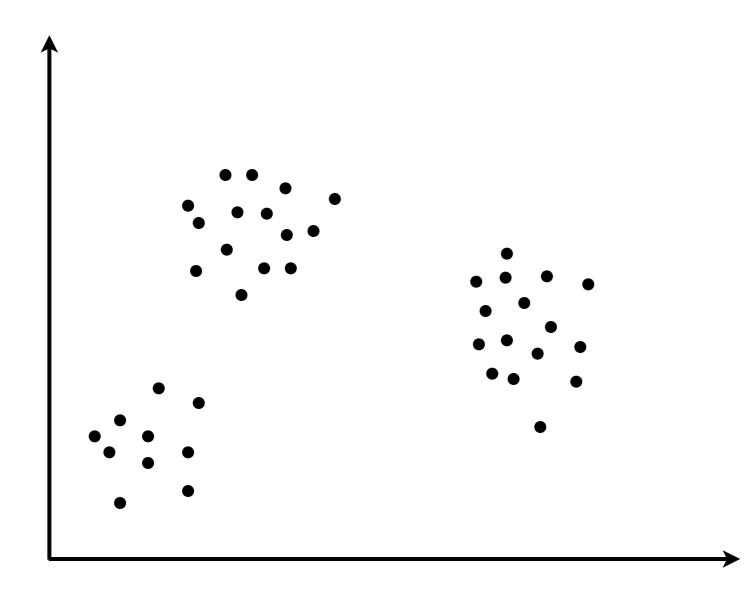


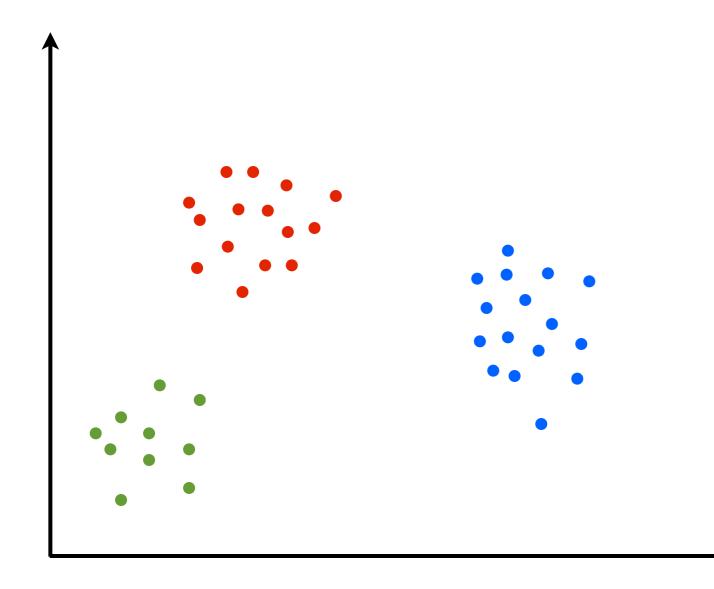


# Feature allocations, probability functions, and paintboxes

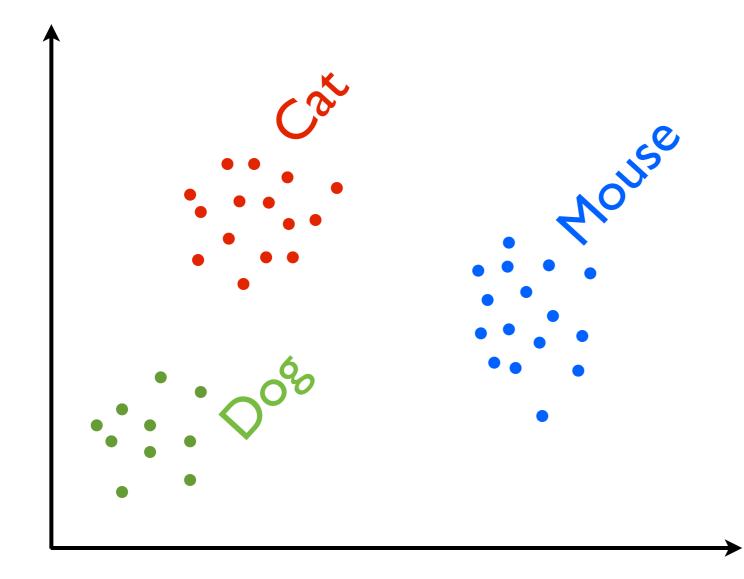
Tamara Broderick ITT Career Development Assistant Professor, MIT



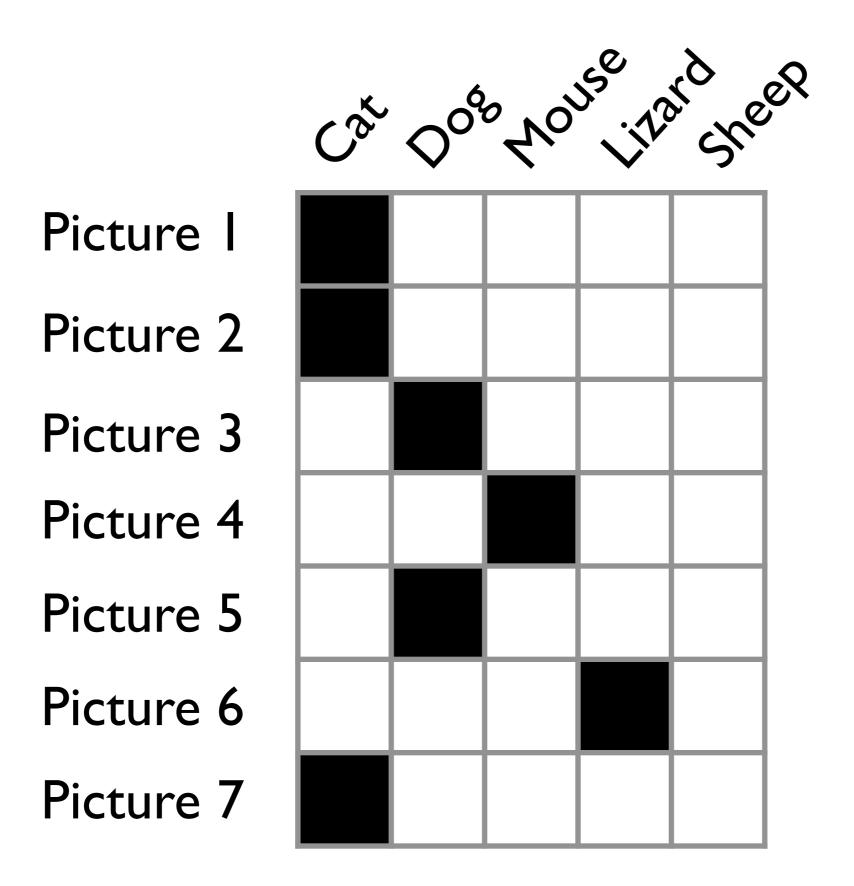




"clusters", "classes", "blocks (of a partition)"



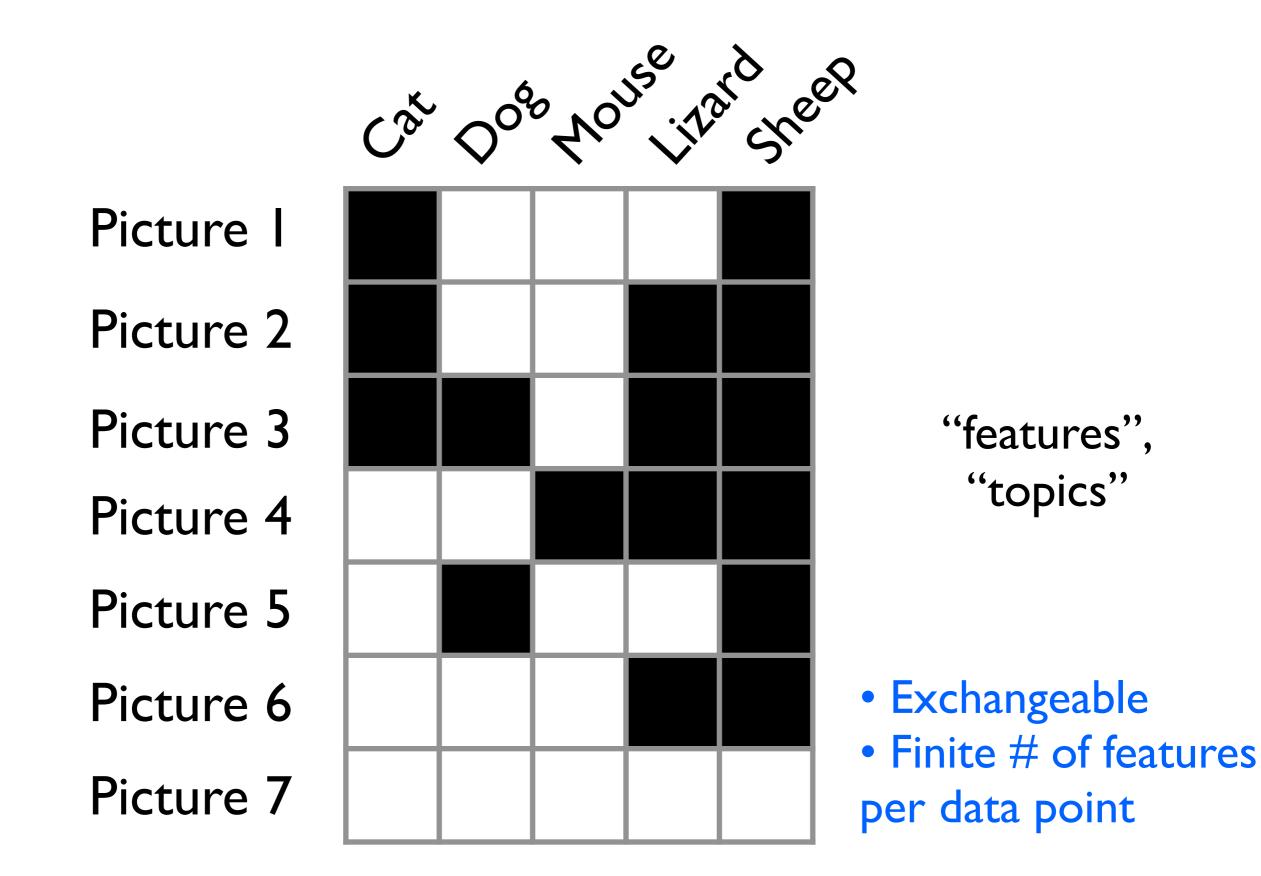
"clusters", "classes", "blocks (of a partition)"



#### Latent feature allocation



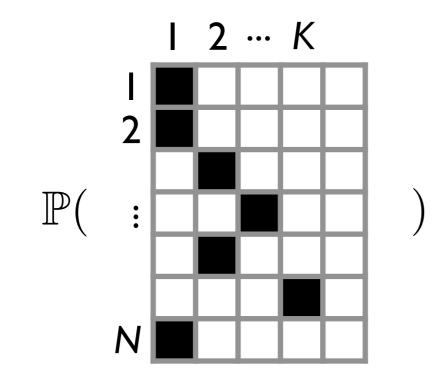
#### Latent feature allocation

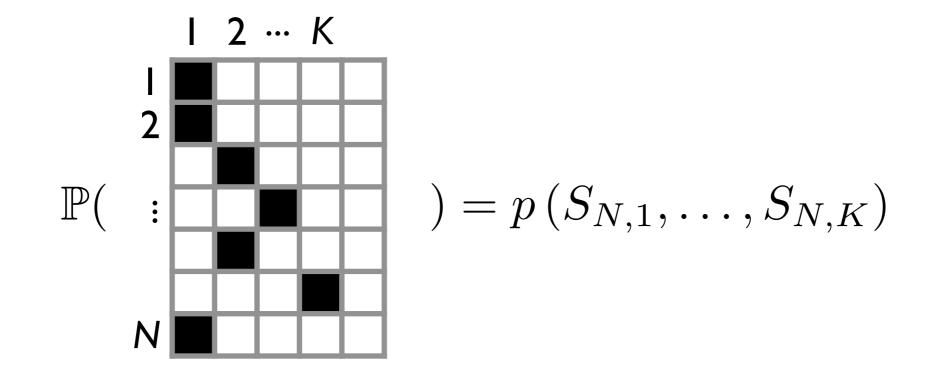


# Characterizations

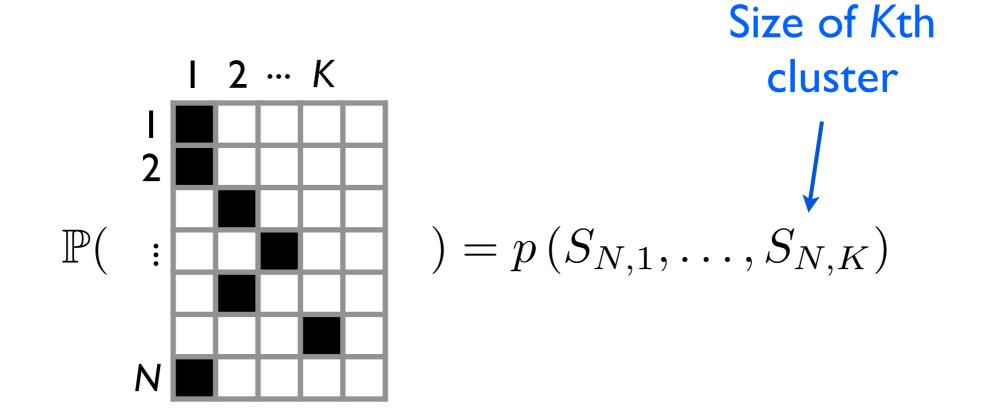
# • Exchangeable cluster distributions are characterized

• What about exchangeable feature distributions?

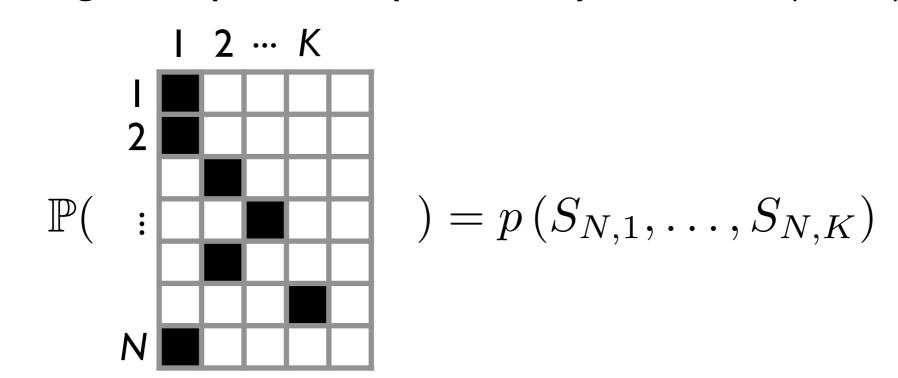




5

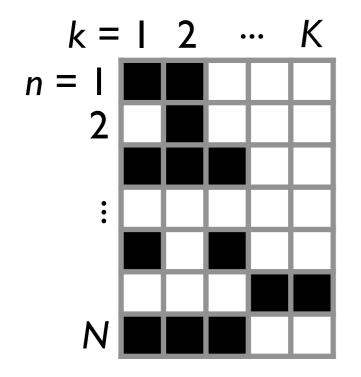


Exchangeable partition probability function (EPPF)

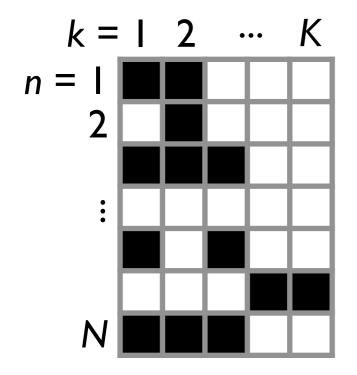


# "Exchangeable feature probability function" (EFPF)?

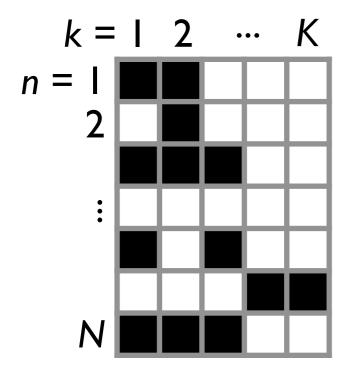
7



7

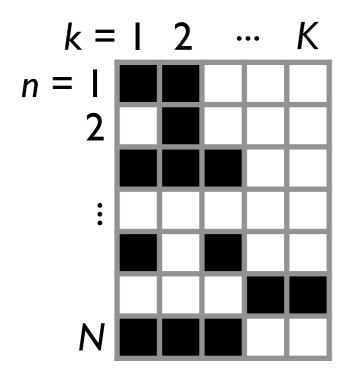


7

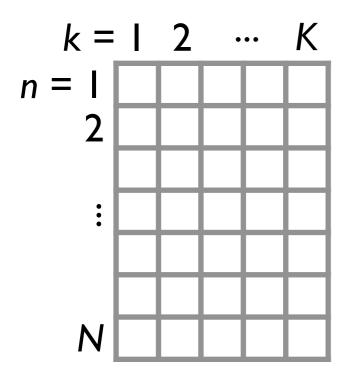


7

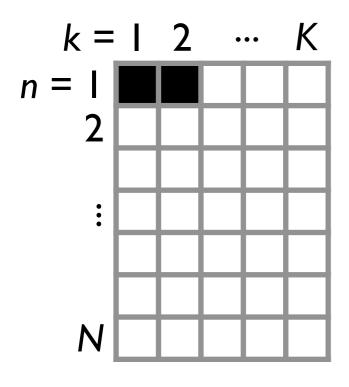
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 



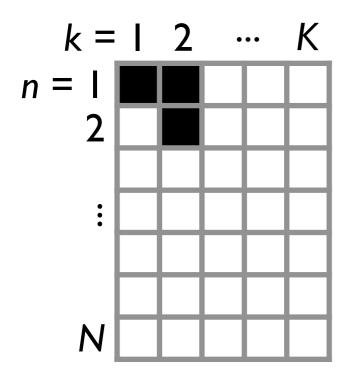
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



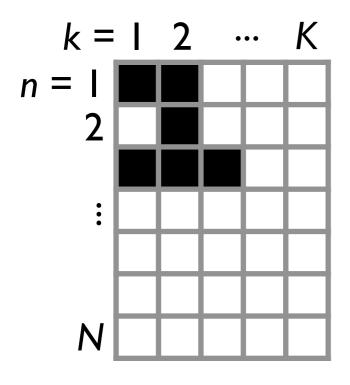
For n = 1, 2, ..., NI. Data point *n* has an existing feature *k* that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point *n*:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



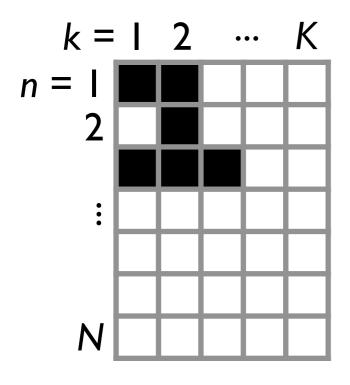
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



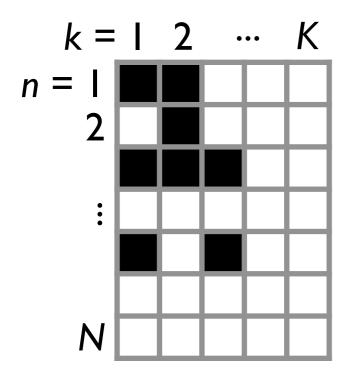
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



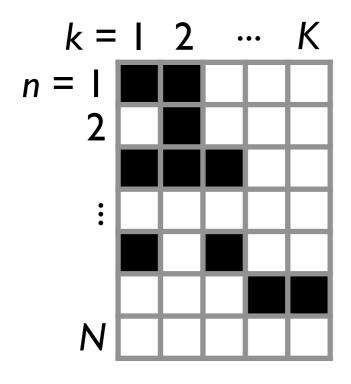
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



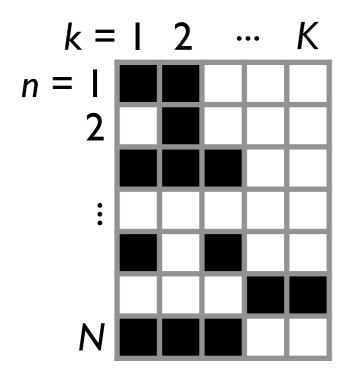
For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 



For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 

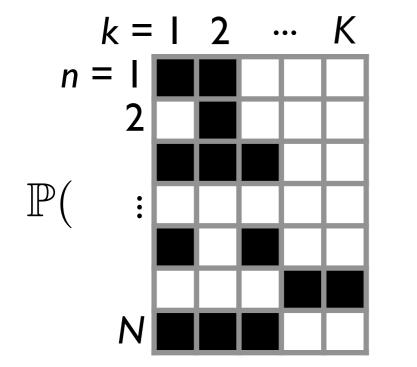


For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred  $S_{n-1,k}$ times with probability  $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n:  $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$ 

"Exchangeable feature probability function" (EFPF)?

