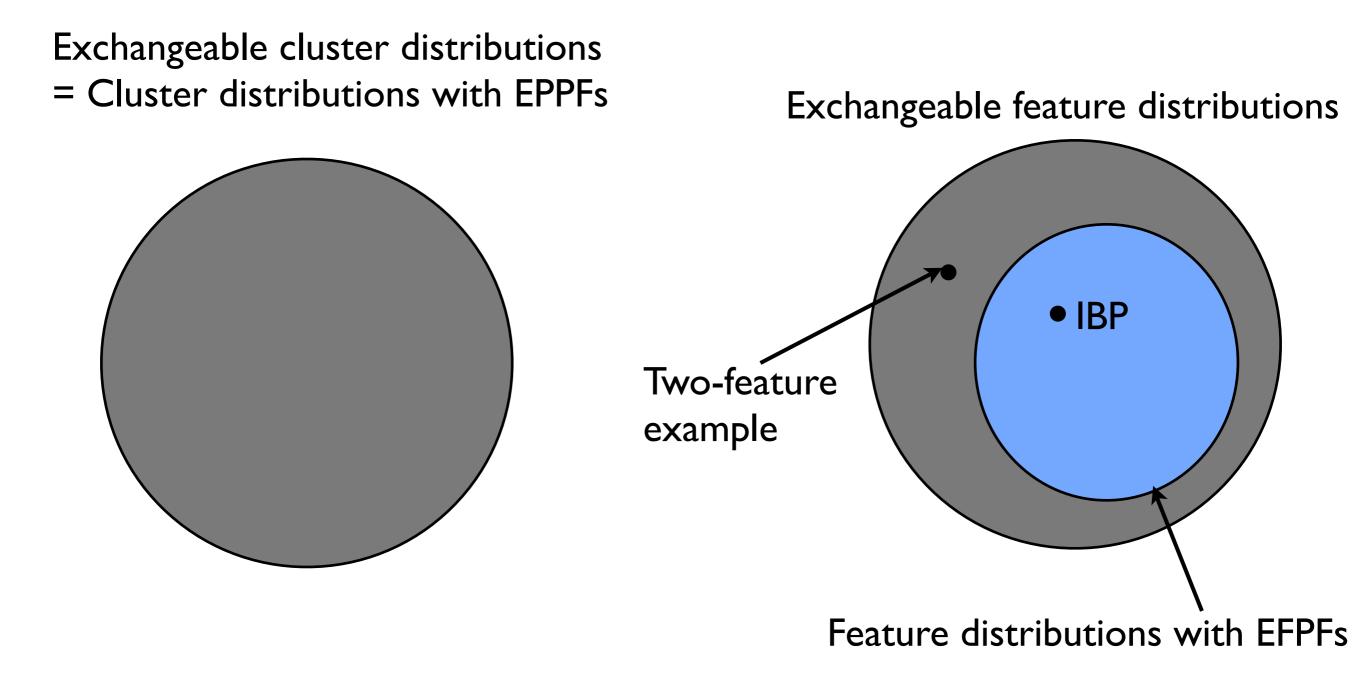
Counterexample



$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

$$\mathbb{P}(\square) \neq \mathbb{P}(\square)$$

$$p_1 p_2 \neq p_3 p_4$$

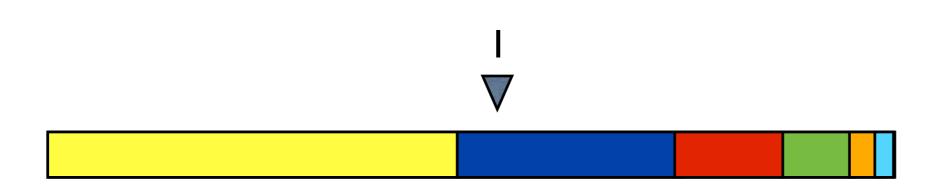


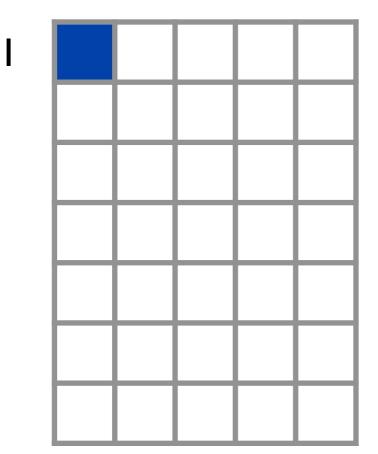
Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

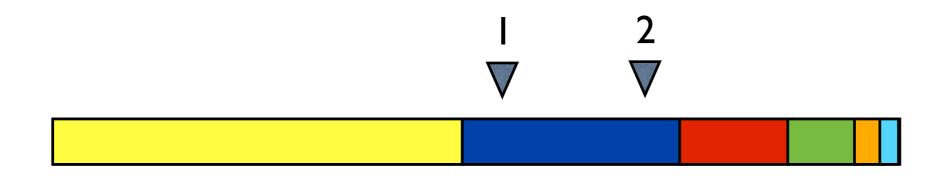
Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox



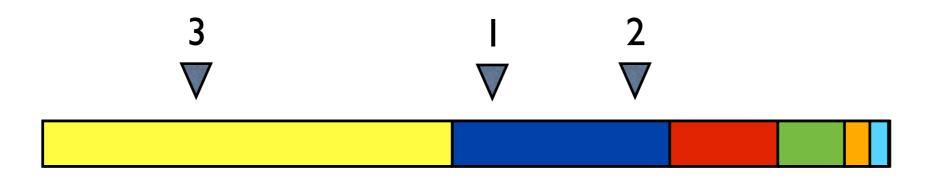


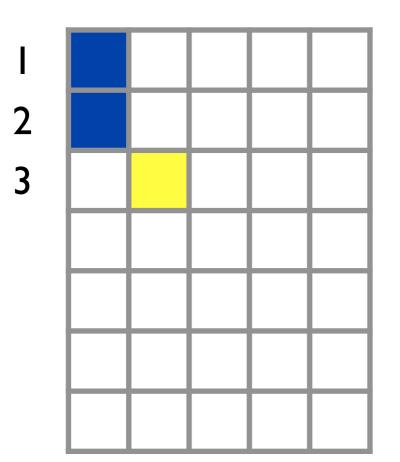
Exchangeable partition: Kingman paintbox



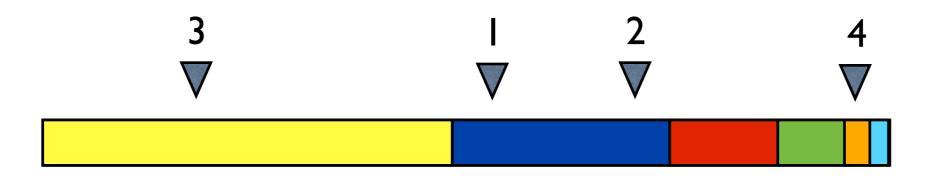


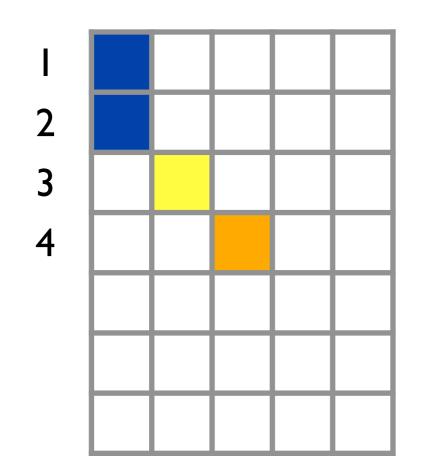
Exchangeable partition: Kingman paintbox



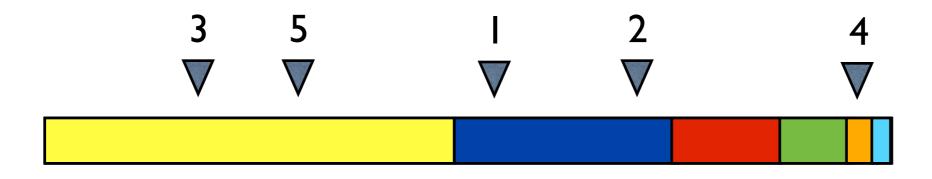


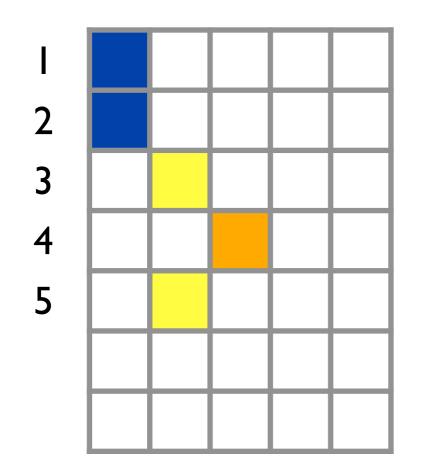
Exchangeable partition: Kingman paintbox



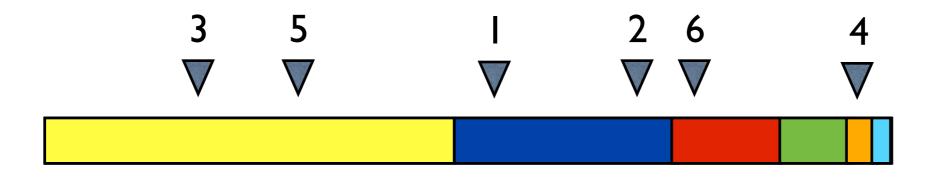


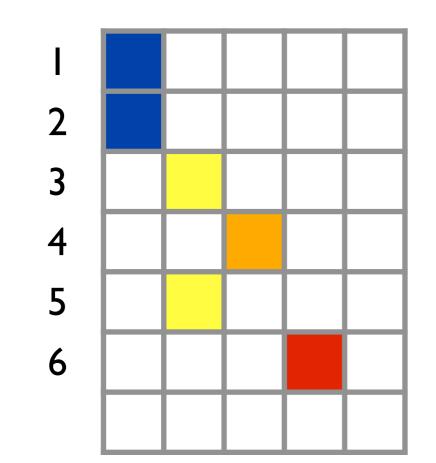
Exchangeable partition: Kingman paintbox



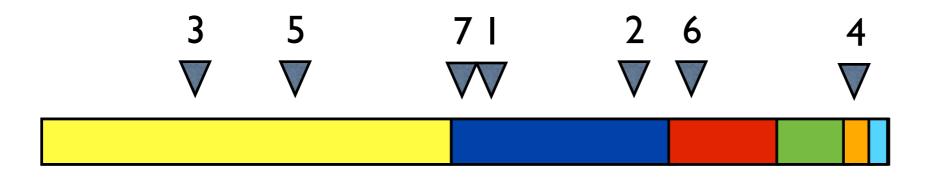


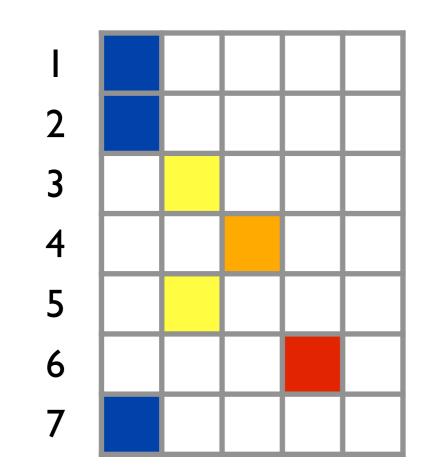
Exchangeable partition: Kingman paintbox



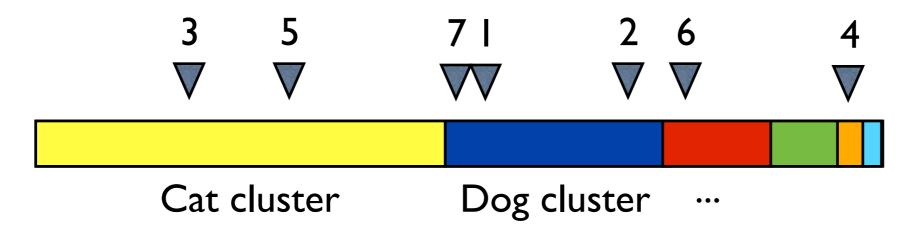


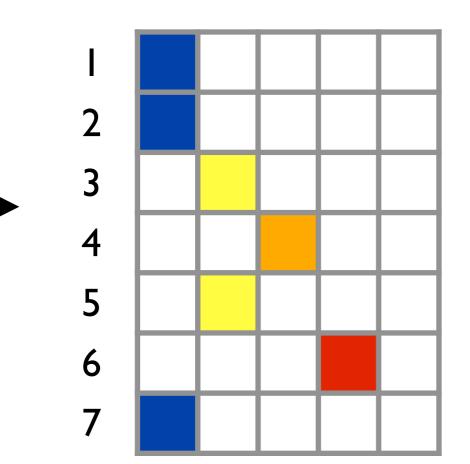
Exchangeable partition: Kingman paintbox



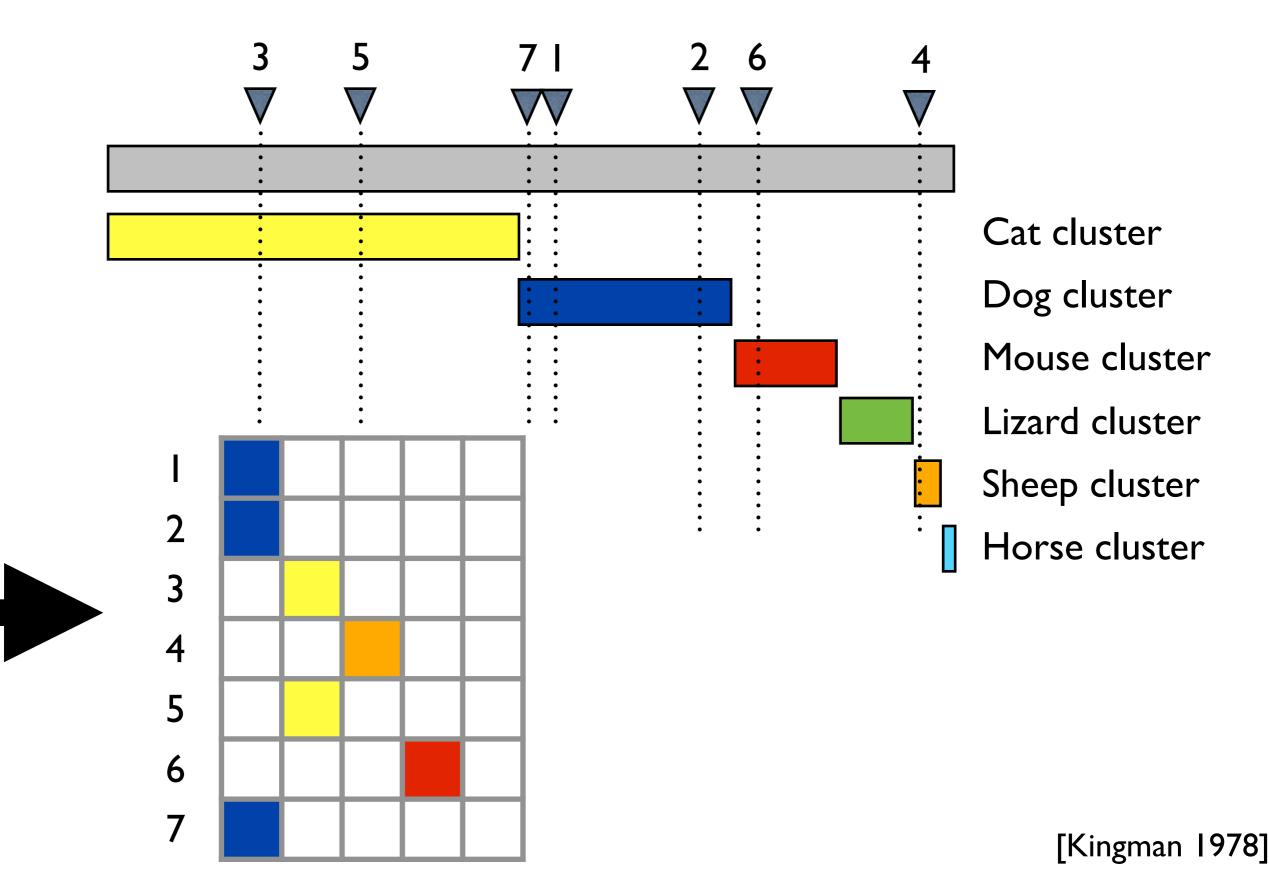


Exchangeable partition: Kingman paintbox

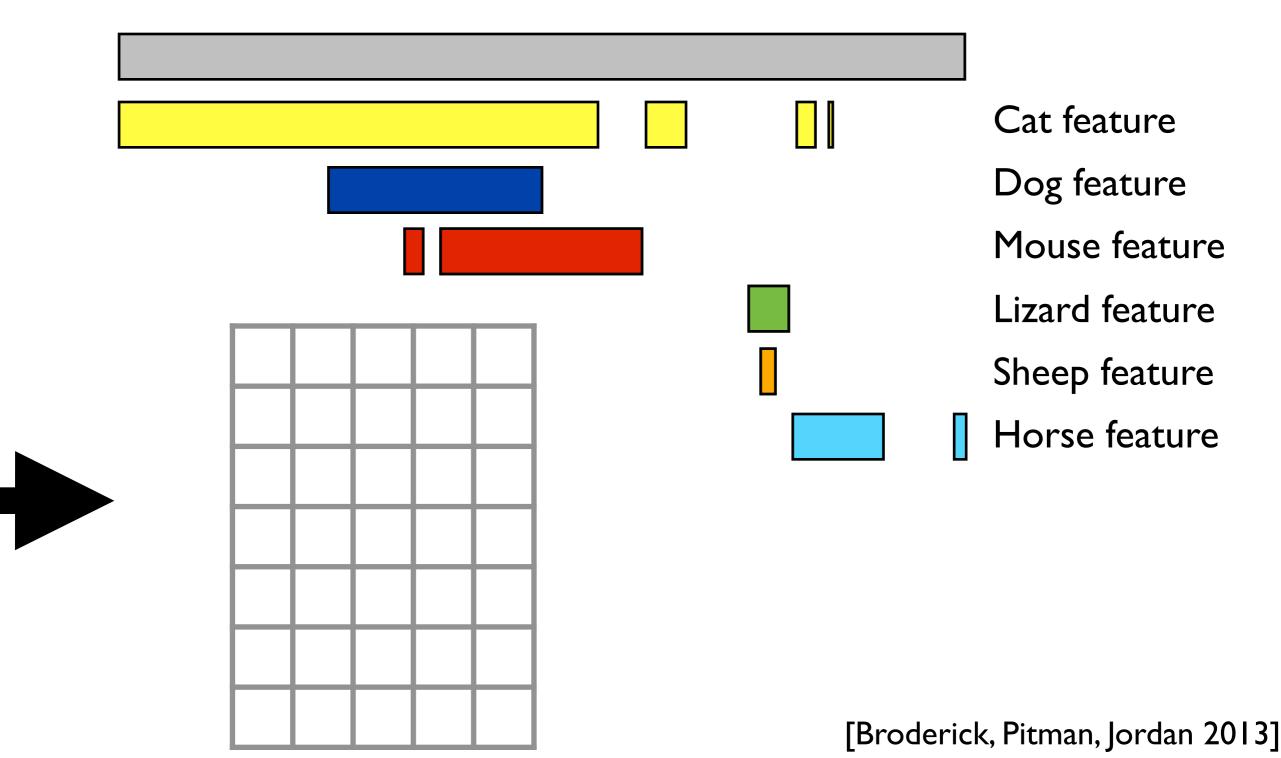


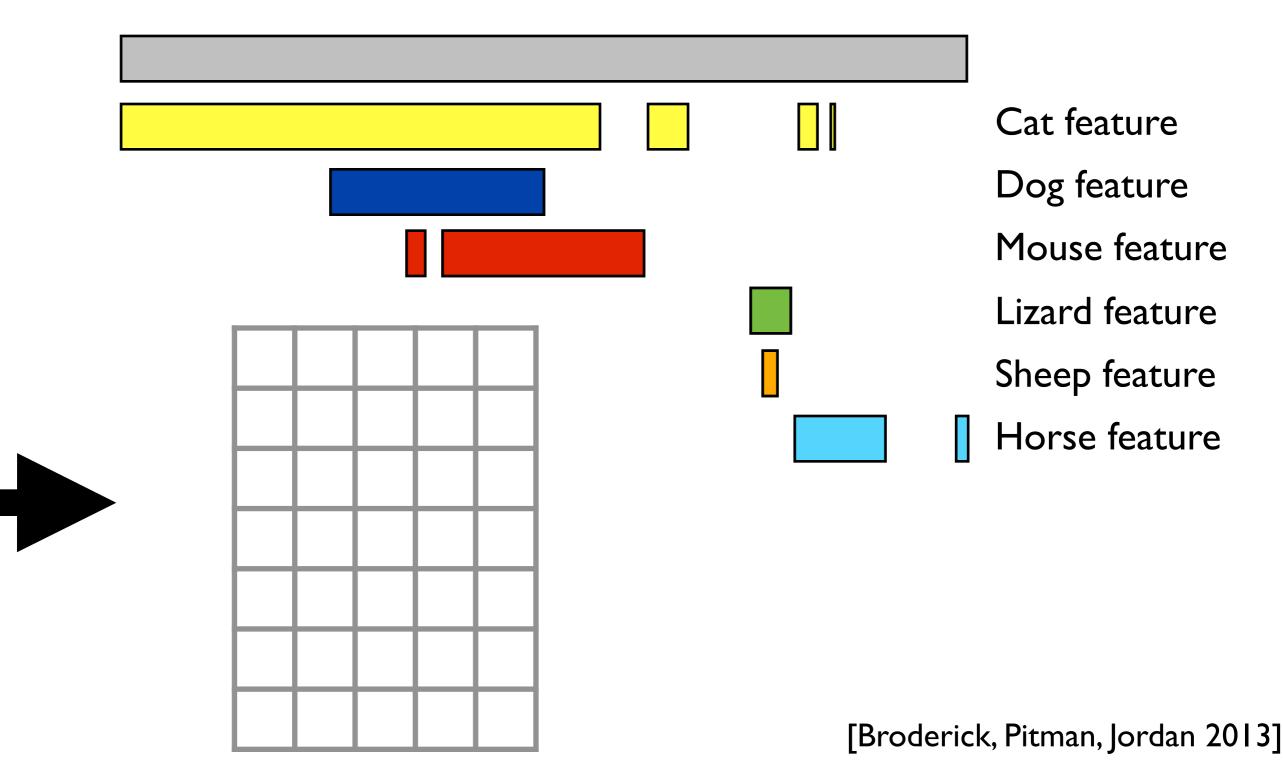


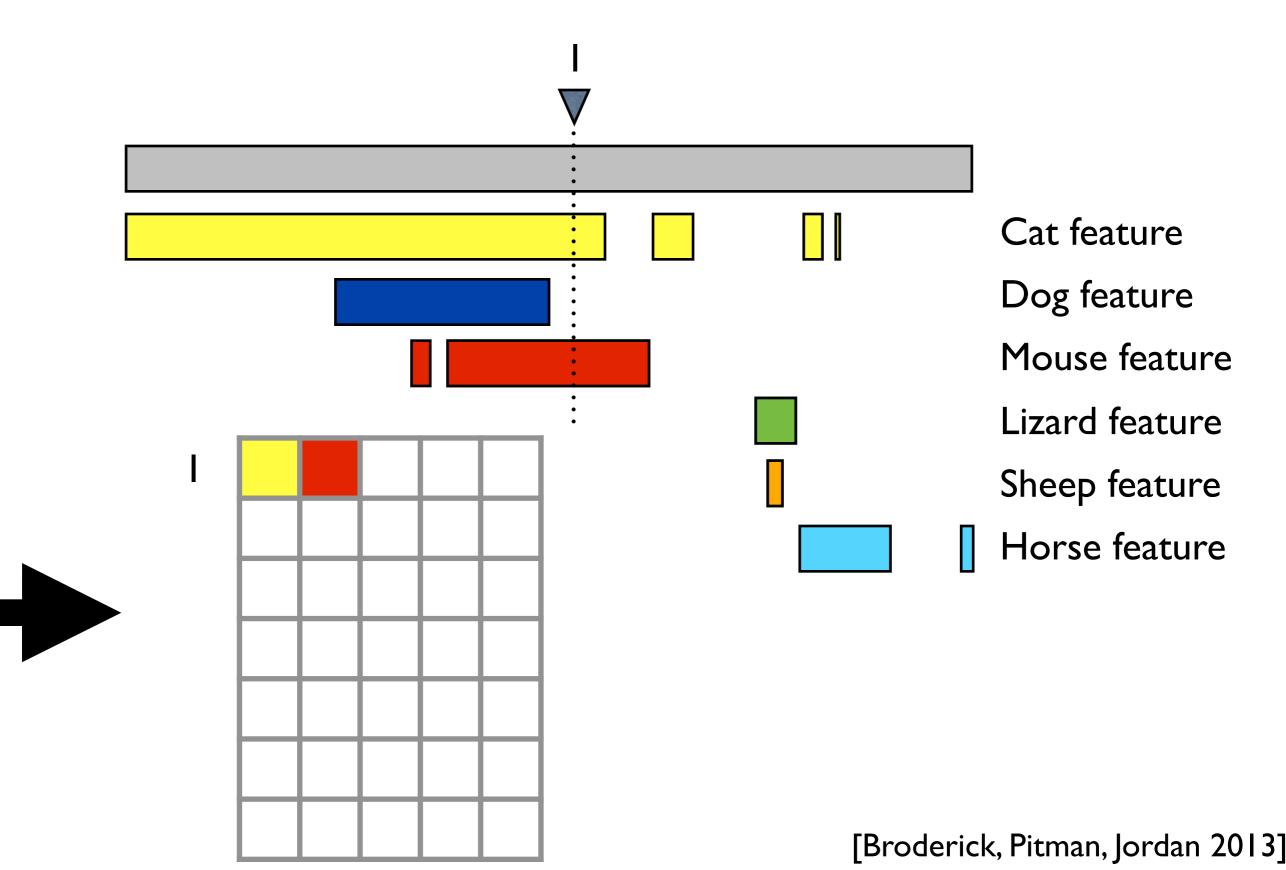
Exchangeable partition: Kingman paintbox

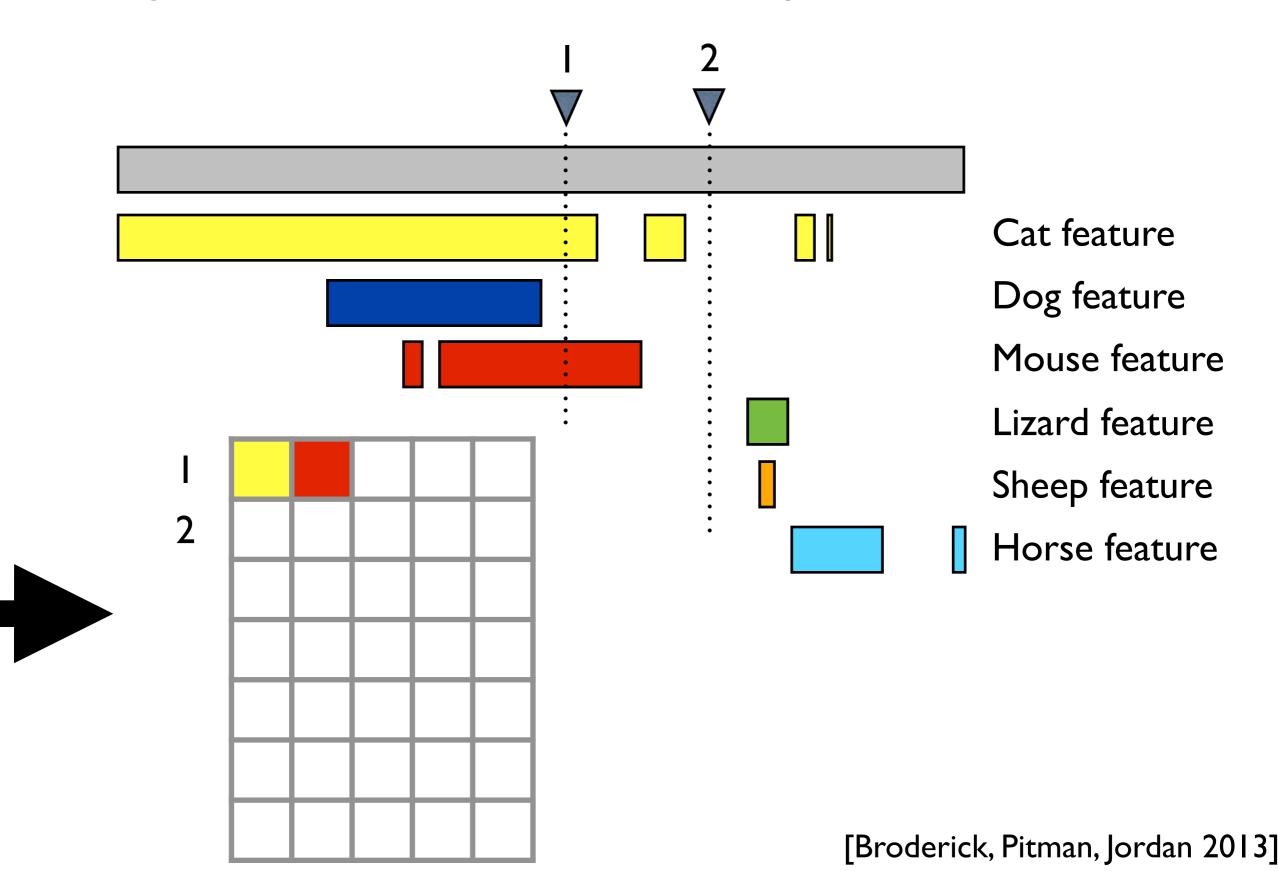


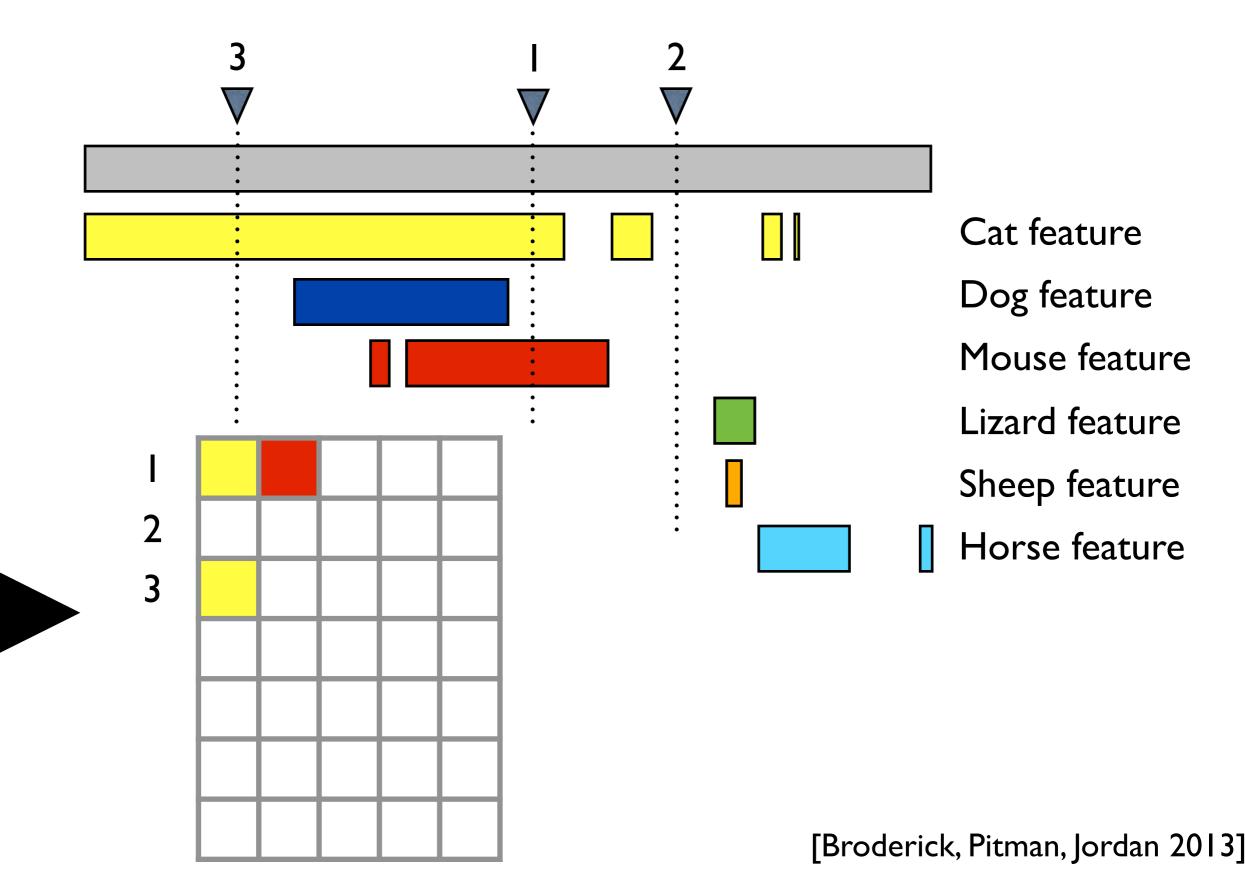
12

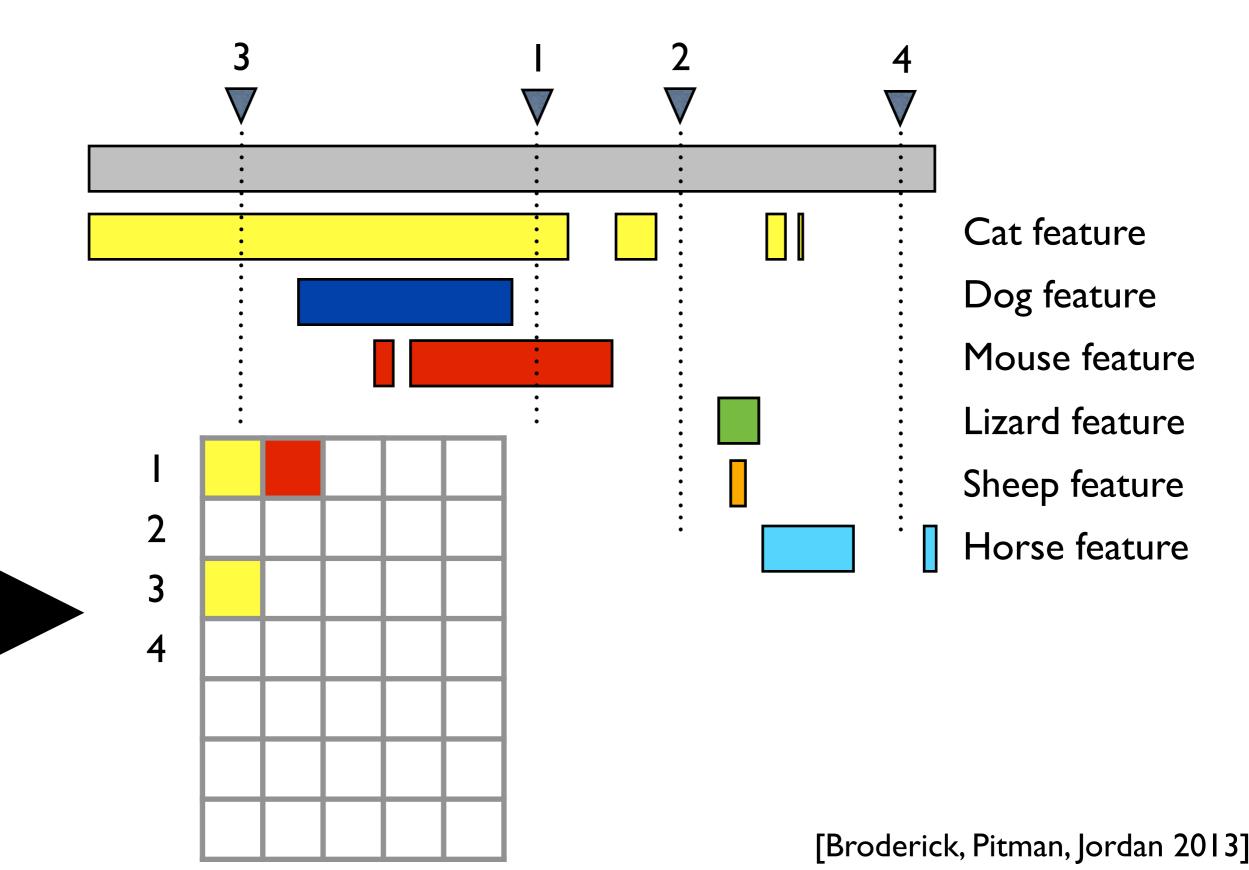


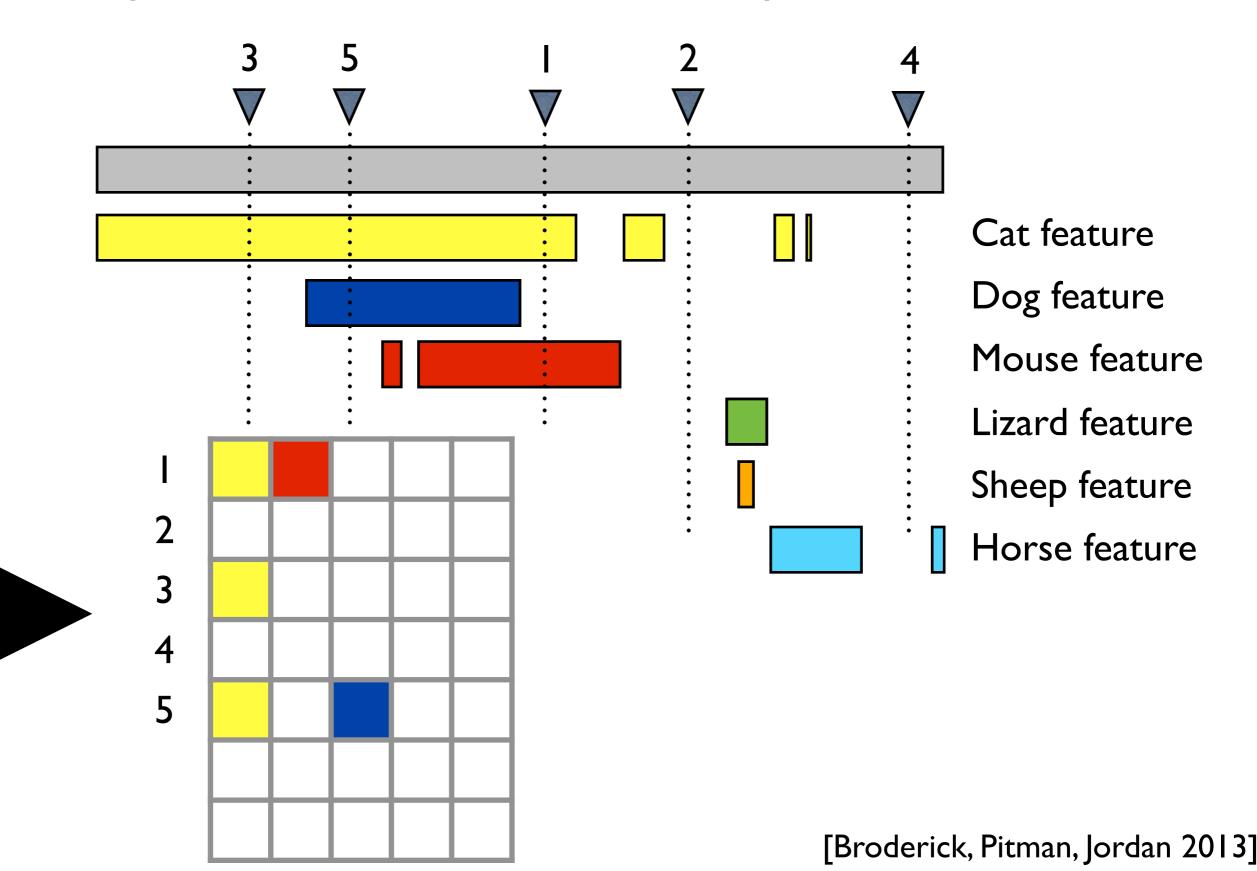




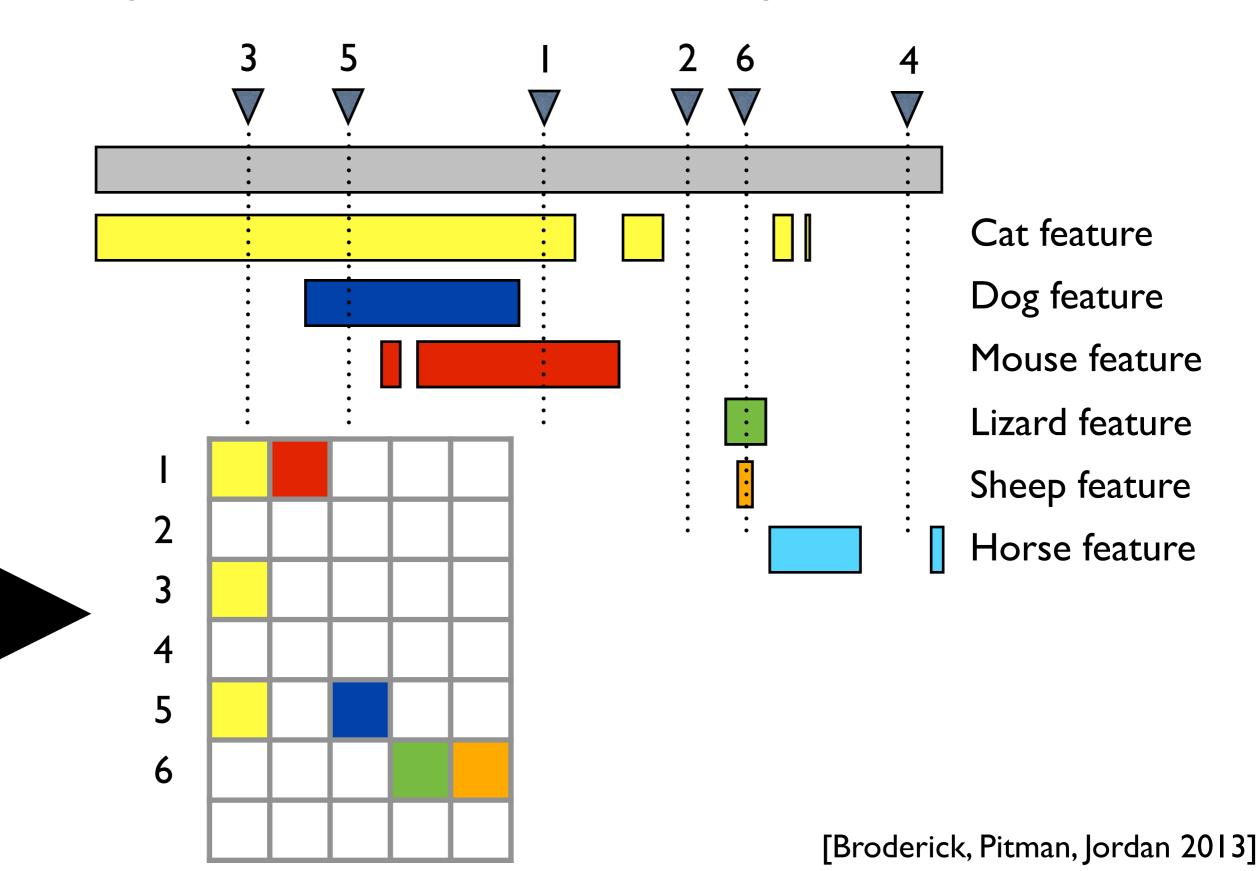




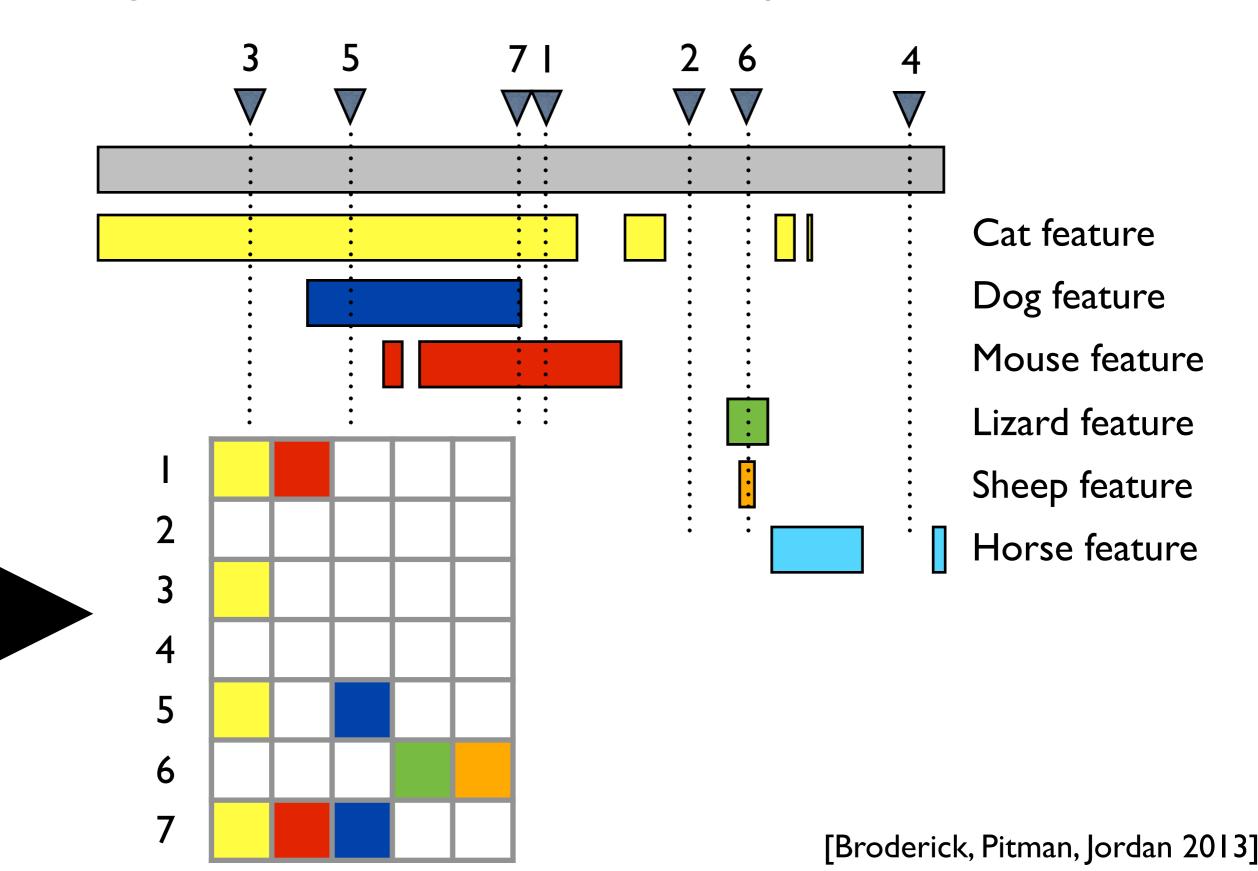




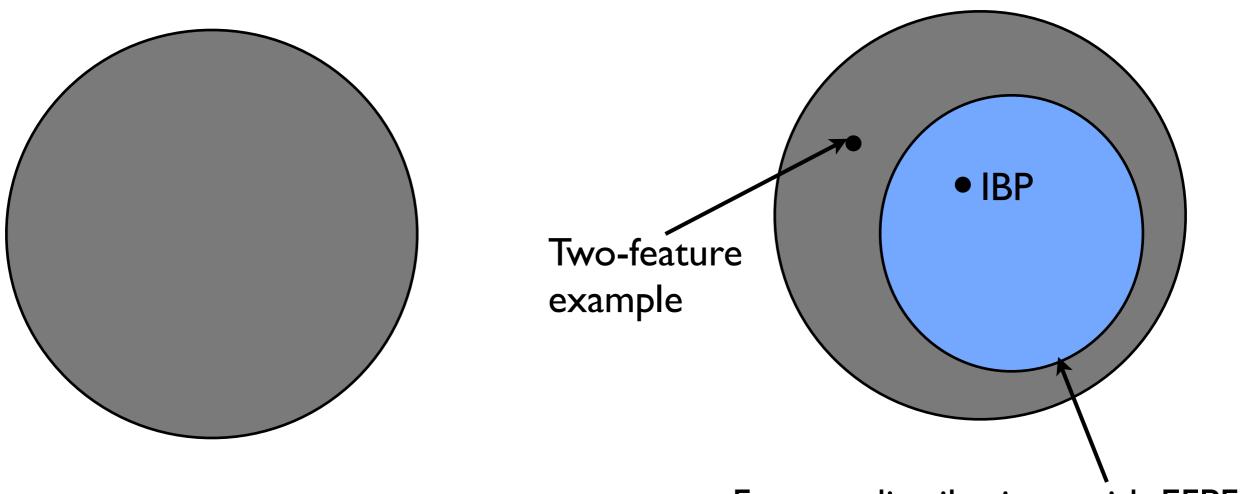
Exchangeable feature allocation: feature paintbox



13



Exchangeable cluster distributions = Cluster distributions with EPPFs



Exchangeable feature distributions

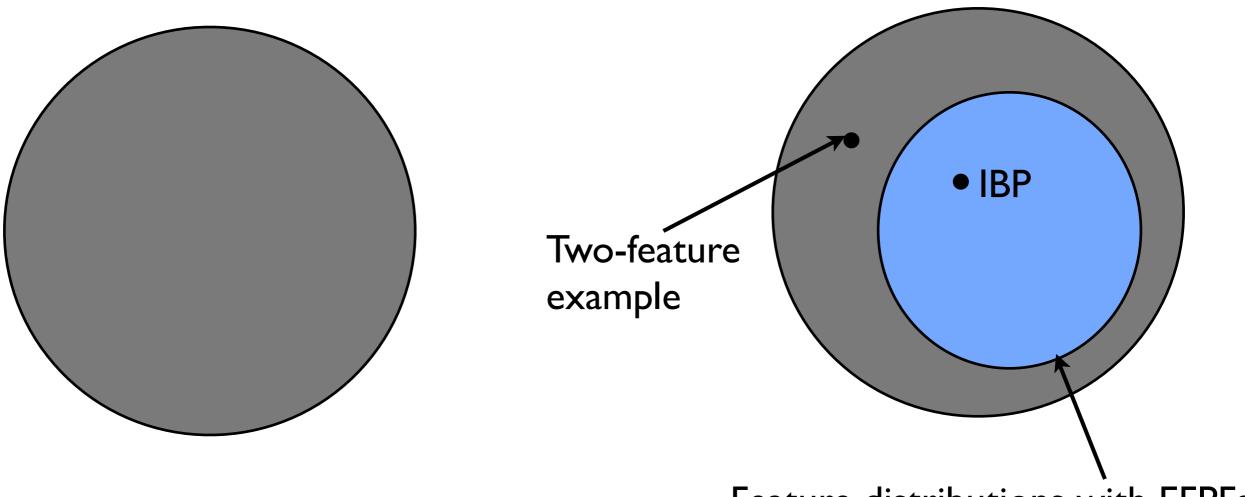
Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

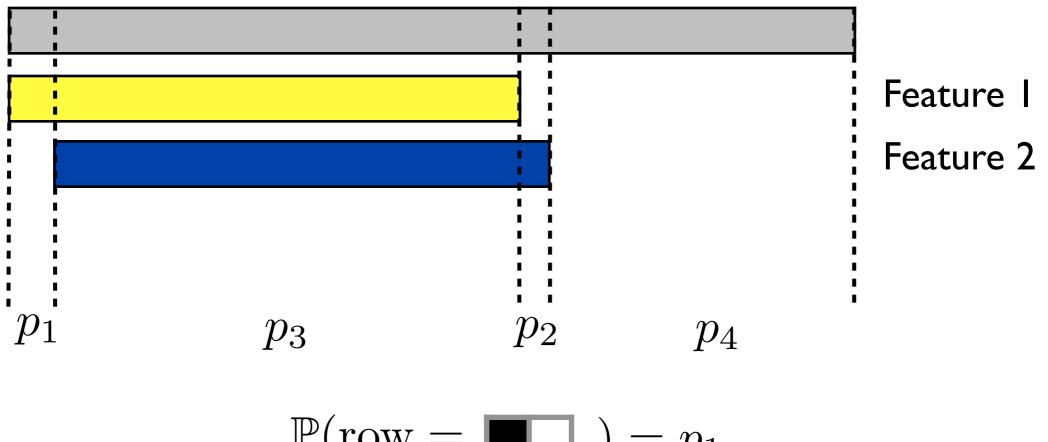
Exchangeable feature distributions = Feature paintbox allocations



Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

Two feature example



$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

Indian buffet process: beta feature frequencies

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

0

Indian buffet process: beta feature frequencies For *m* = 1, 2, ... I. Draw $K_m^+ = \text{Poisson} \left(\gamma \frac{\theta}{\theta + m - 1} \right)$ ٩ı Set $K_m = \sum K_j^+$ j=1**2.** For $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

q₂

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_j^+$ j=1**2.** For $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

q₂

q₃

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_j^+$ j=1**2.** For $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**₂

[Thibaux, Jordan 2007]

q₃

q₄

đ۶

q₆

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson} \left(\gamma \frac{\theta}{\theta + m - 1} \right)$ ٩ı Set $K_m = \sum K_j^+$ j=1**2.** For $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**₂

[Thibaux, Jordan 2007]

q₃

q₄

q₅

q₆

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

q₆

q₄

0

q5

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

 $q_2 q_3$

0

q₄

q5

q₆

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

٩ı

0

 $q_2 q_3$

q₄

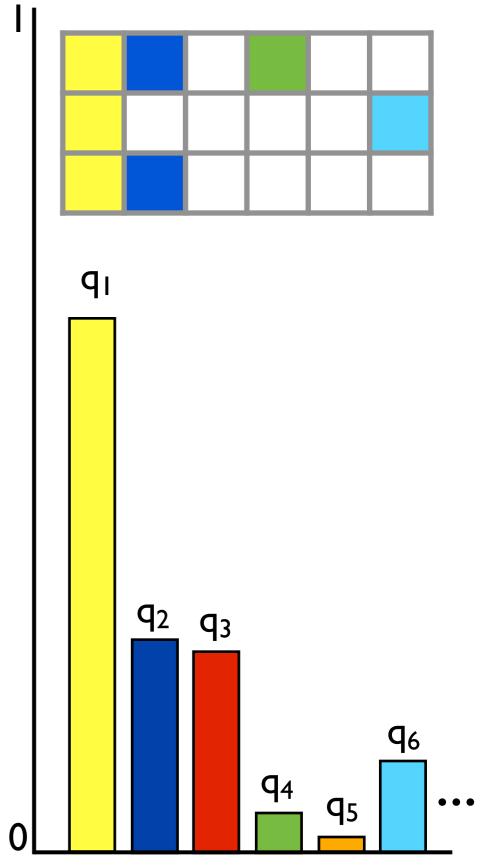
q5

q₆

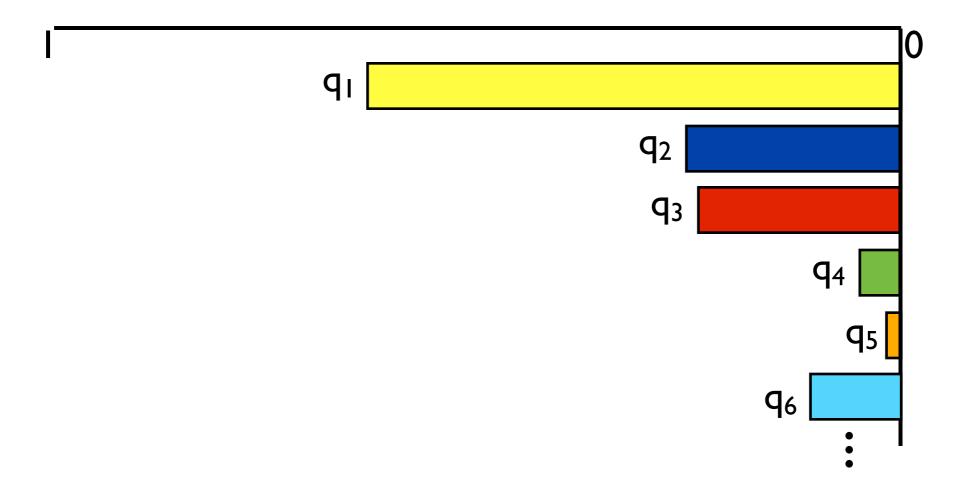
Indian buffet process: beta feature frequencies

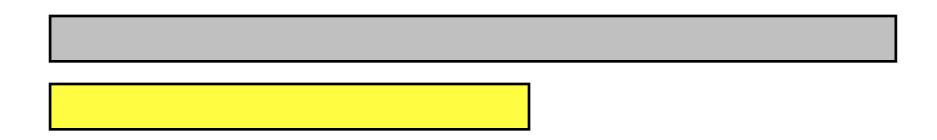
For
$$m = 1, 2, ...$$

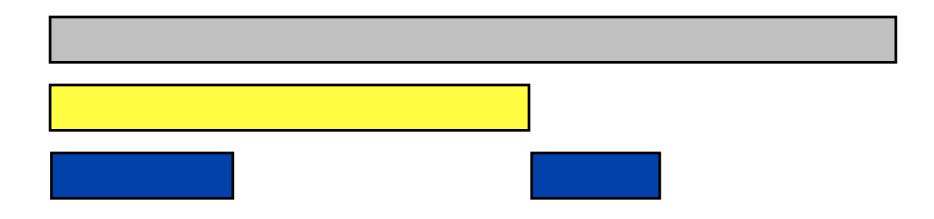
1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$
2. For $k = K_{m-1} + 1, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

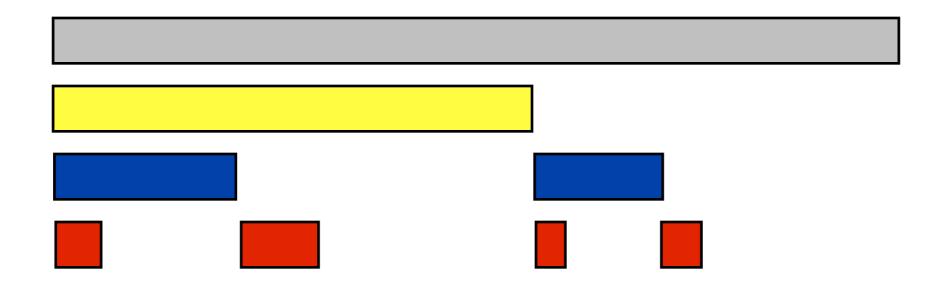


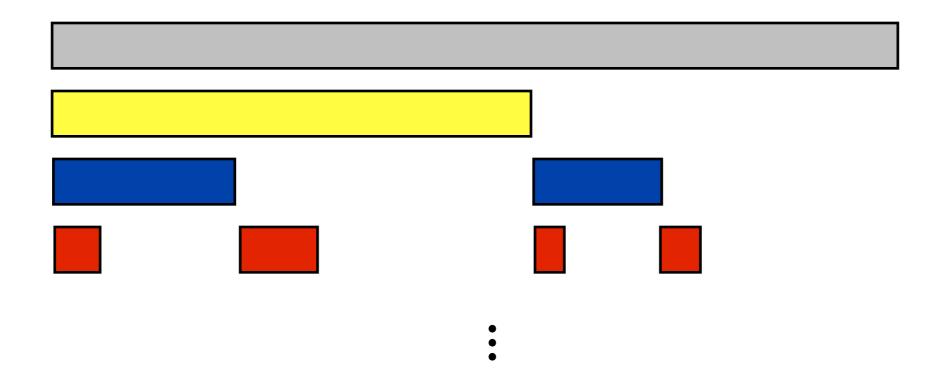
[Thibaux, Jordan 2007]

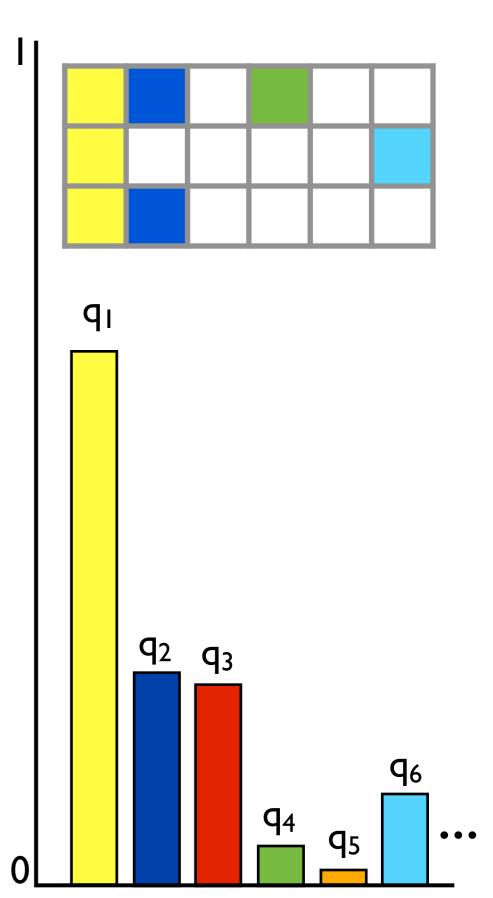




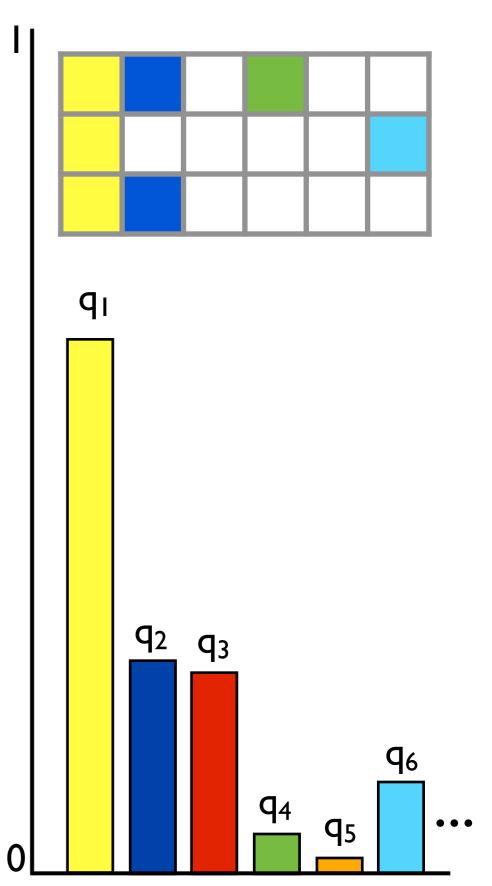






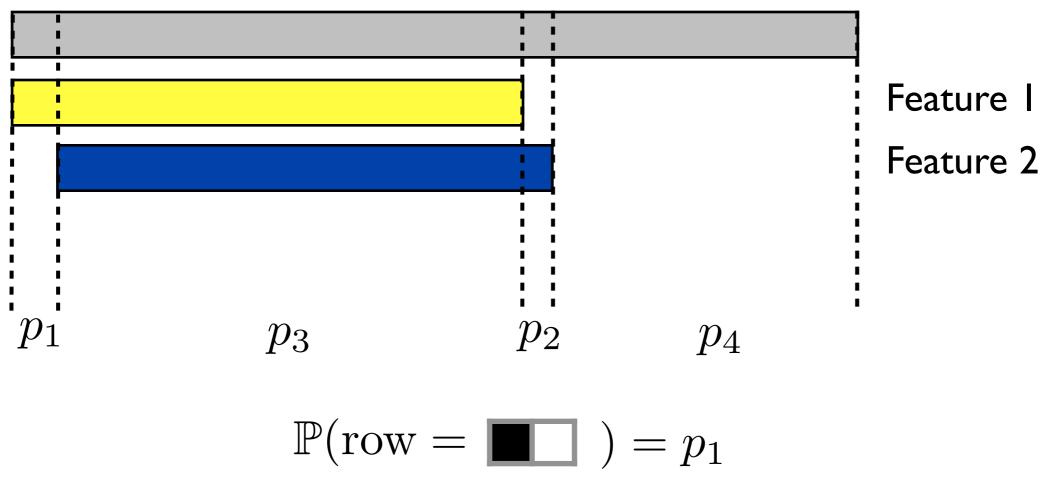


"Feature frequency models"



[Broderick, Pitman, Jordan 2013]

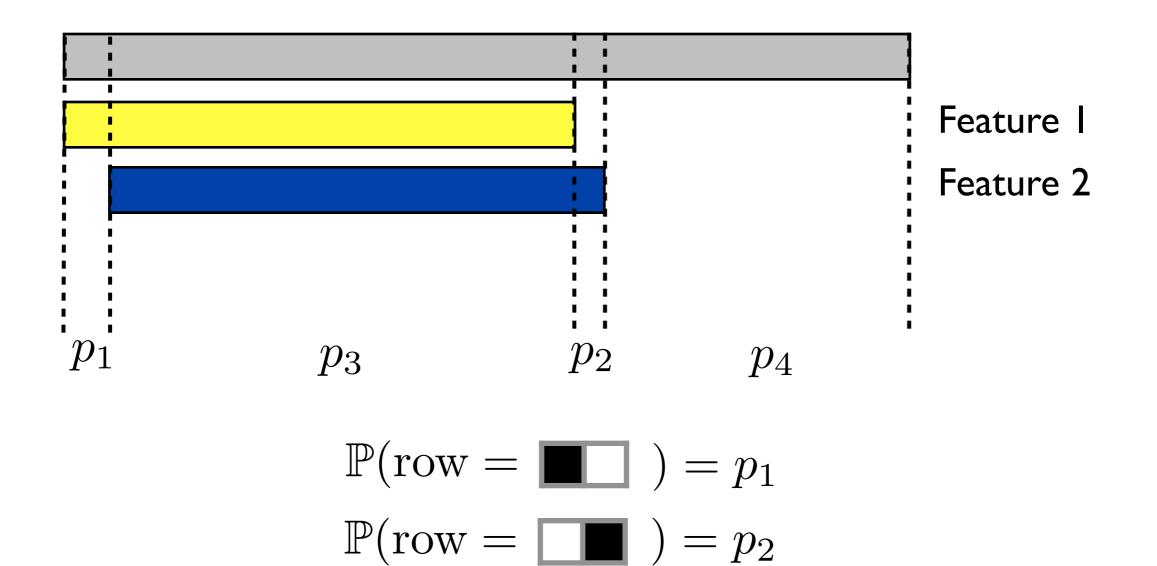
Two feature example



$$\mathbb{P}(\text{row} = \square) = p_2$$
$$\mathbb{P}(\text{row} = \square) = p_3$$
$$\mathbb{P}(\text{row} = \square) = p_4$$

Two feature example

Not a feature frequency model



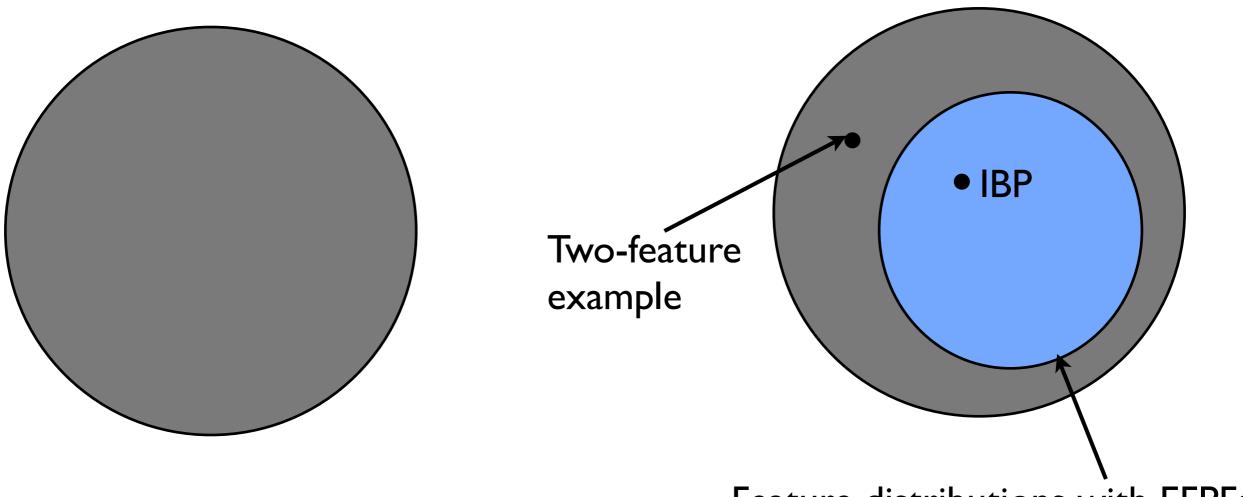
 $\mathbb{P}(\text{row} = \blacksquare \blacksquare) = p_3$