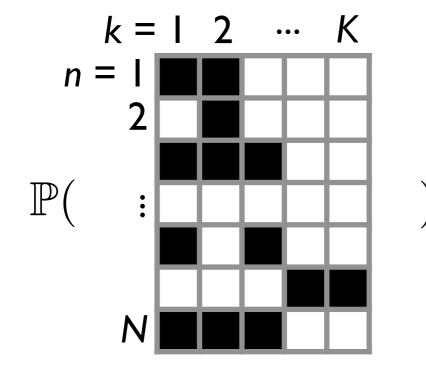
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



"Exchangeable feature probability function" (EFPF)?

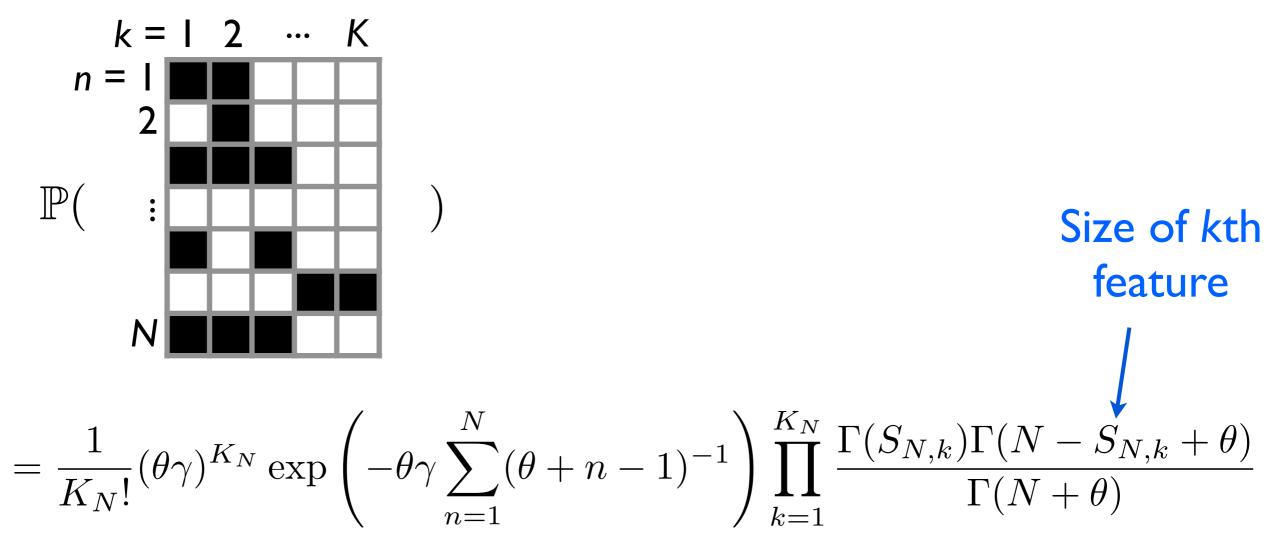
Example: Indian buffet process (IBP)



$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp\left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

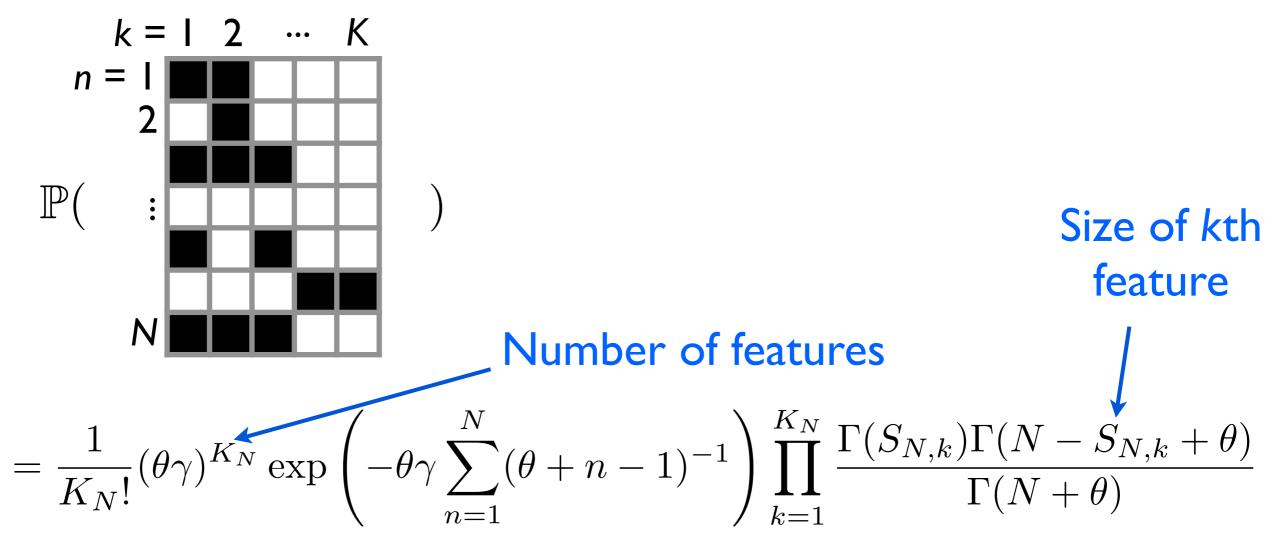
Example: Indian buffet process (IBP)



8

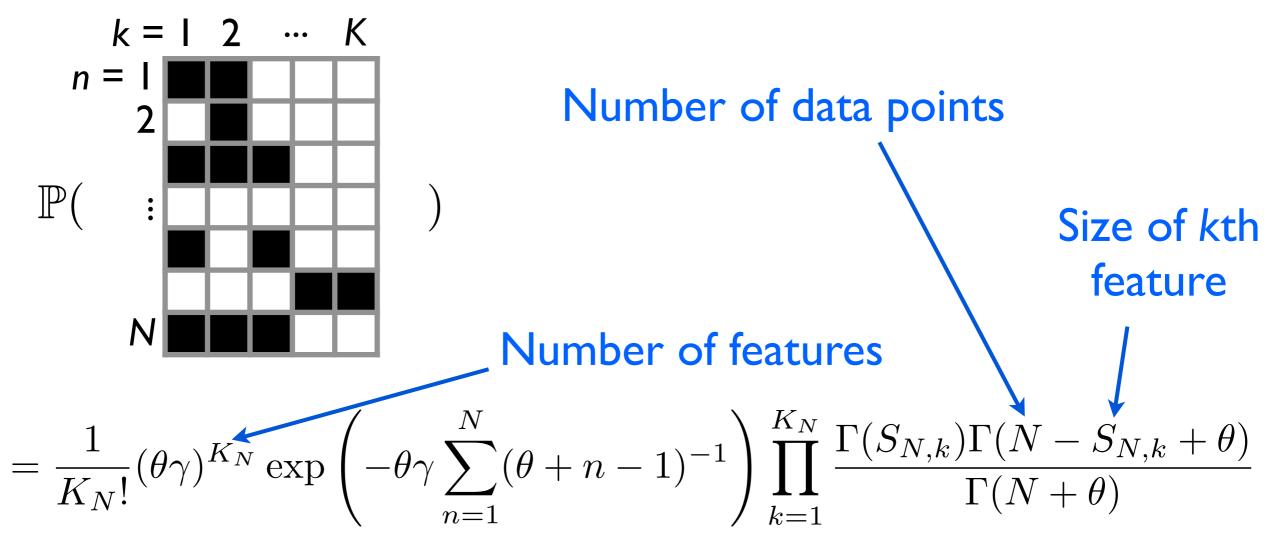
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



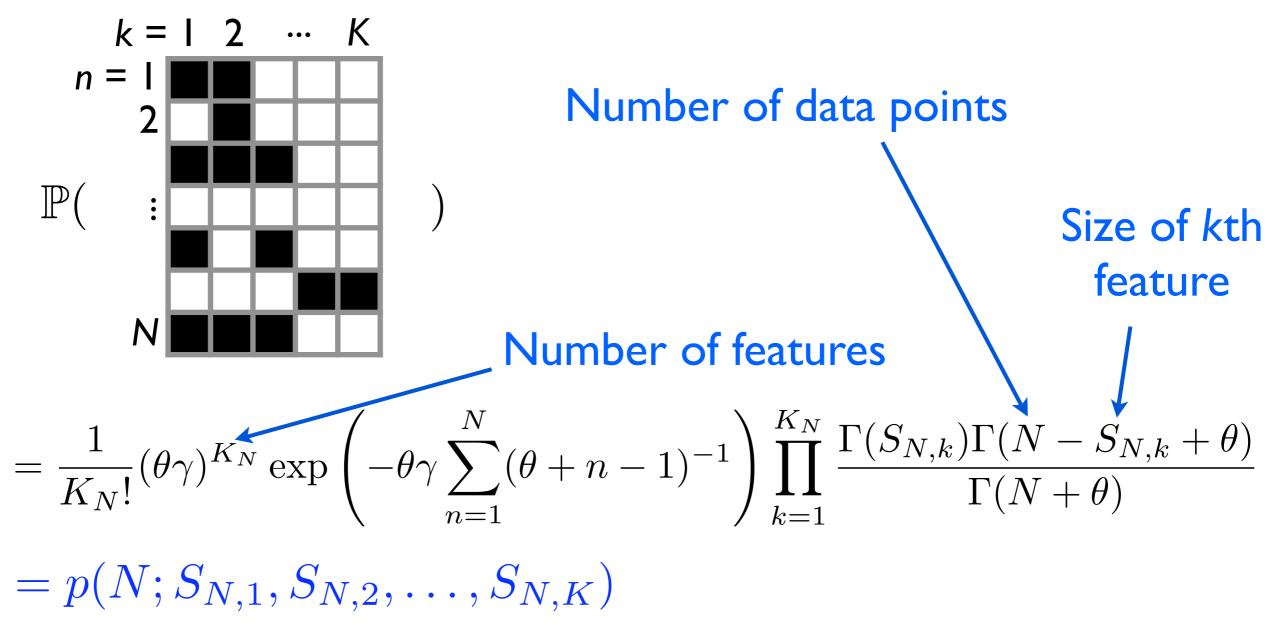
"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)



"Exchangeable feature probability function" (EFPF)?

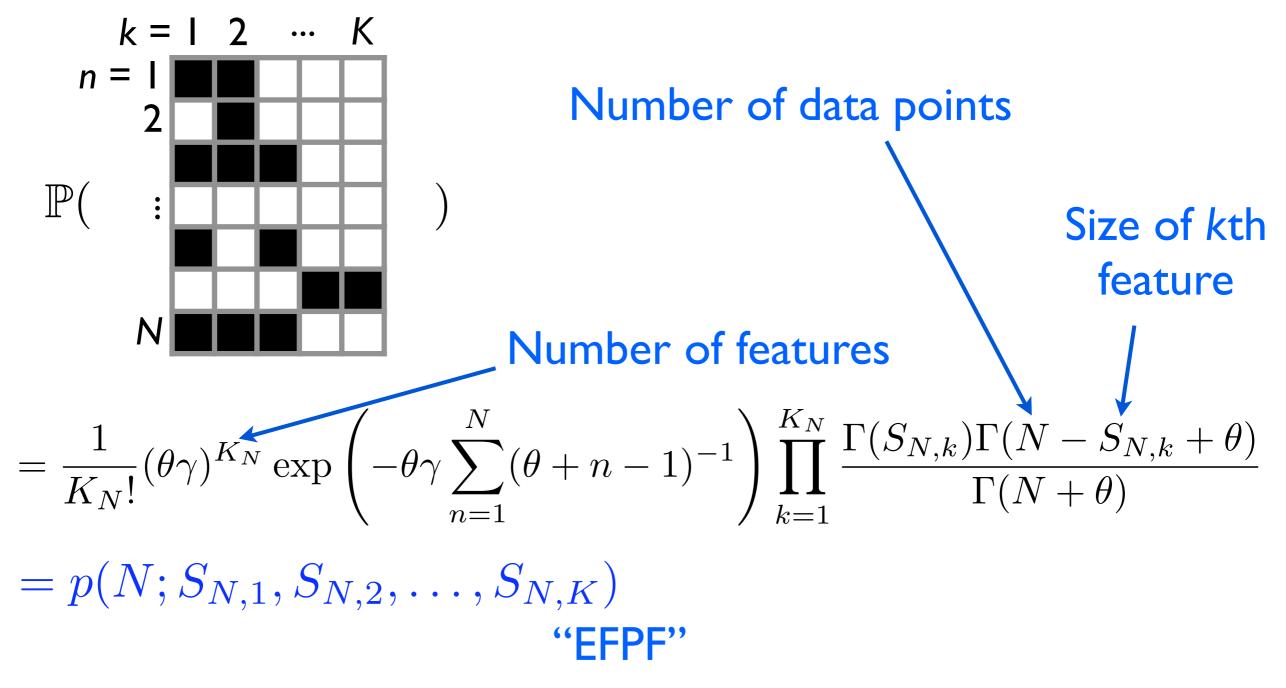
Example: Indian buffet process (IBP)



[Broderick, Jordan, Pitman 2013]

"Exchangeable feature probability function" (EFPF)?

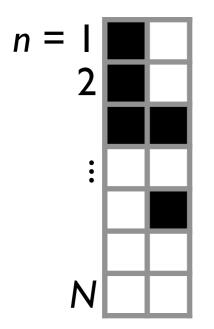
Example: Indian buffet process (IBP)



[Broderick, Jordan, Pitman 2013]

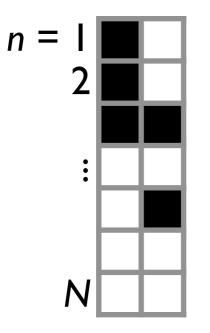
"Exchangeable feature probability function" (EFPF)?

Counterexample



"Exchangeable feature probability function" (EFPF)?

Counterexample

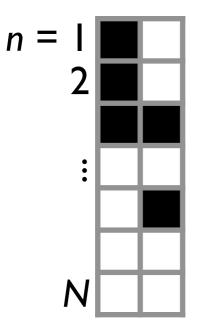


$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_4$$

[Broderick, Jordan, Pitman 2013]

"Exchangeable feature probability function" (EFPF)?

Counterexample

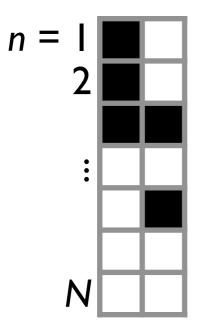


$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\operatorname{row} = \blacksquare) = p_4$$

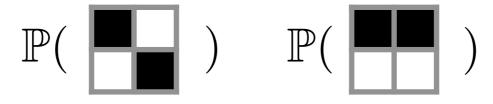


"Exchangeable feature probability function" (EFPF)?

Counterexample

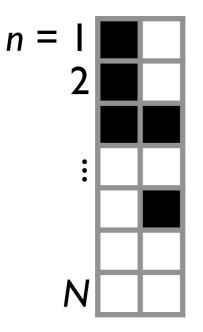


$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

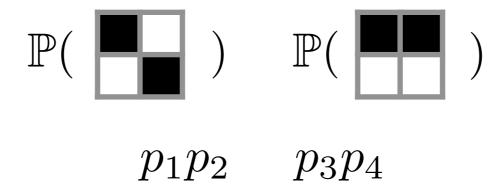


"Exchangeable feature probability function" (EFPF)?

Counterexample

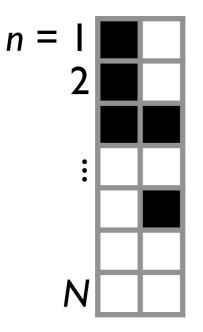


$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$



"Exchangeable feature probability function" (EFPF)?

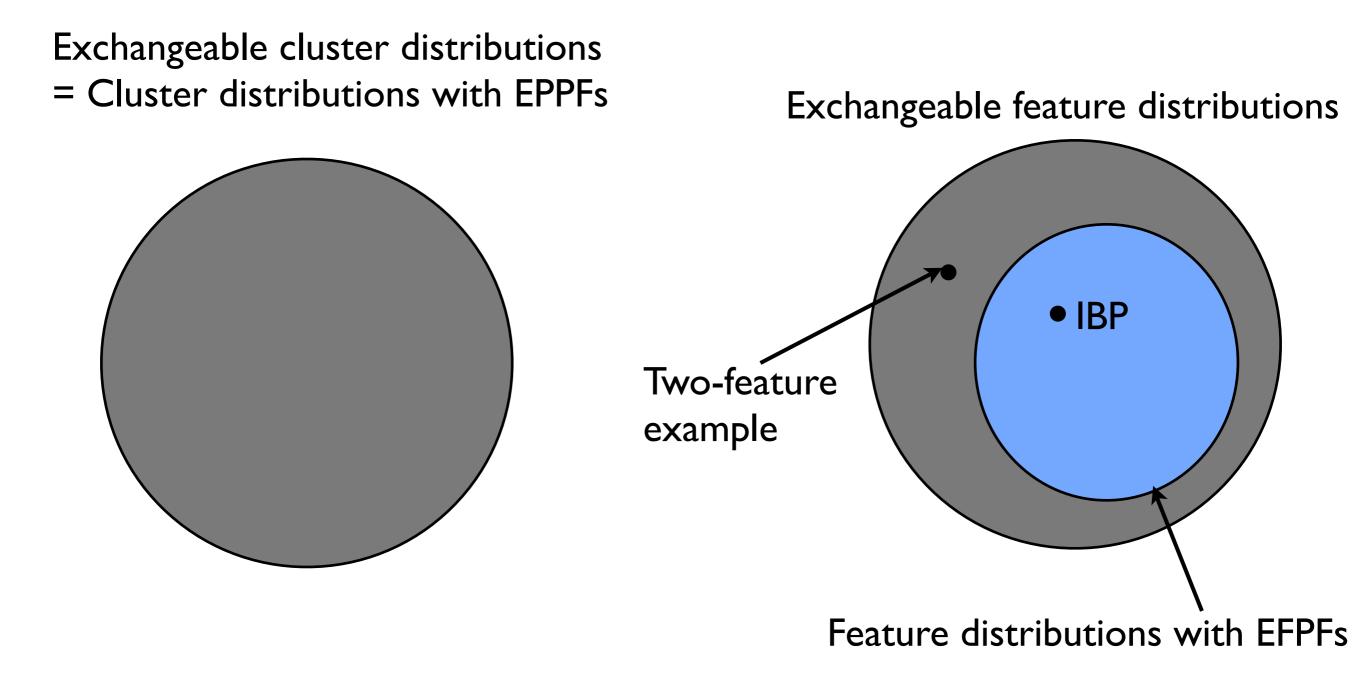
Counterexample



$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

$$\mathbb{P}(\square) \neq \mathbb{P}(\square)$$

$$p_1 p_2 \neq p_3 p_4$$



Exchangeable partition: Kingman paintbox

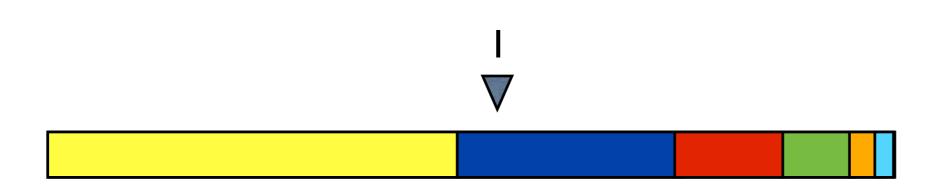
Exchangeable partition: Kingman paintbox

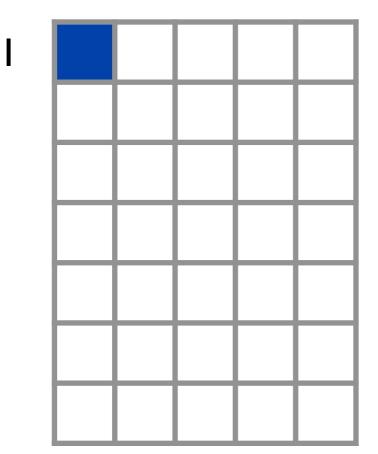


#### Exchangeable partition: Kingman paintbox

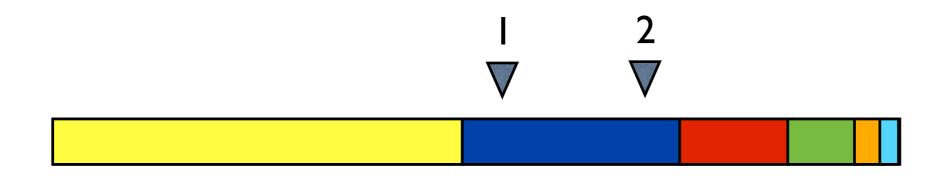


#### Exchangeable partition: Kingman paintbox



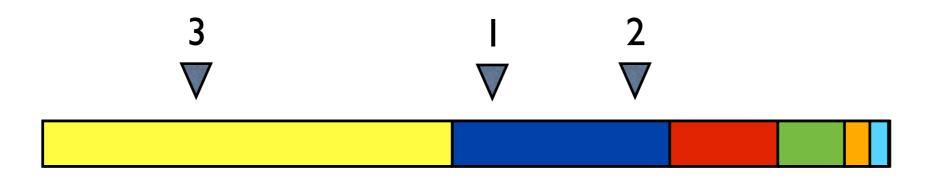


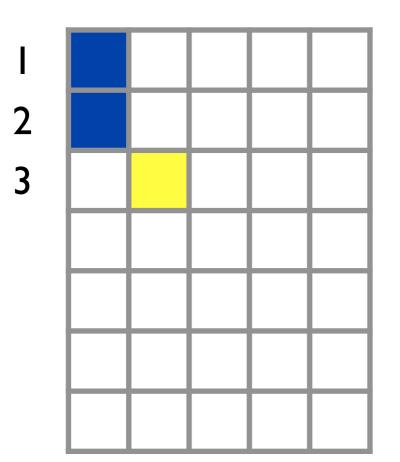
#### Exchangeable partition: Kingman paintbox



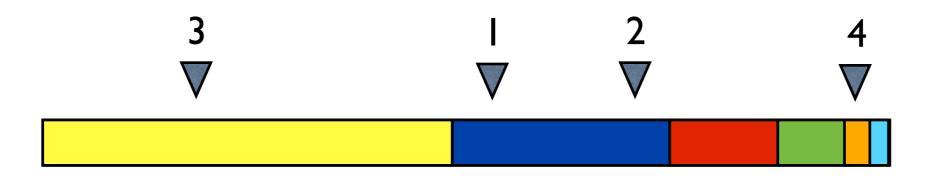


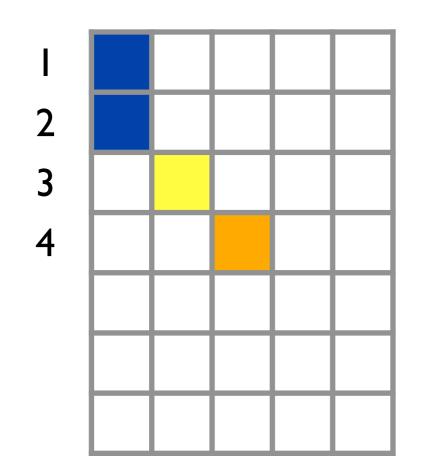
Exchangeable partition: Kingman paintbox



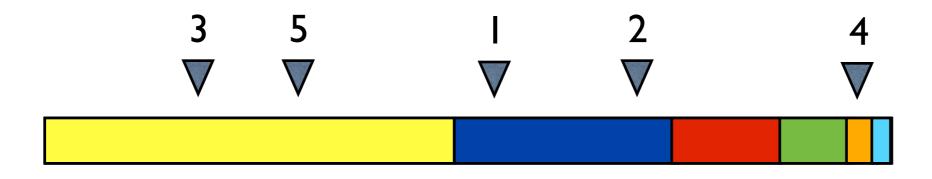


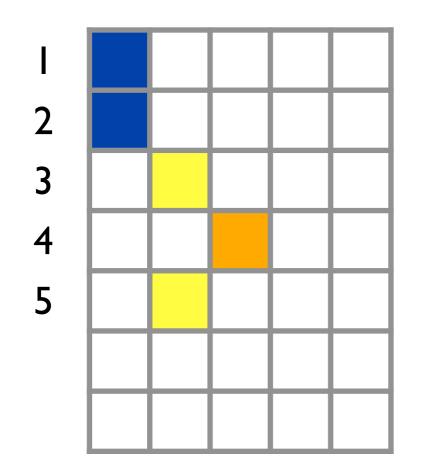
Exchangeable partition: Kingman paintbox



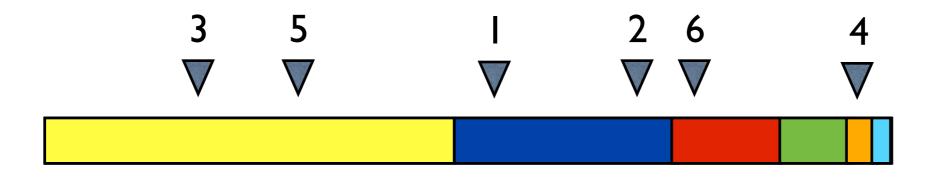


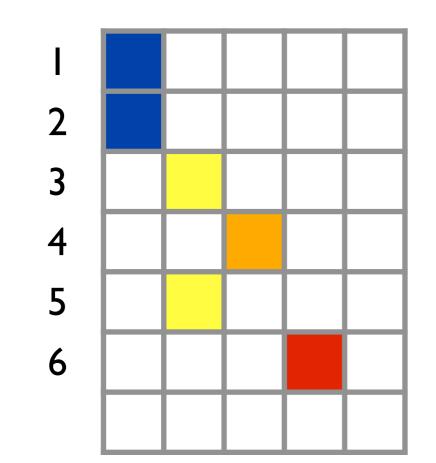
Exchangeable partition: Kingman paintbox



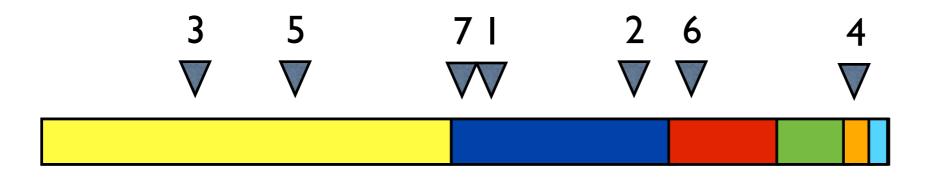


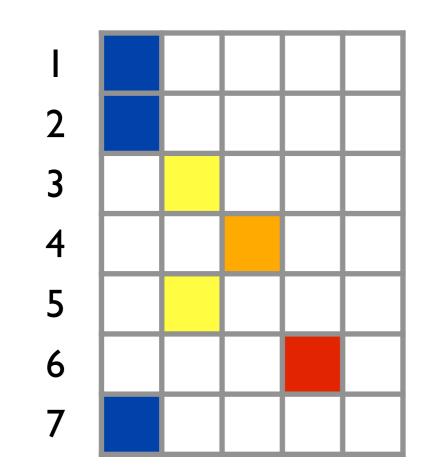
Exchangeable partition: Kingman paintbox



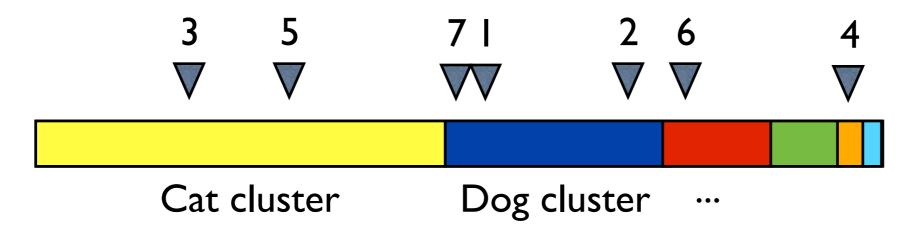


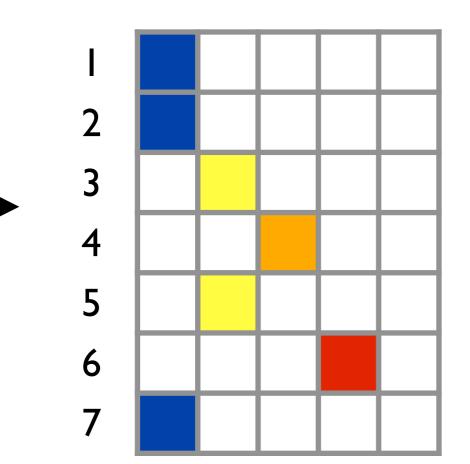
Exchangeable partition: Kingman paintbox