 $\mathbb{P}(\text{row} = \square) = p_4$

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman painthex partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations



Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

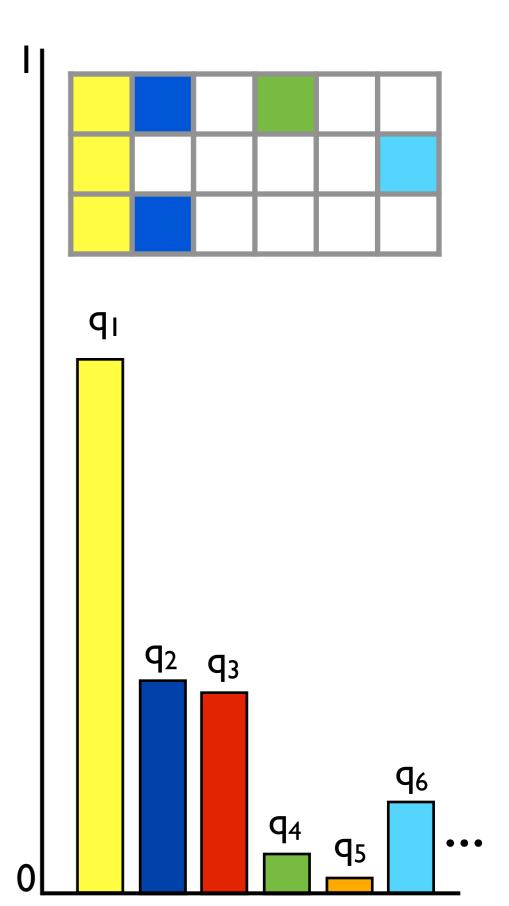
Two-feature example

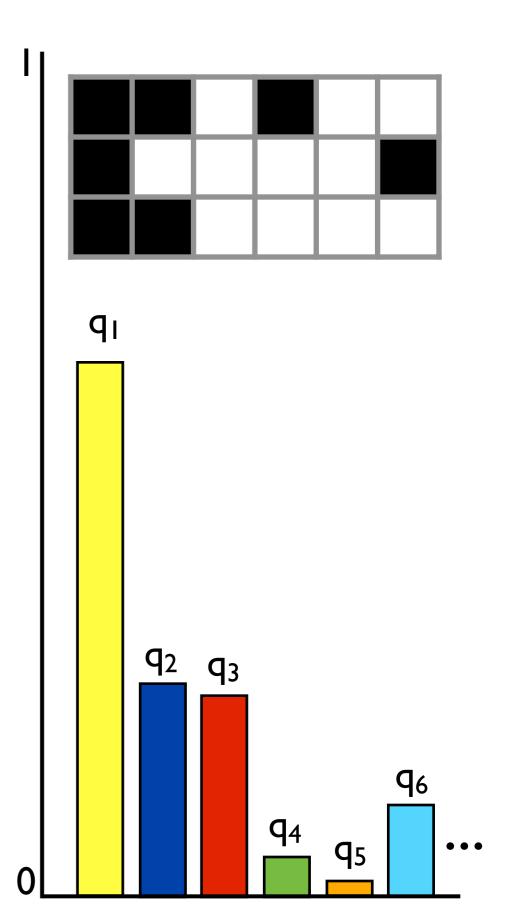
= Feature paintbox allocations

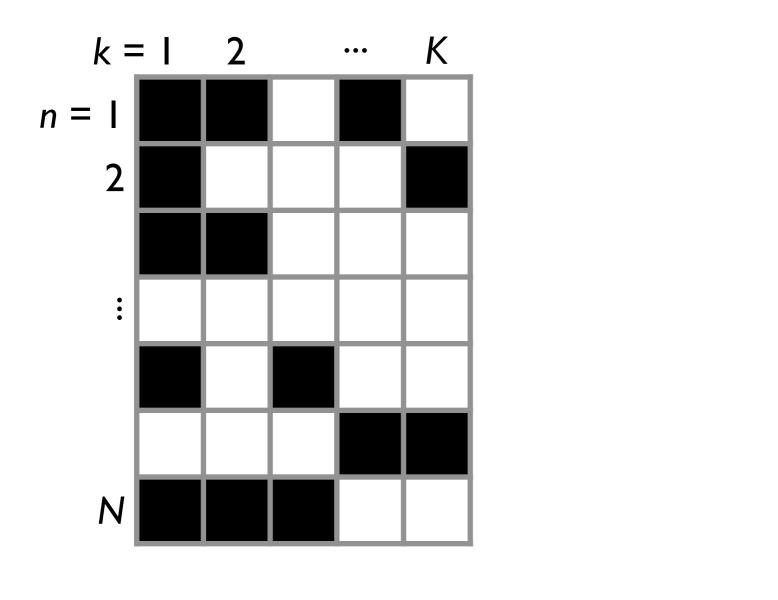
Exchangeable feature distributions

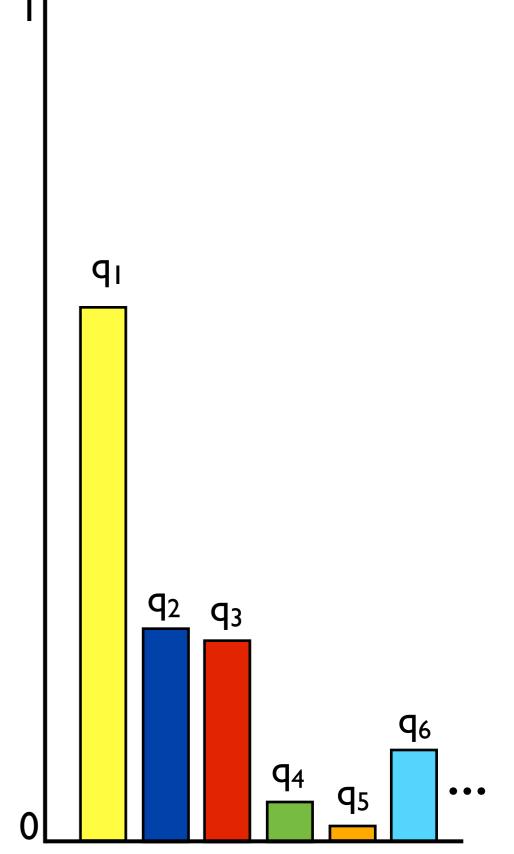
Feature frequency models

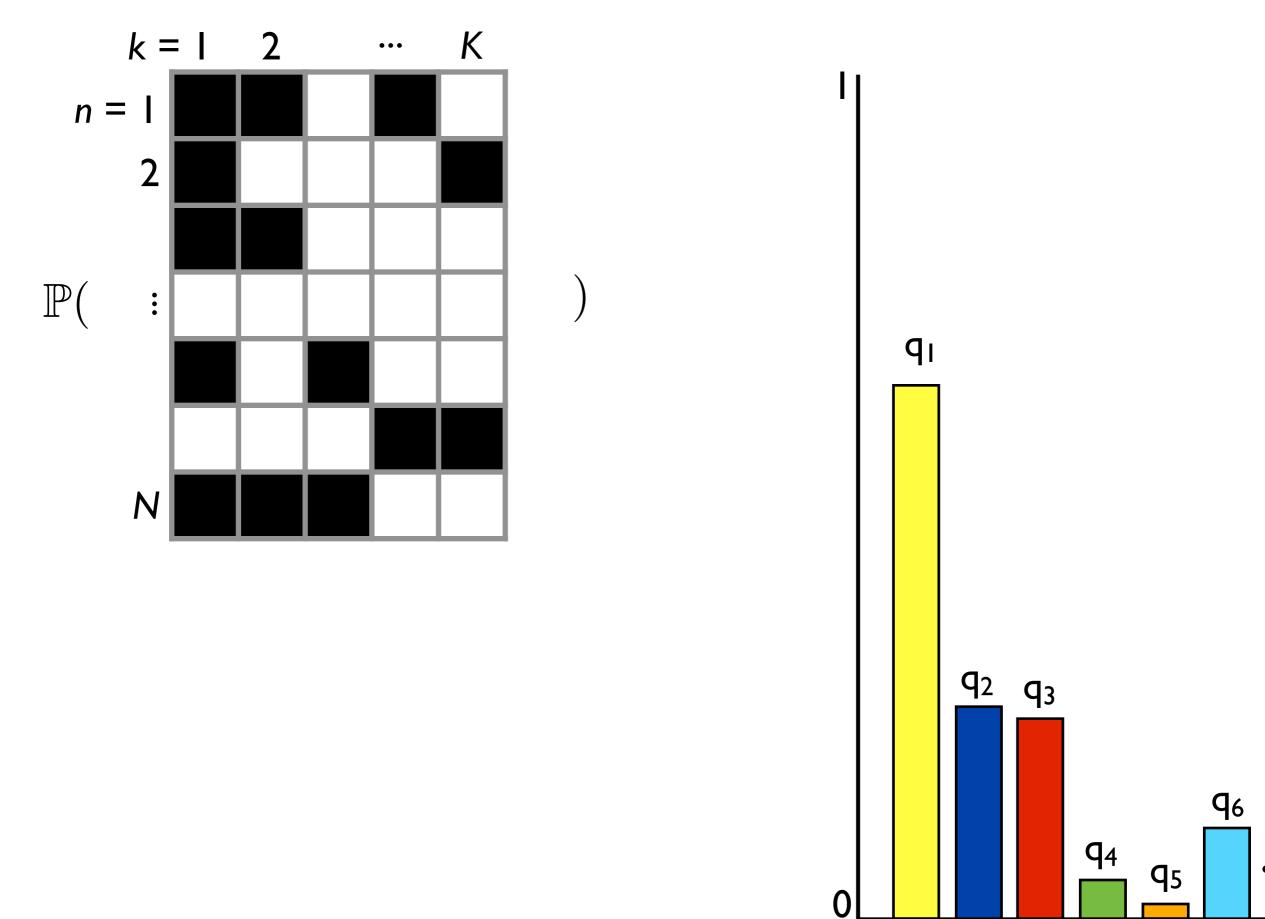
٩ı **q**₂ **q**₃ **q**₆ **q**₄ **q**5 0

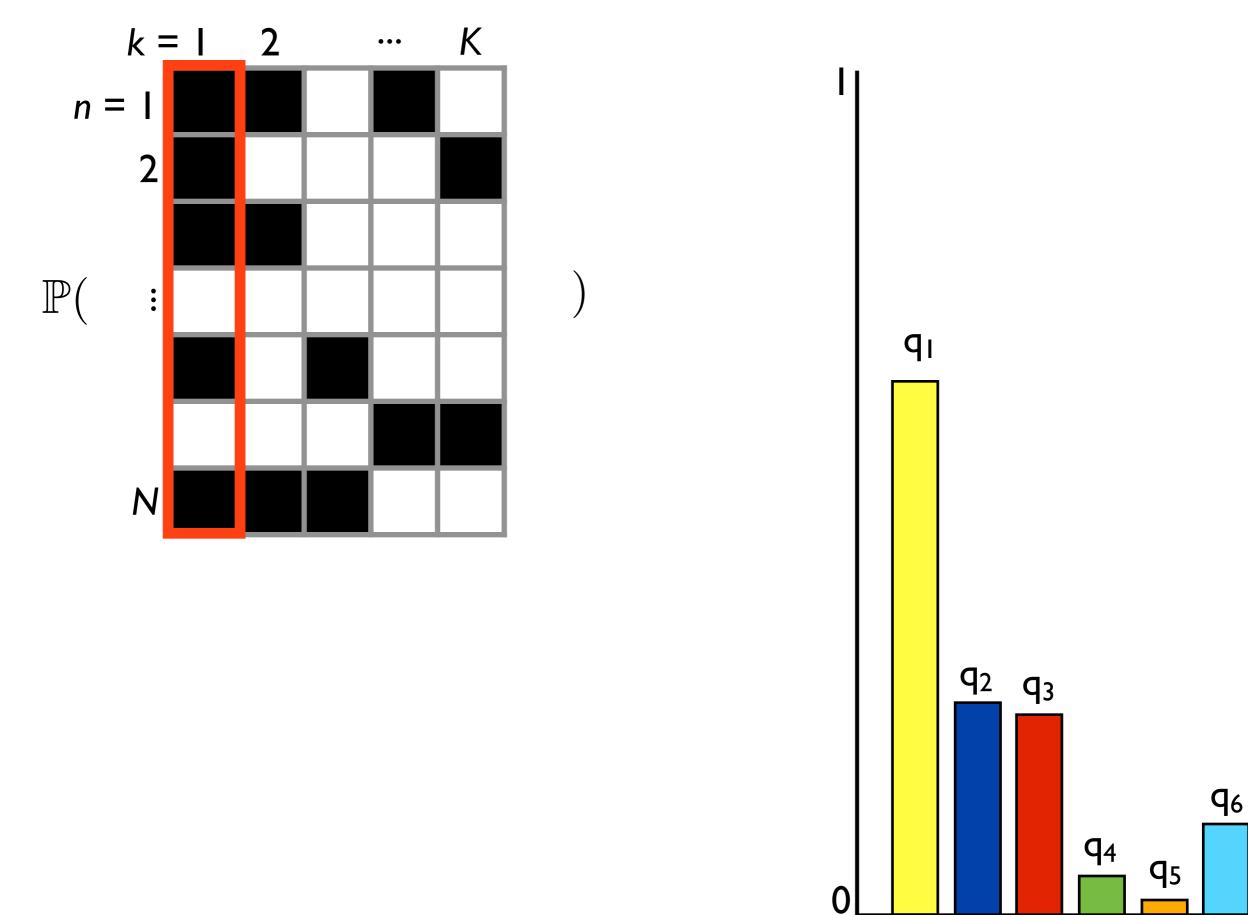


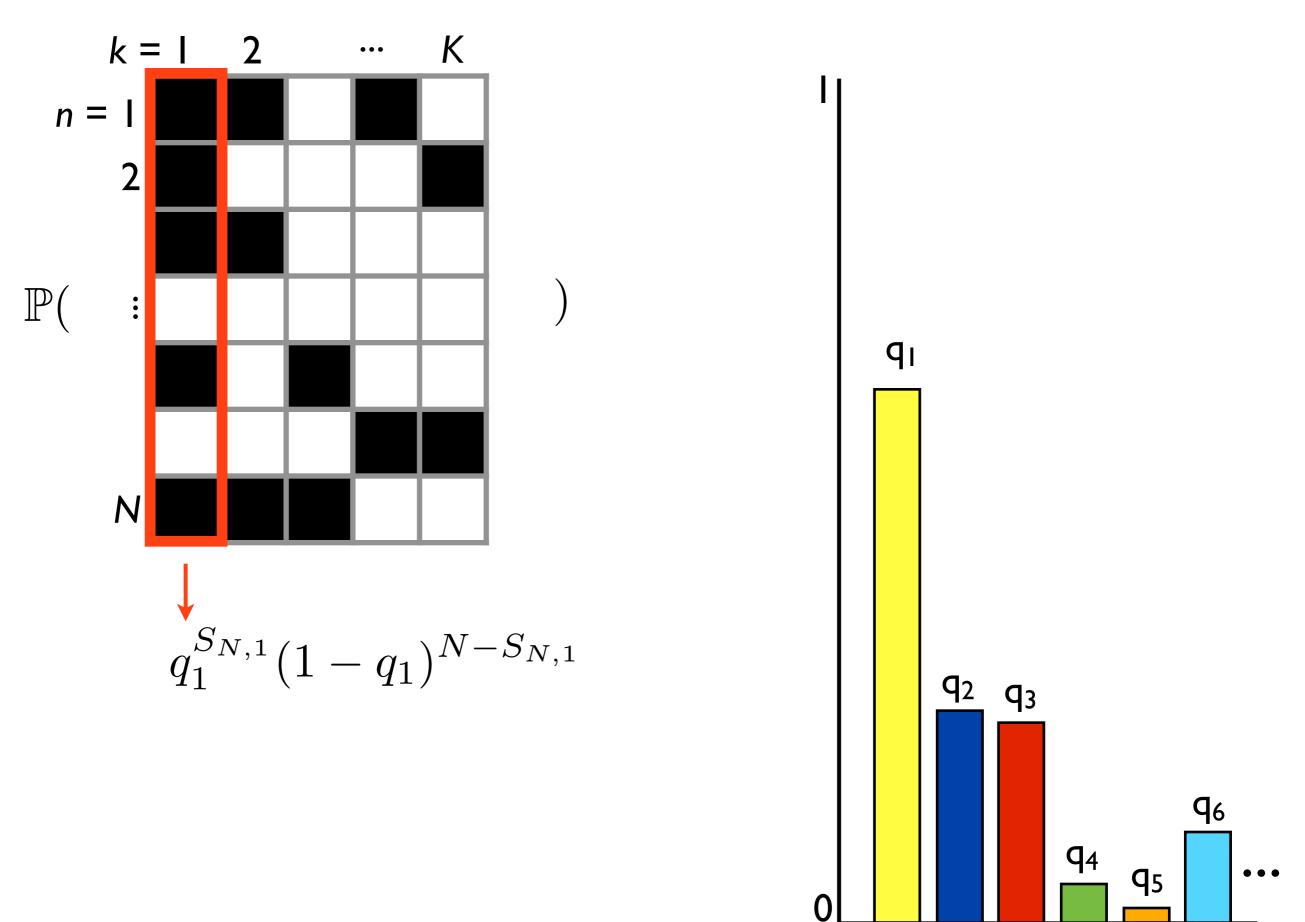


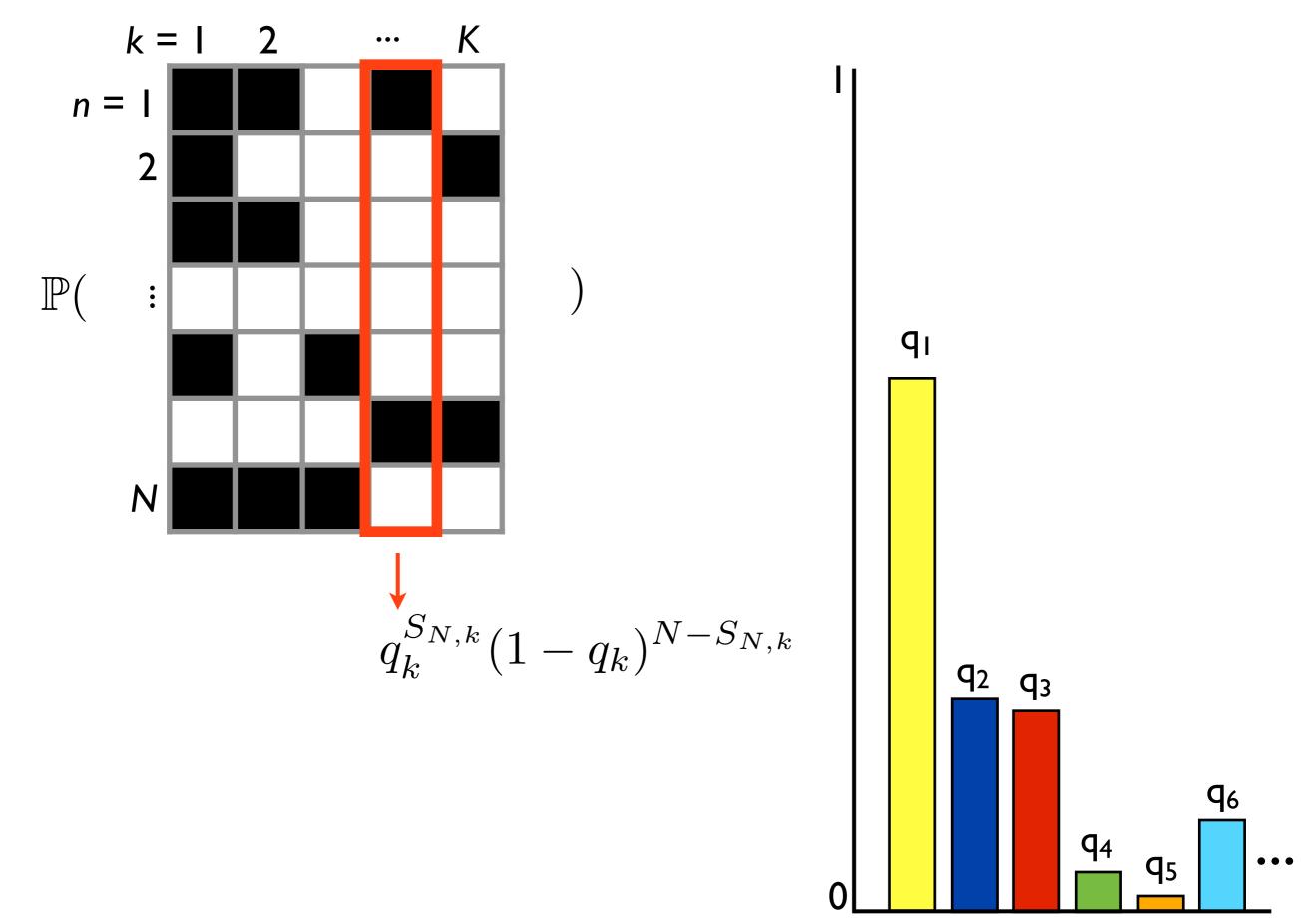


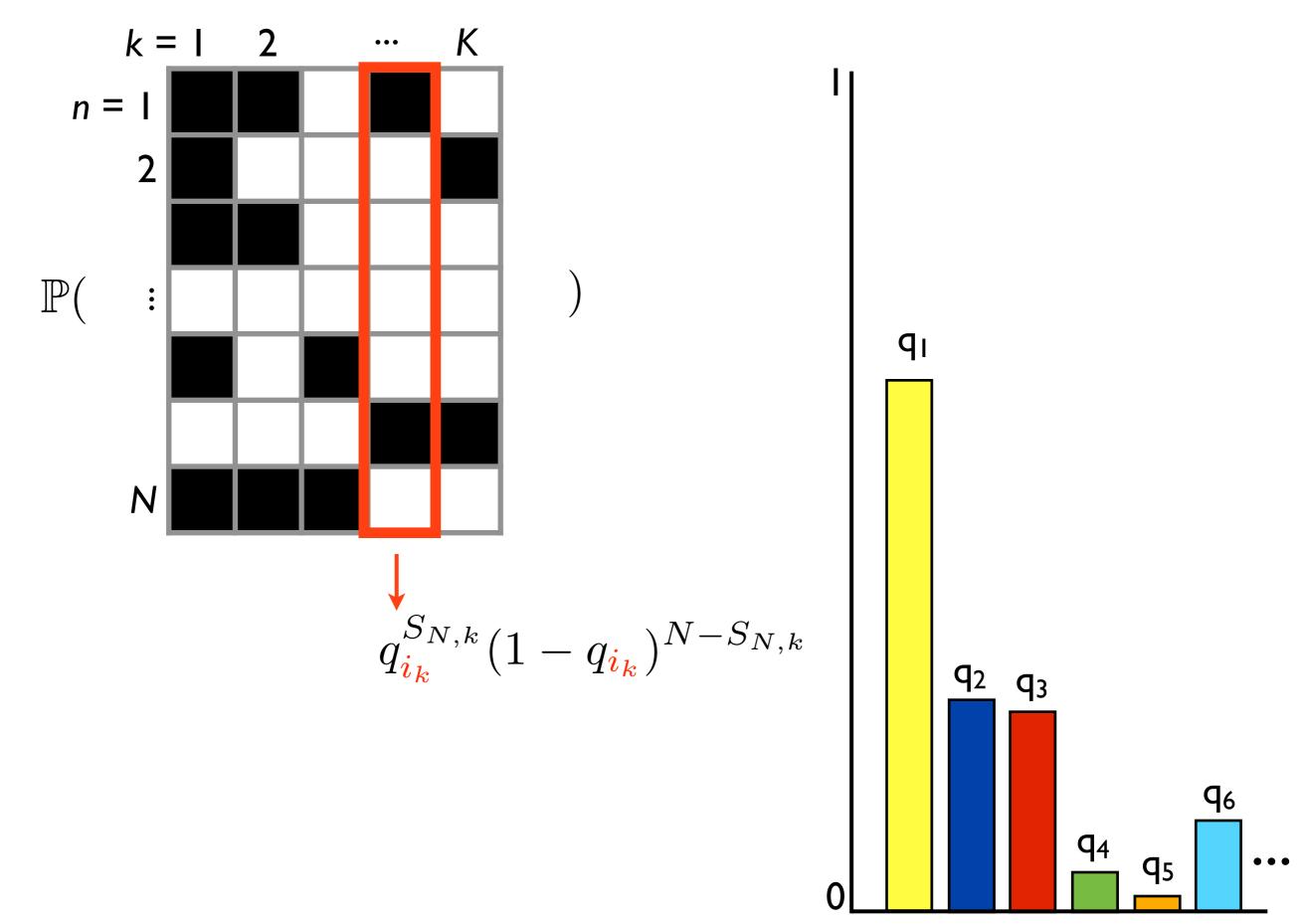


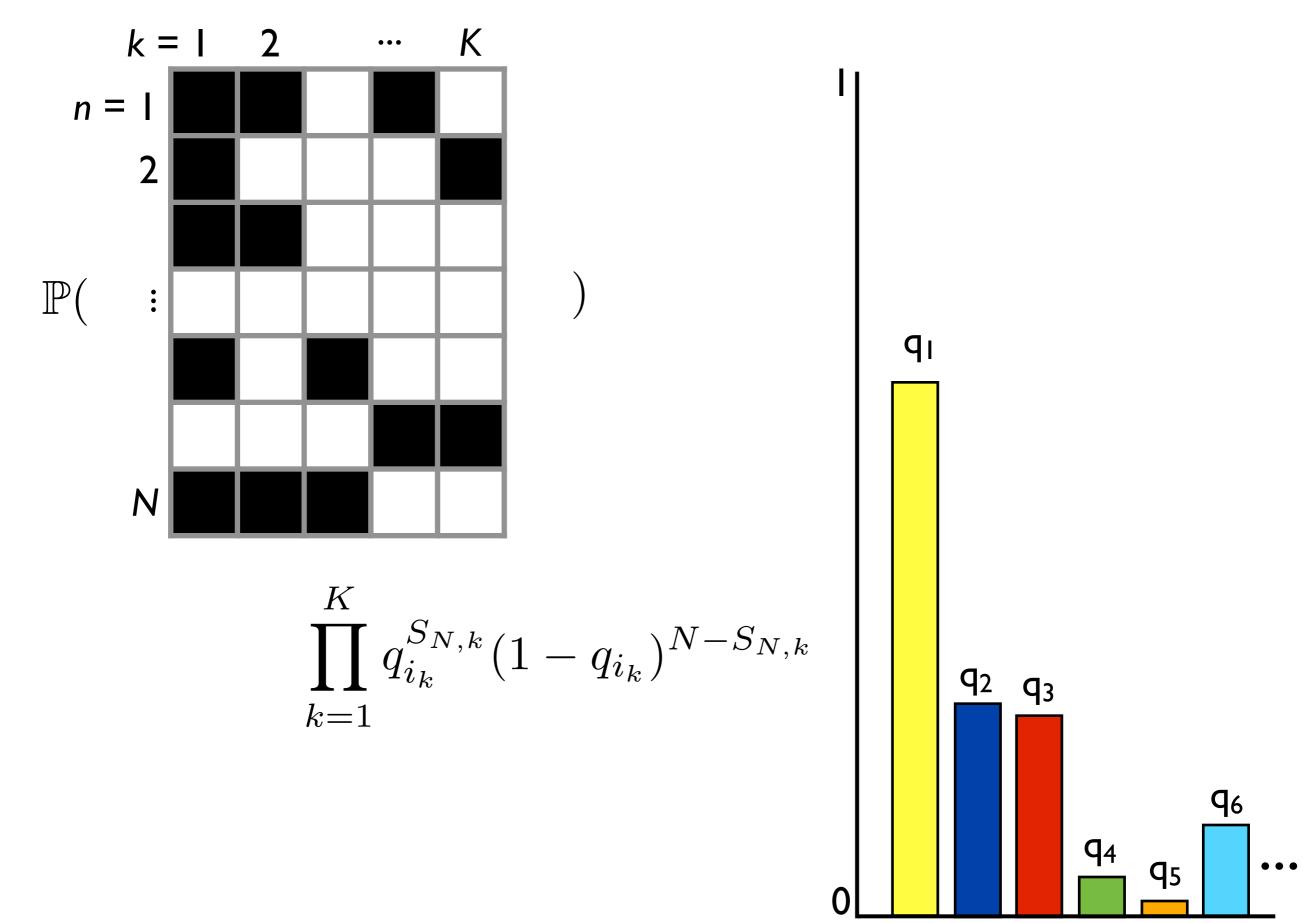


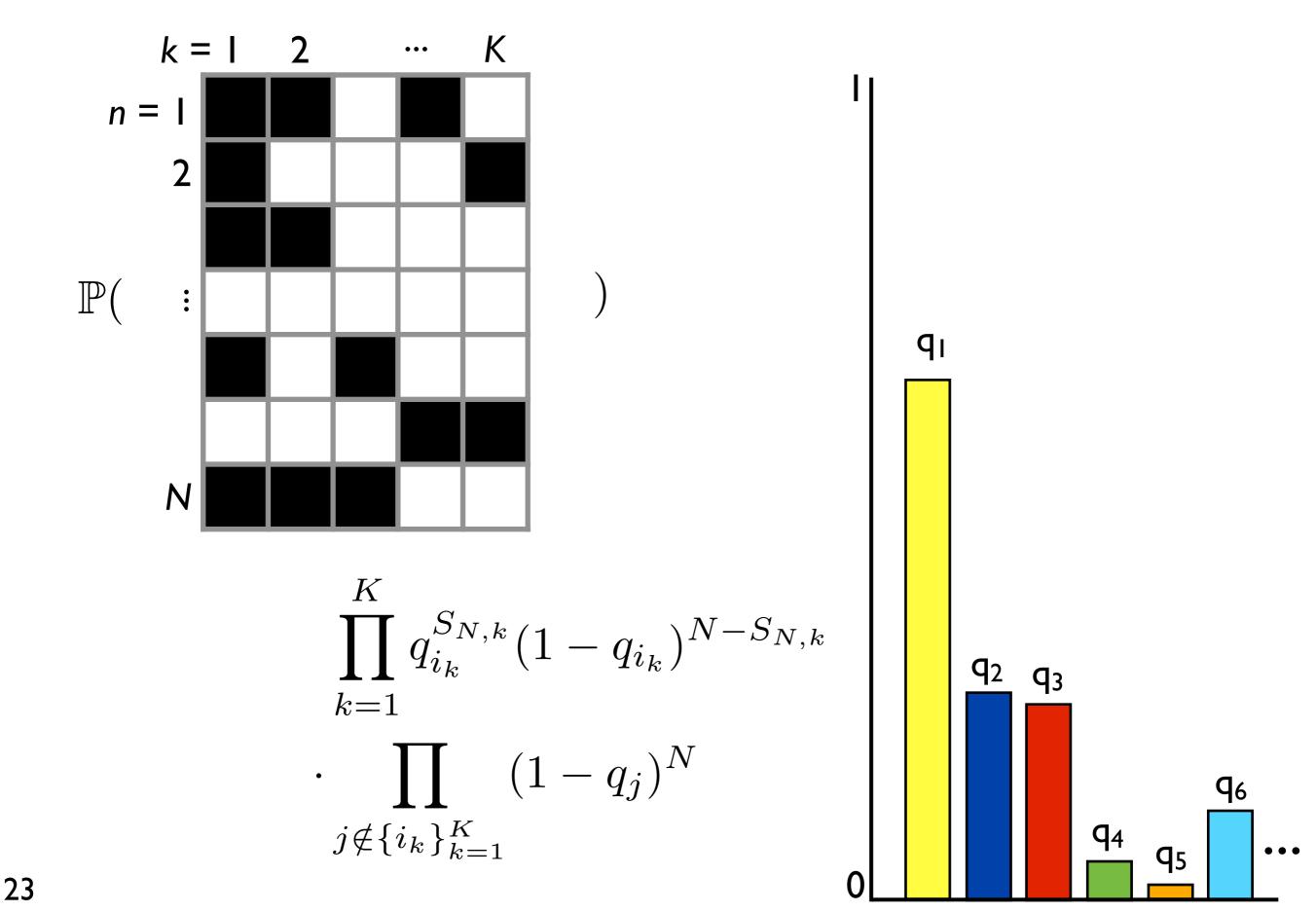


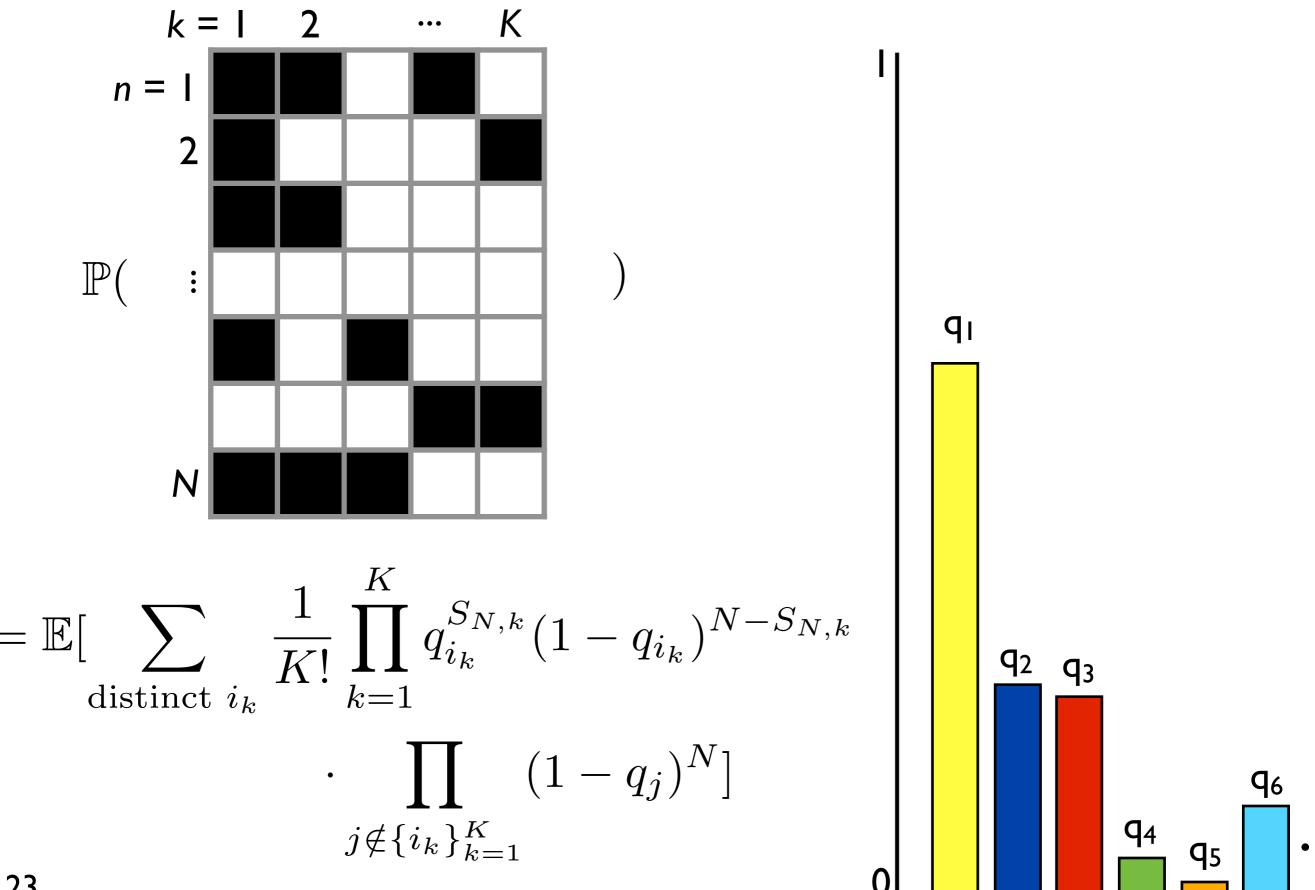


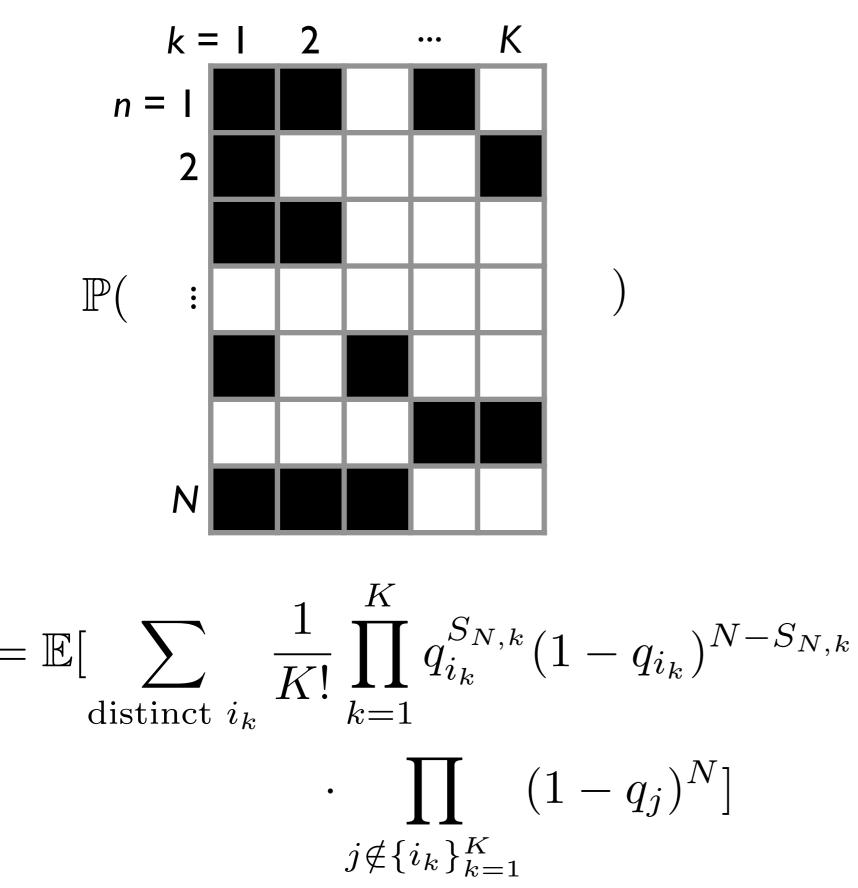




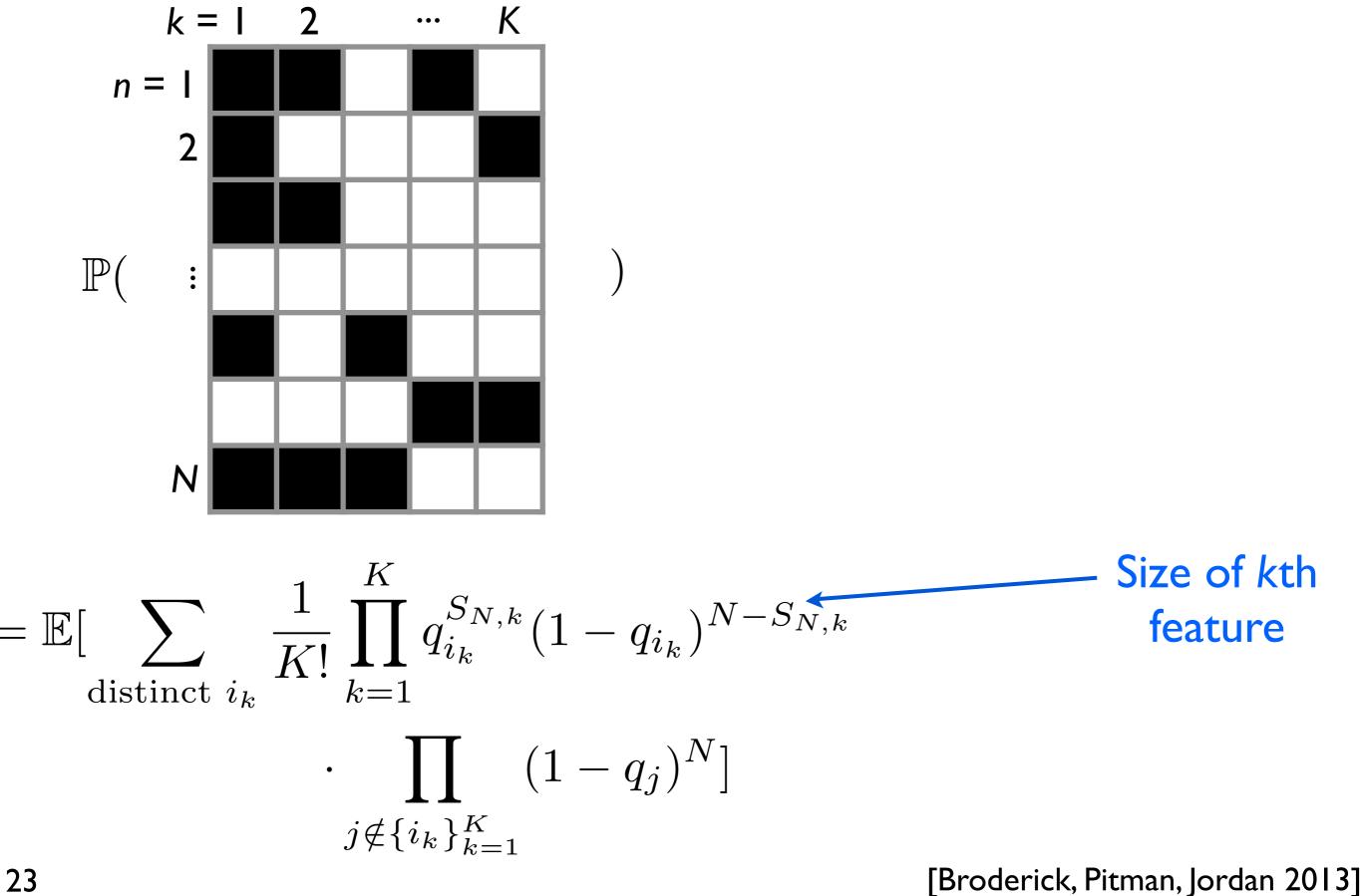