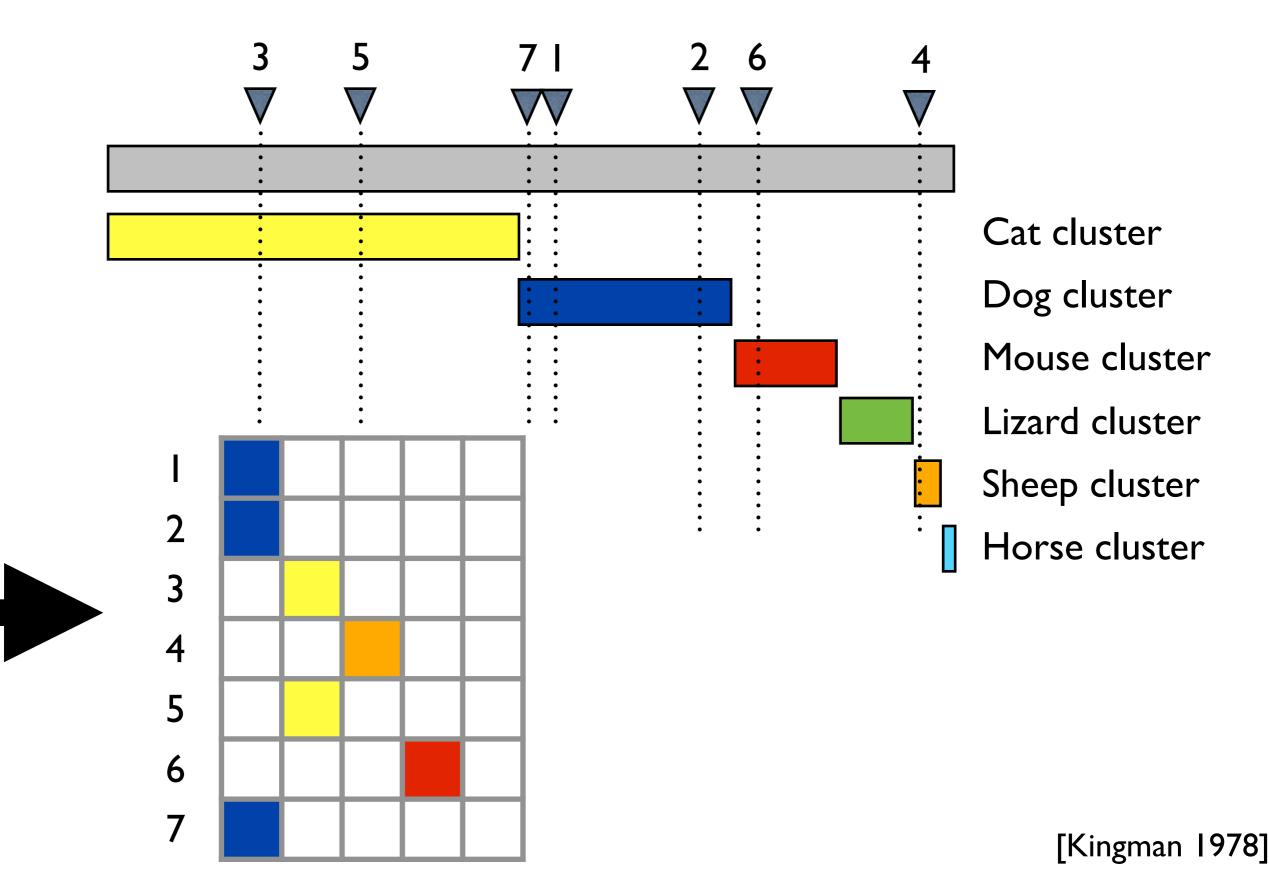


Exchangeable partition: Kingman paintbox

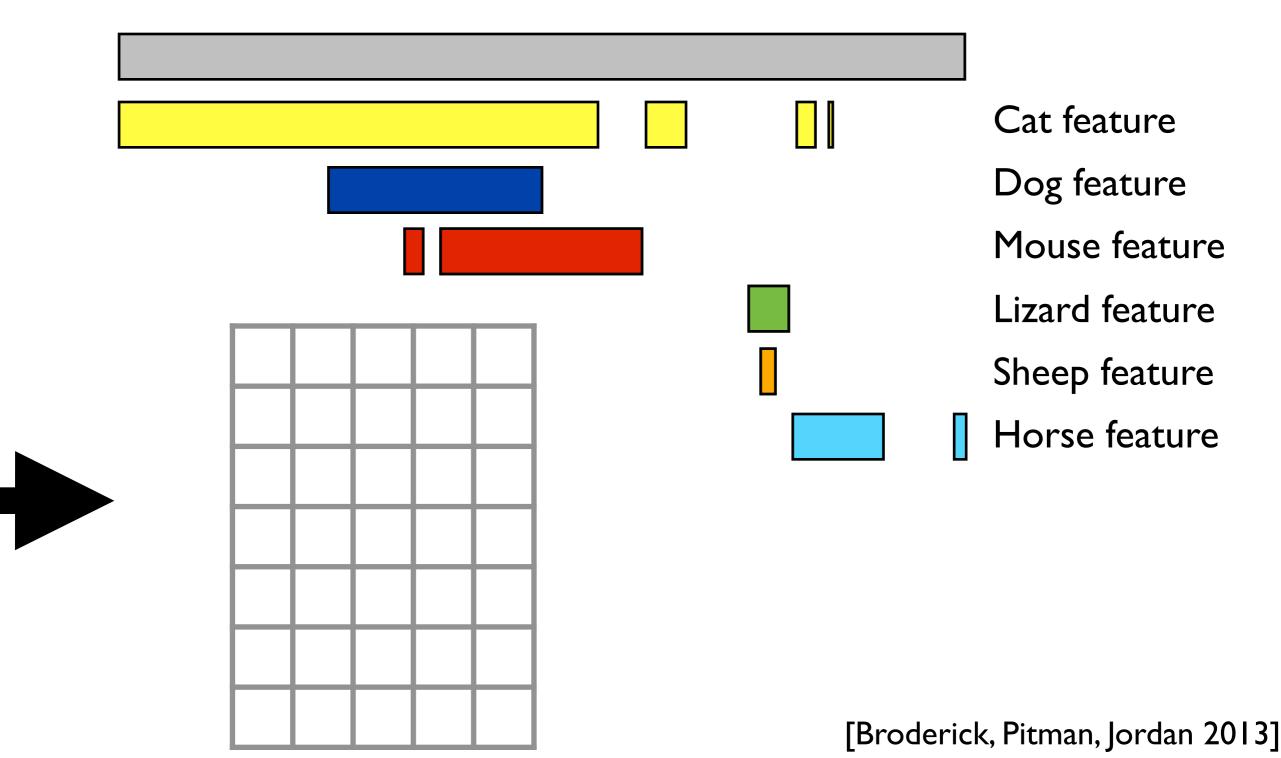


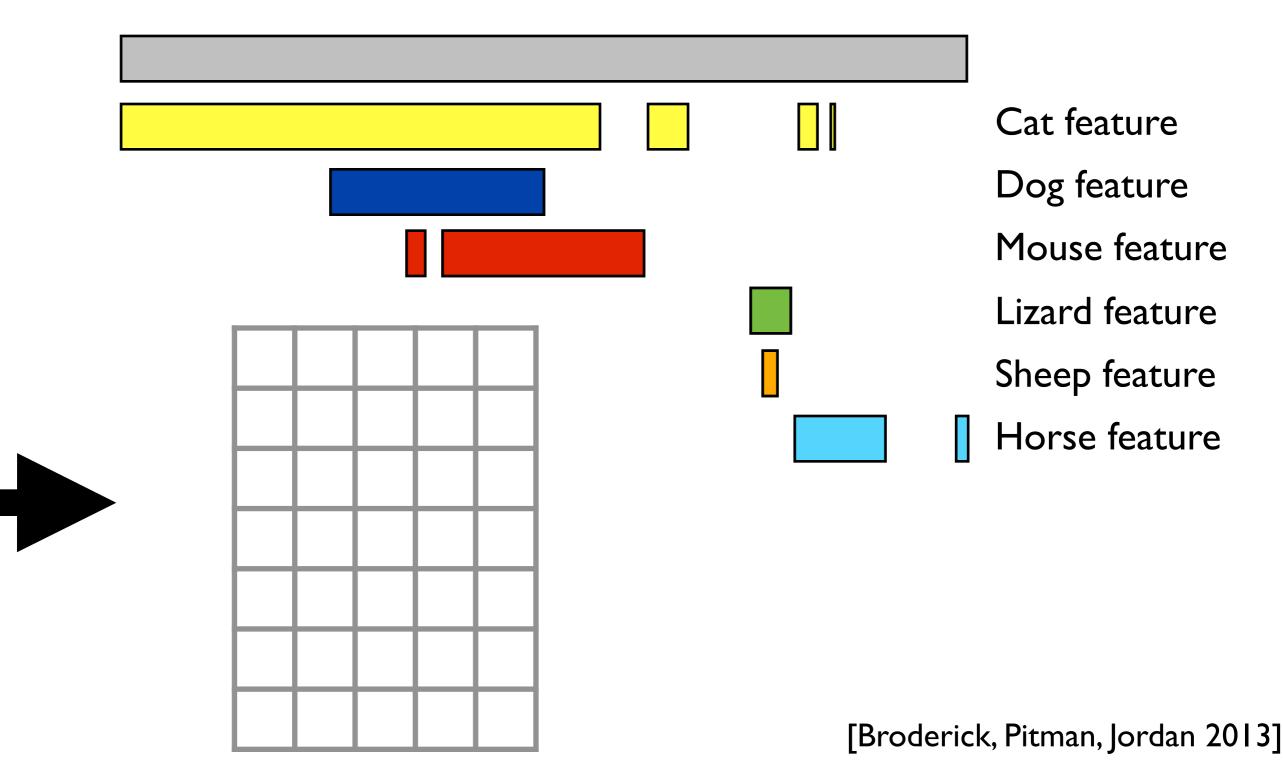


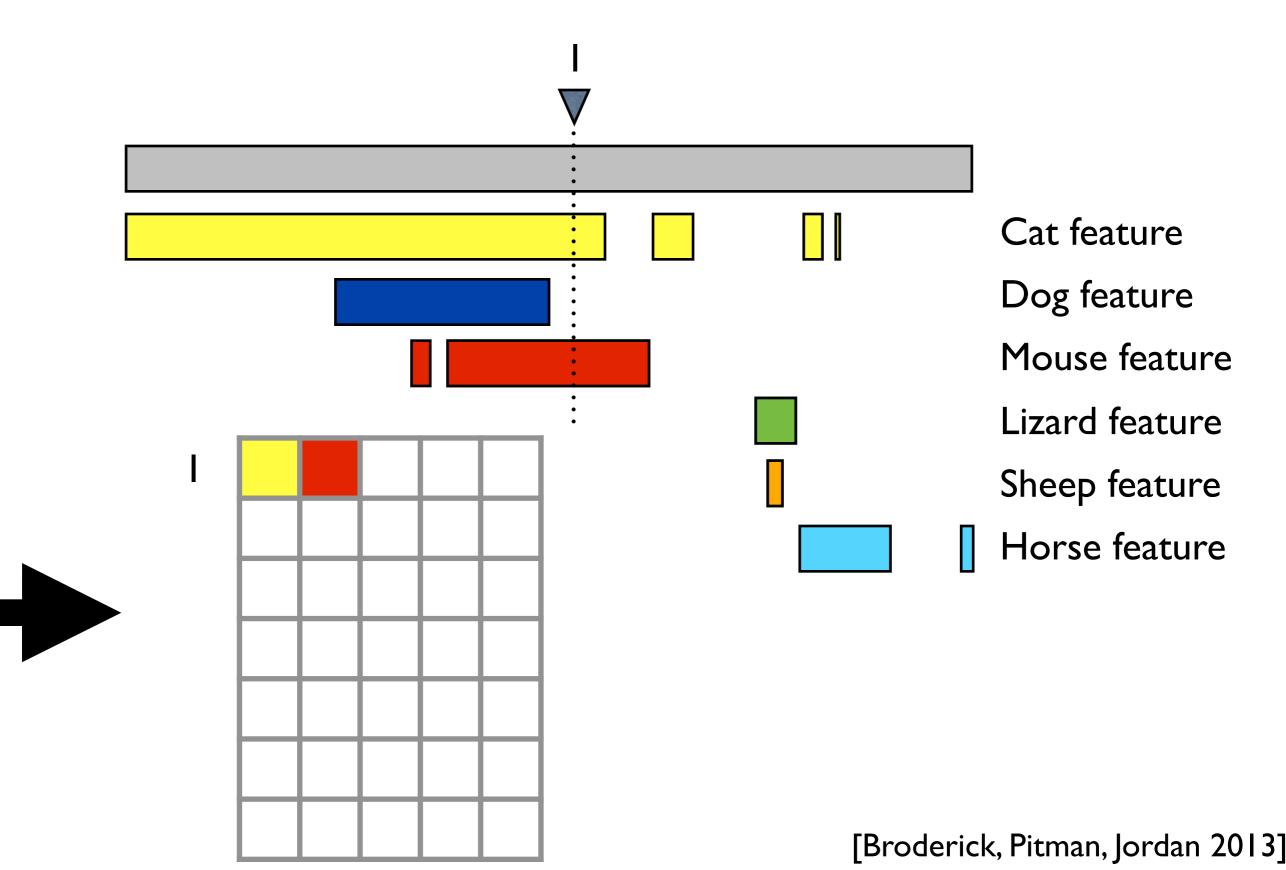
Exchangeable partition: Kingman paintbox

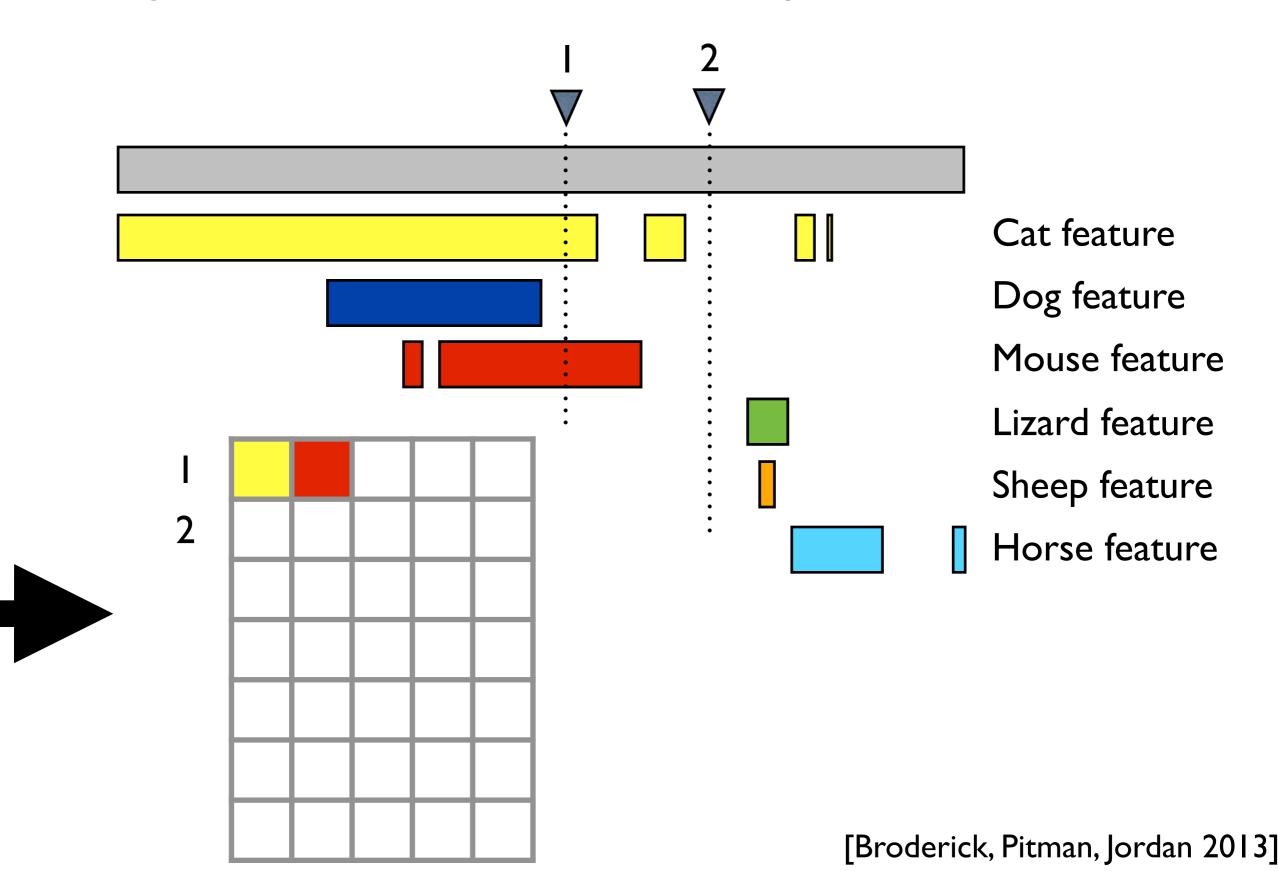


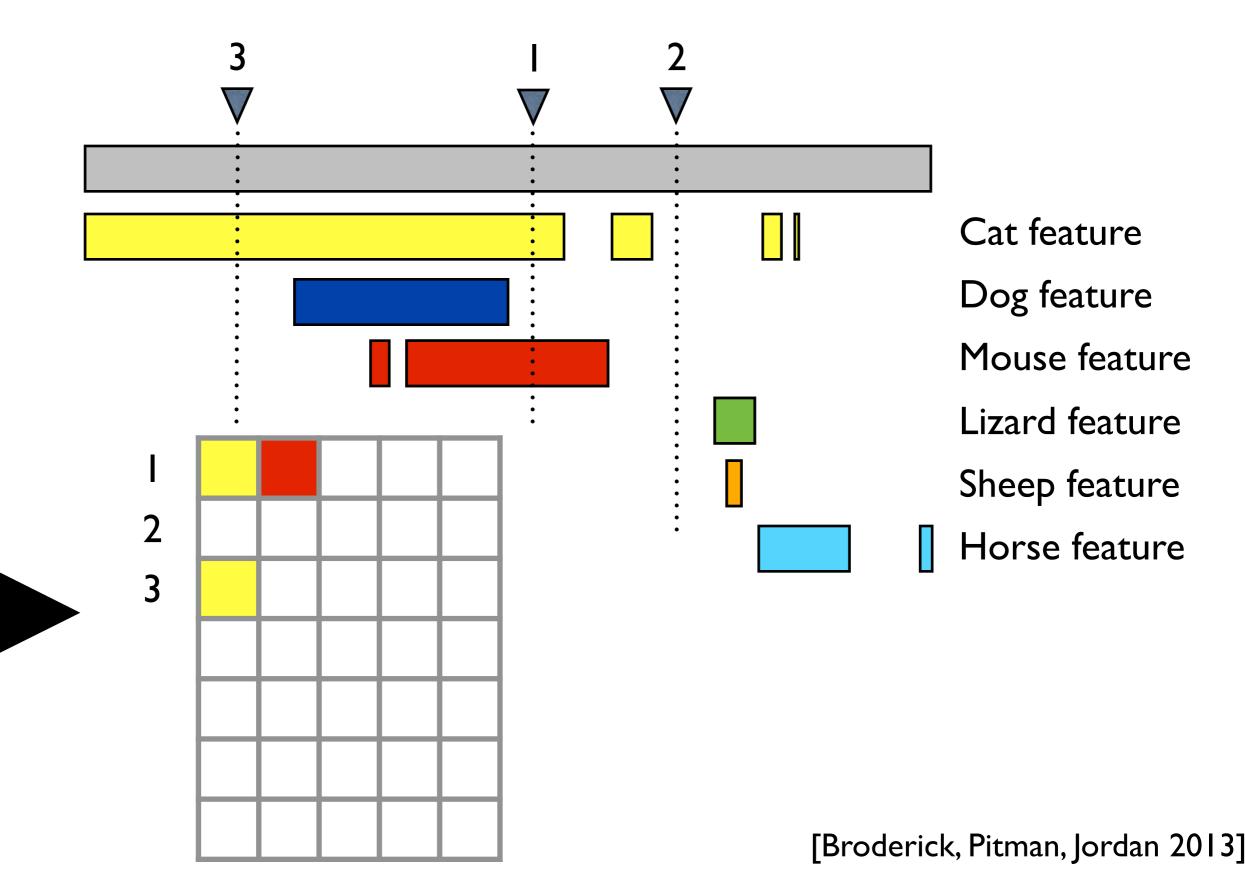
12

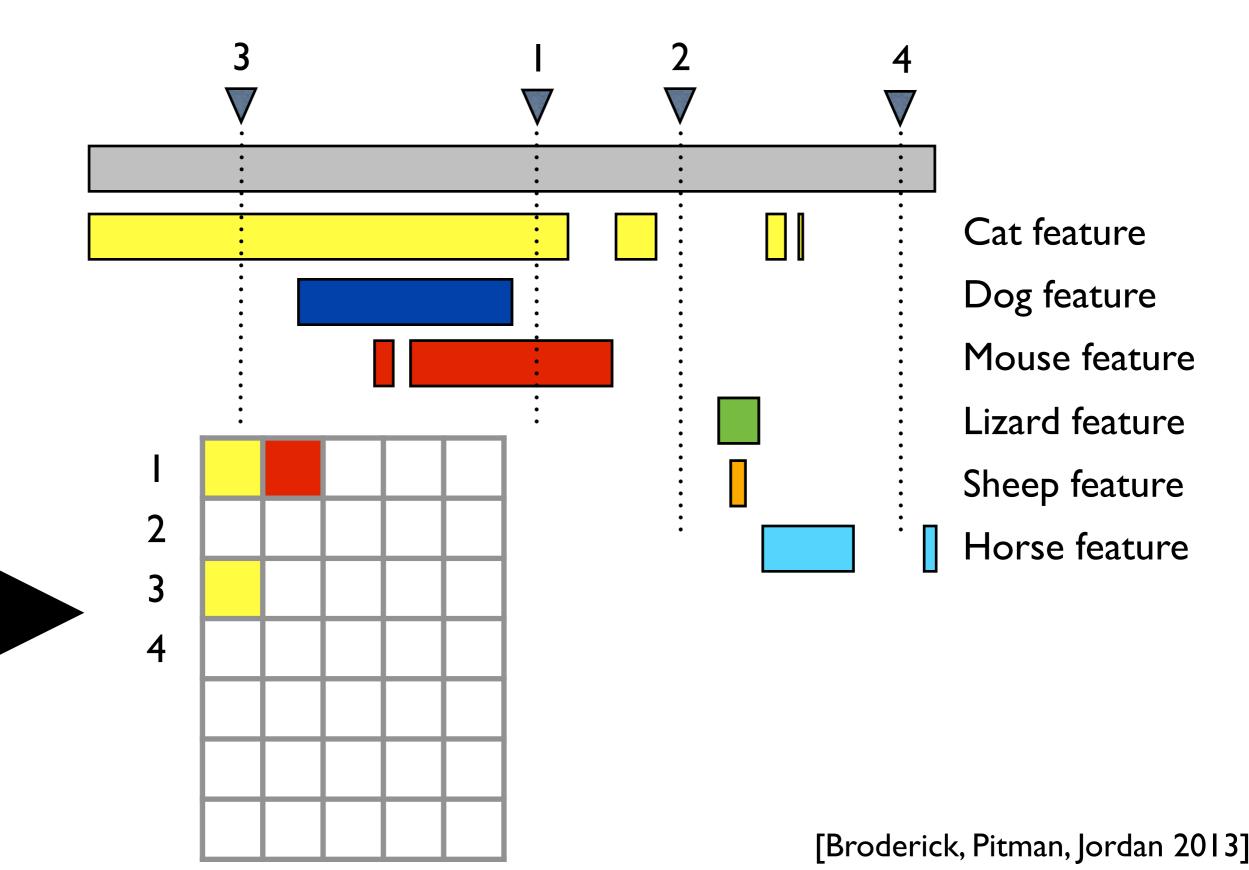


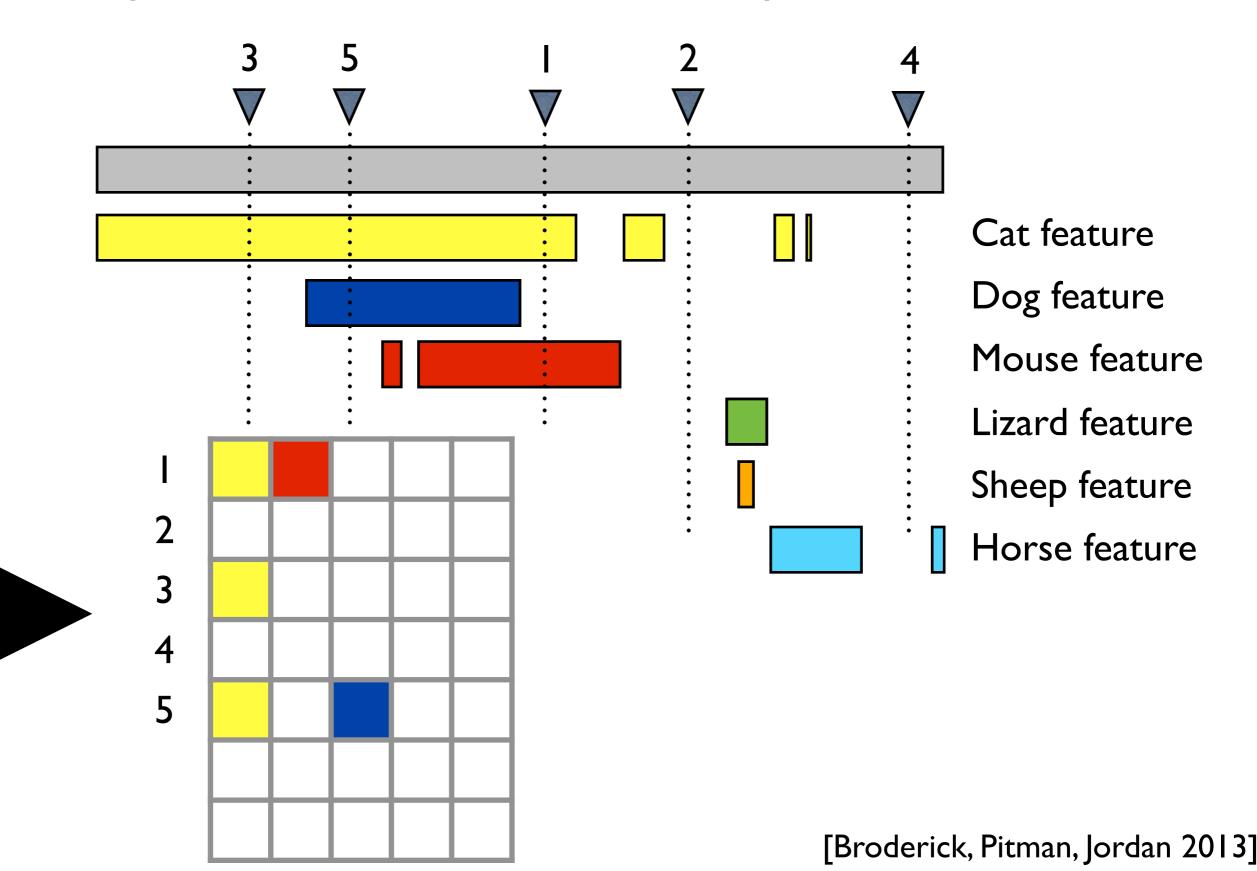




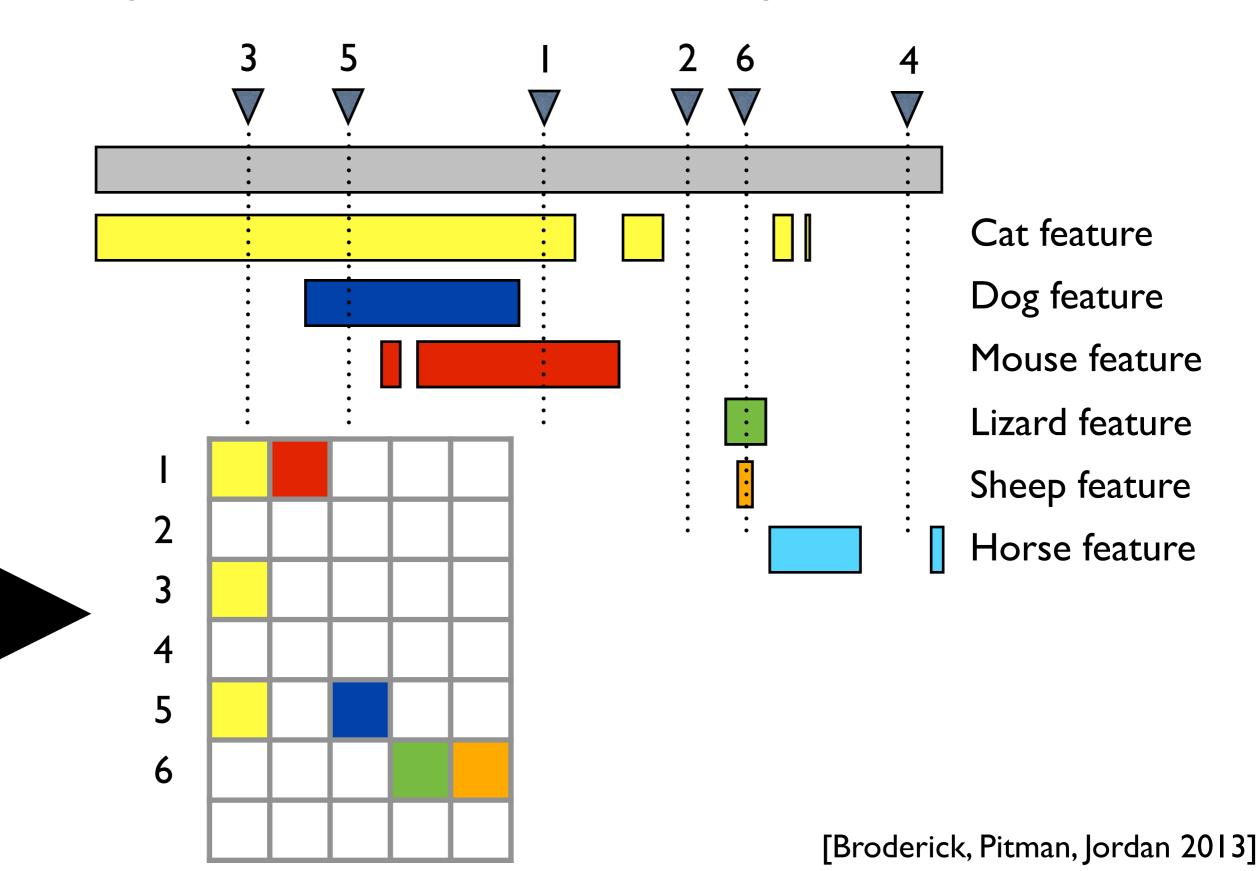




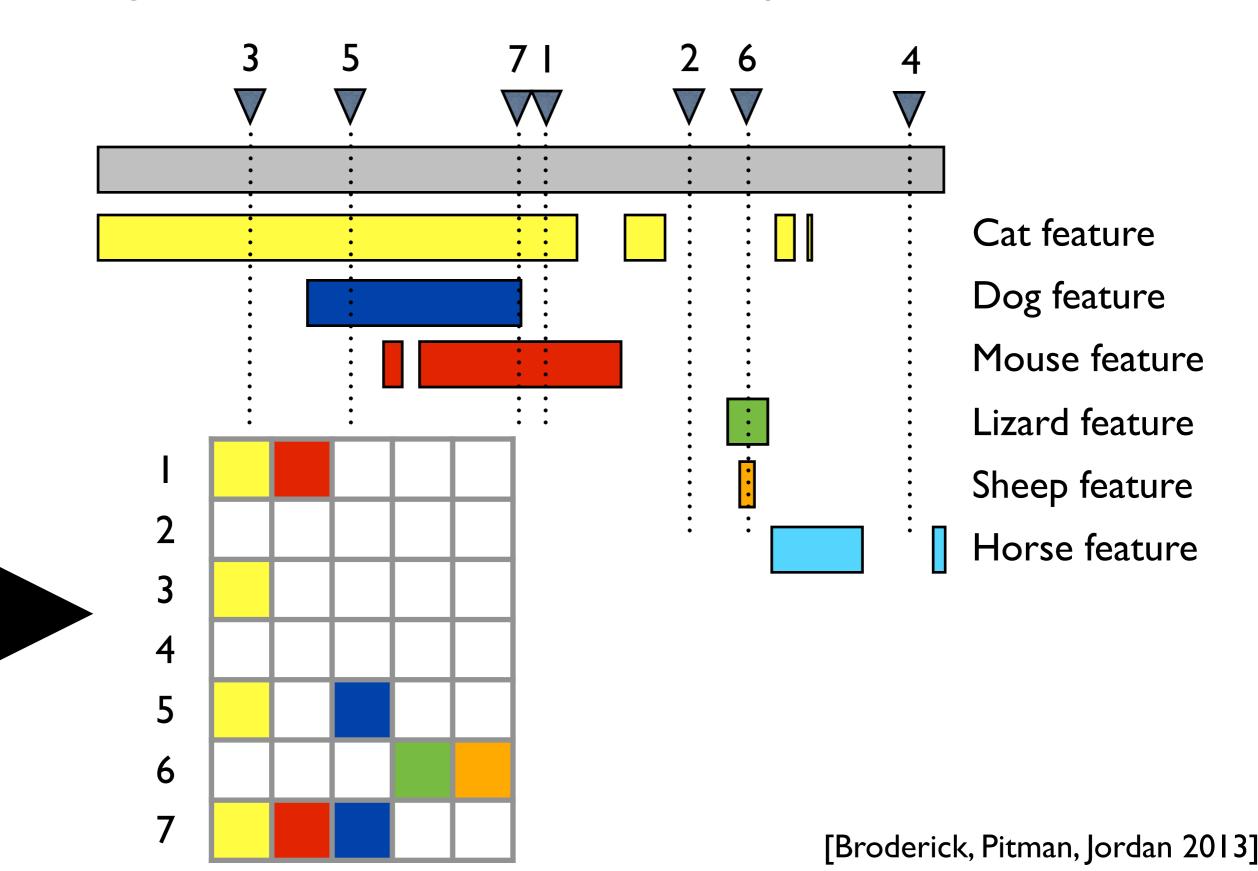




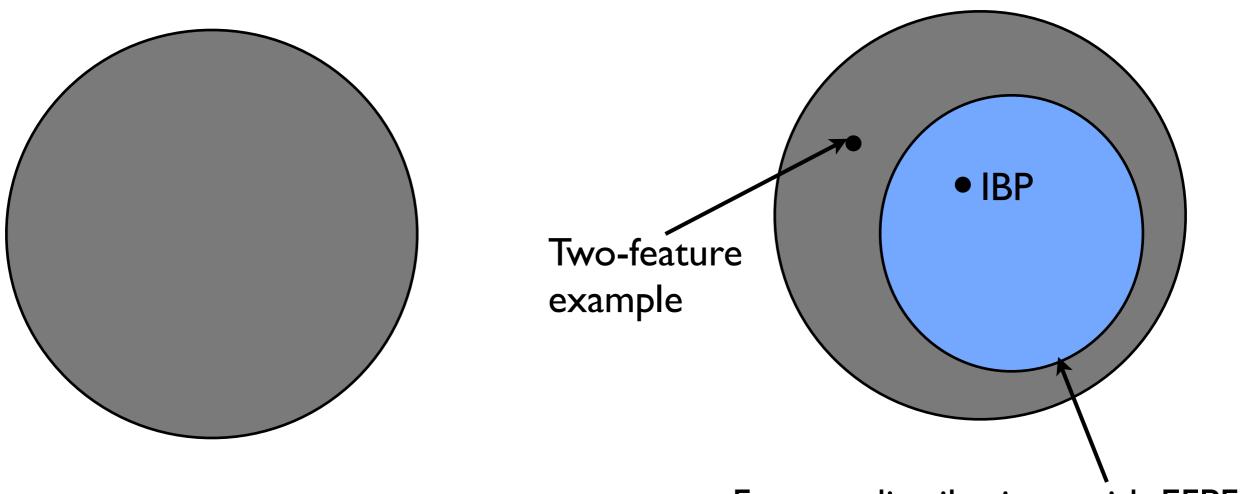
Exchangeable feature allocation: feature paintbox



13



Exchangeable cluster distributions = Cluster distributions with EPPFs



Exchangeable feature distributions

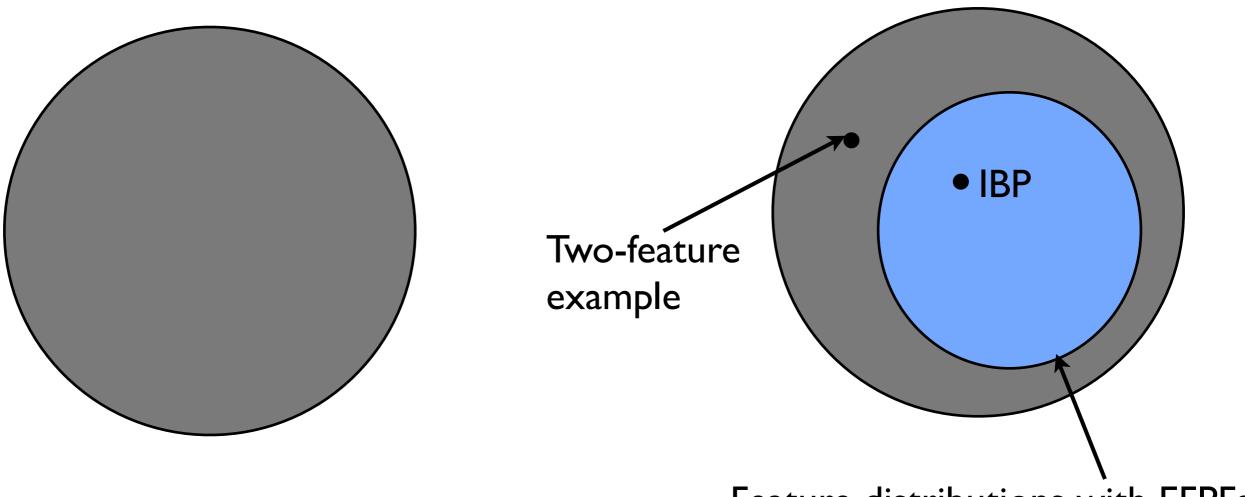
Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

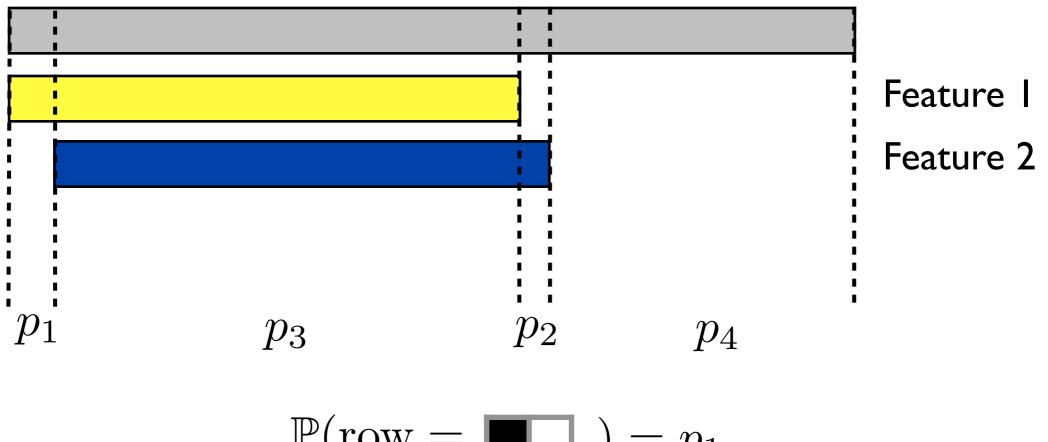
Exchangeable feature distributions = Feature paintbox allocations



Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

#### Two feature example



$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

Indian buffet process: beta feature frequencies

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
I. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ 

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

0

Indian buffet process: beta feature frequencies For *m* = 1, 2, ... I. Draw  $K_m^+ = \text{Poisson} \left( \gamma \frac{\theta}{\theta + m - 1} \right)$ ٩ı Set  $K_m = \sum K_j^+$ j=1**2.** For  $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size  $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

**q**<sub>2</sub>

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set  $K_m = \sum K_j^+$ j=1**2.** For  $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size  $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

**q**<sub>2</sub>

**q**<sub>3</sub>

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set  $K_m = \sum K_j^+$ j=1**2.** For  $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size  $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**<sub>2</sub>

[Thibaux, Jordan 2007]

**q**<sub>3</sub>

**q**<sub>4</sub>

đ۶

**q**<sub>6</sub>

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw  $K_m^+ = \text{Poisson} \left( \gamma \frac{\theta}{\theta + m - 1} \right)$ ٩ı Set  $K_m = \sum K_j^+$ j=1**2.** For  $k = K_{m-1} + 1, \ldots, K_m$ Draw a frequency of size  $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**<sub>2</sub>

[Thibaux, Jordan 2007]

**q**<sub>3</sub>

**q**<sub>4</sub>

**q**<sub>5</sub>

**q**<sub>6</sub>

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

**q**<sub>6</sub>

**q**<sub>4</sub>

0

**q**5

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

 $q_2 q_3$ 

0

**q**<sub>4</sub>

**q**5

**q**<sub>6</sub>

Indian buffet process: beta feature frequencies

For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

[Thibaux, Jordan 2007]

٩ı

0

 $q_2 q_3$ 

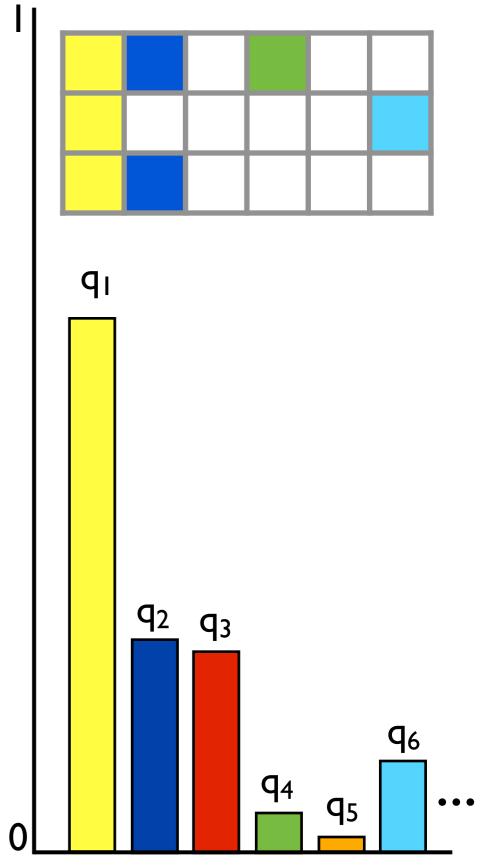
**q**<sub>4</sub>

**q**5

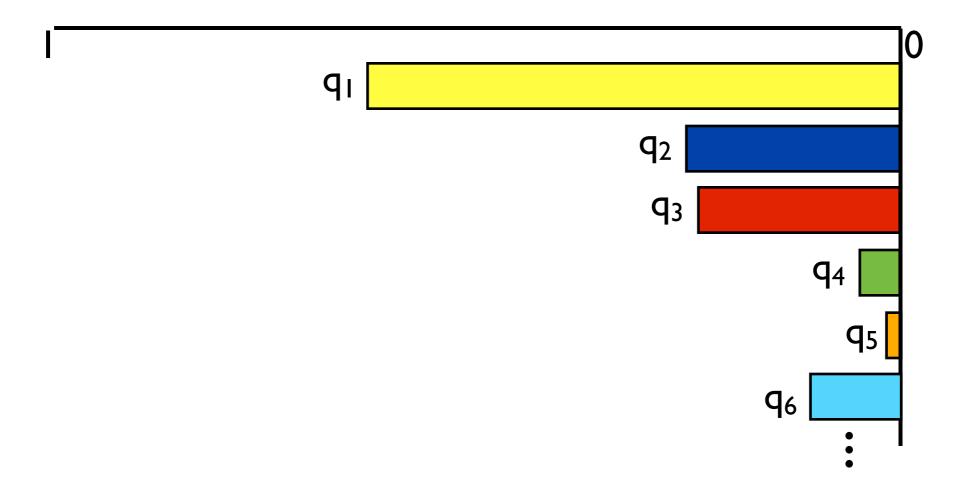
**q**<sub>6</sub>

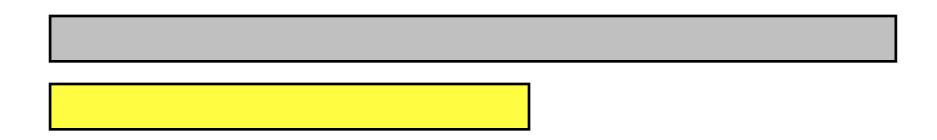
Indian buffet process: beta feature frequencies

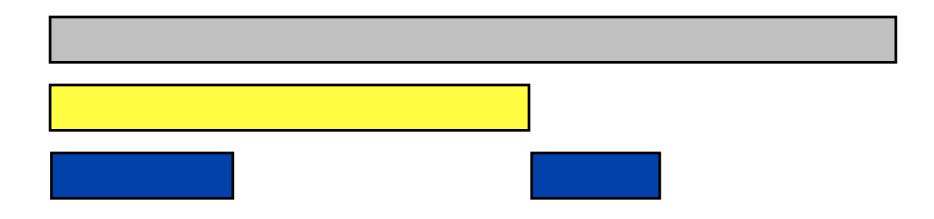
For 
$$m = 1, 2, ...$$
  
1. Draw  $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$   
Set  $K_m = \sum_{j=1}^m K_j^+$   
2. For  $k = K_{m-1} + 1, ..., K_m$   
Draw a frequency of size  
 $q_k \sim \text{Beta}(1, \theta + m - 1)$ 