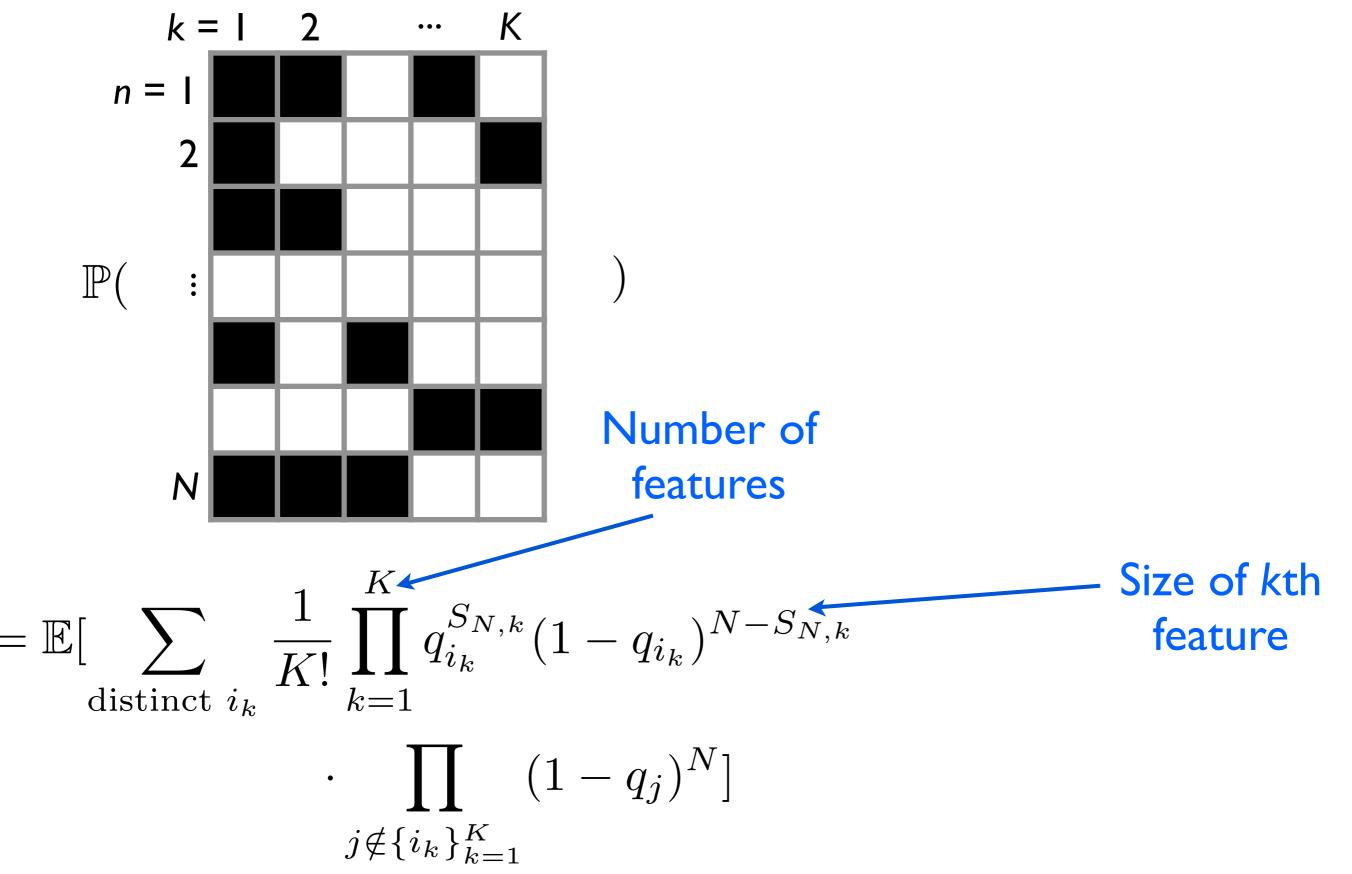




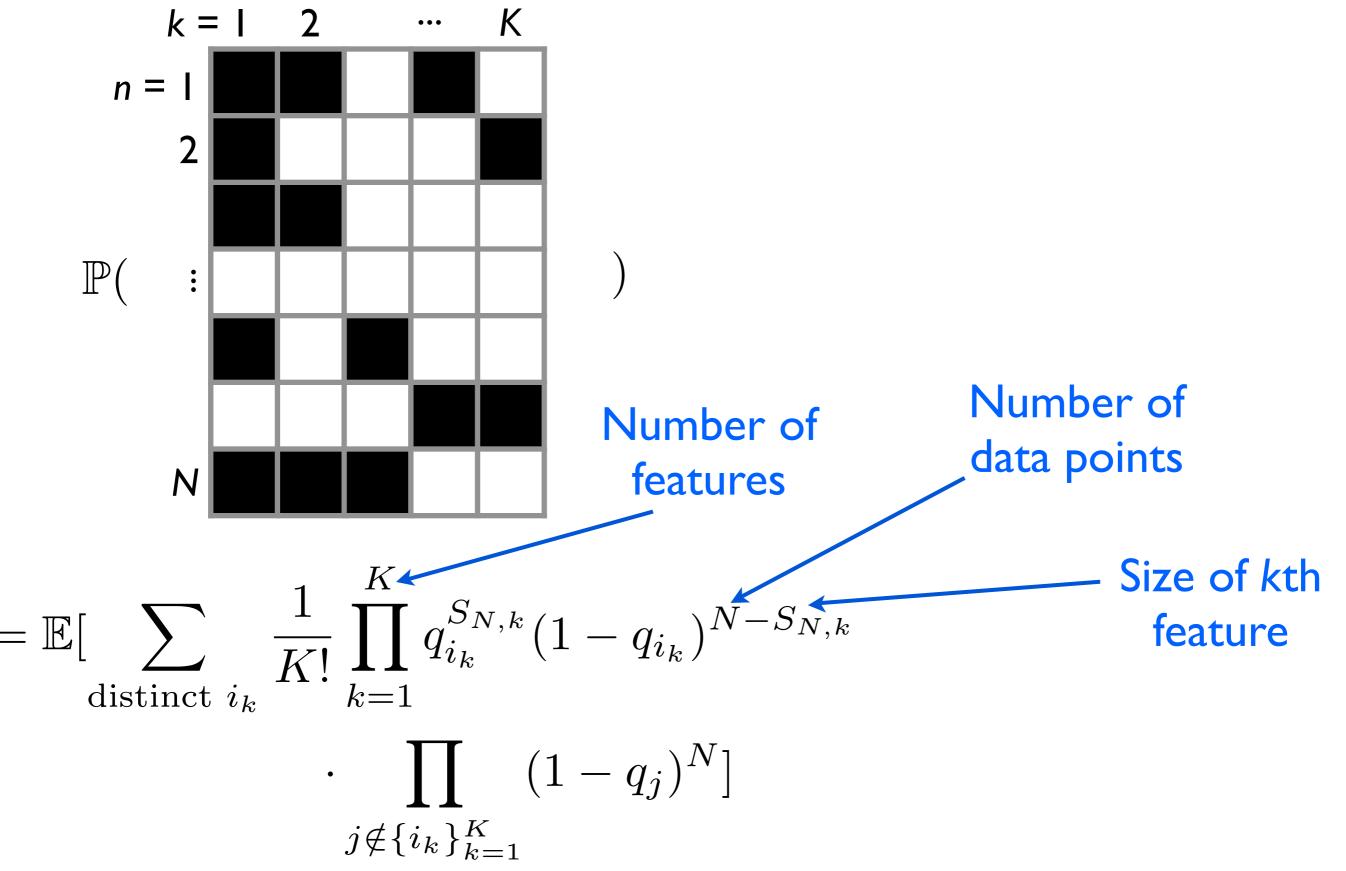


[Broderick, Pitman, Jordan 2013]

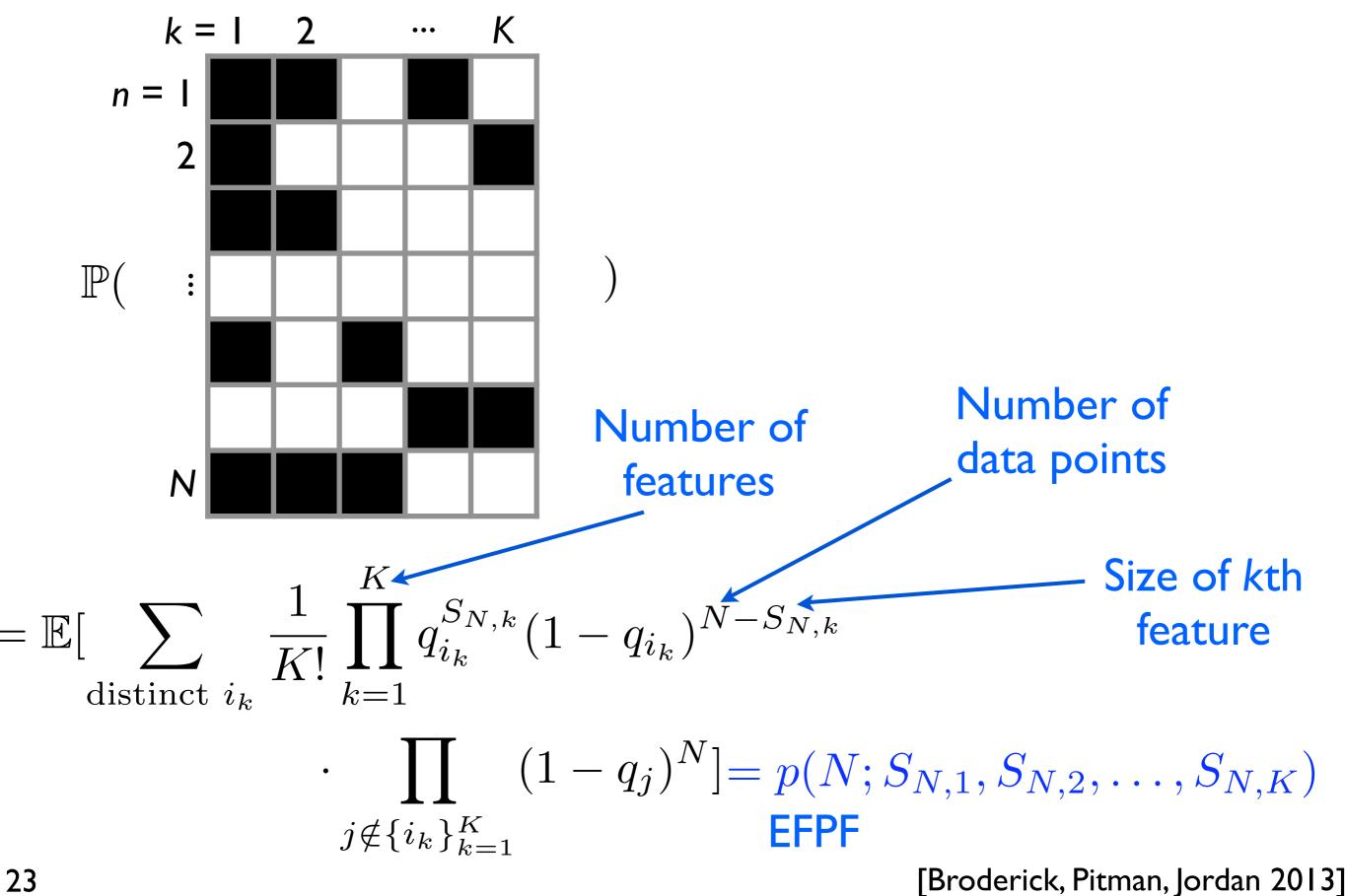




[Broderick, Pitman, Jordan 2013]



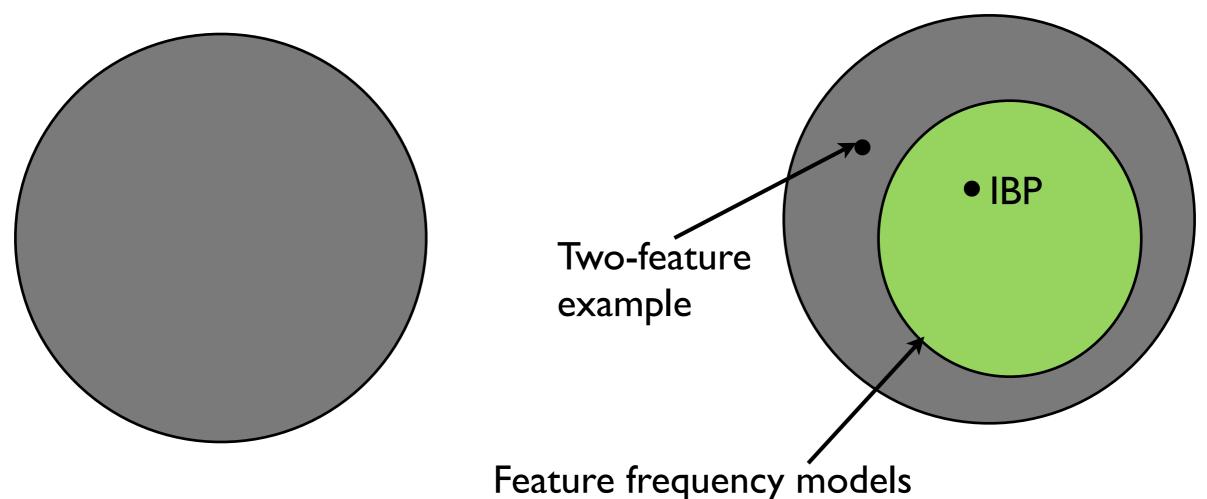
[Broderick, Pitman, Jordan 2013]



Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

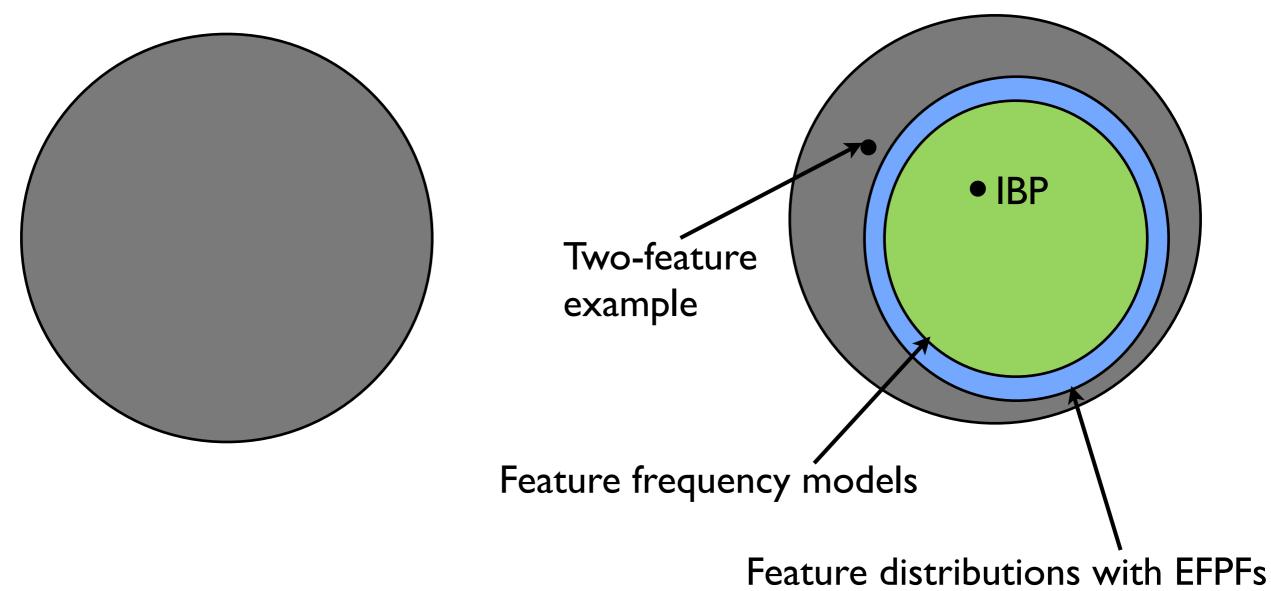


[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

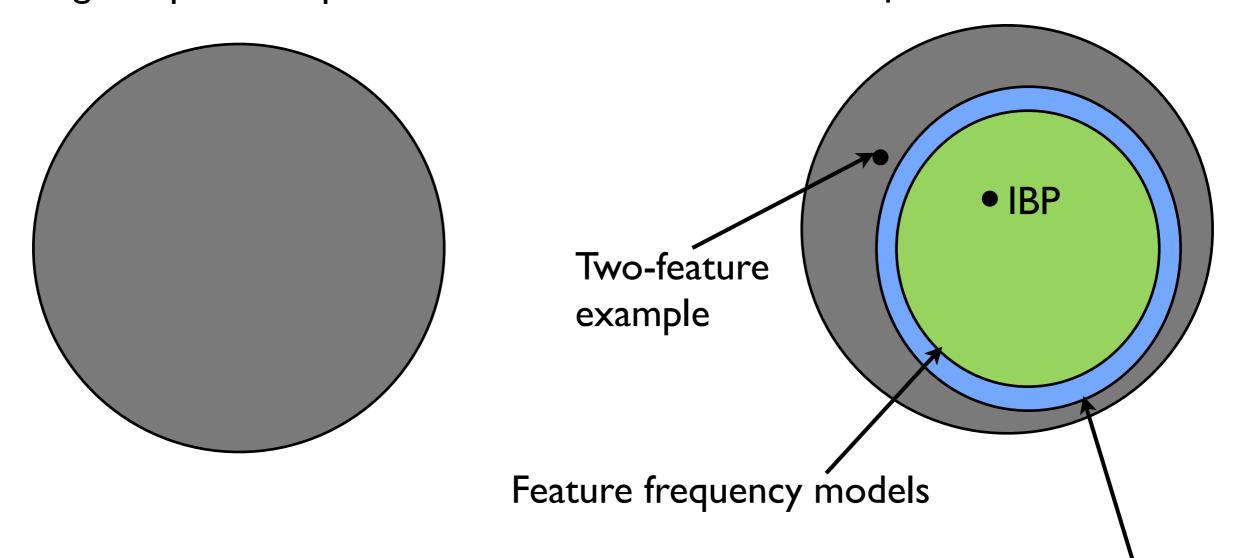
= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations



 Any number (+unbounded case) of features

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions



Exchangeable feature distributions = Feature paintbox allocations

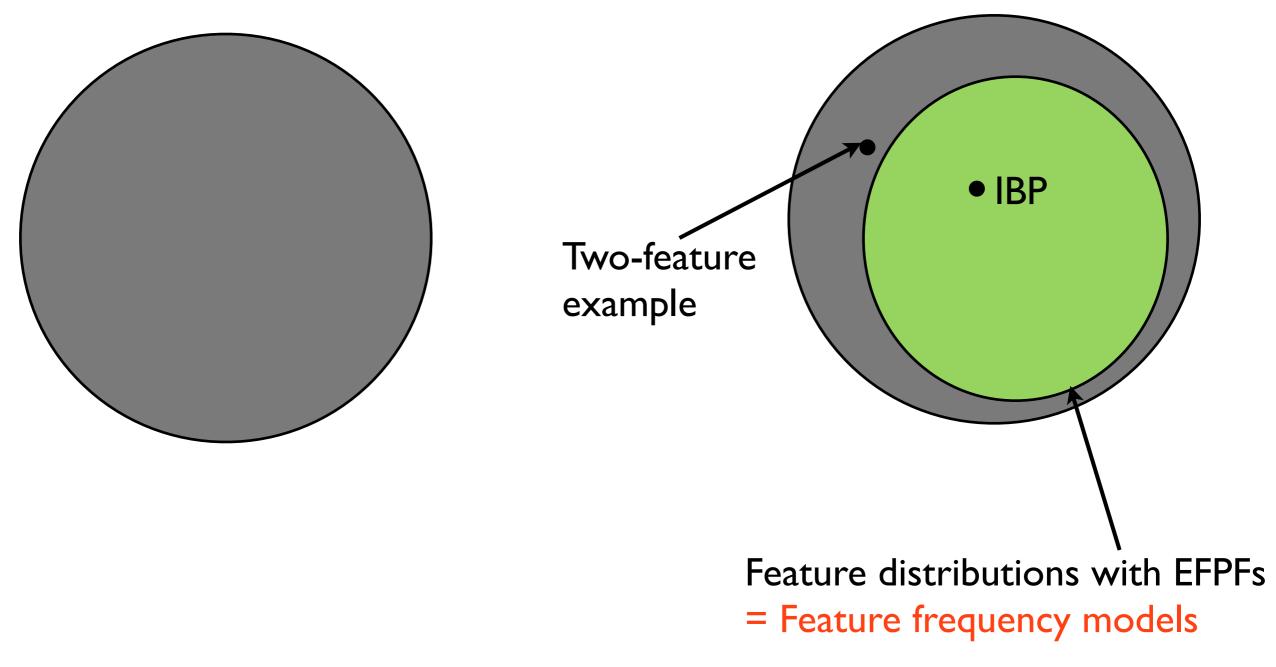
Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

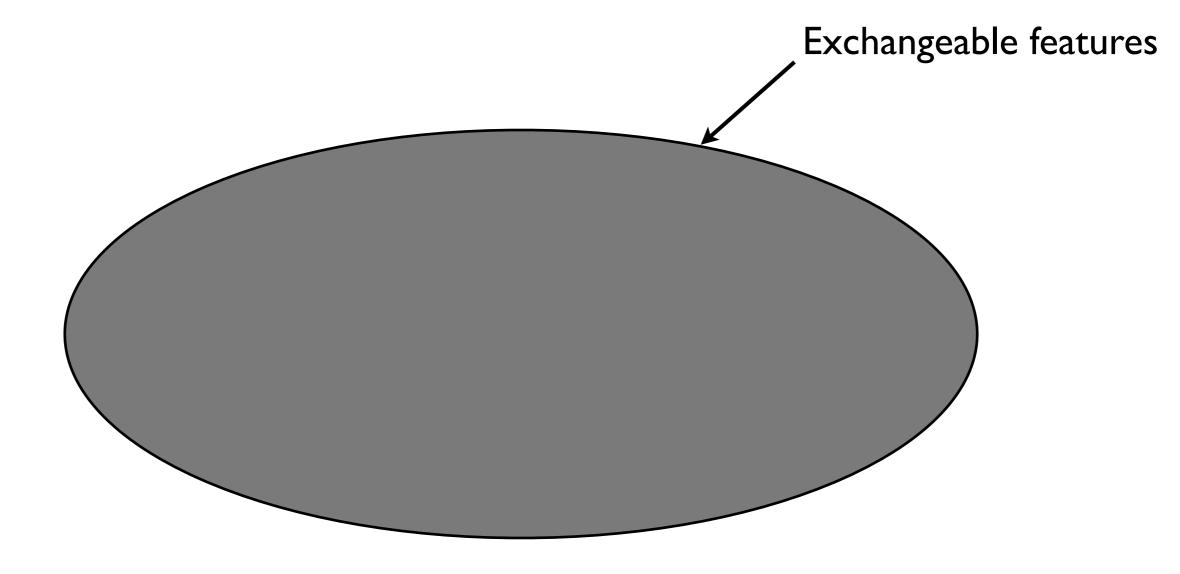
Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

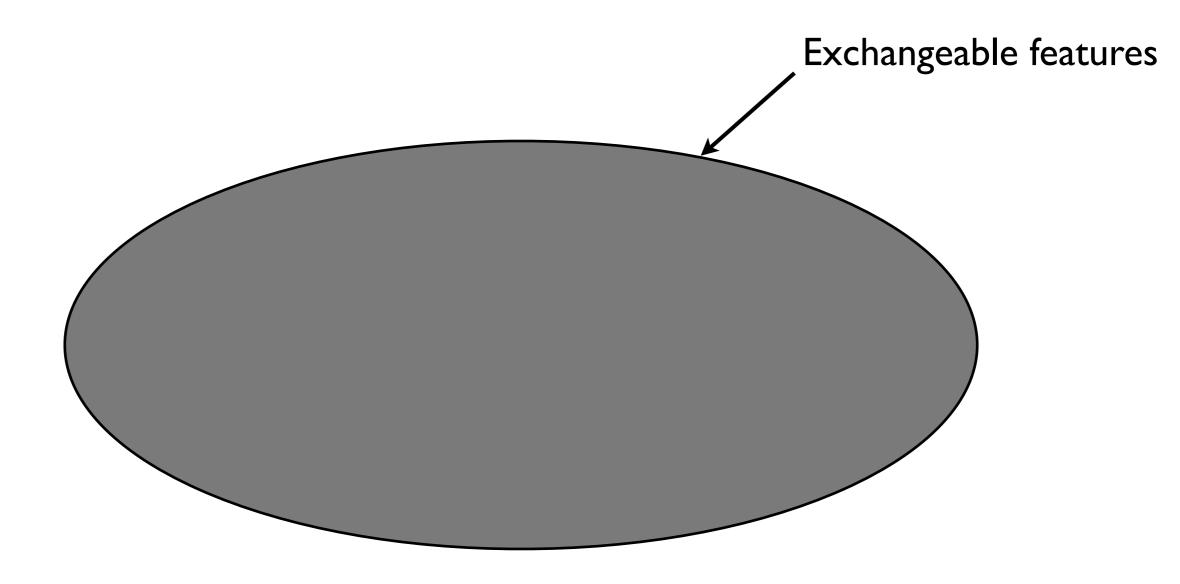
Exchangeable feature distributions = Feature paintbox allocations



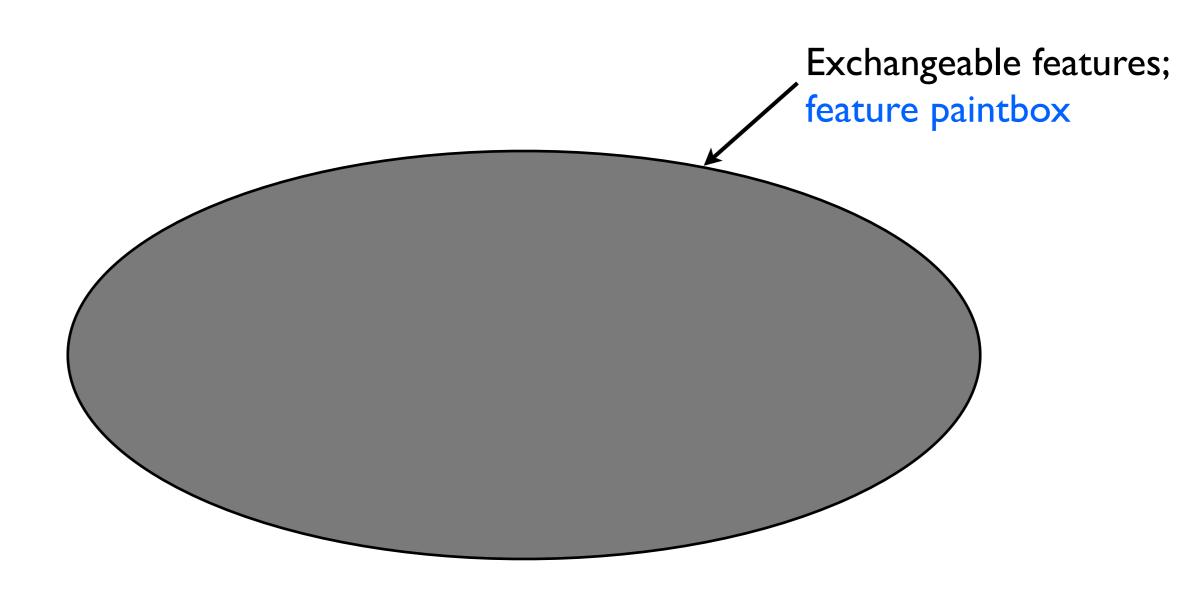
[Broderick, Pitman, Jordan 2013]



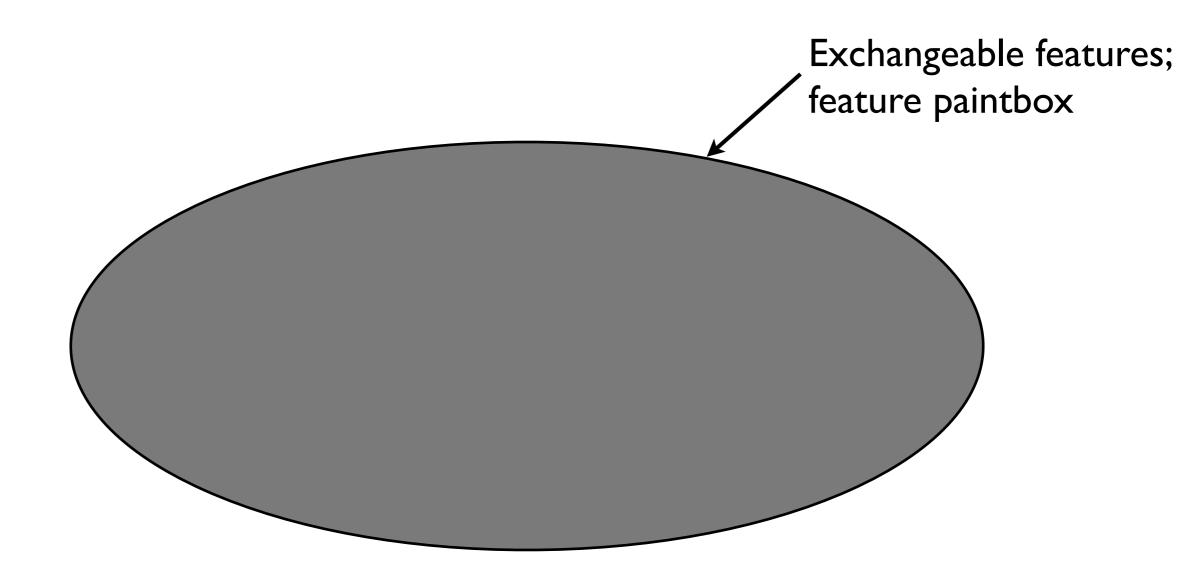
• Feature paintbox: characterization of exchangeable feature models



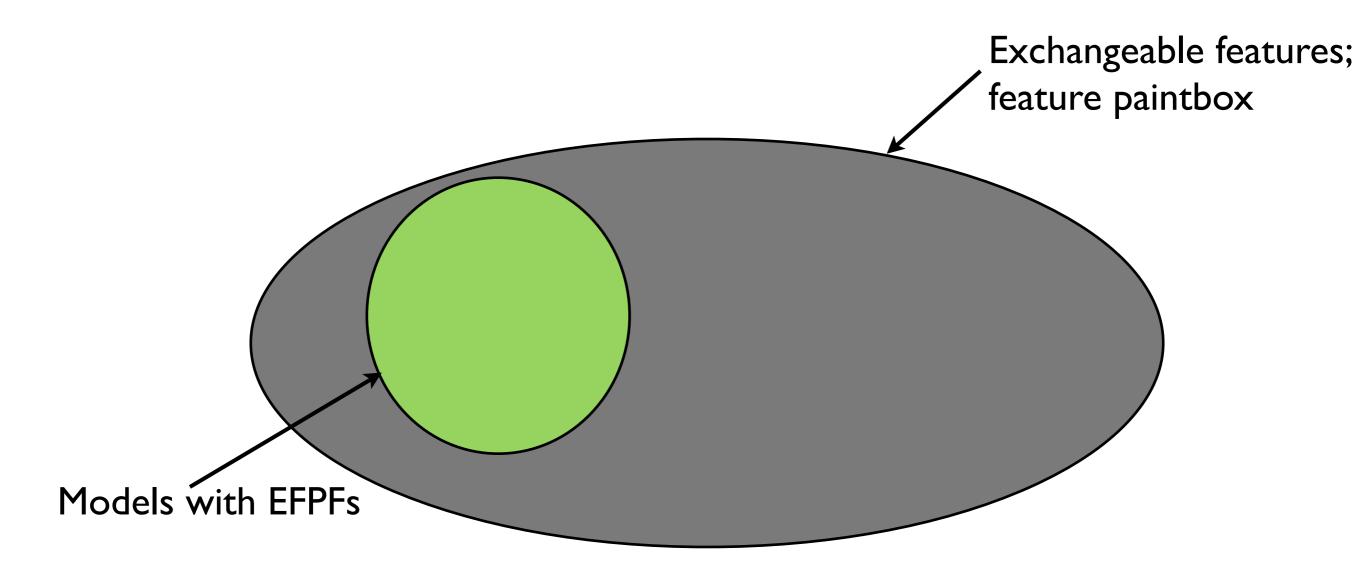
• Feature paintbox: characterization of exchangeable feature models



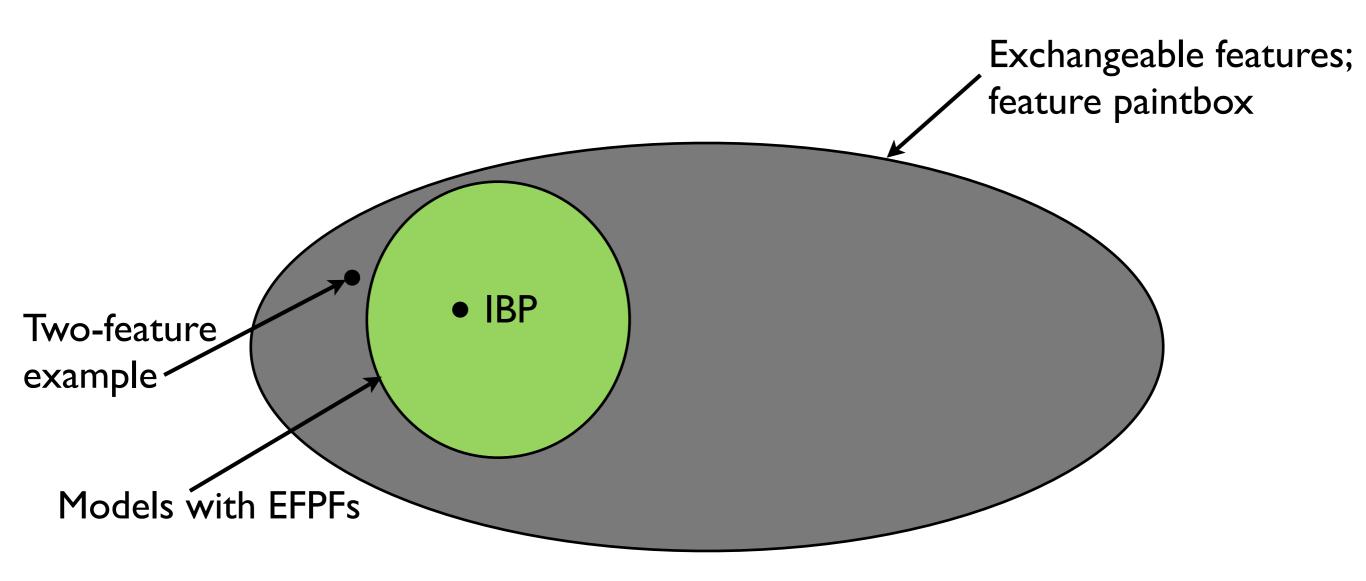
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



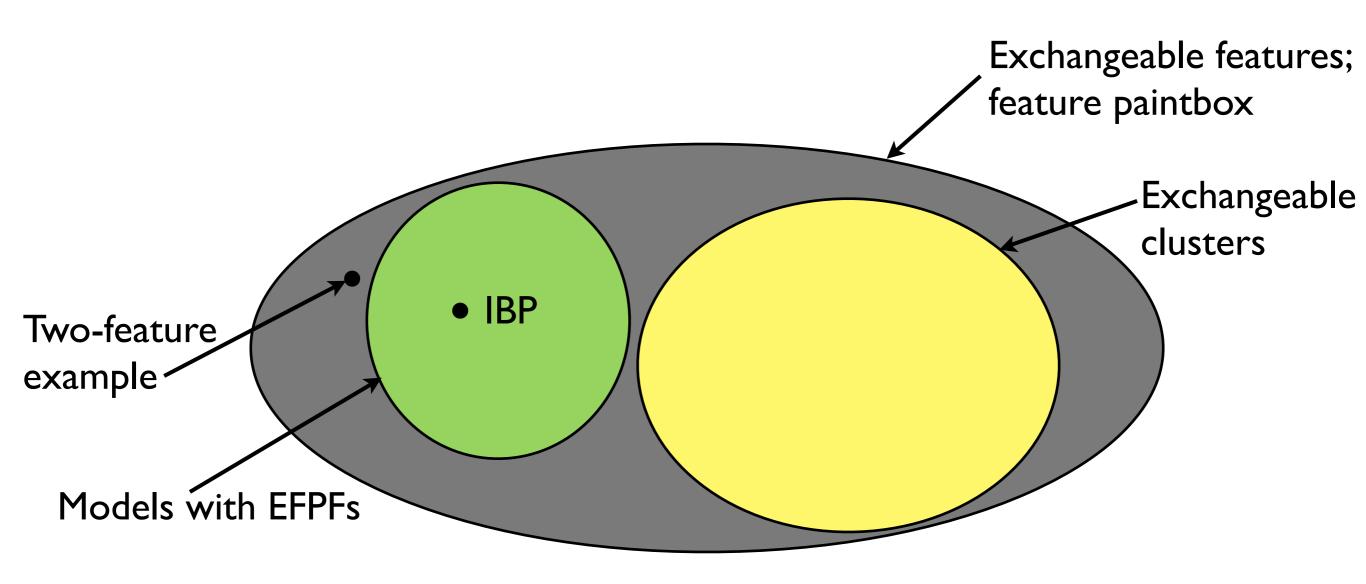
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



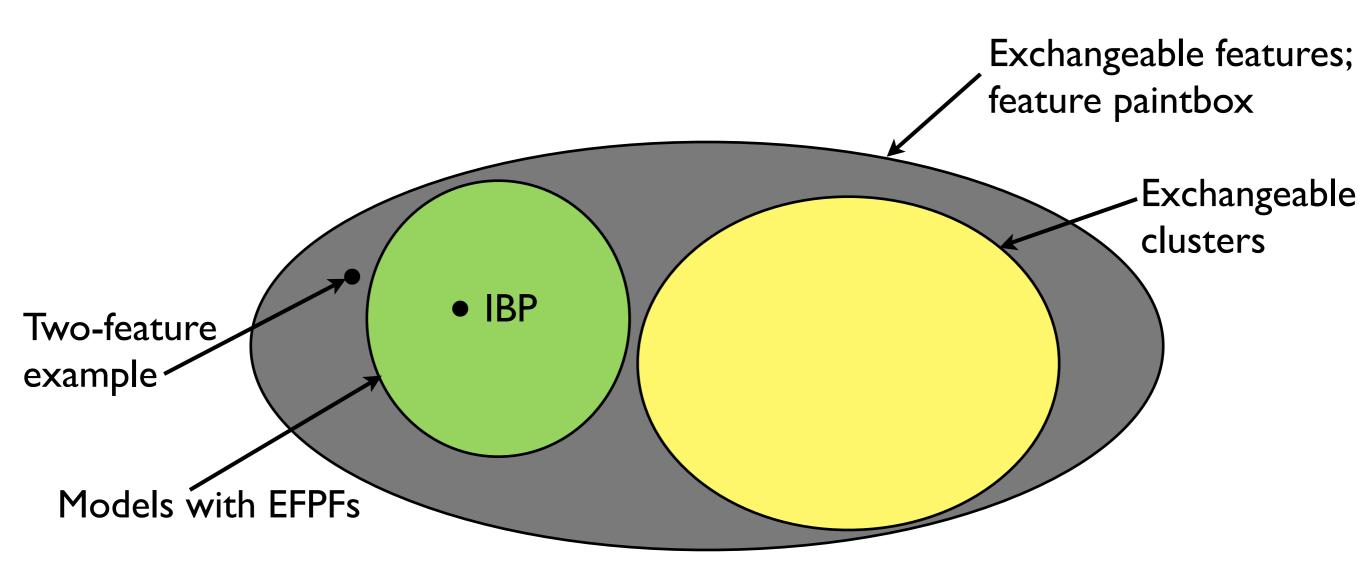
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



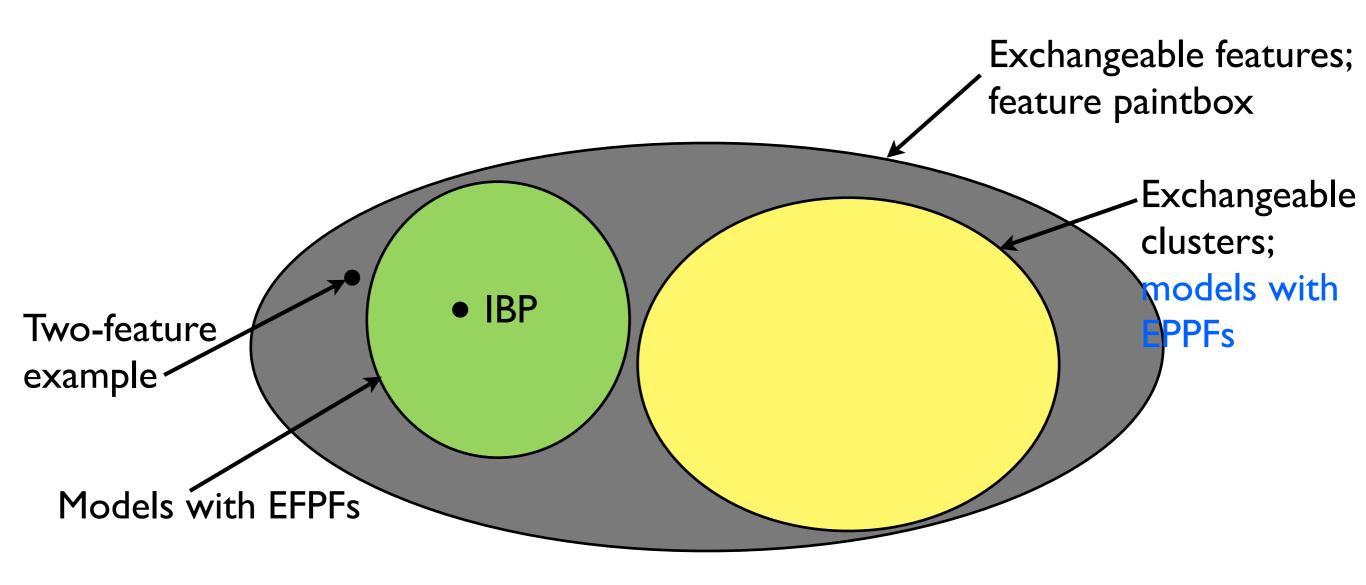
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



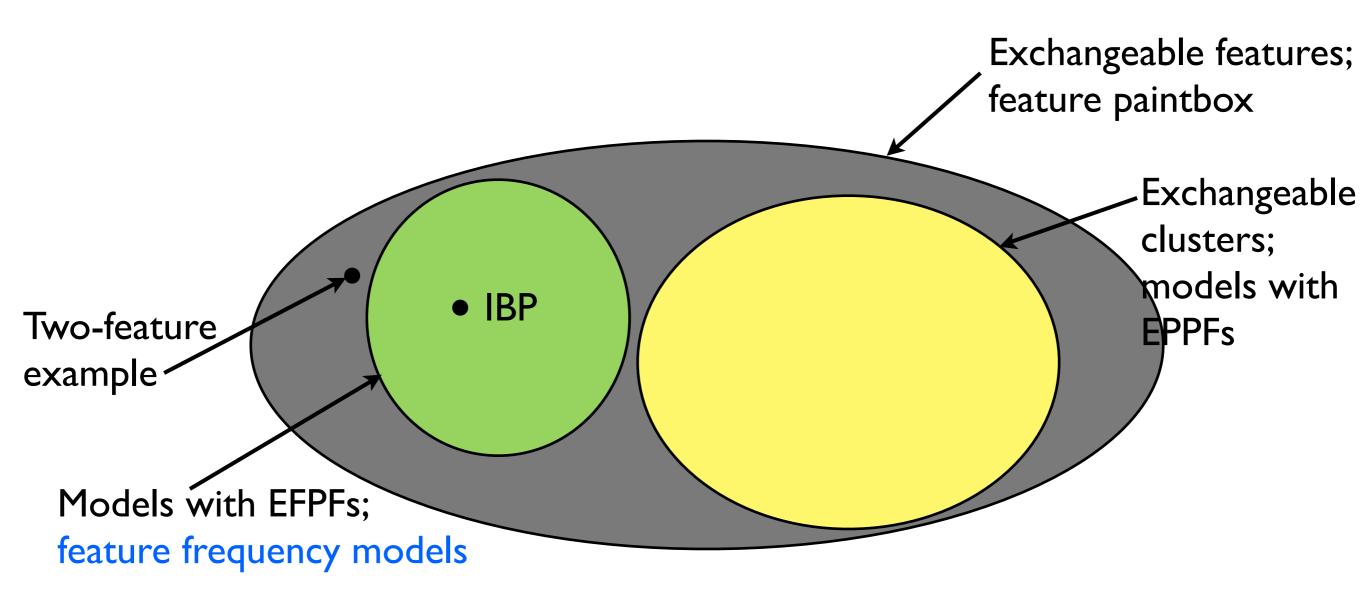
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



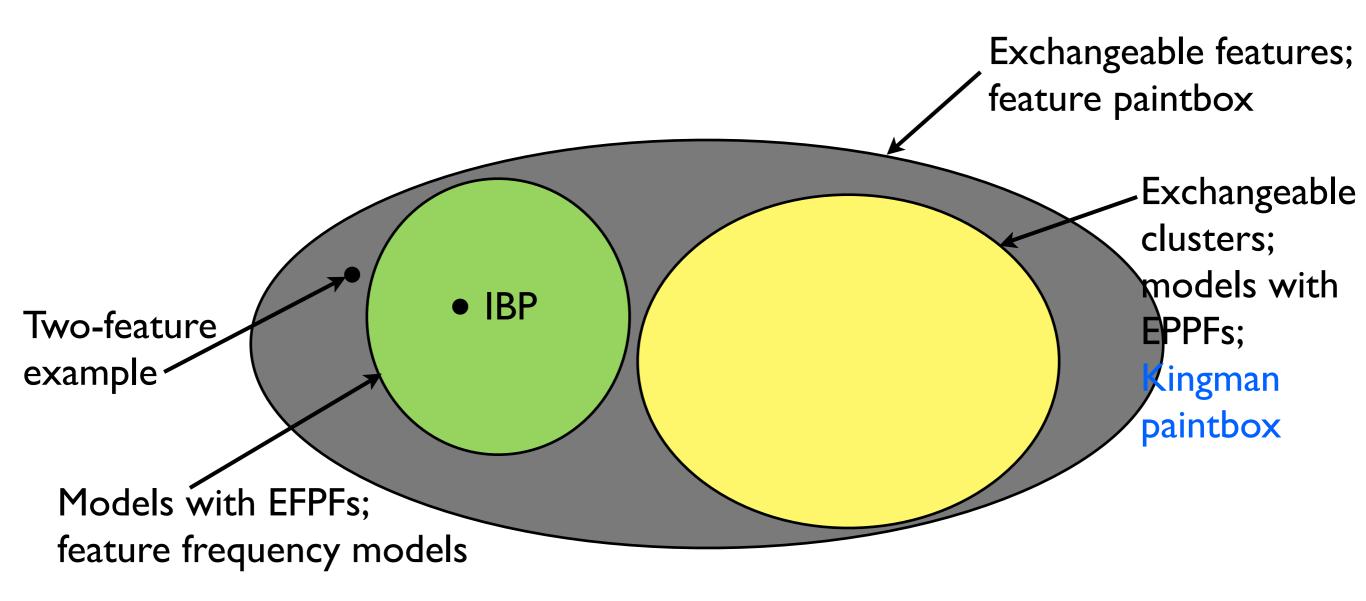
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



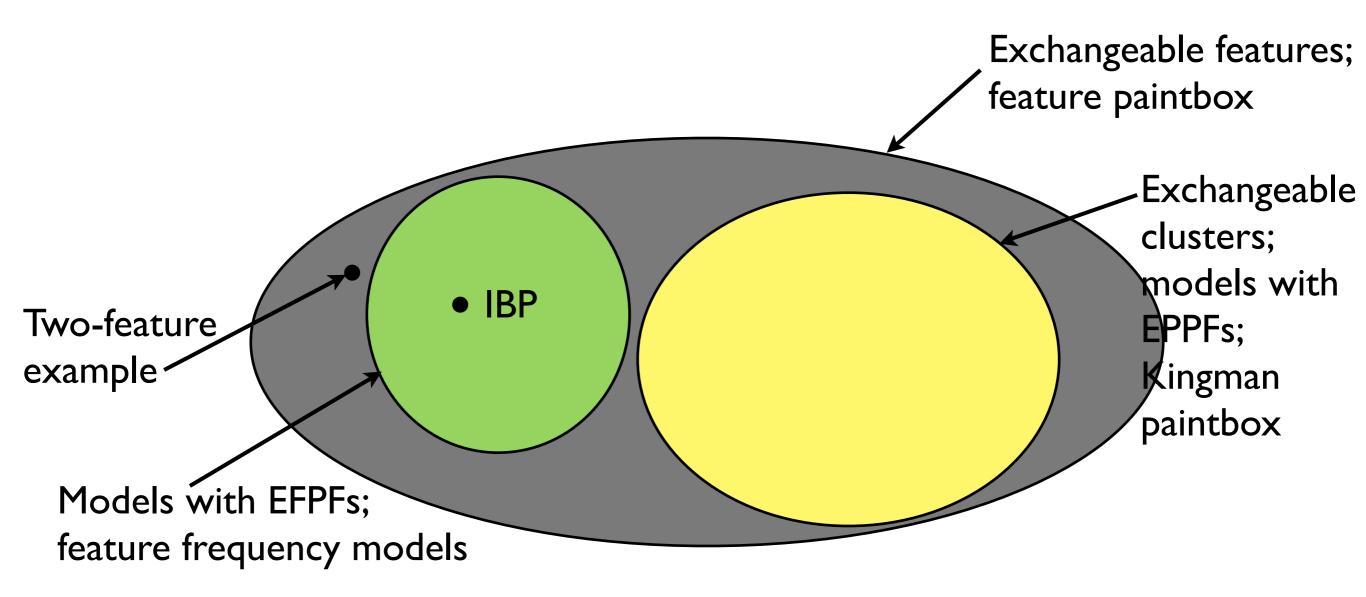
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



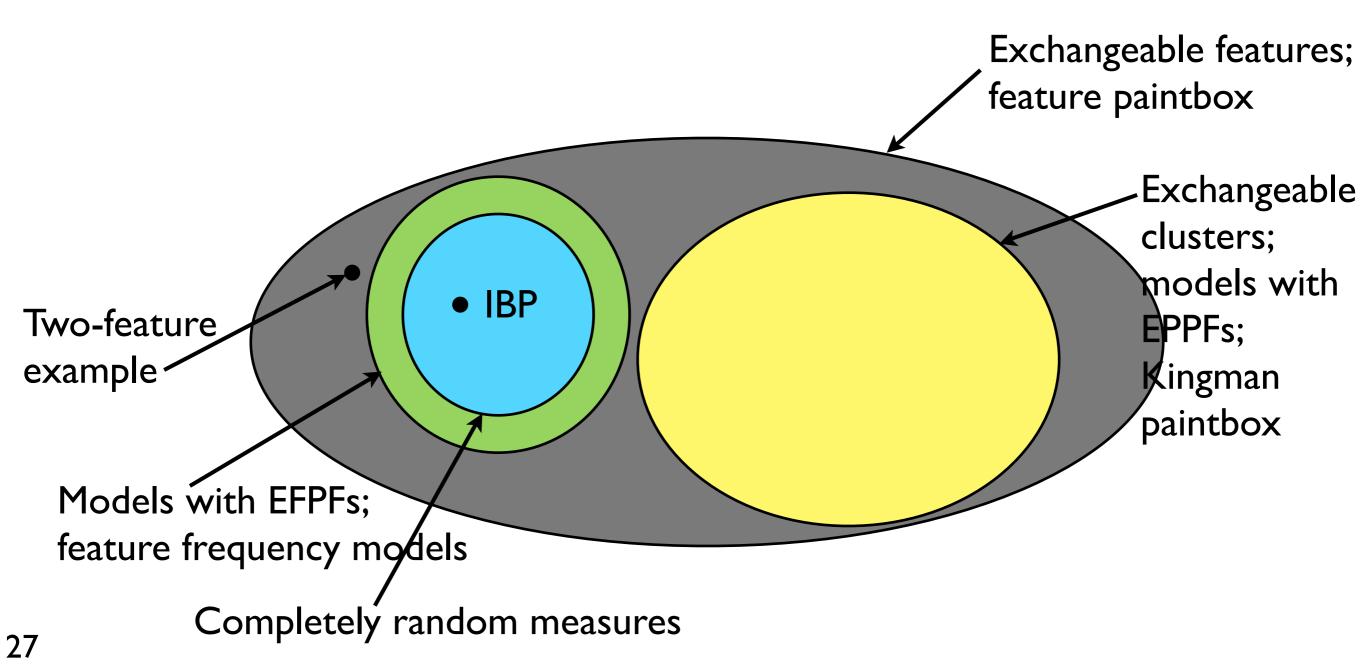
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



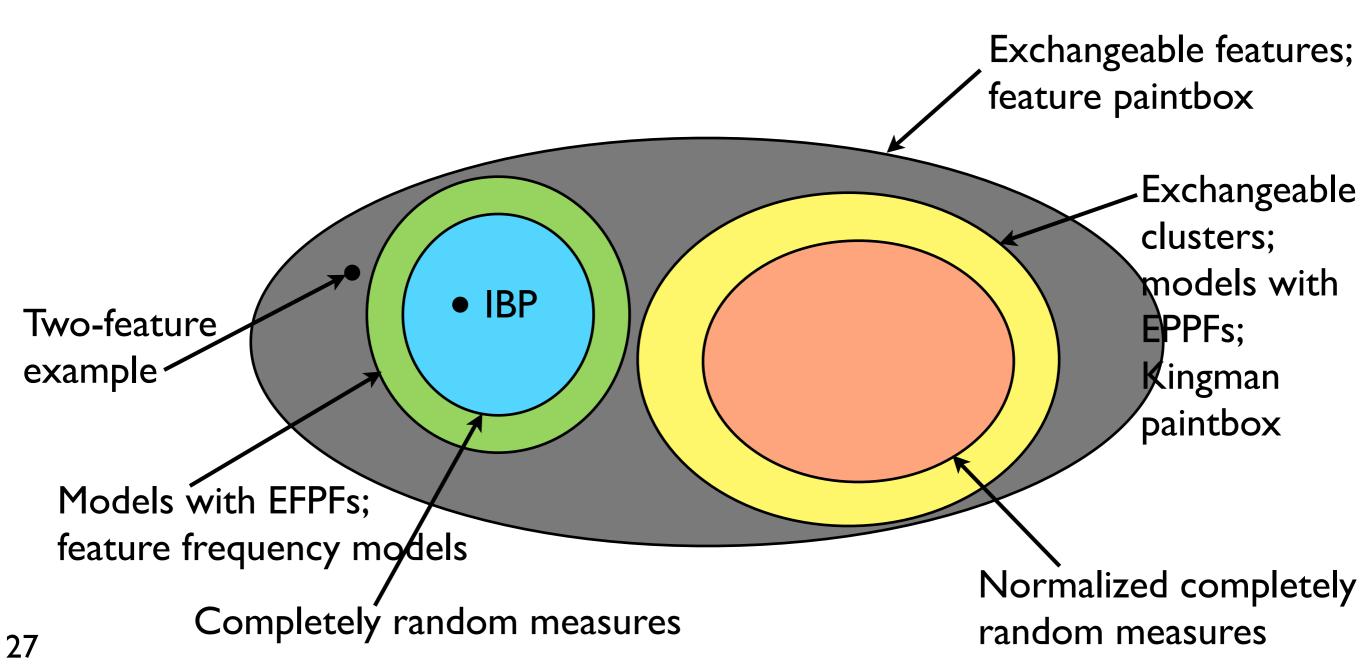
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections



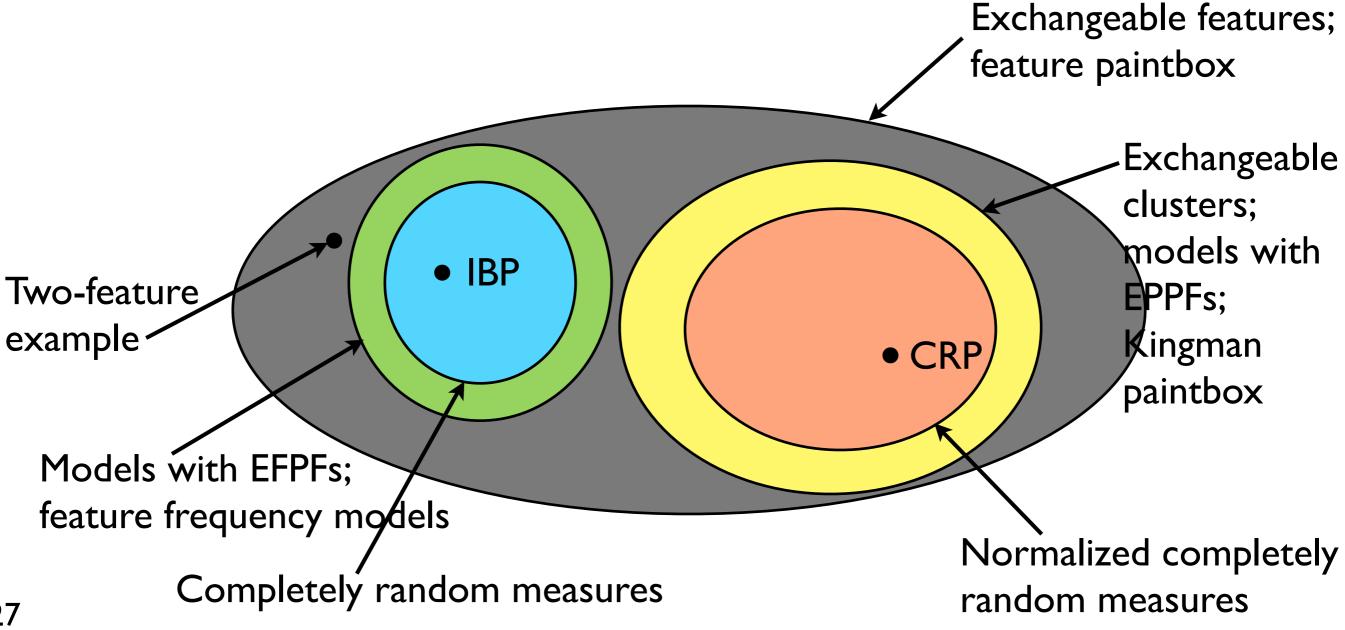
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