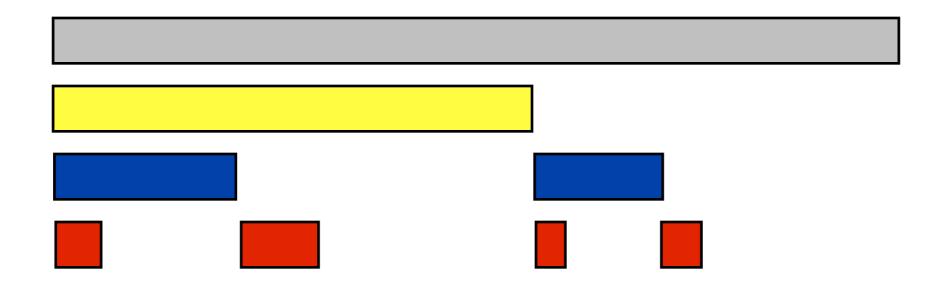


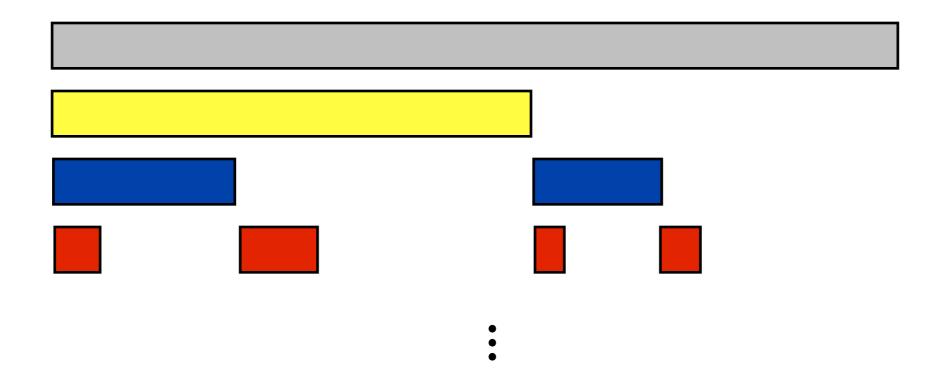
[Thibaux, Jordan 2007]

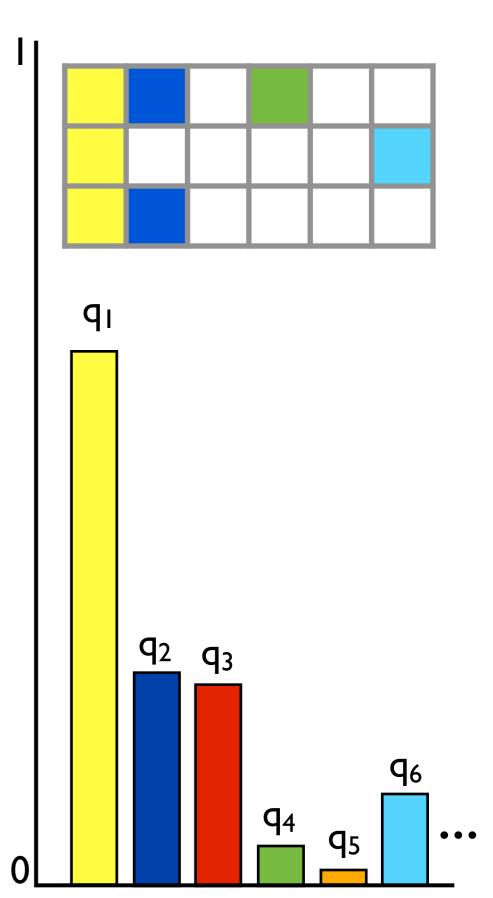




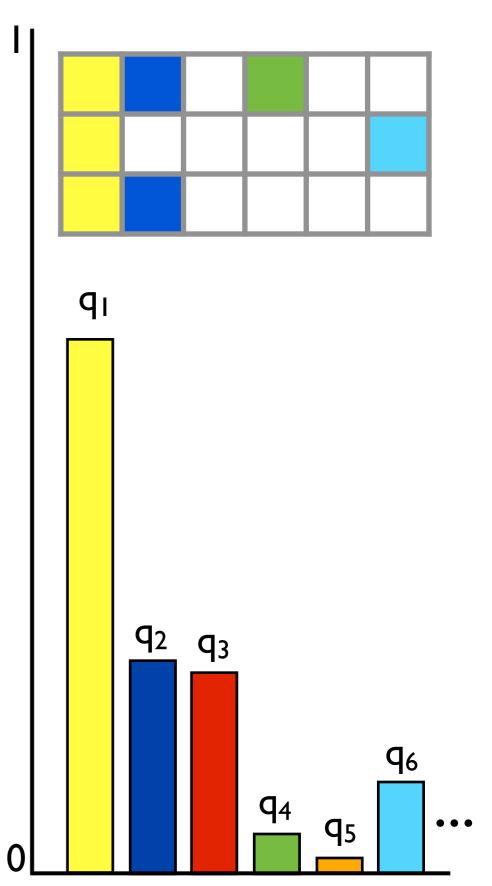






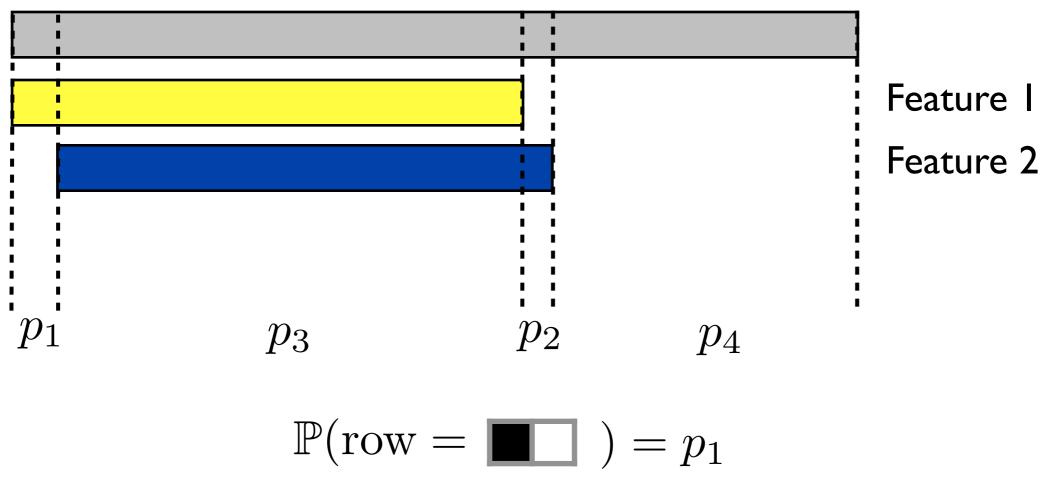


#### "Feature frequency models"



[Broderick, Pitman, Jordan 2013]

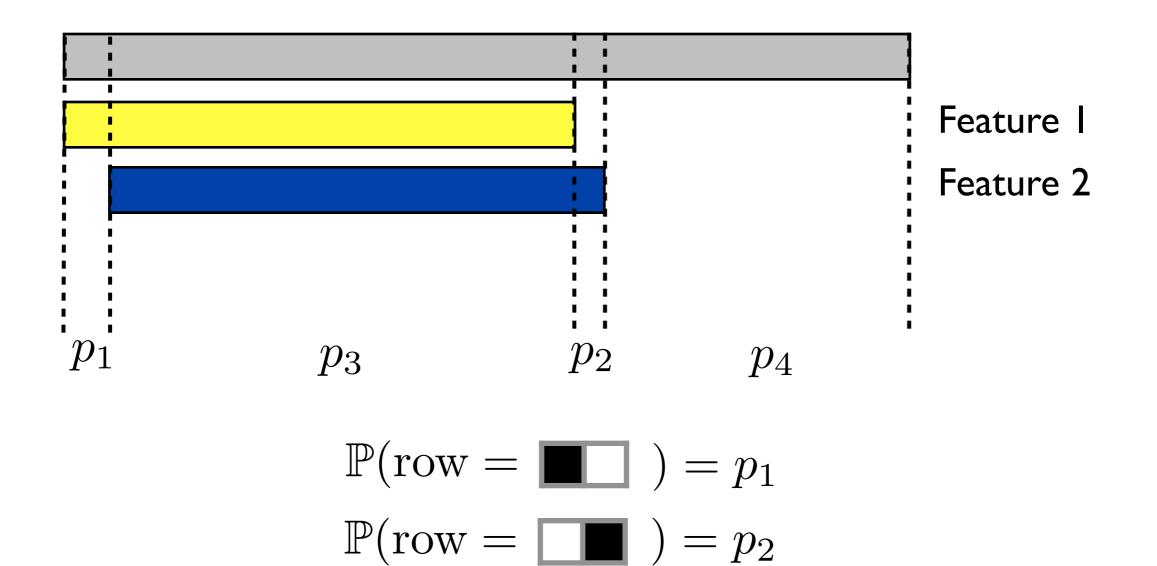
#### Two feature example



$$\mathbb{P}(\text{row} = \square ) = p_2$$
$$\mathbb{P}(\text{row} = \square ) = p_3$$
$$\mathbb{P}(\text{row} = \square ) = p_4$$

Two feature example

Not a feature frequency model



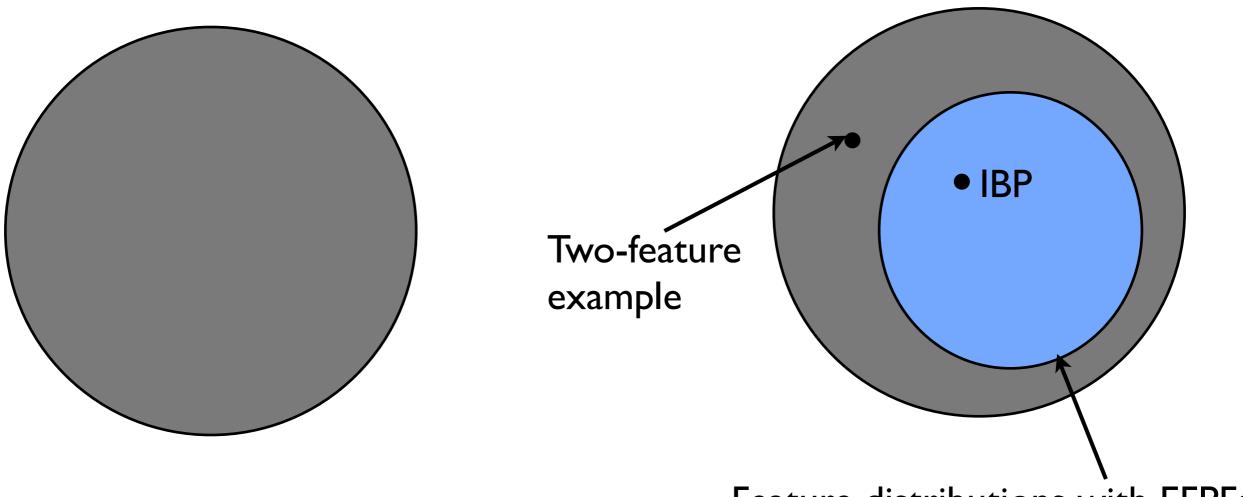
 $\mathbb{P}(\text{row} = \blacksquare \blacksquare) = p_3$ 

 $\mathbb{P}(\text{row} = \square) = p_4$ 

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman painthex partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations



Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

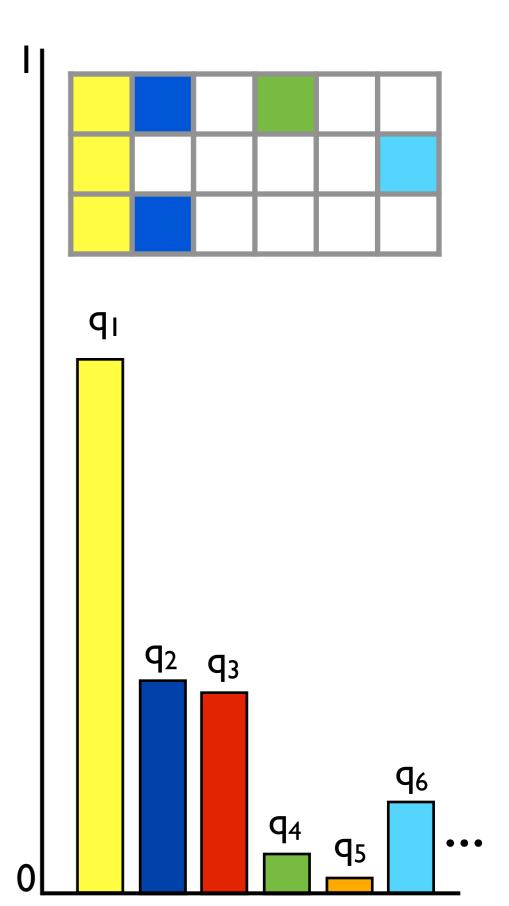
Two-feature example

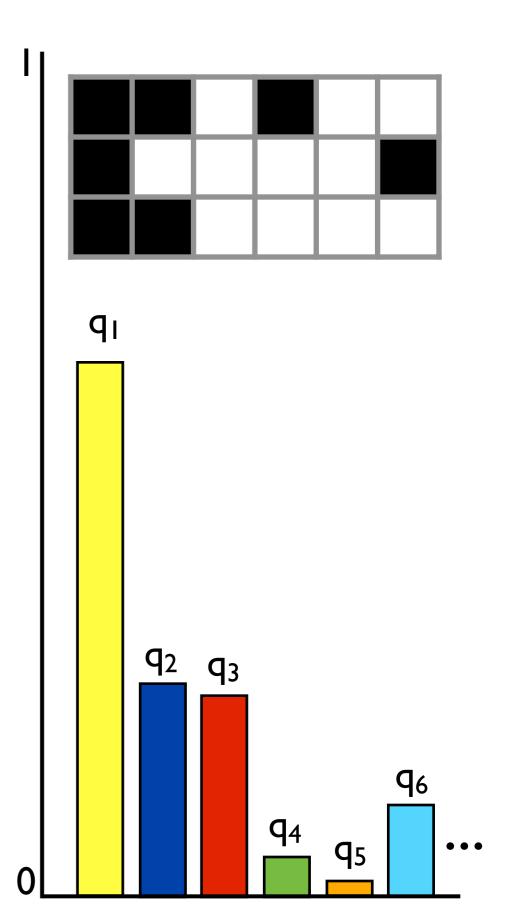
= Feature paintbox allocations

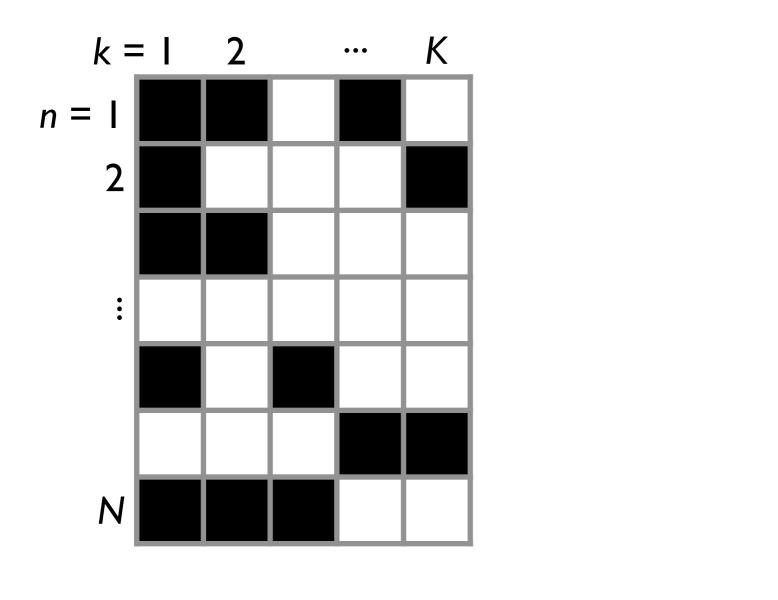
Exchangeable feature distributions

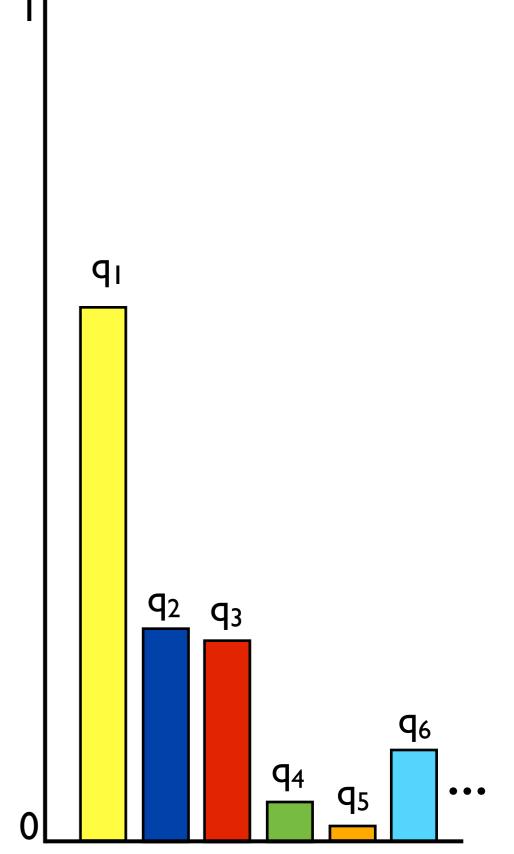
Feature frequency models

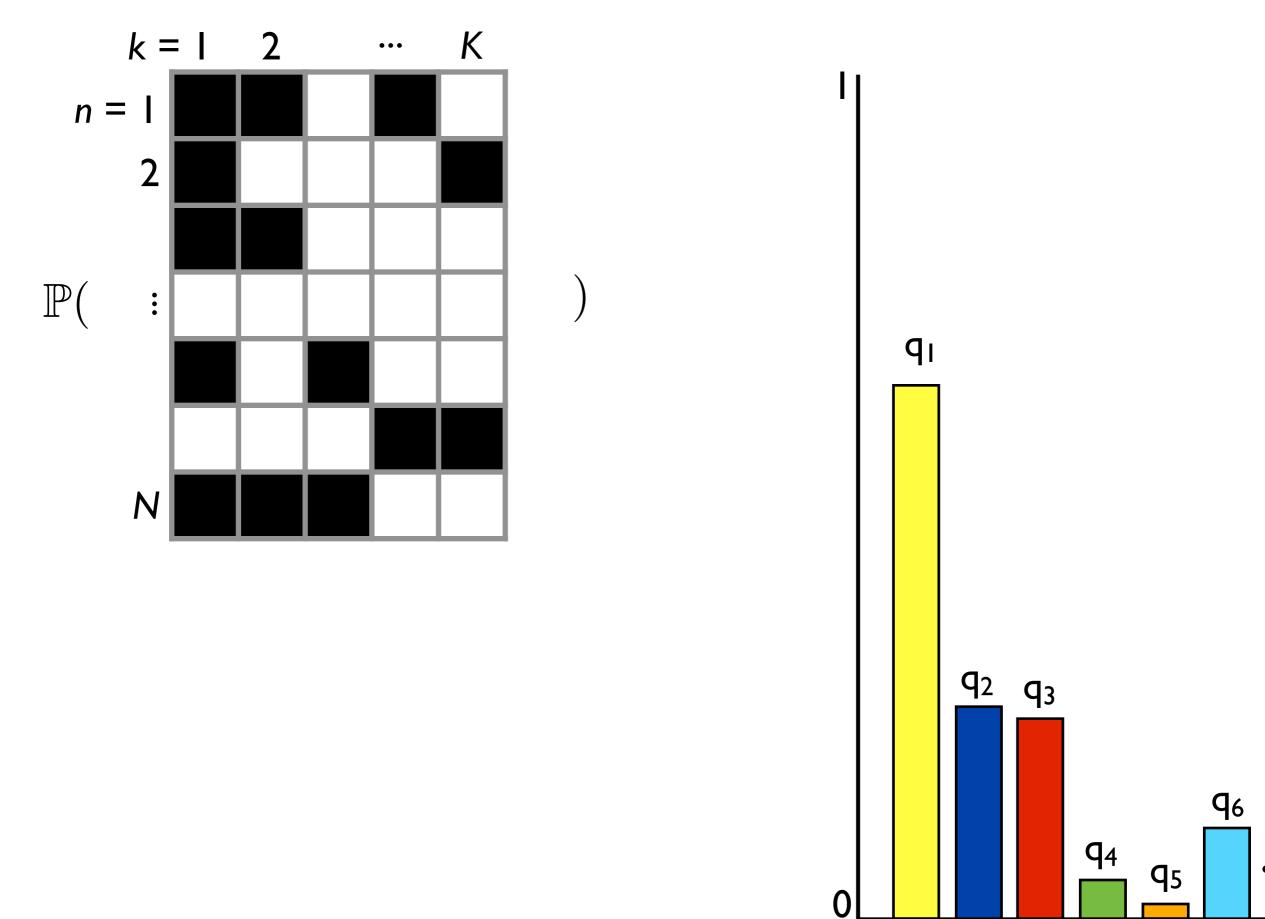
٩ı **q**<sub>2</sub> **q**<sub>3</sub> **q**<sub>6</sub> **q**<sub>4</sub> **q**5 0