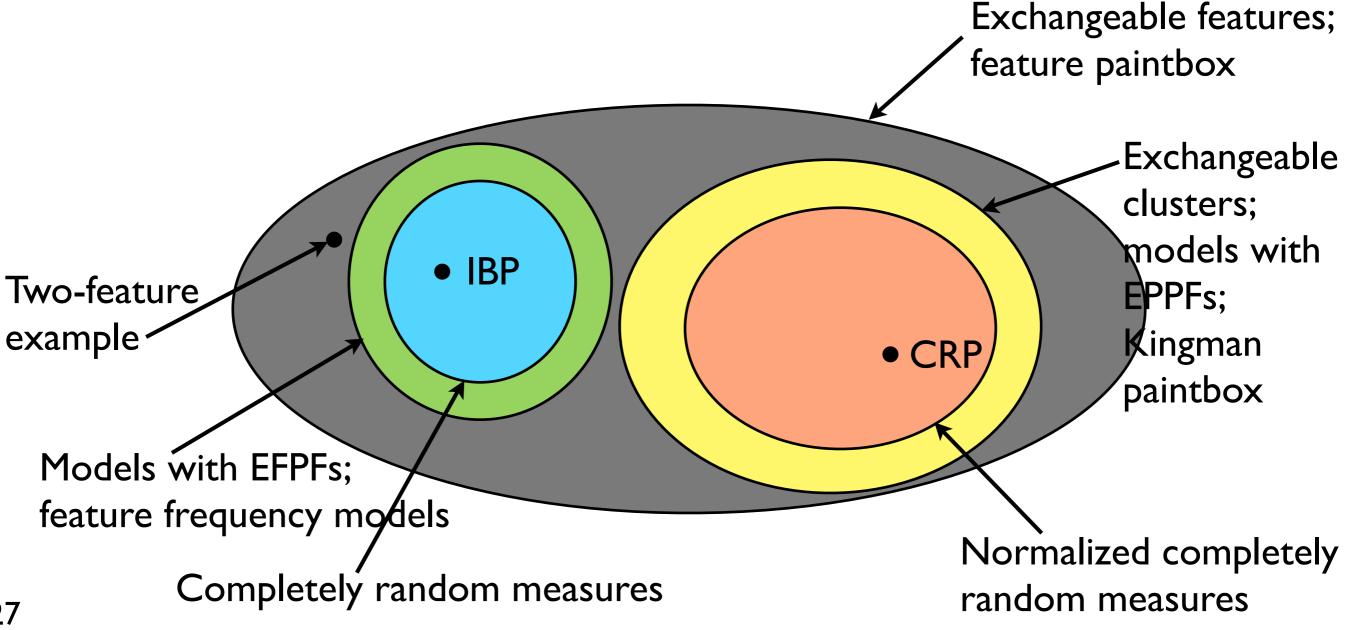
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



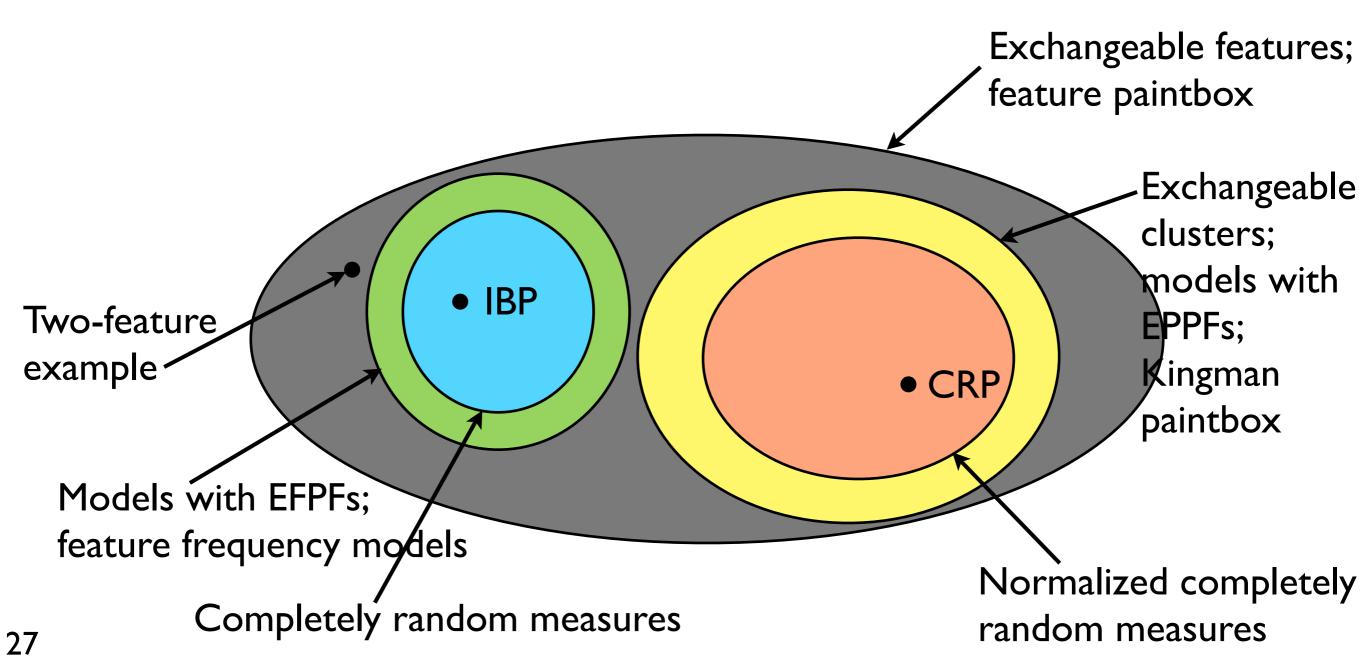
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



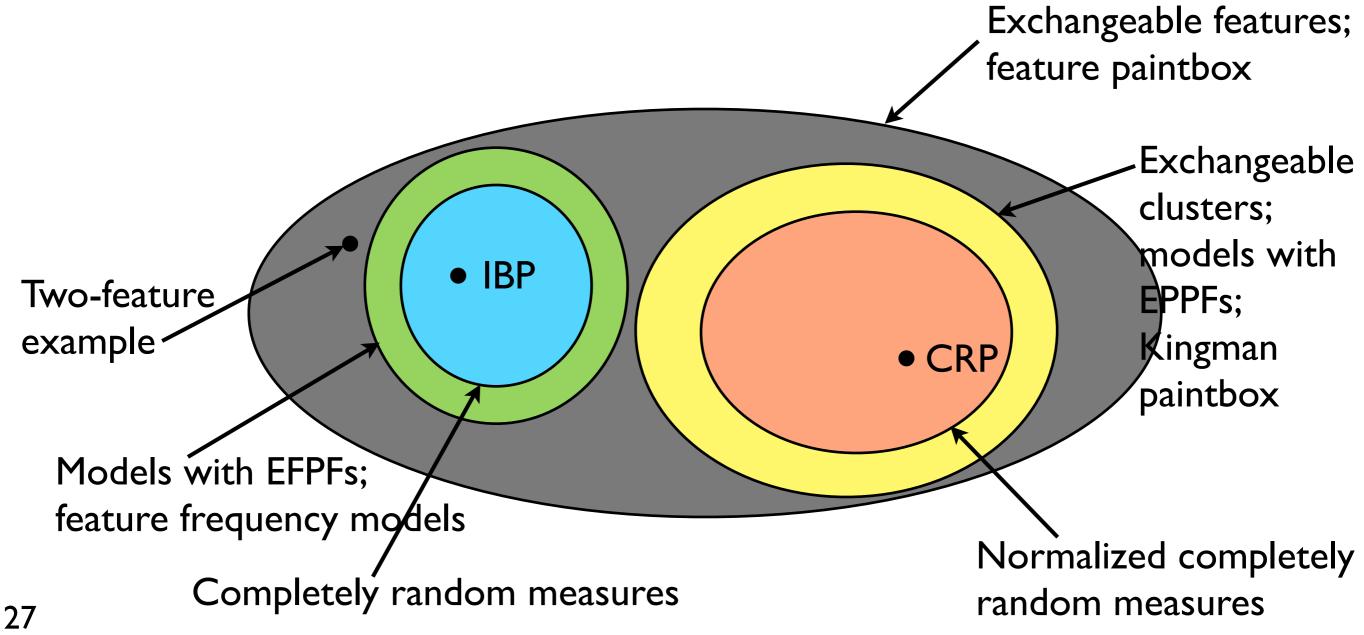
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust)



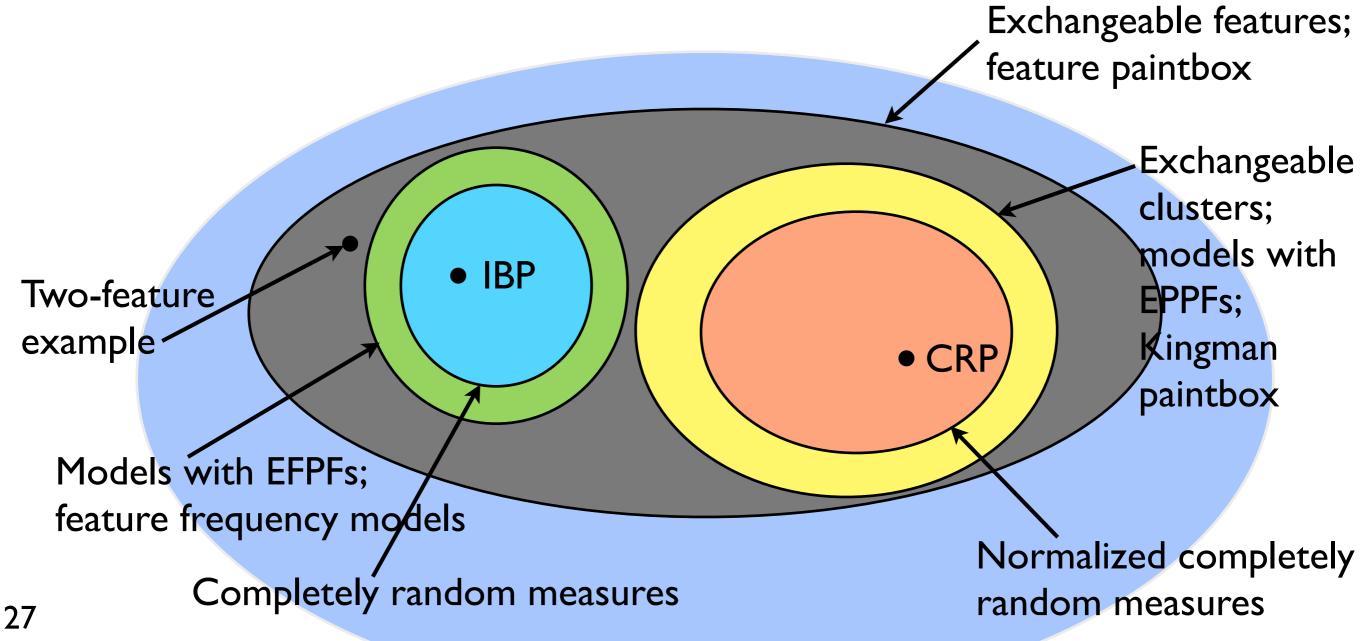
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)



- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures



- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures



References

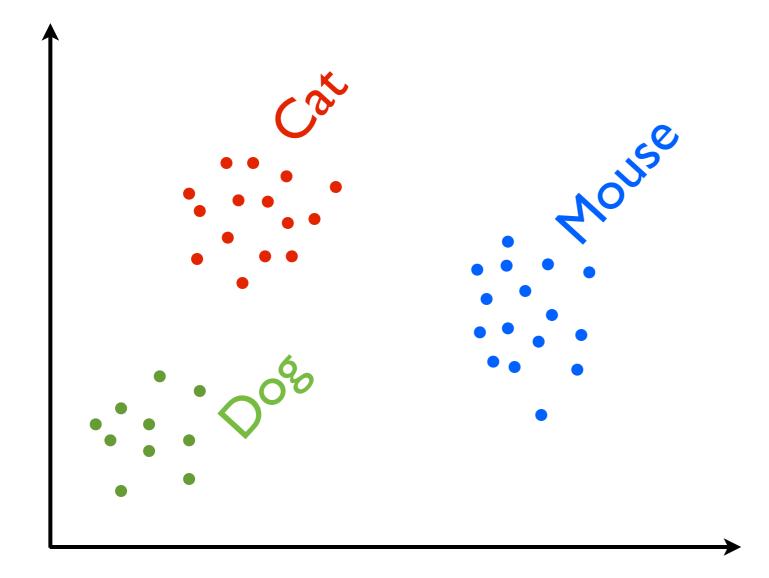
T. Broderick, J. Pitman, and M. I. Jordan. Feature allocations, probability functions, and paintboxes. *Bayesian Analysis*, 8(4):801-836, 2013.

T. Broderick, M. I. Jordan, and J. Pitman. Cluster and feature modeling from combinatorial stochastic processes. *Statistical Science*, 28(3):289-312, 2013.

T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and the beta negative binomial process. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2015.

T. Broderick, A. C. Wilson, and M. I. Jordan. Posteriors, conjugacy, and exponential families for completely random measures. Submitted.

Clusters

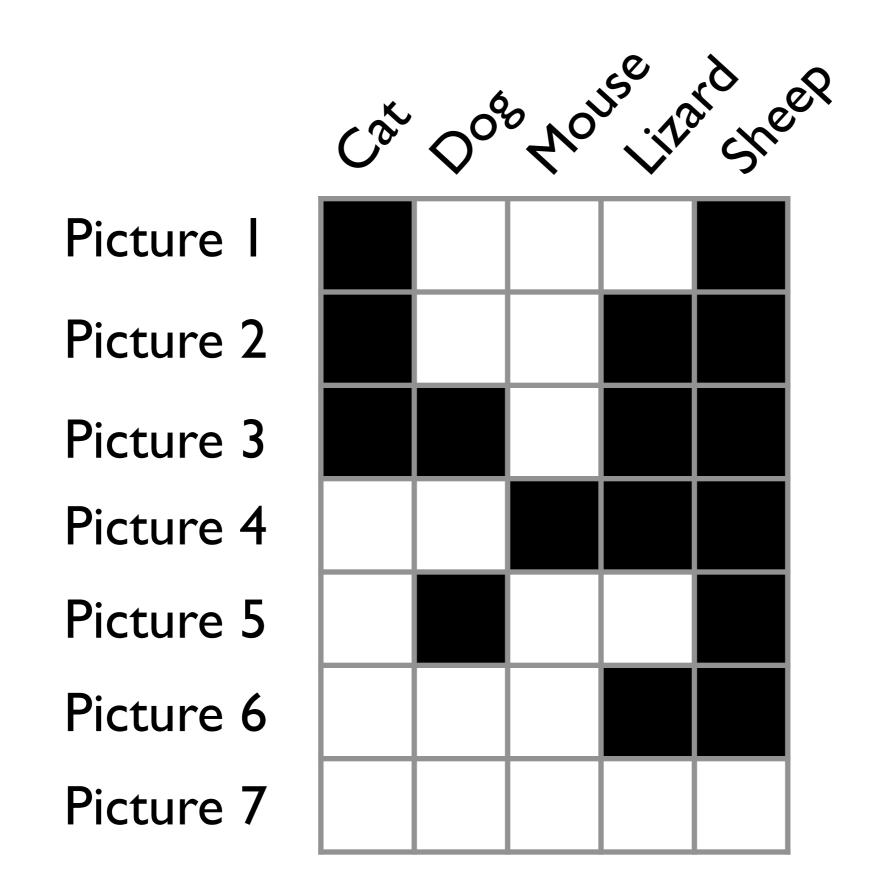


"clusters"

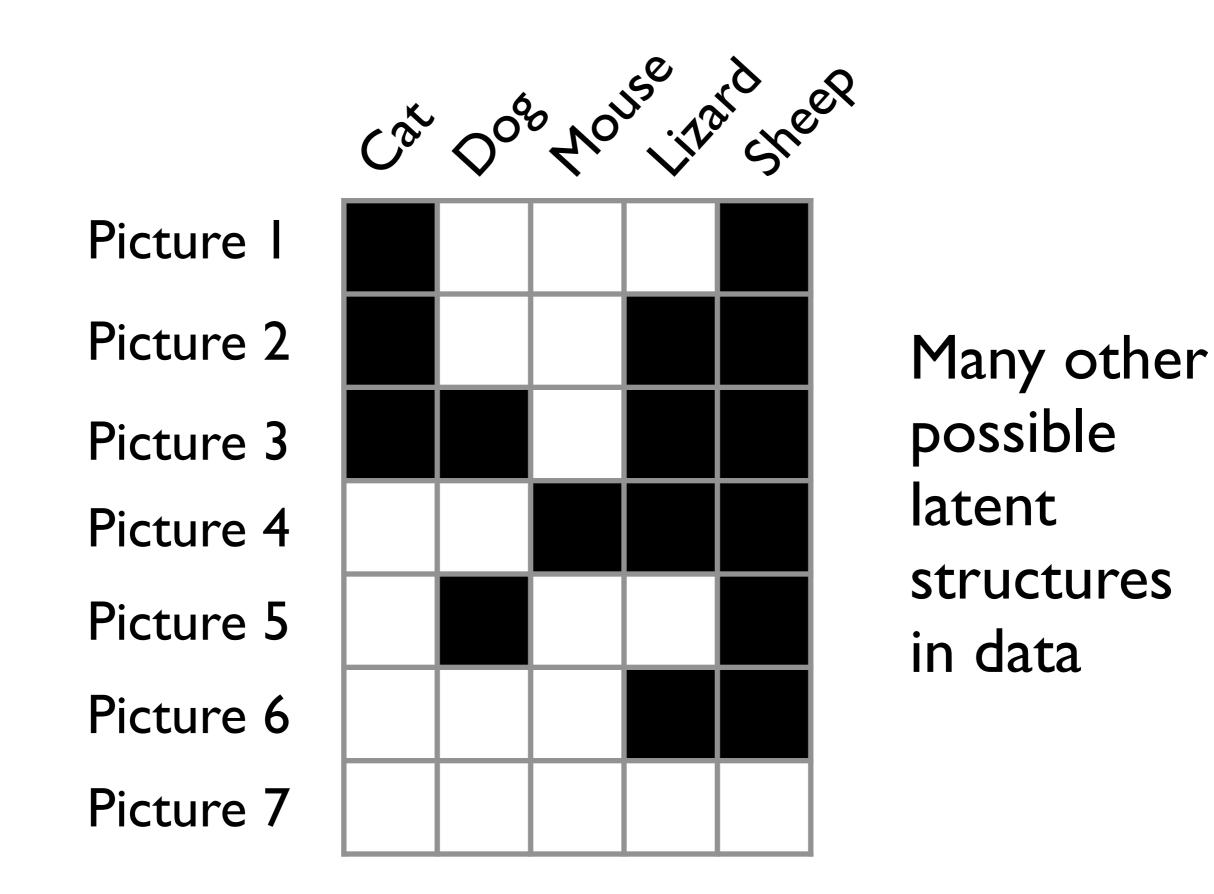
Clusters

	Car	670	15e 17?	yd she	Ś
Picture I					
Picture 2					
Picture 3					
Picture 4					
Picture 5					
Picture 6					
Picture 7					

Features



Features



K-meansFast

- Fast
- Can parallelize

- Fast
- Can parallelize
- Straightforward

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes

K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (general latent structure)

How do we learn latent structure?

K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (general latent structure) Flexible (K can grow as data grows)

How do we learn latent structure?

K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (concert

Modular (general

latent structure)

Flexible (K can grow

as data grows)

Coherent treatment

of uncertainty

How do we learn latent structure?

K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes

Modular (general

latent structure)

Flexible (K can grow

as data grows)

Coherent treatment of uncertainty

But...

- E.g., Silicon Valley: can have petabytes of data
- Practitioners turn to what runs

 Bayesian nonparametrics assists the optimizationbased inference community

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

Inspiration

Consider a finite Gaussian mixture model

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

Inspiration

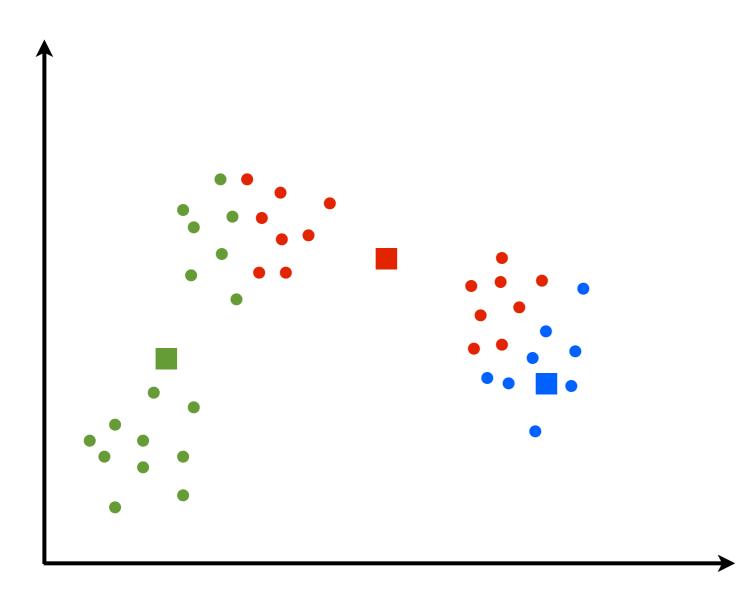
Consider a finite Gaussian mixture model
 The steps of the EM algorithm limit to the steps of the K-means algorithm as the Gaussian variance is taken to 0

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

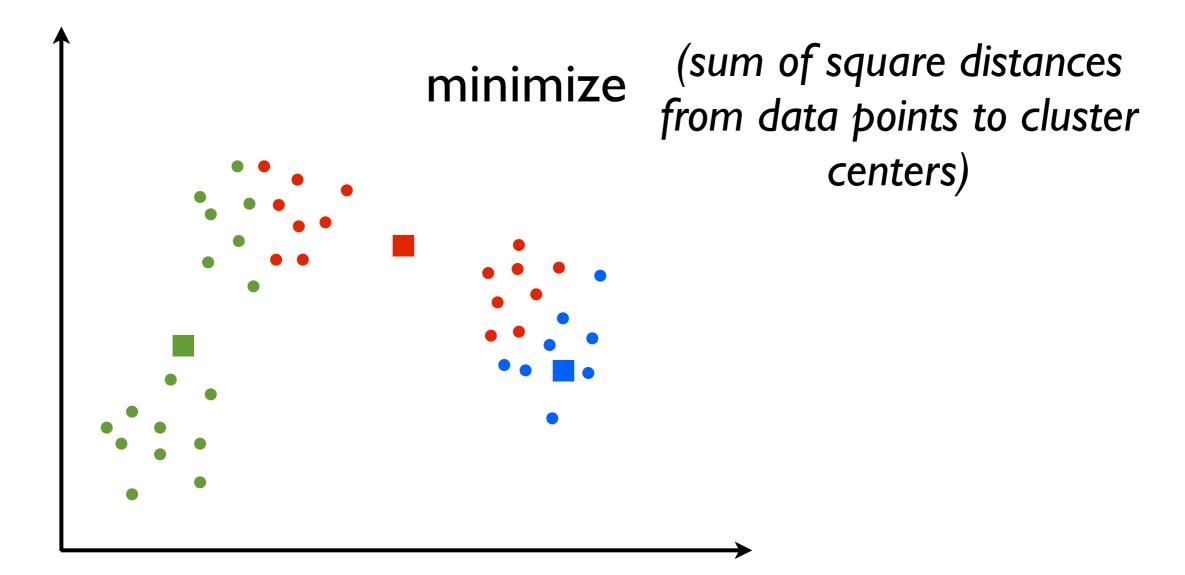
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

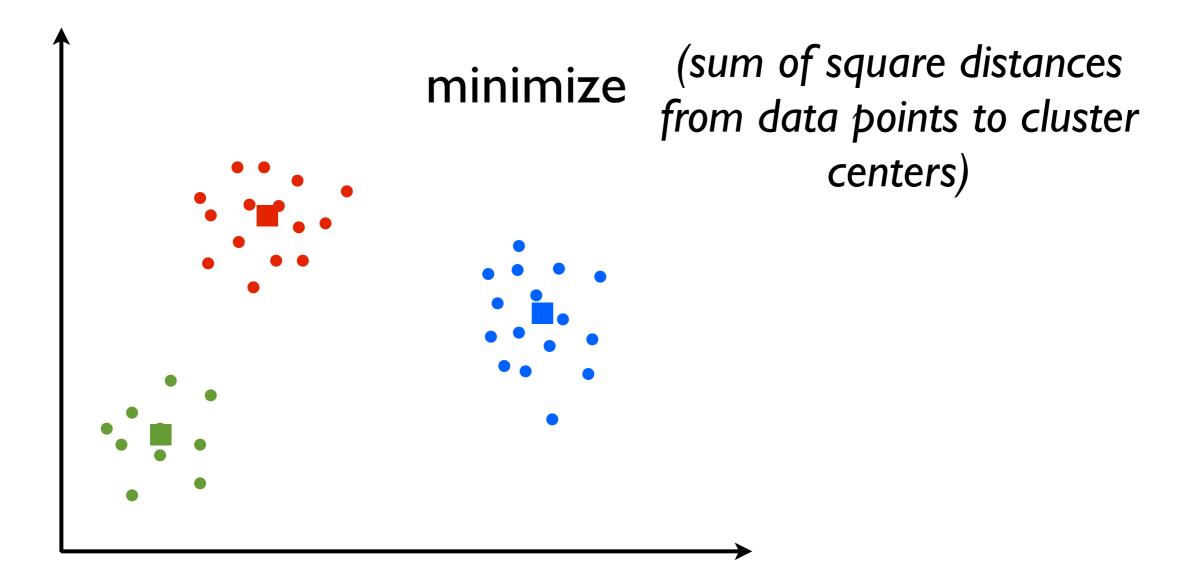
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

K-means clustering problem

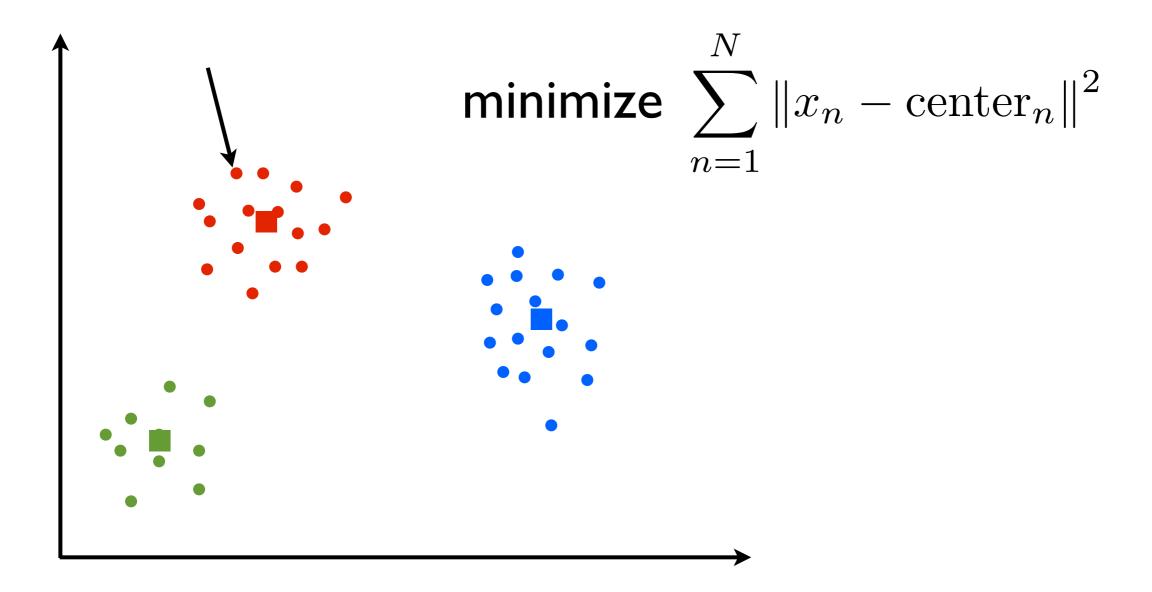


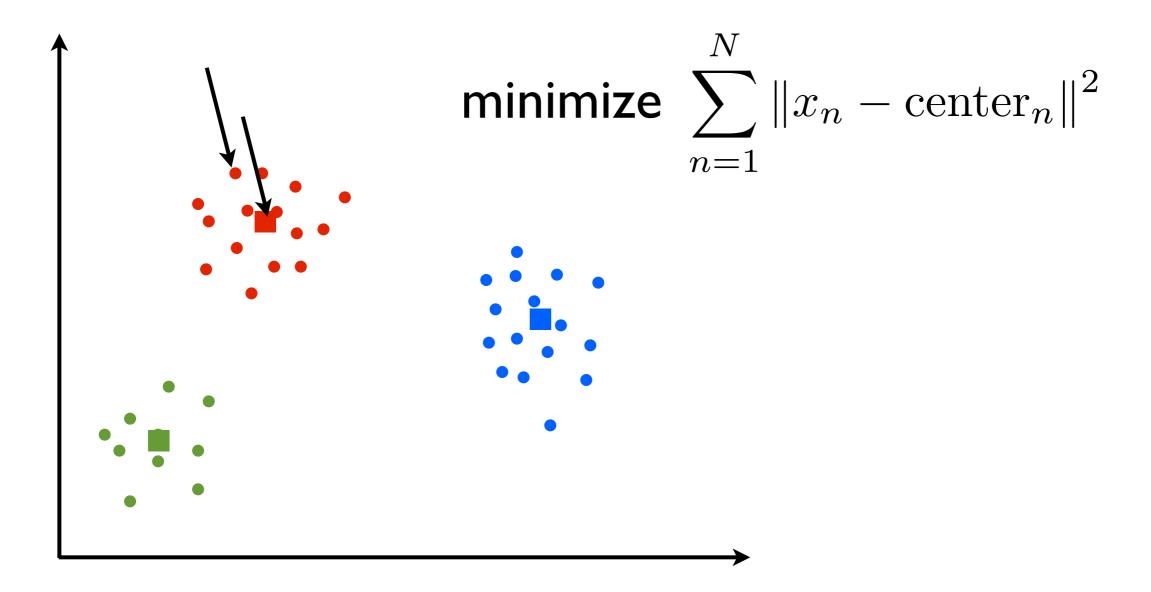
7

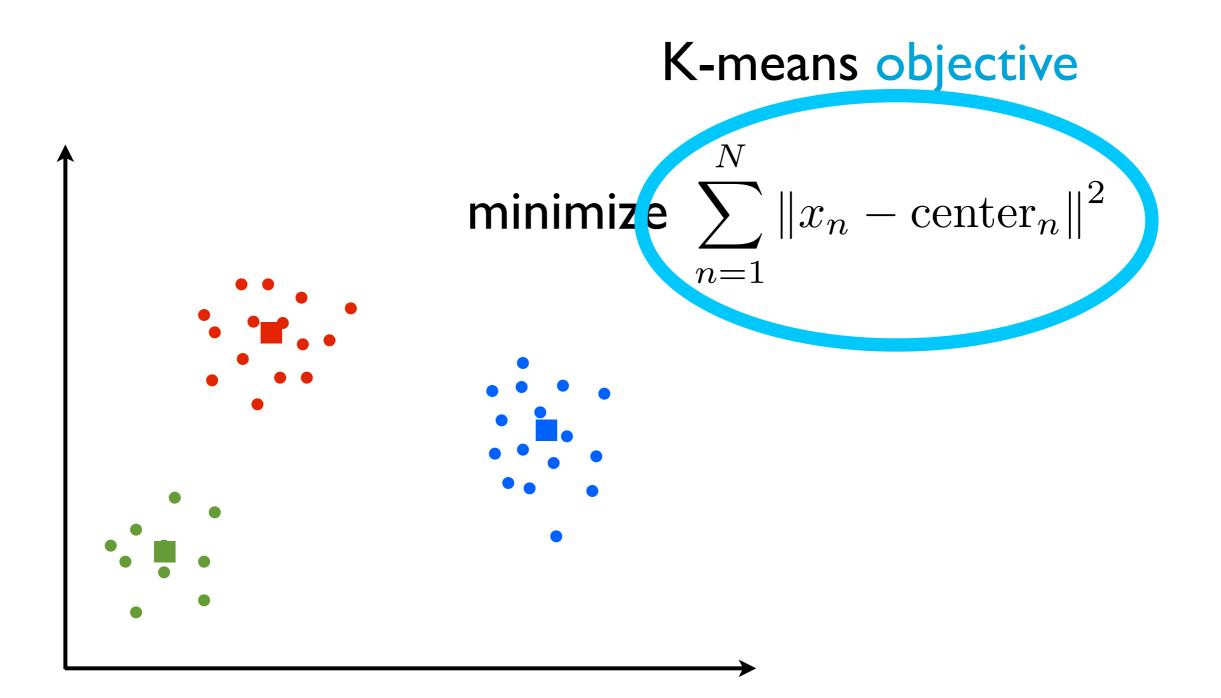


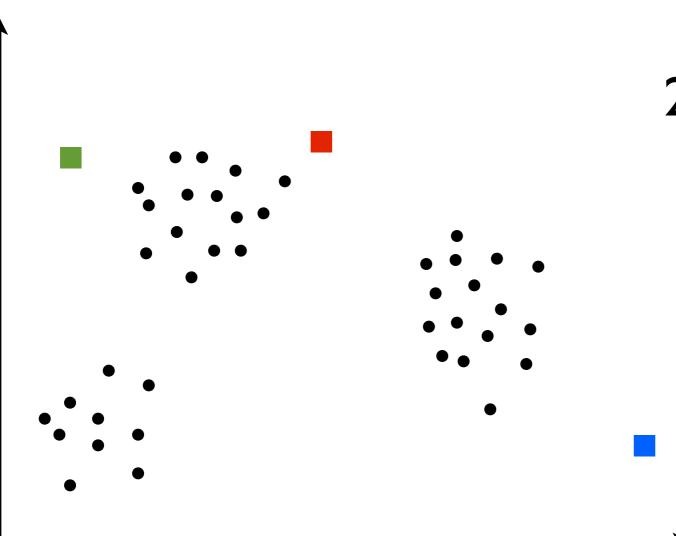












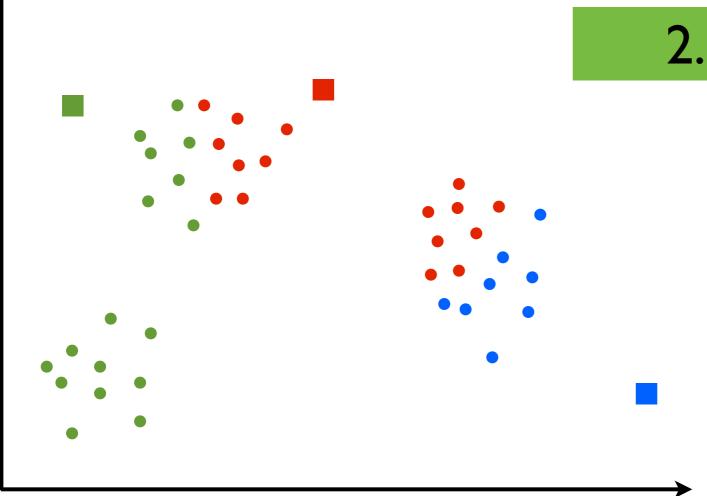
Iterate until no changes: I. For n = I, ..., N Assign point n to a cluster