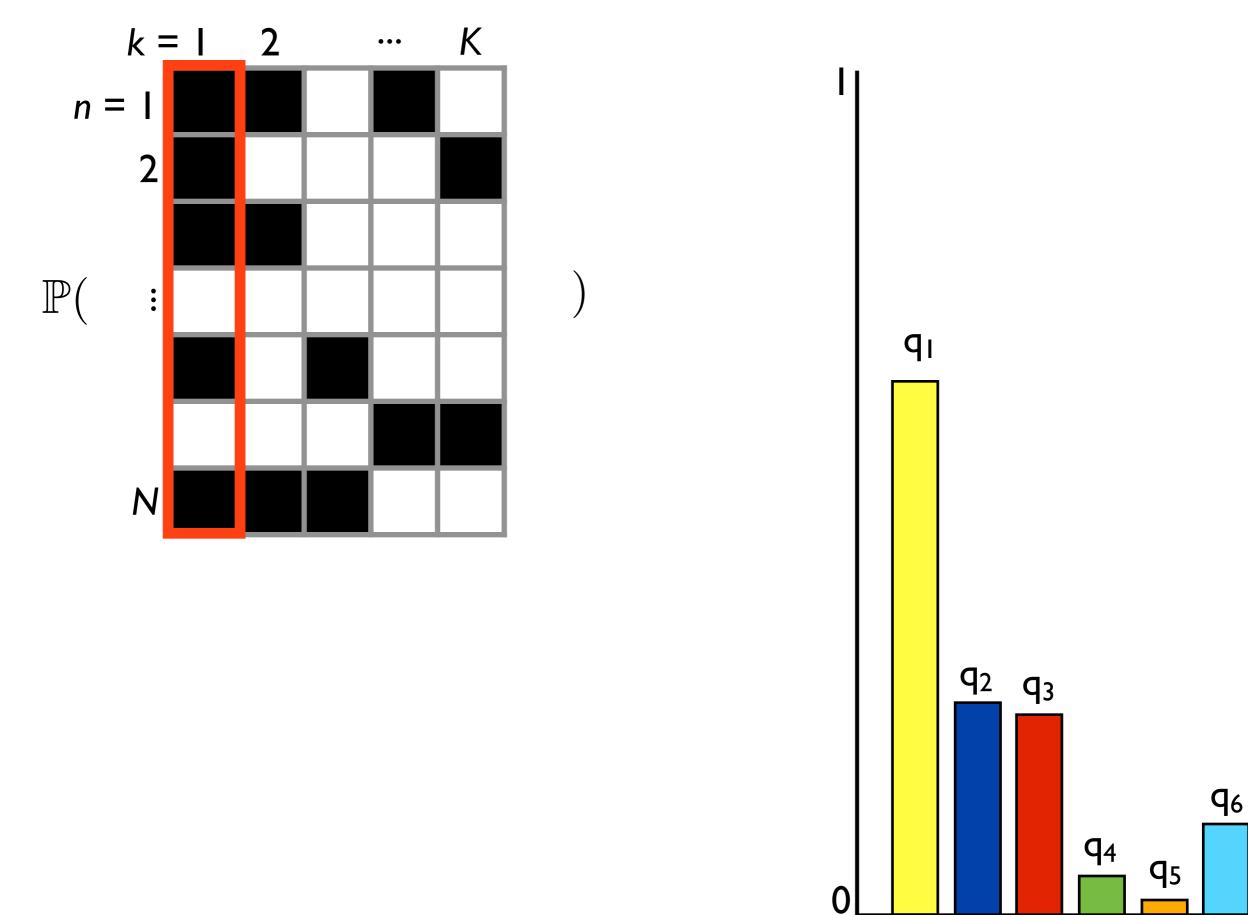


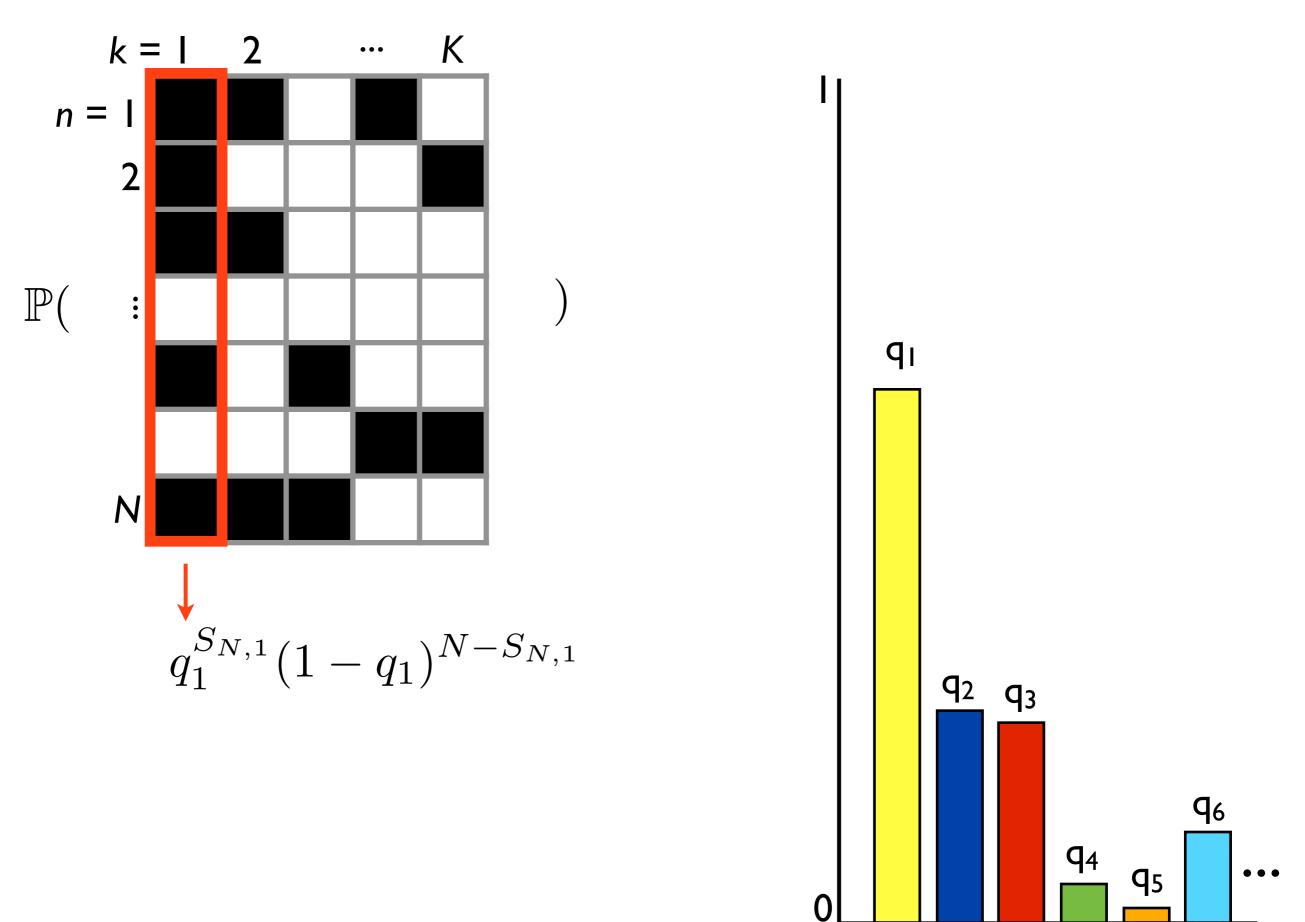


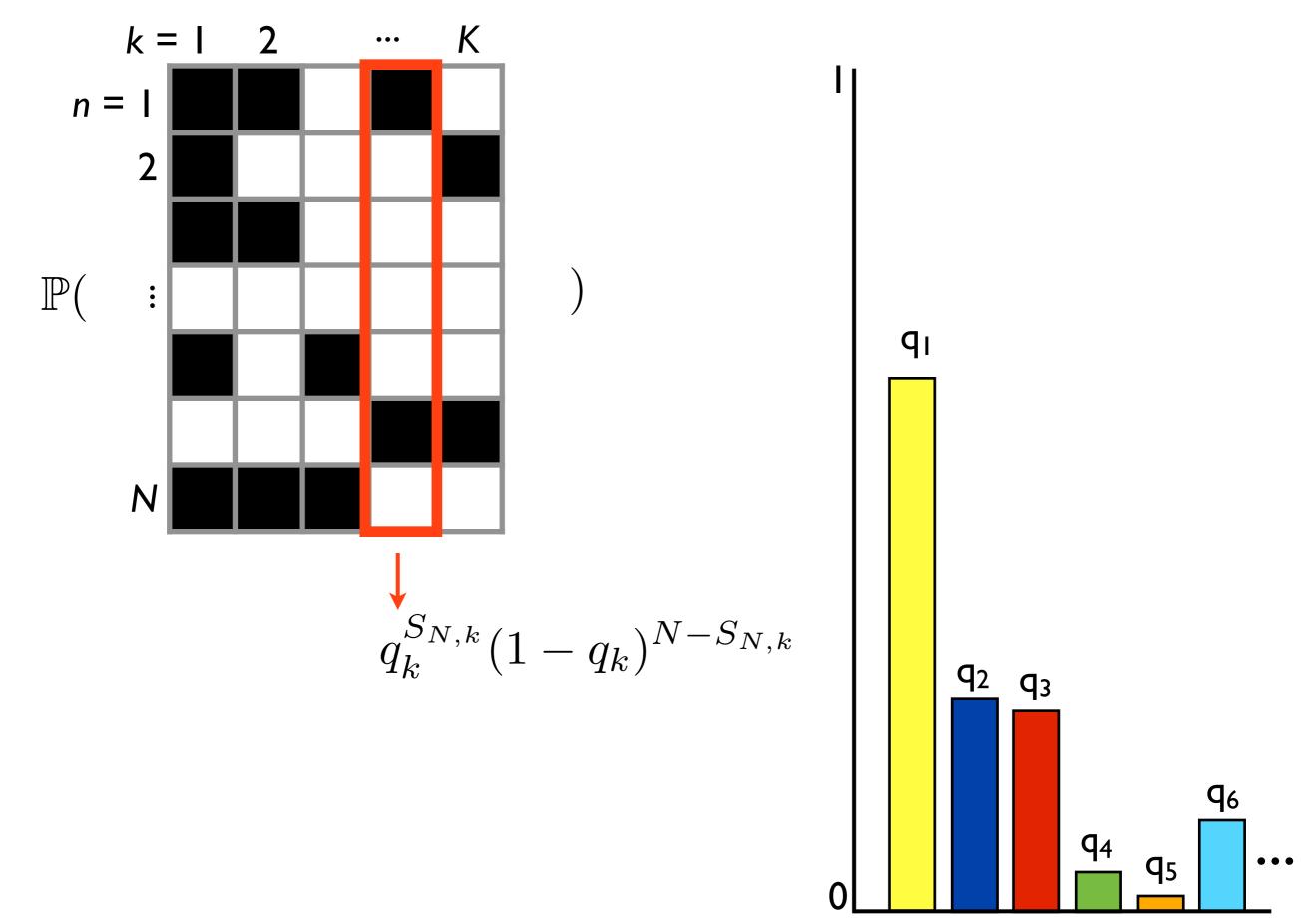


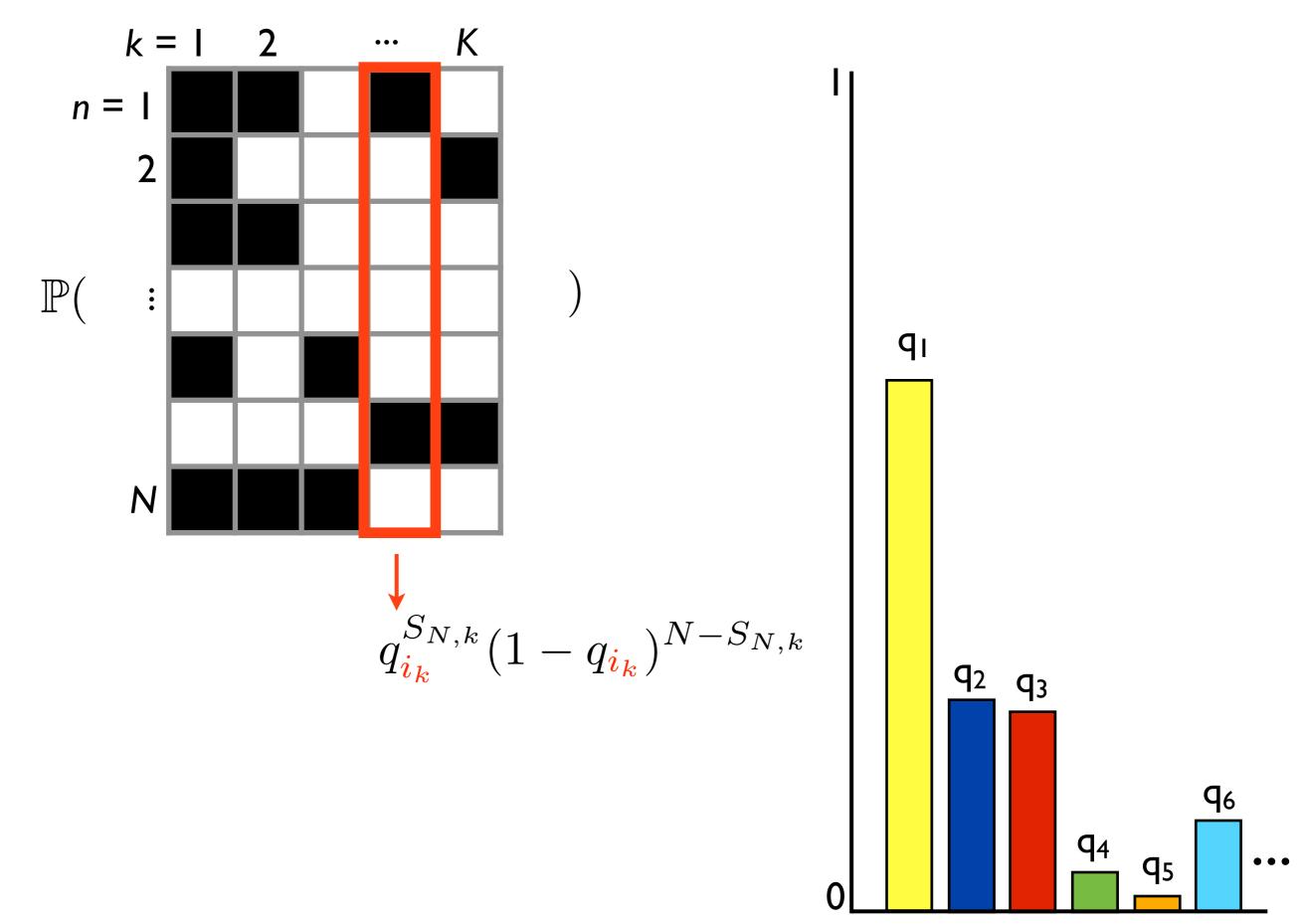


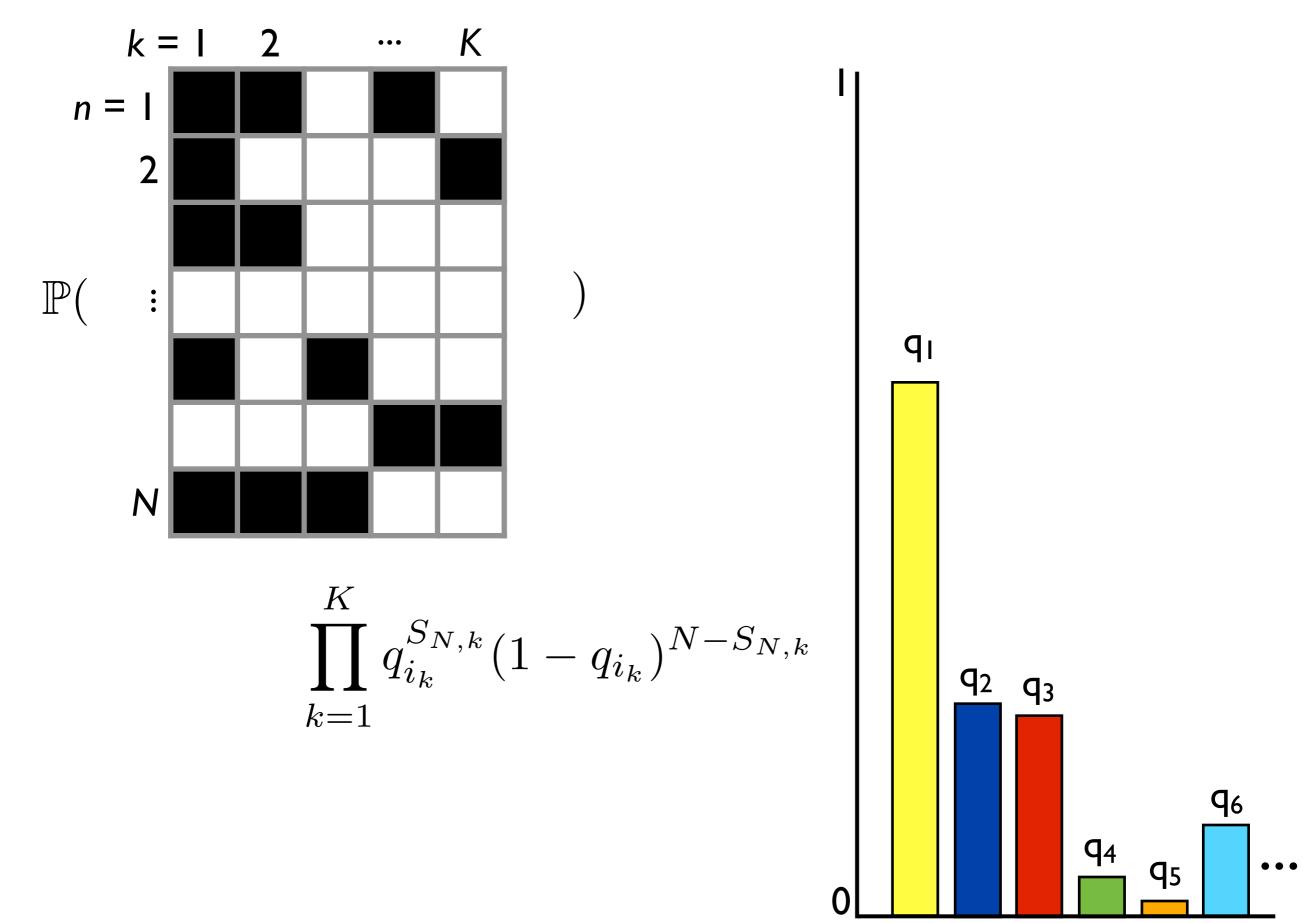