Iterate until no changes: I.For n = I,...,N Assign point n to a cluster

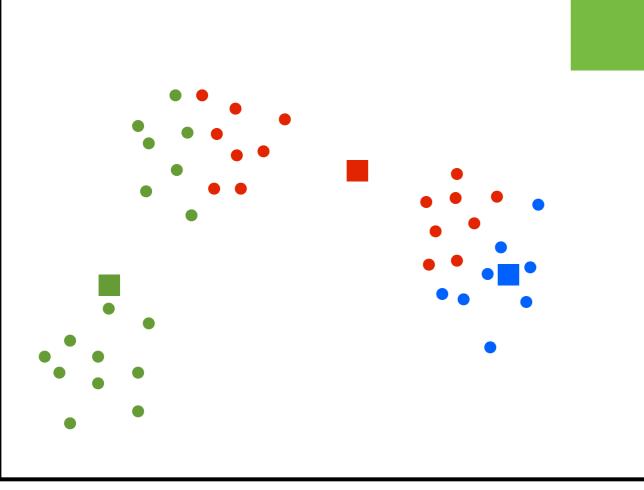
Iterate until no changes:

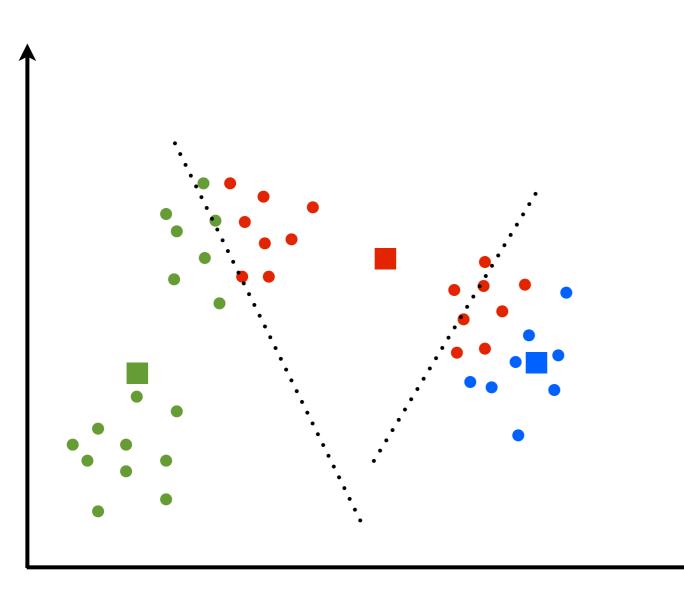
For n = I, ..., N
Assign point n to a cluster

2. Update cluster means



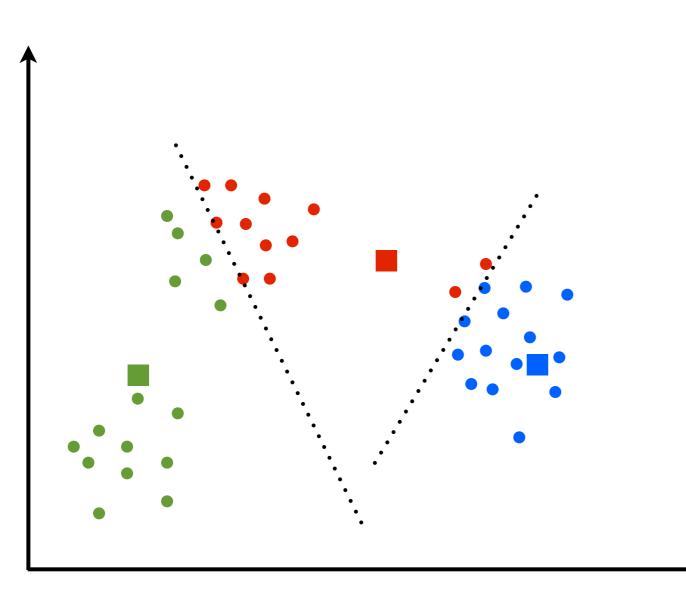
Iterate until no changes:
I. For n = I, ..., N
Assign point n to a cluster
2. Update cluster means





Iterate until no changes:
I.For n = I,..., N

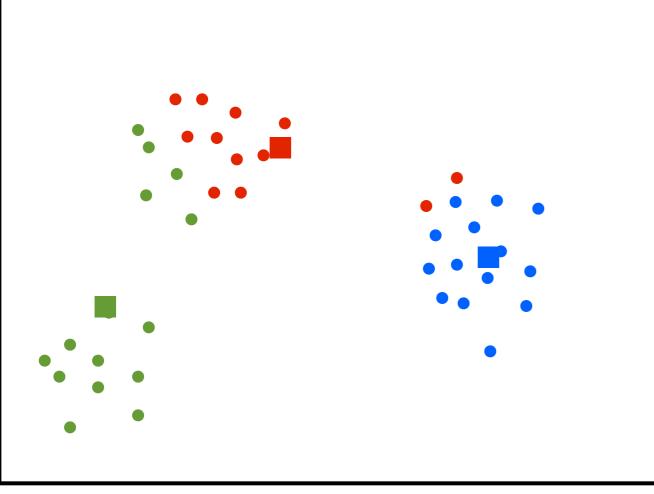
 Assign point n to a
 cluster



Iterate until no changes:
I.For n = I,..., N

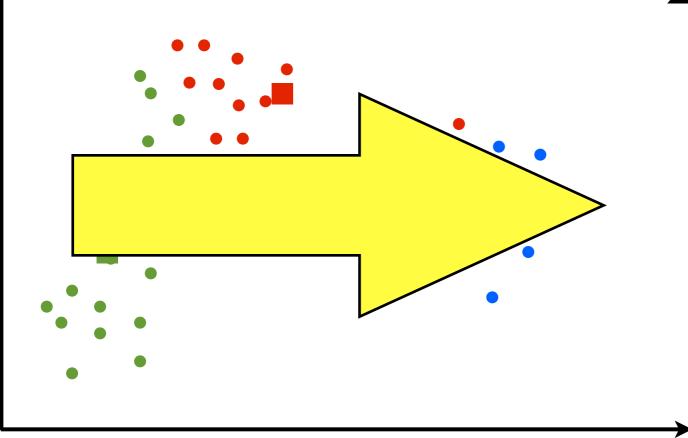
 Assign point n to a
 cluster

Iterate until no changes: I. For n = I, ..., N Assign point n to a cluster



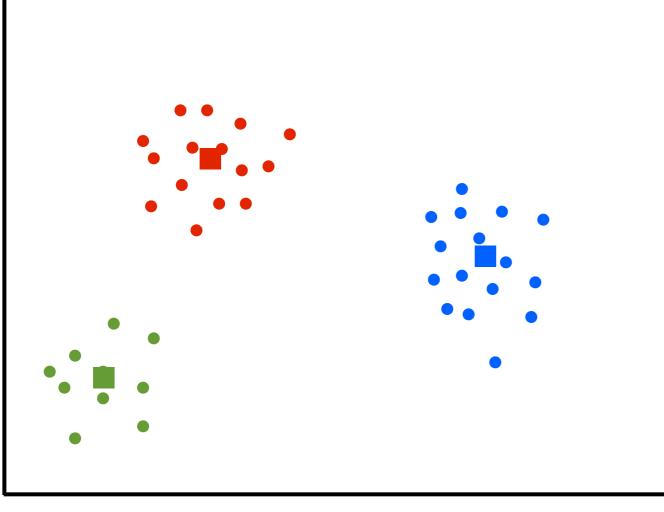
Iterate until no changes:

- I. For n = I, ..., N
 - Assign point n to a cluster
- 2. Update cluster means



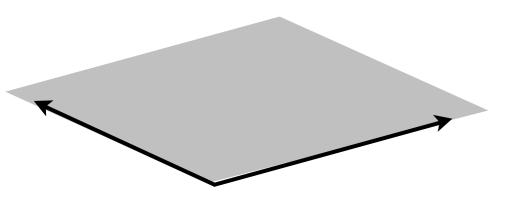
Iterate until no changes:

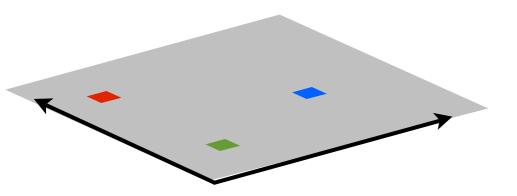
- I. For n = I, ..., N
 - Assign point n to a cluster
- 2. Update cluster means

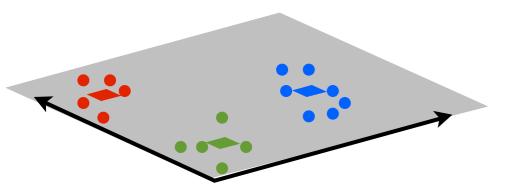


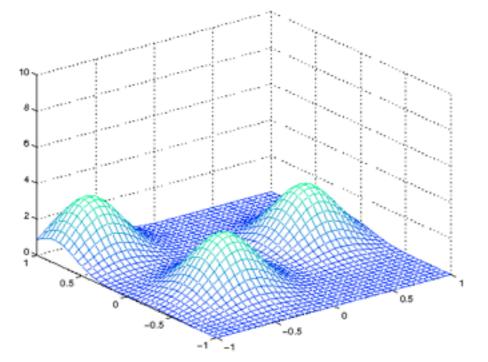
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

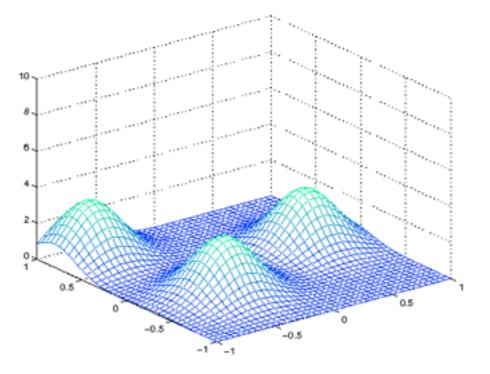
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective











Nonparametric

number of parameters can grow with the number of data points

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$

Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$

We take a limit of the objective (posterior) and get one like K-means

Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$

 We take a limit of the objective (posterior) and get one like K-means \$\$ "Small-variance asymptotics"

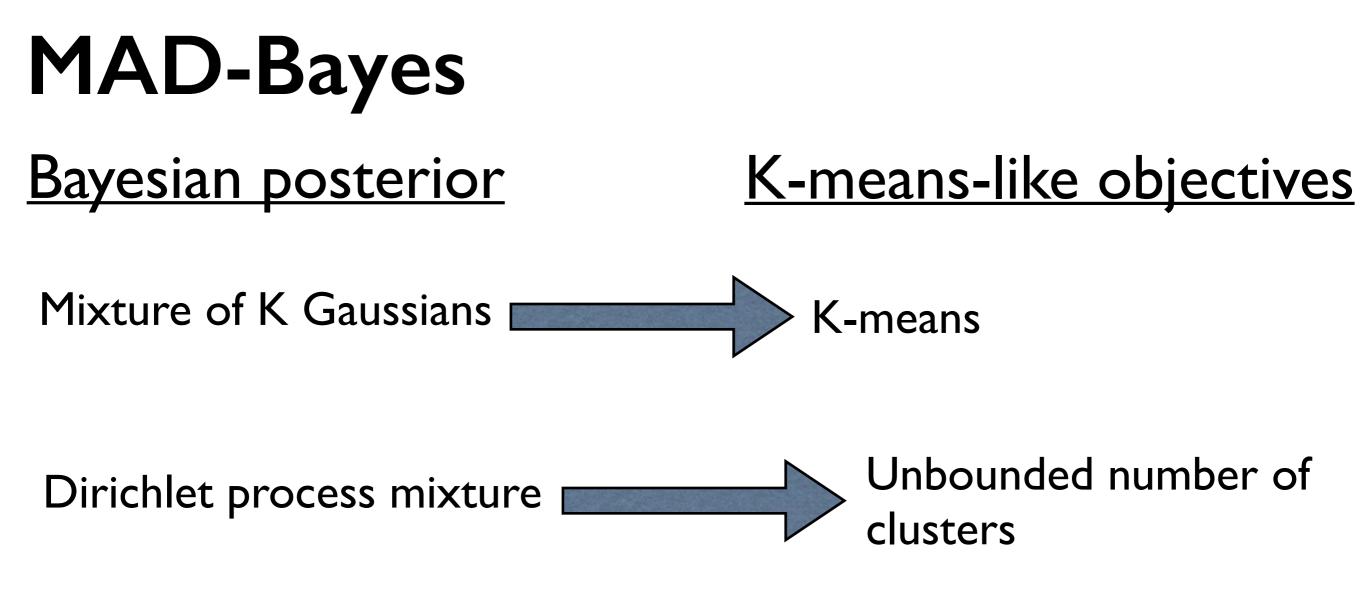
Bayesian posterior

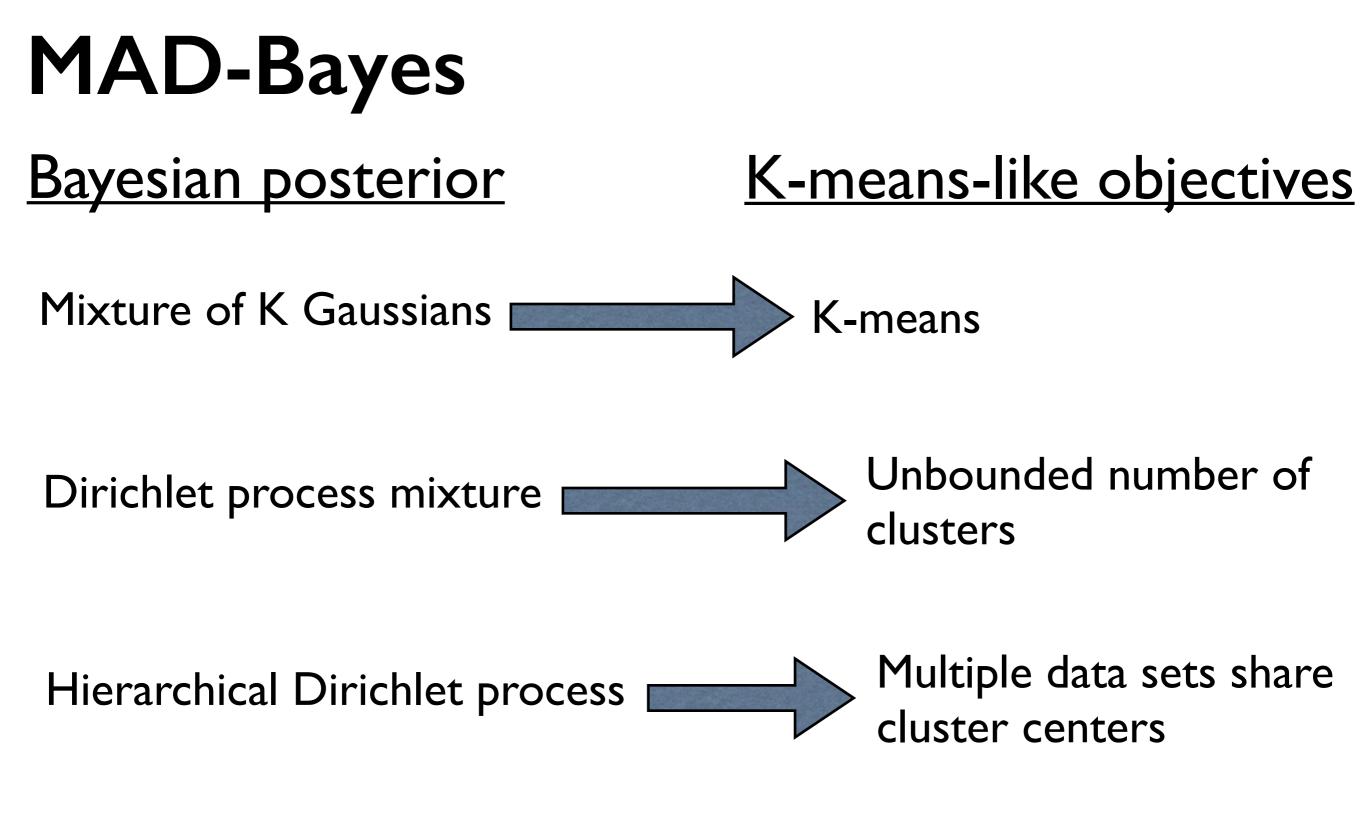
K-means-like objectives

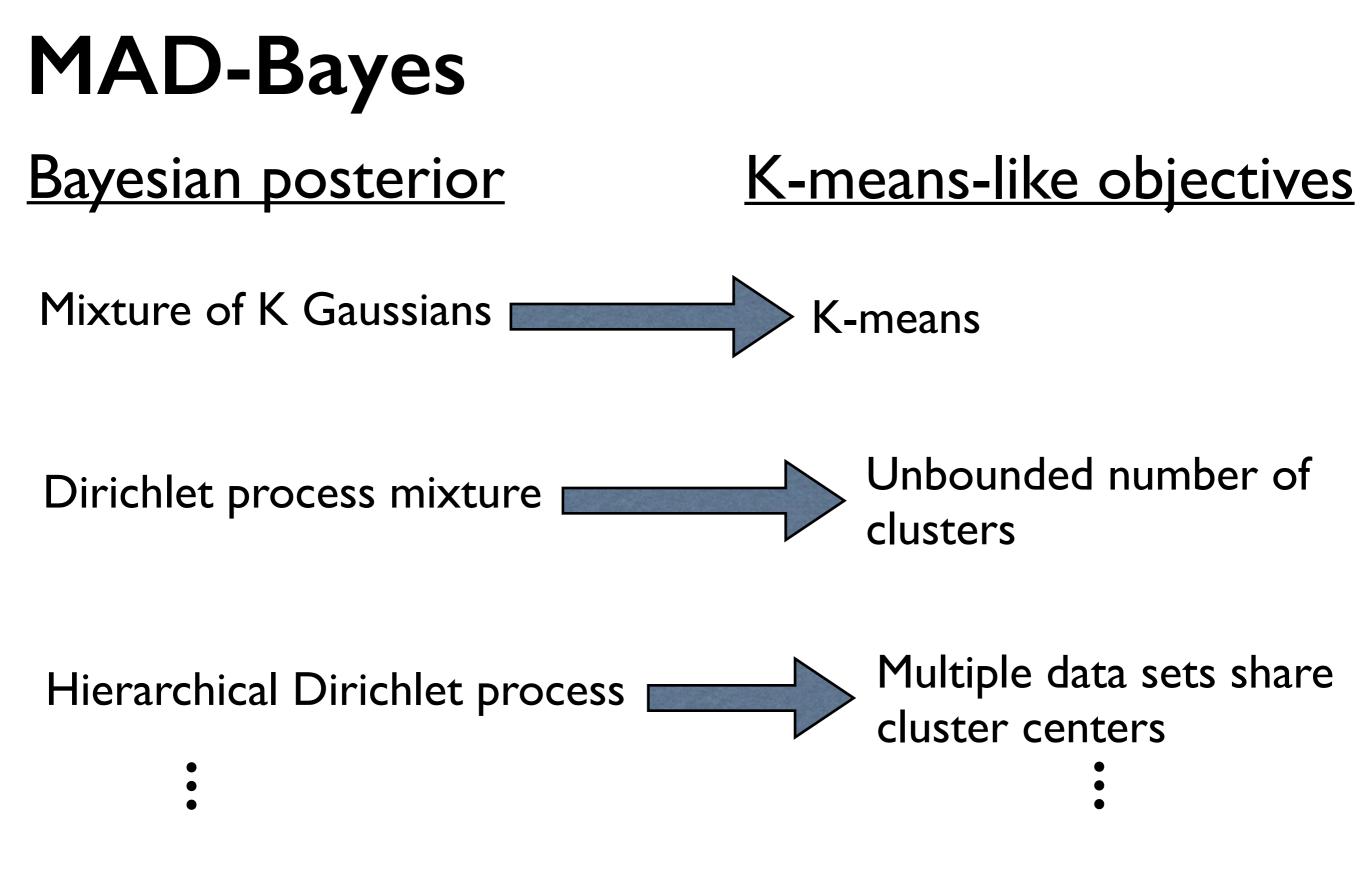
Bayesian posterior

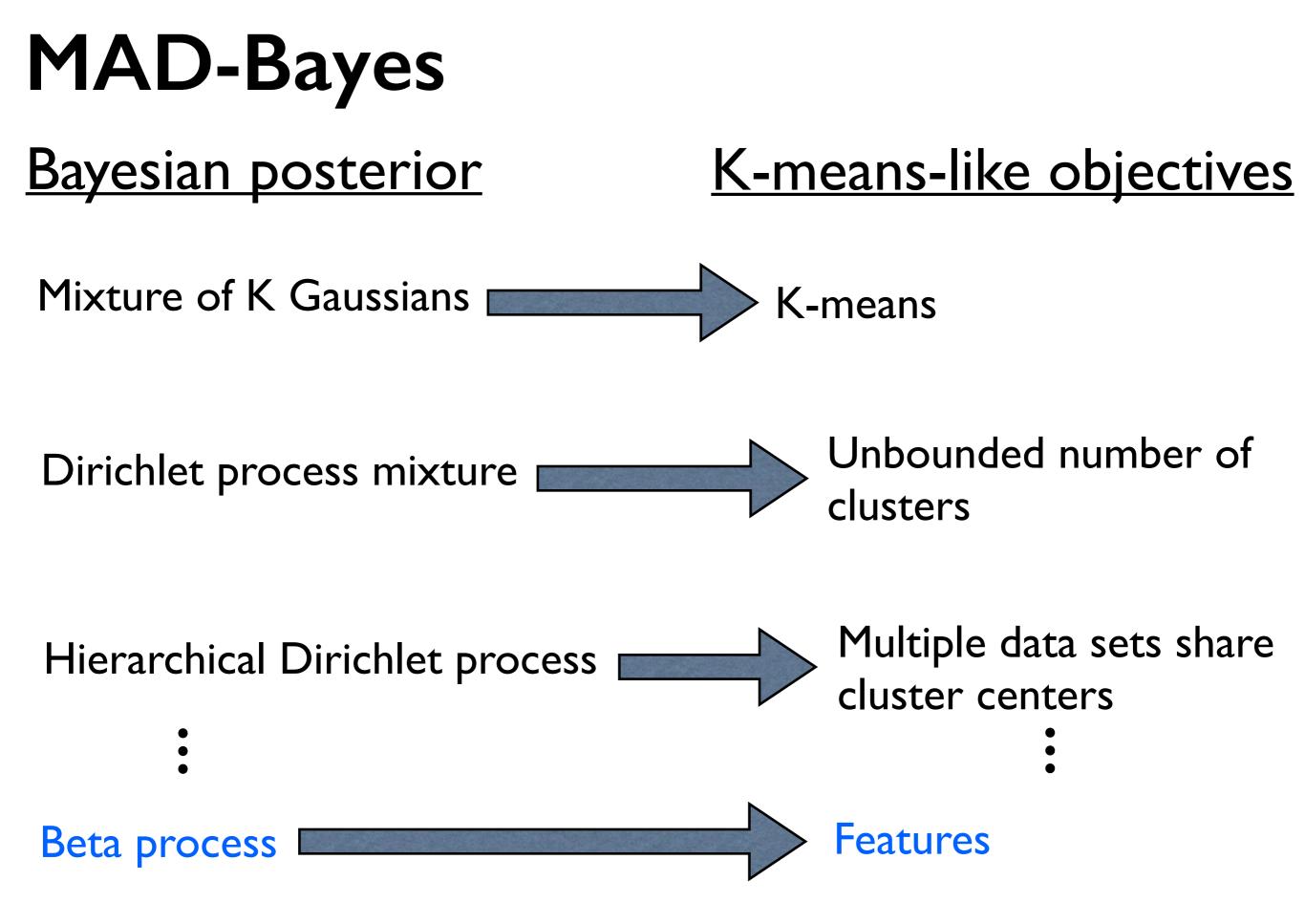
K-means-like objectives

Mixture of K Gaussians [

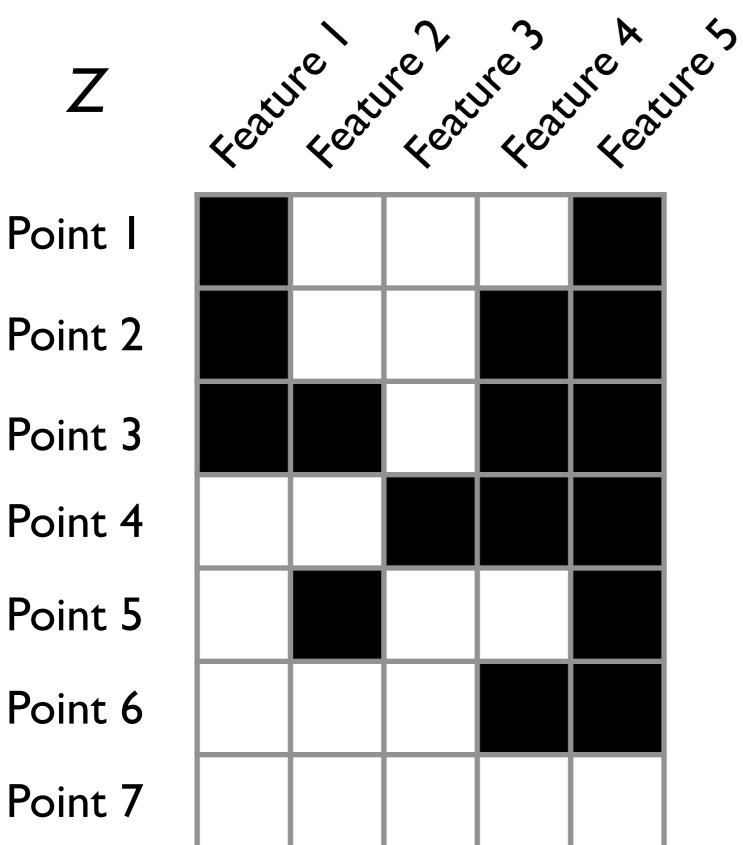




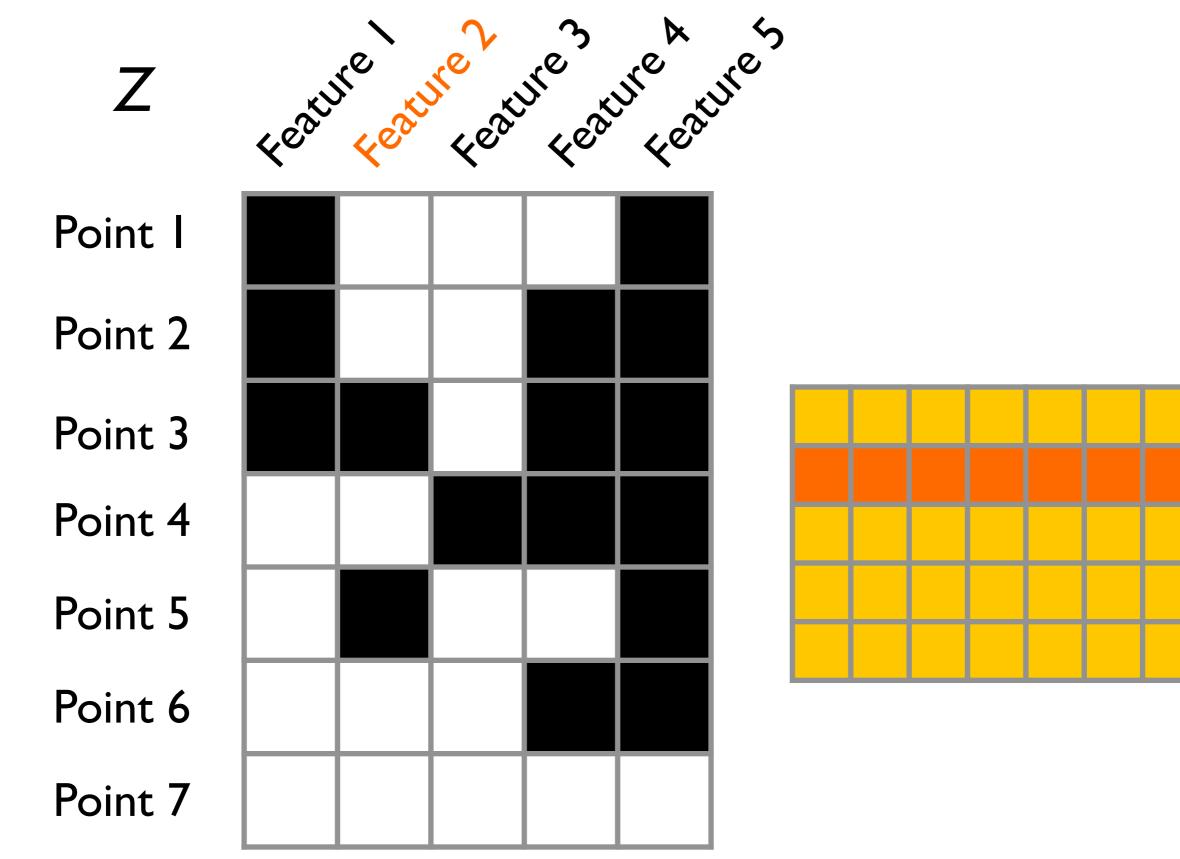




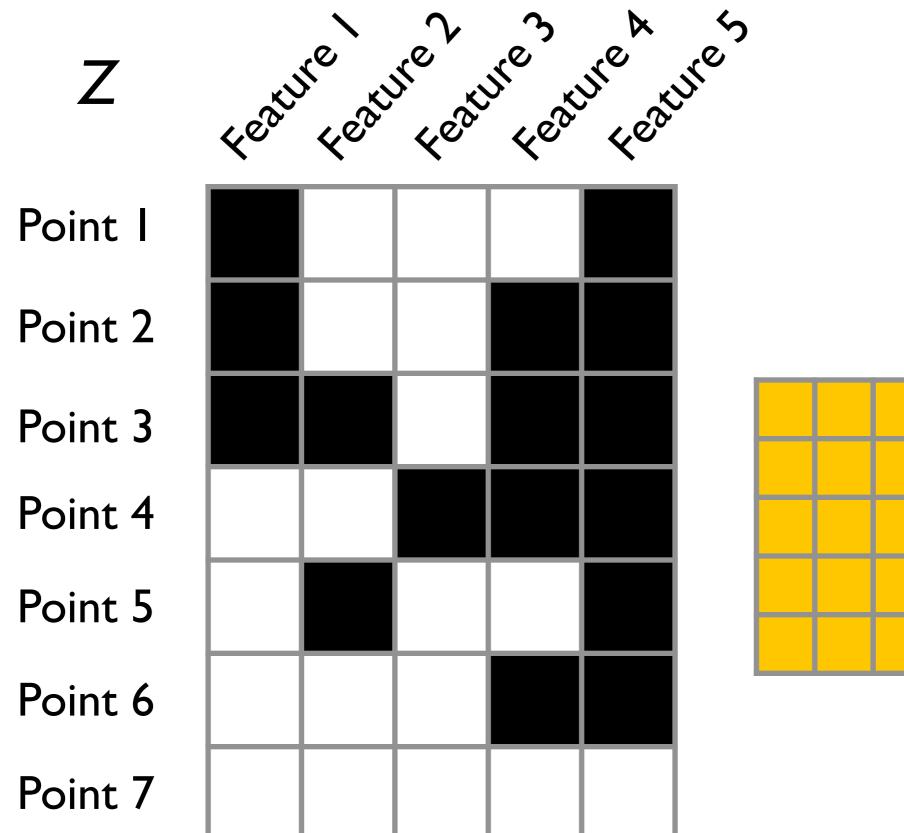
Features



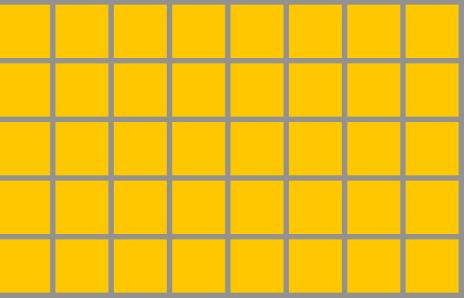
Features



Features



Α

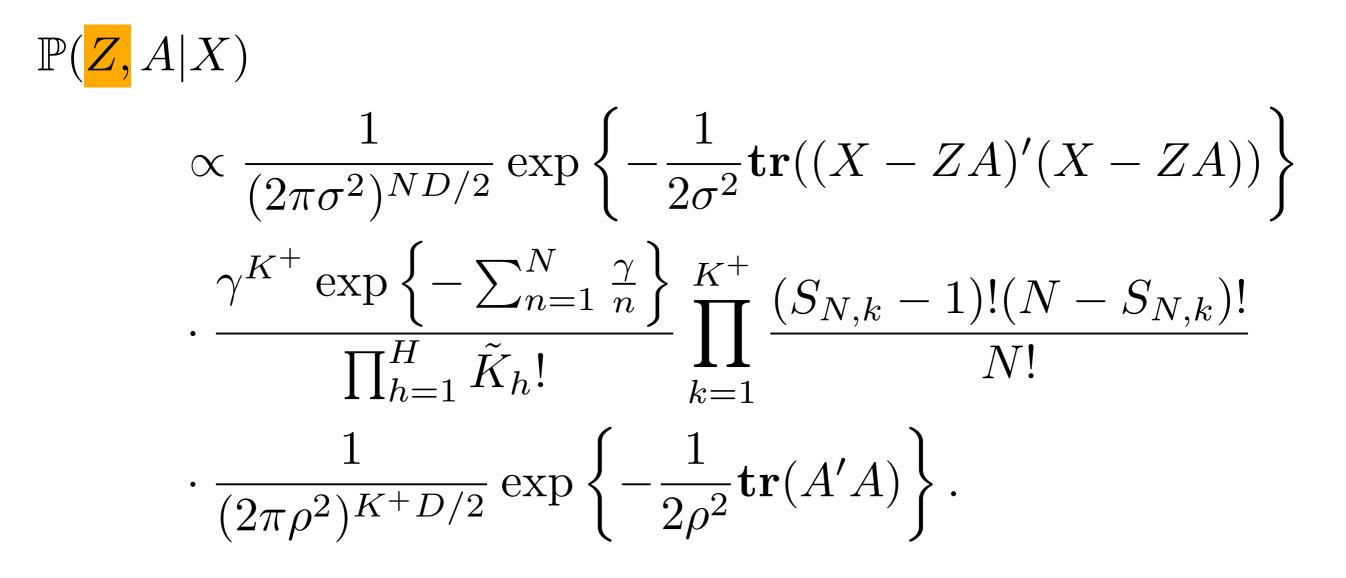


Bayesian posterior

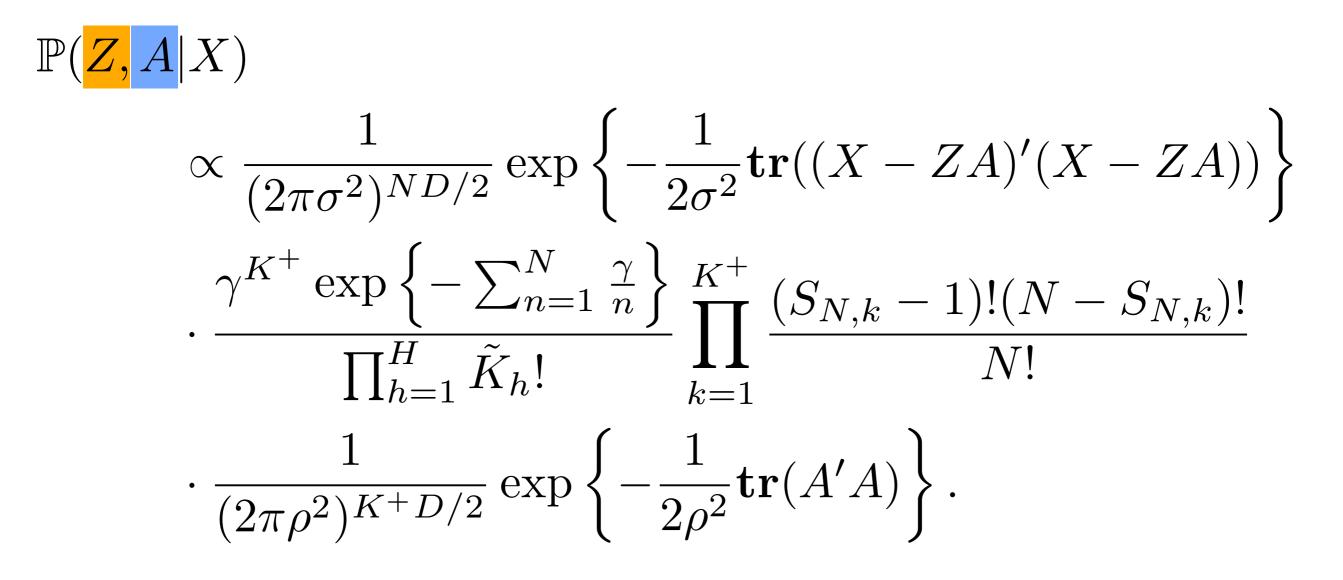
 $\mathbb{P}(Z,A|X)$

$$\propto \frac{1}{(2\pi\sigma^2)^{ND/2}} \exp\left\{-\frac{1}{2\sigma^2} \mathbf{tr}((X-ZA)'(X-ZA))\right\} \cdot \frac{\gamma^{K^+} \exp\left\{-\sum_{n=1}^N \frac{\gamma}{n}\right\}}{\prod_{h=1}^H \tilde{K}_h!} \prod_{k=1}^{K^+} \frac{(S_{N,k}-1)!(N-S_{N,k})!}{N!} \cdot \frac{1}{(2\pi\rho^2)^{K^+D/2}} \exp\left\{-\frac{1}{2\rho^2} \mathbf{tr}(A'A)\right\}.$$

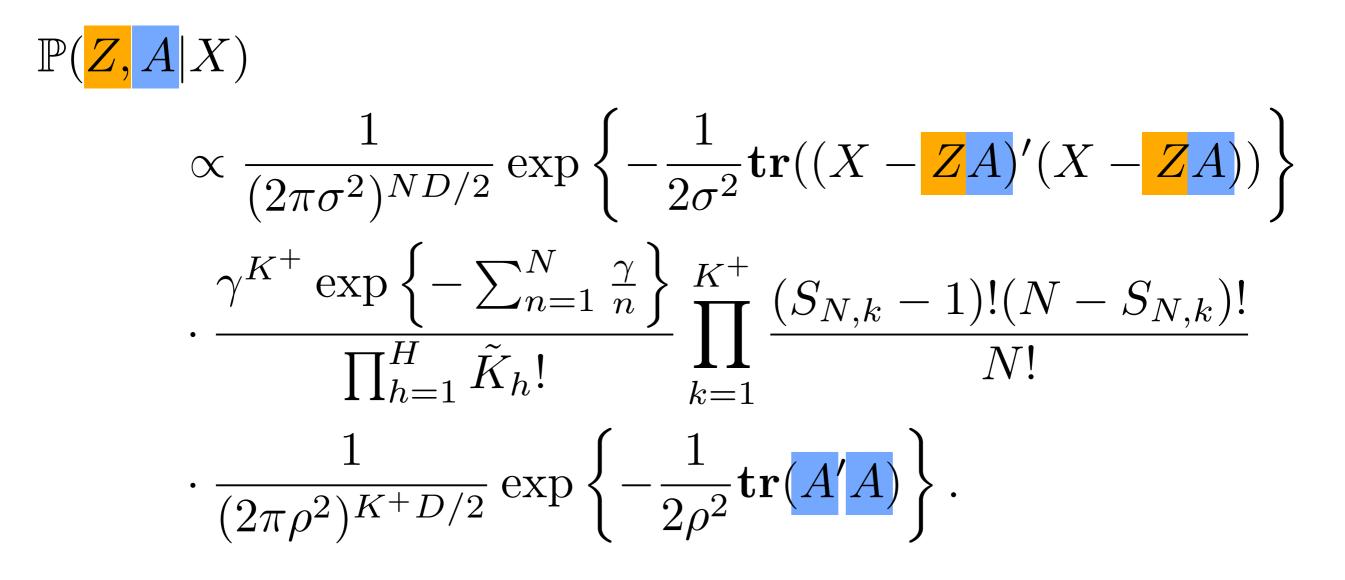
MAD-Bayes

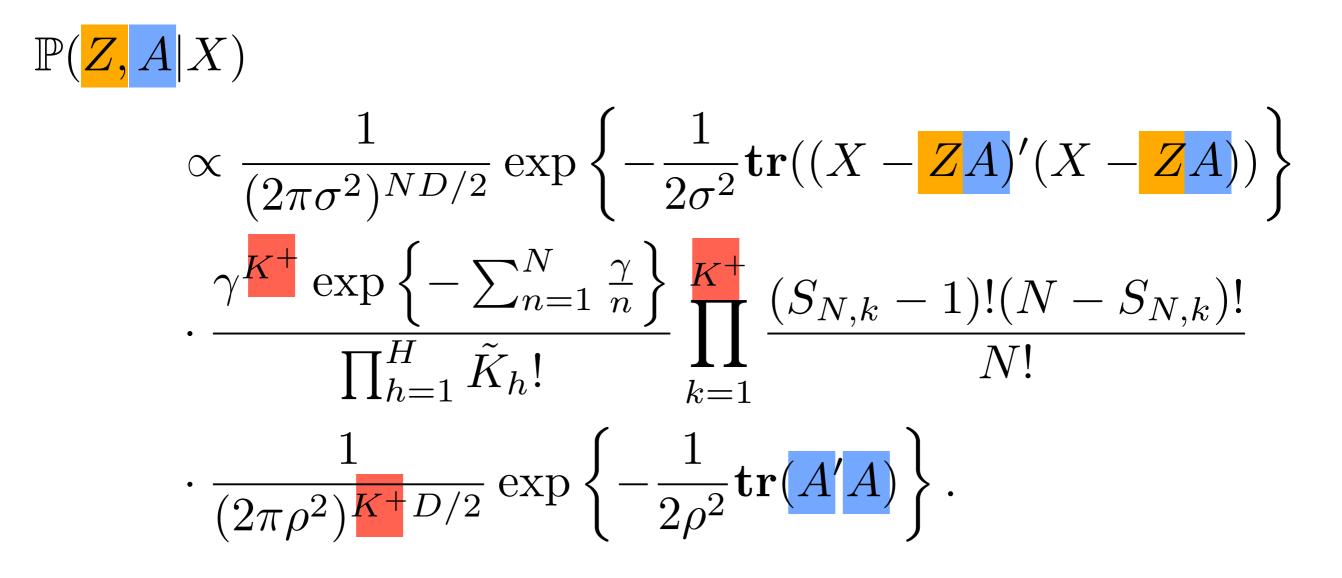


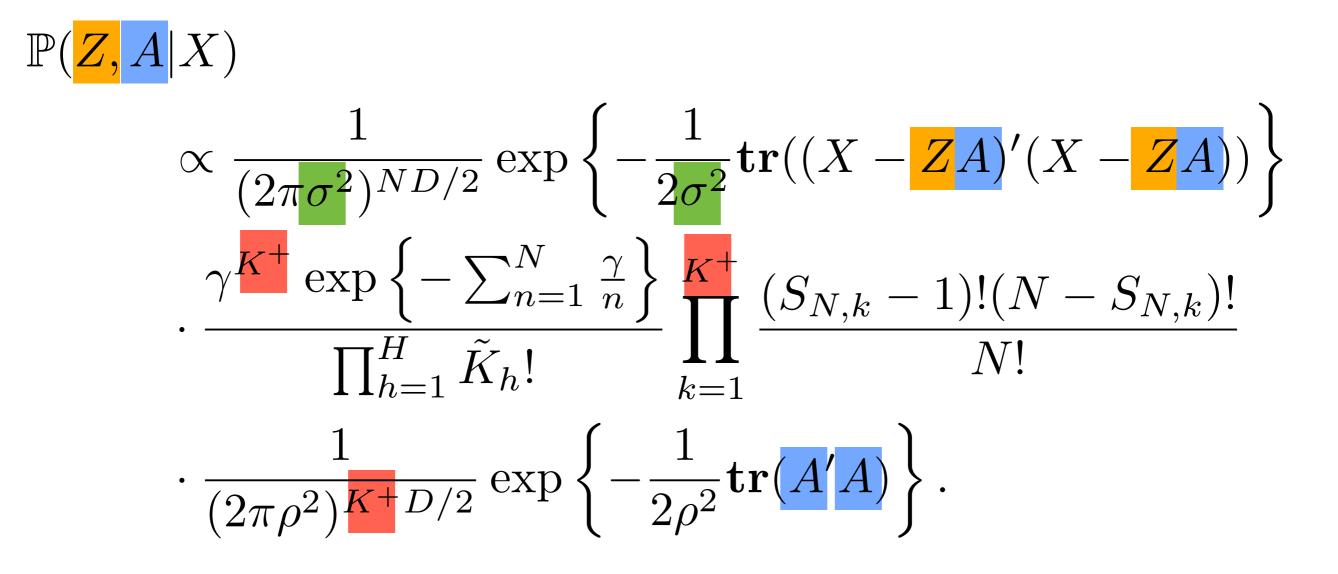
MAD-Bayes

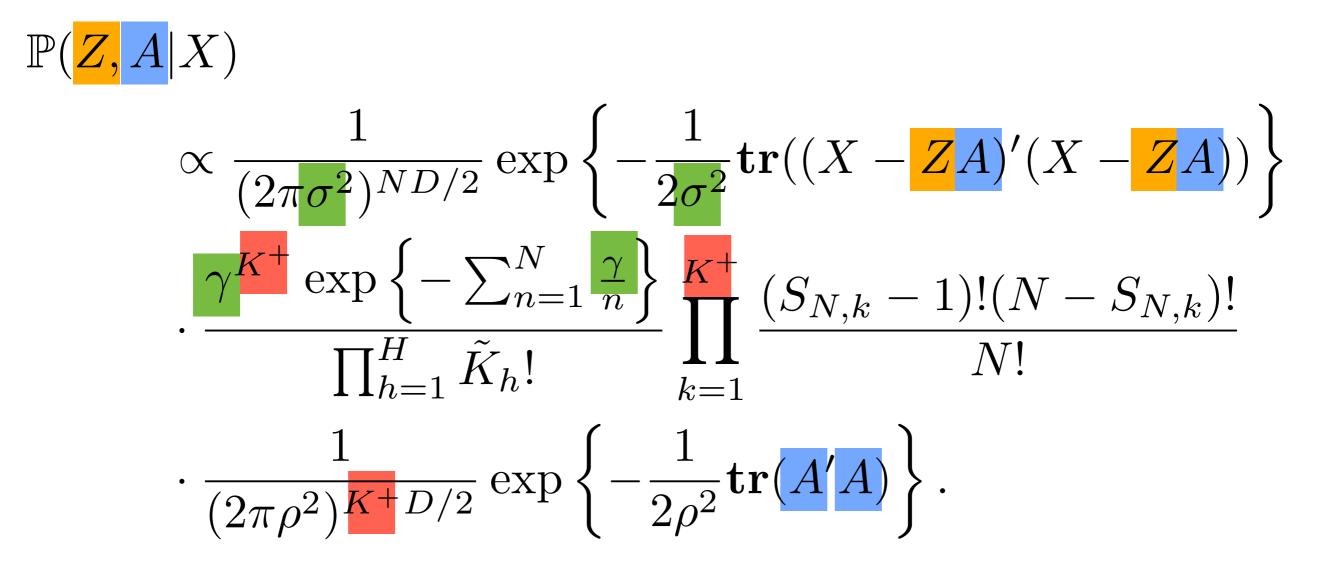


MAD-Bayes









BP-means objective

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means objective

$\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means objective

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means objective

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means algorithm

Iterate until no changes:

I. For n = I, ..., N

Assign point n to features

• Create a new feature if it lowers the objective 2. Update feature means $A \leftarrow (Z'Z)^{-1}Z'X$

BP-means objective

```
\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.
```

BP-means algorithm

Iterate until no changes:

I.For n = I, ..., N

Assign point n to features

• Create a new feature if it lowers the objective 2. Update feature means $A \leftarrow (Z'Z)^{-1}Z'X$

BP-means objective

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means algorithm

Iterate until no changes:

I. For n = I, ..., N

Assign point n to features

Create a new feature if it lowers the objective

2. Update feature means $A \leftarrow (Z'Z)^{-1}Z'X$

BP-means objective

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

BP-means algorithm

Iterate until no changes:

I. For n = 1, ..., N

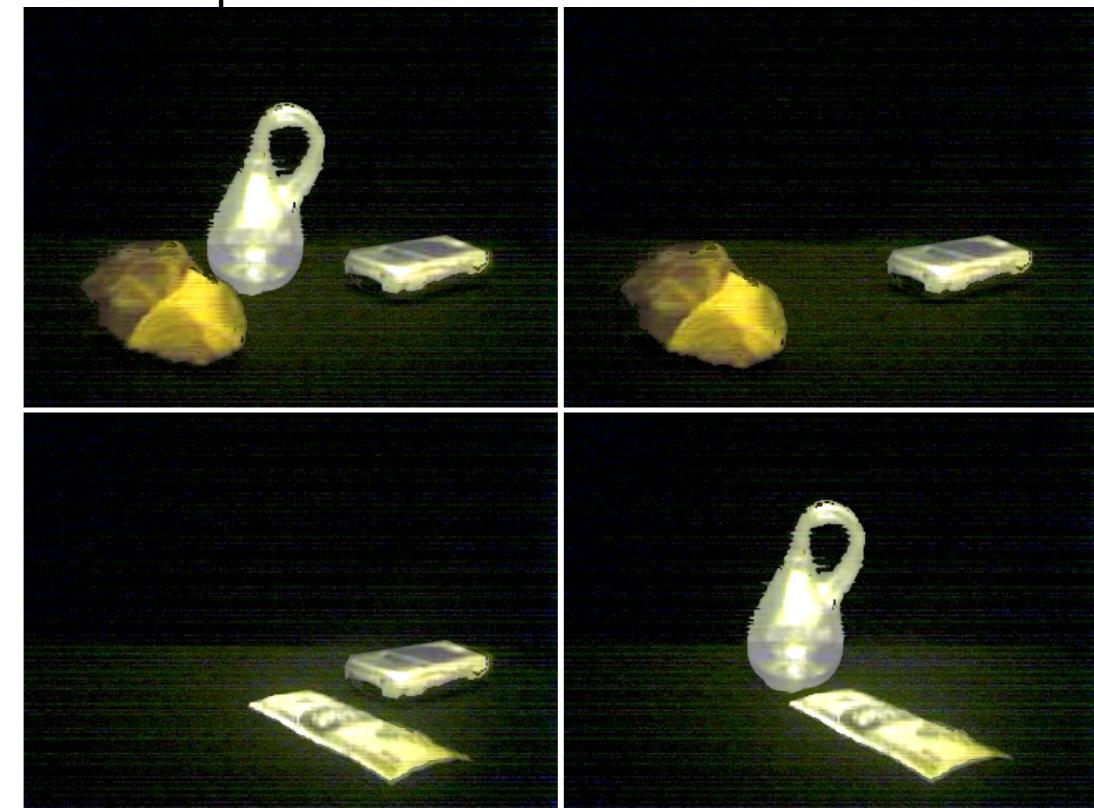
Assign point n to features

Create a new feature if it lowers the objective

2. Update feature means $A \leftarrow (Z'Z)^{-1}Z'X$

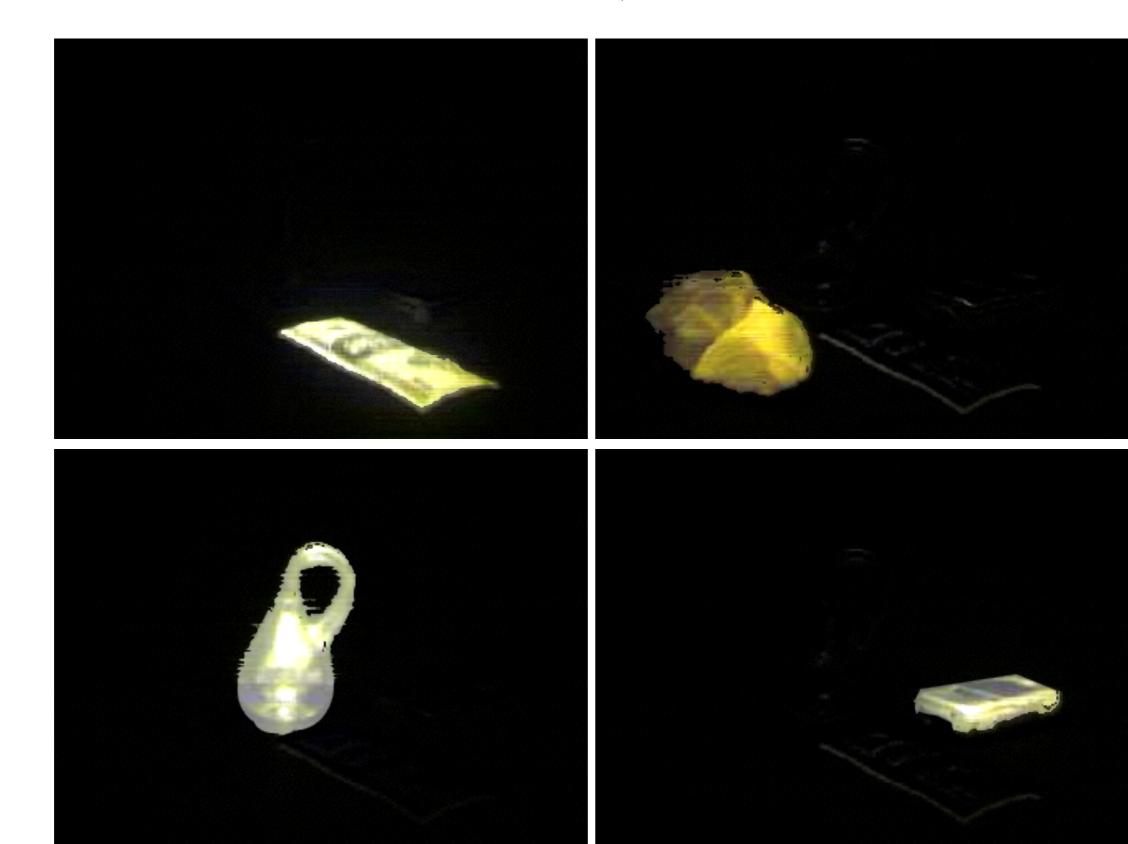
Griffiths & Ghahramani (2006) computer vision problem "tabletop data"

Griffiths & Ghahramani (2006) computer vision problem "tabletop data"



BP-means features: table and four objects

BP-means features: table and four objects



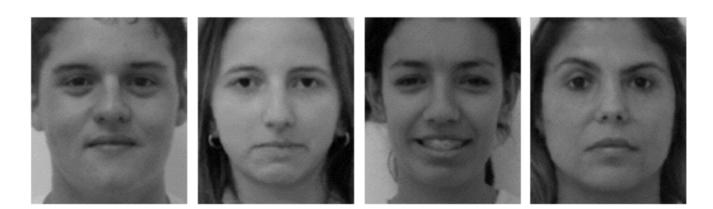
Griffiths & Ghahramani (2006) computer vision problem "tabletop data"

Bayesian posterior Gibbs sampler BP-means algorithm

8.5 * 10³ sec 0.36 sec Still faster by order of magnitude if restart 1000 times

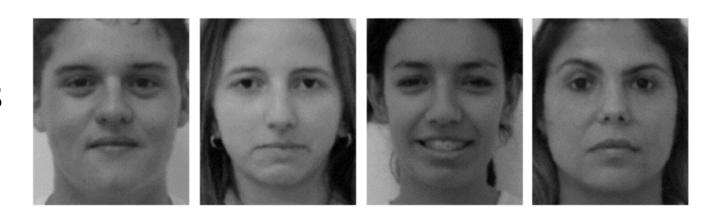
Pre-aligned faces

Samples



Pre-aligned faces

Samples

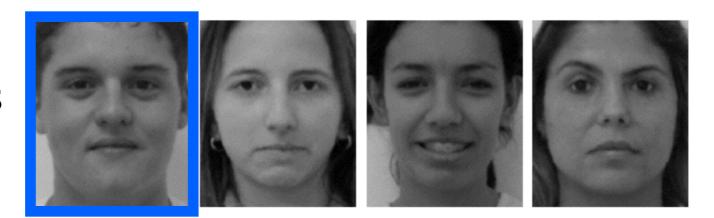


3 <u>features</u> (BP-means)

Face data

Pre-aligned faces

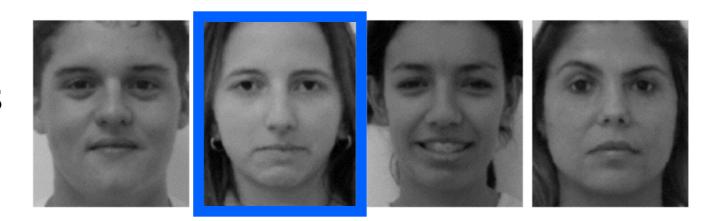
Samples



3 <u>features</u> (BP-means)

Pre-aligned faces

Samples





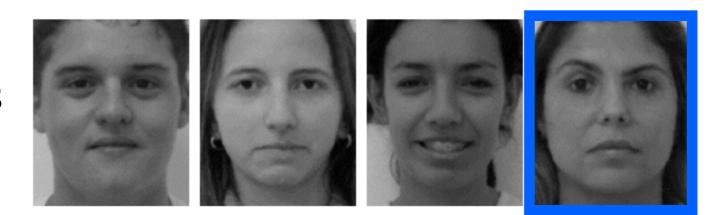
3 <u>features</u> (BP-means)

Samples



3 <u>features</u> (BP-means)

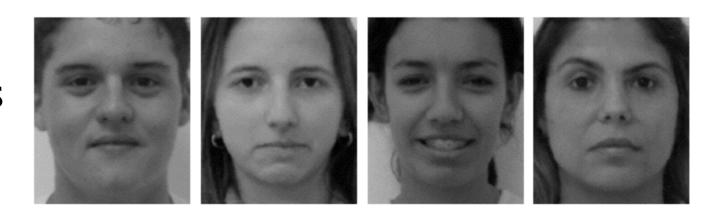
Samples



3 <u>features</u> (BP-means)

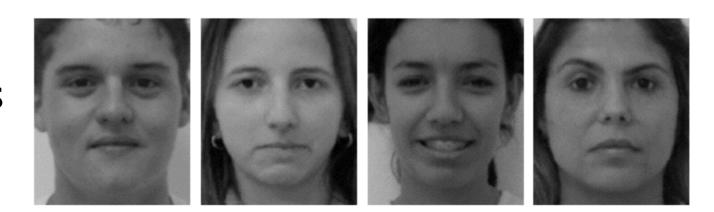


Samples

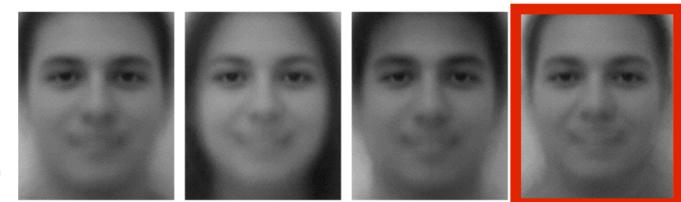


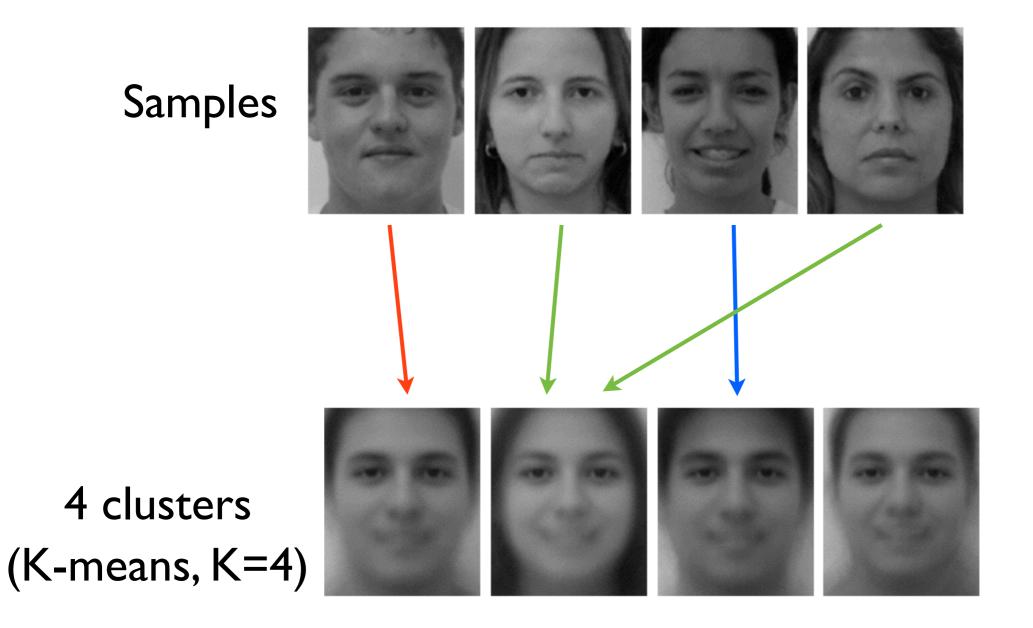
4 clusters (K-means, K=4)

Samples



4 clusters (K-means, K=4)



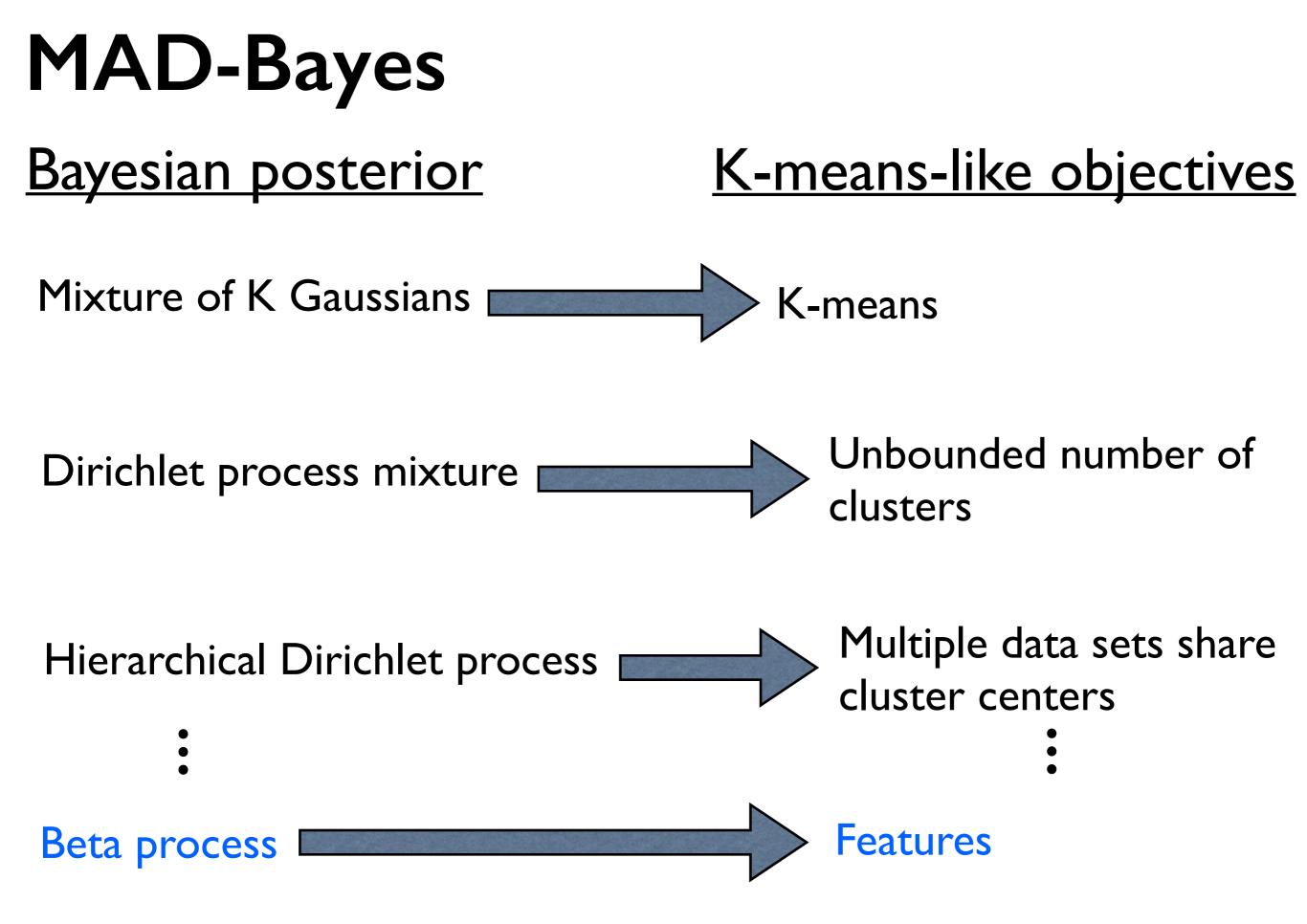


21

MAD-Bayes

Parallelism and optimistic concurrency control

	DP-means alg.	BP-means alg.
# data points	I34M	8M
time per iteration	5.5 min	4.3 min



We provide new optimization objectives and regularizers

 We provide new optimization objectives and regularizers
 In fact, general means of obtaining more

We provide new optimization objectives and regularizers

- In fact, general means of obtaining more
- Straightforward, fast algorithms

References

T. Broderick, B. Kulis, and M. I. Jordan. MAD-Bayes: MAP-based asymptotic derivations from Bayes. In *International Conference on Machine Learning*, 2013.

X. Pan, J. E. Gonzales, S. Jegelka, T. Broderick, and M. I. Jordan. Optimistic concurrency control for distributed unsupervised learning. In *Neural Information Processing Systems*, 2013.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational Bayes. In *Neural Information Processing Systems*, 2013.

R. Giordano and T. Broderick. Linear response methods for accurate covariance estimates from mean field variational Bayes. In *Neural Information Processing Systems*, 2015.

Further References

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In *Neural Information Processing Systems*, 2006.

N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. *Annals of Statistics*, 18(3):1259–1294, 1990.

J. F. C. Kingman. The representation of partition structures. *Journal of the London Mathematical Society*, 2(2):374, 1978.

B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In *International Conference on Machine Learning*, 2012.

J. Pitman. Exchangeable and partially exchangeable random partitions. *Probability Theory and Related Fields*, 102(2):145–158, 1995.

R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In *International Conference on Artificial Intelligence and Statistics*, 2007.

BP-means: Tabletop data

[Griffiths, Ghahramani 2006]

BP-means: Tabletop data results

K-means (K=4) cluster centers:

BP-means: Tabletop data results

BP-means features: table and four objects