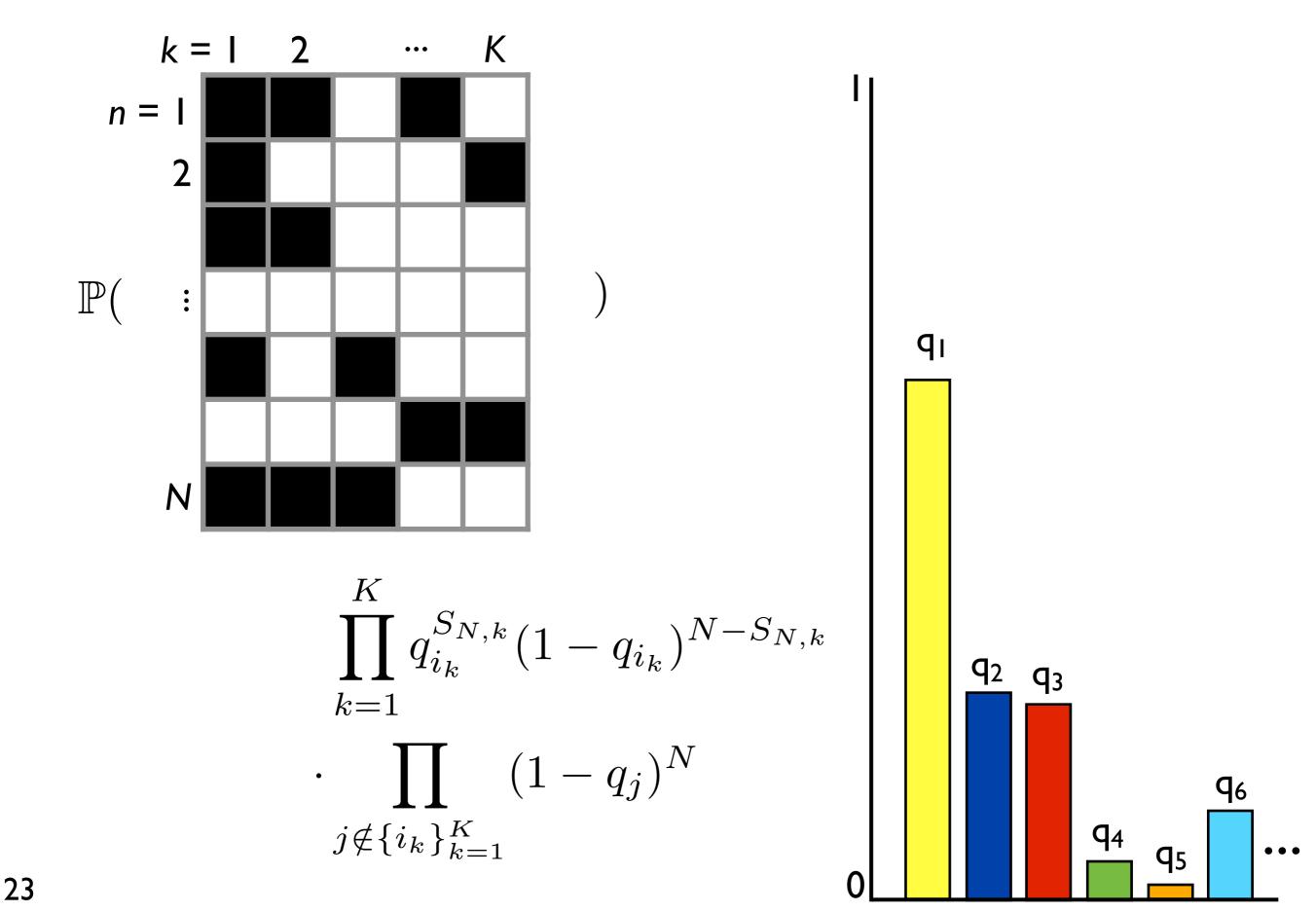


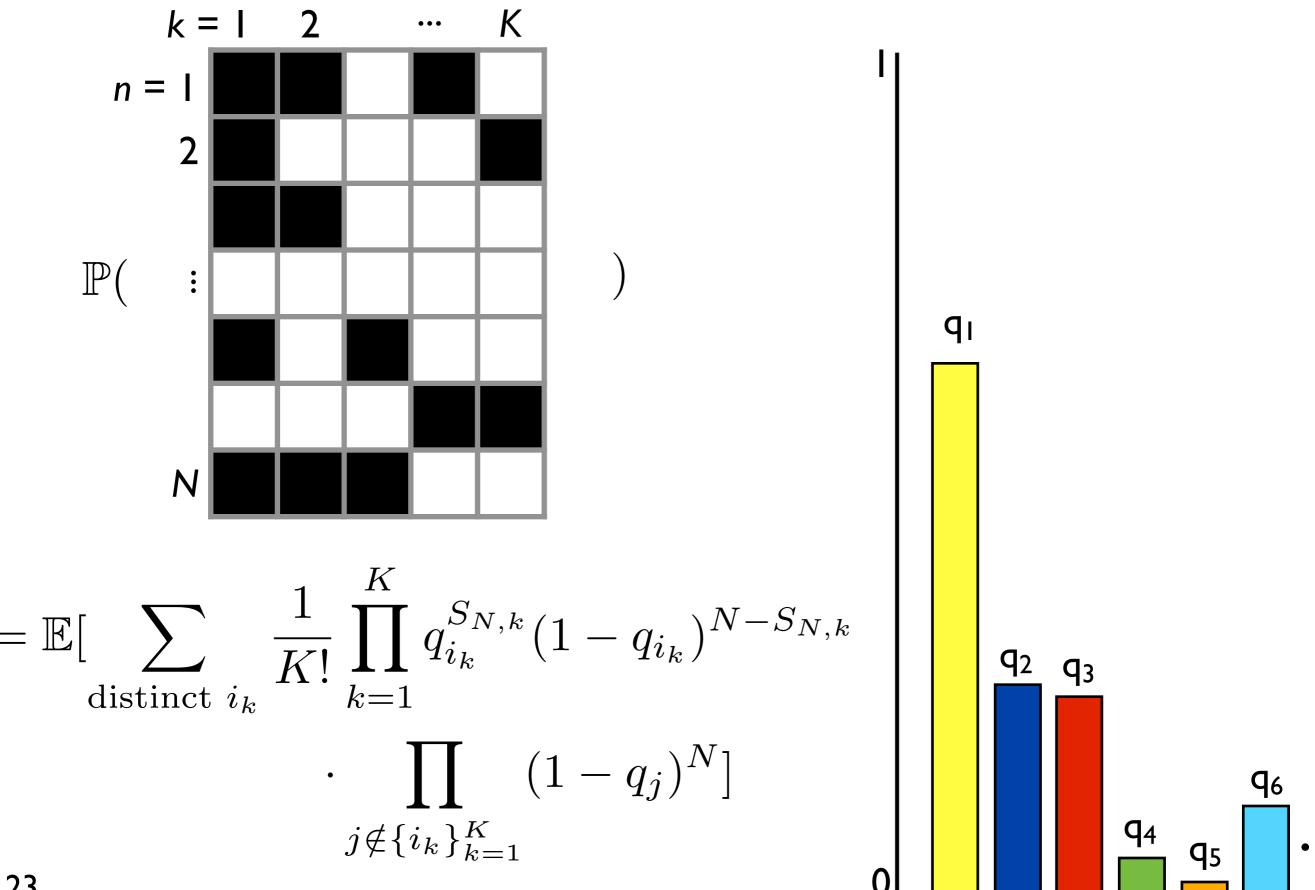


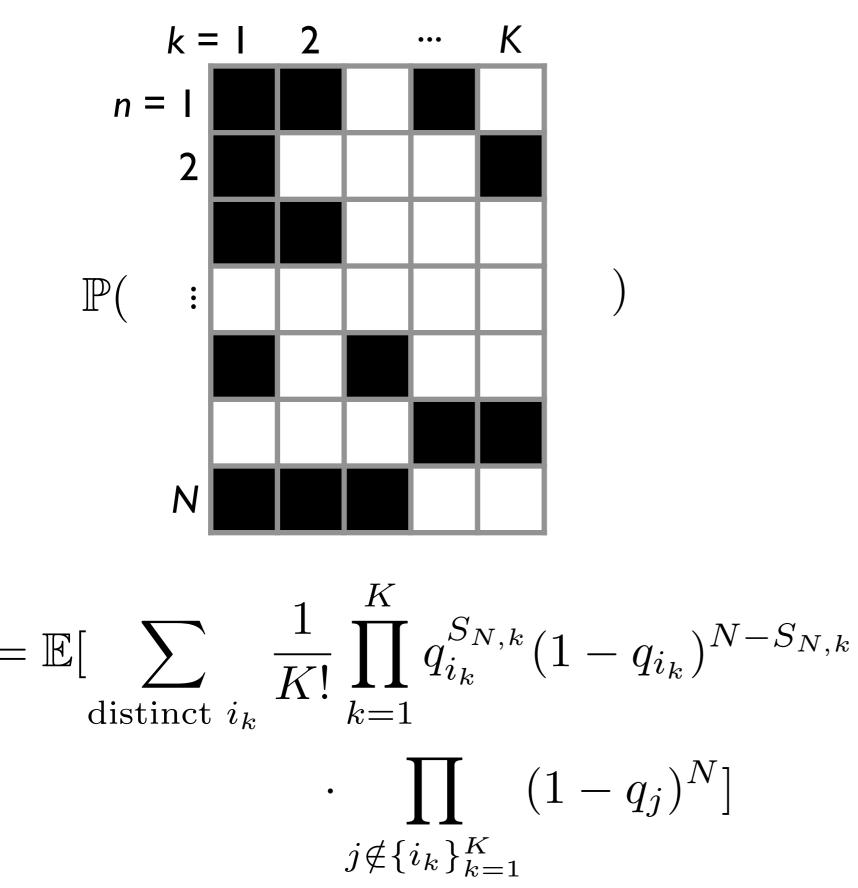




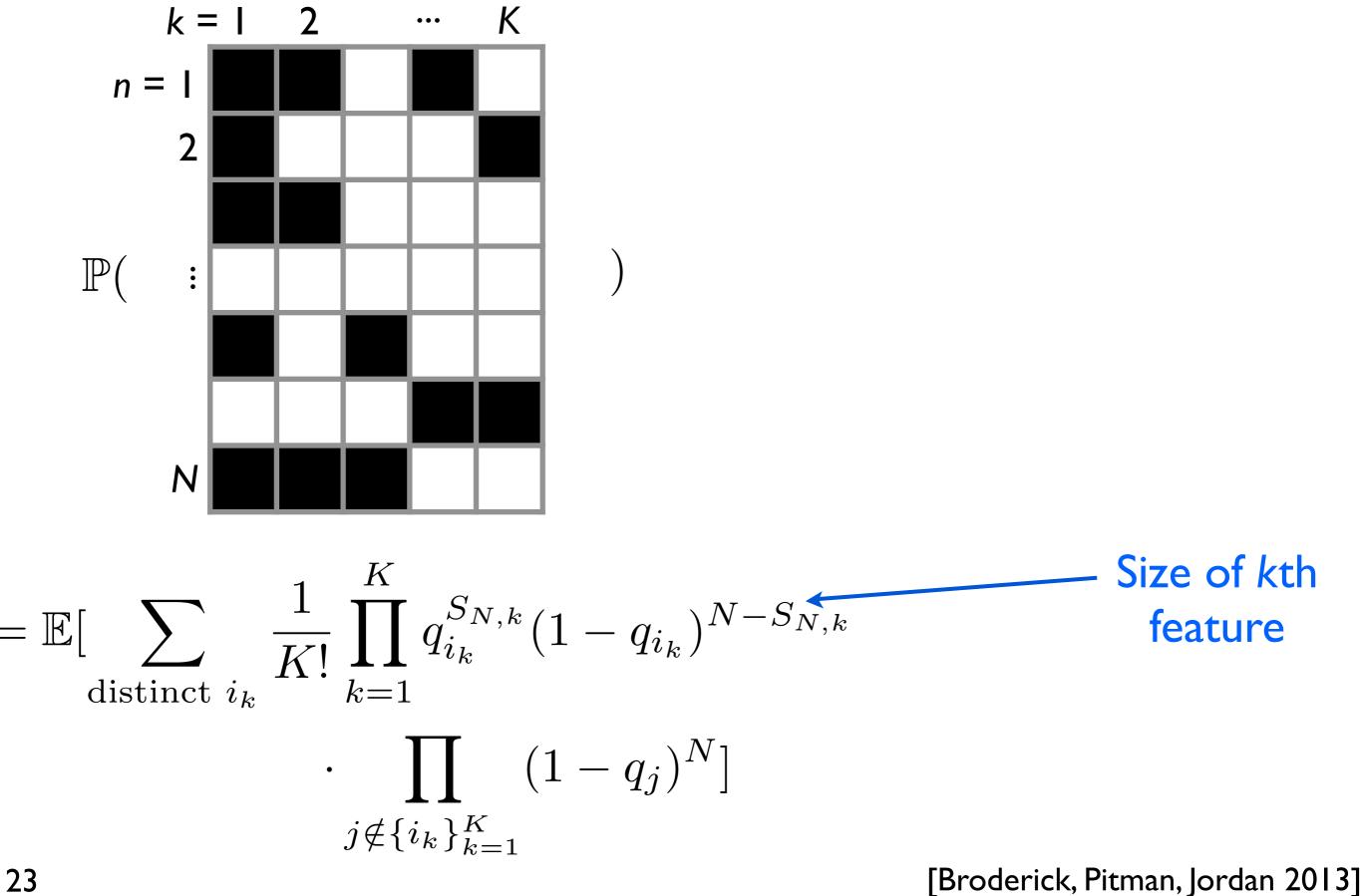


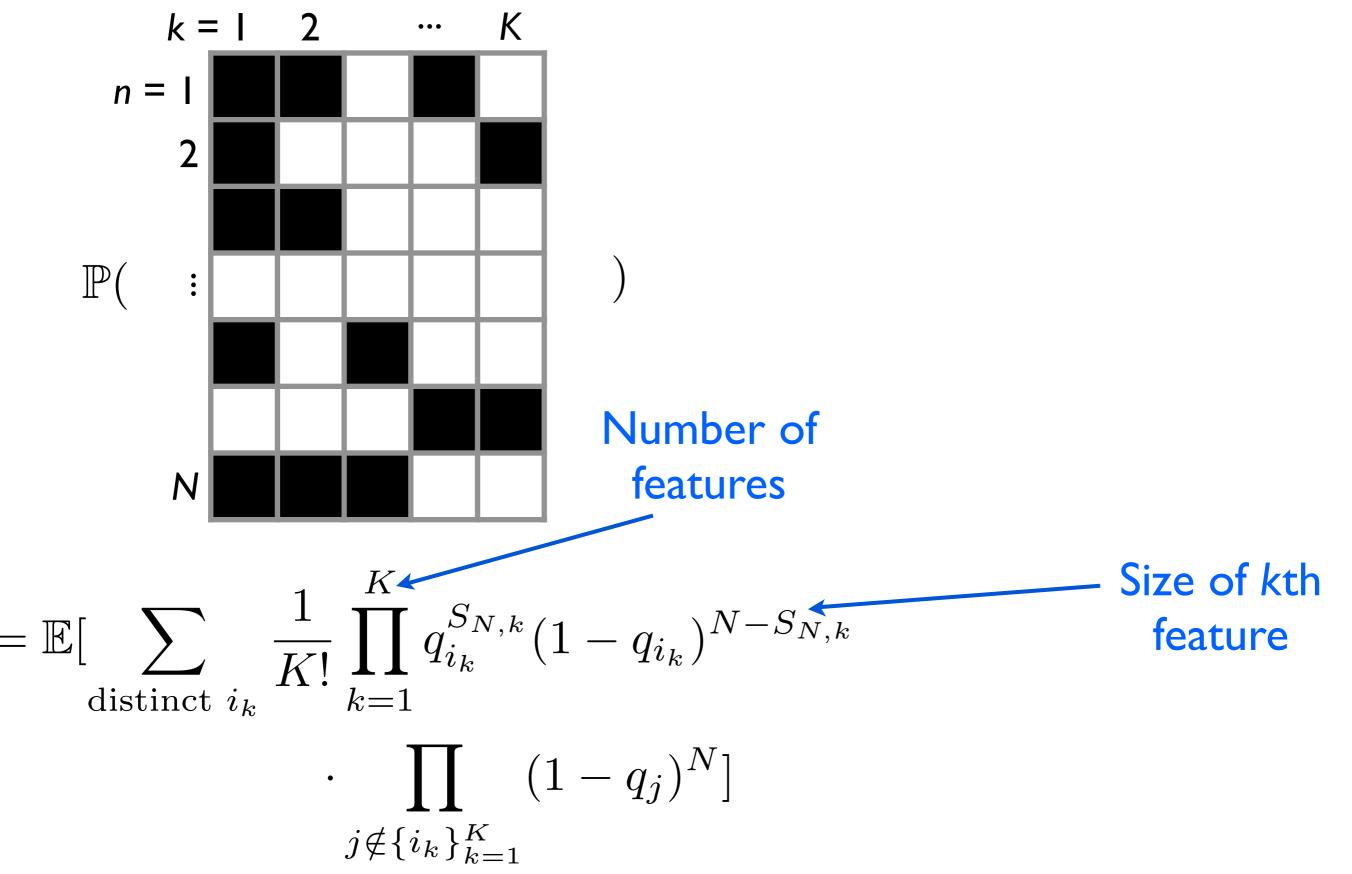




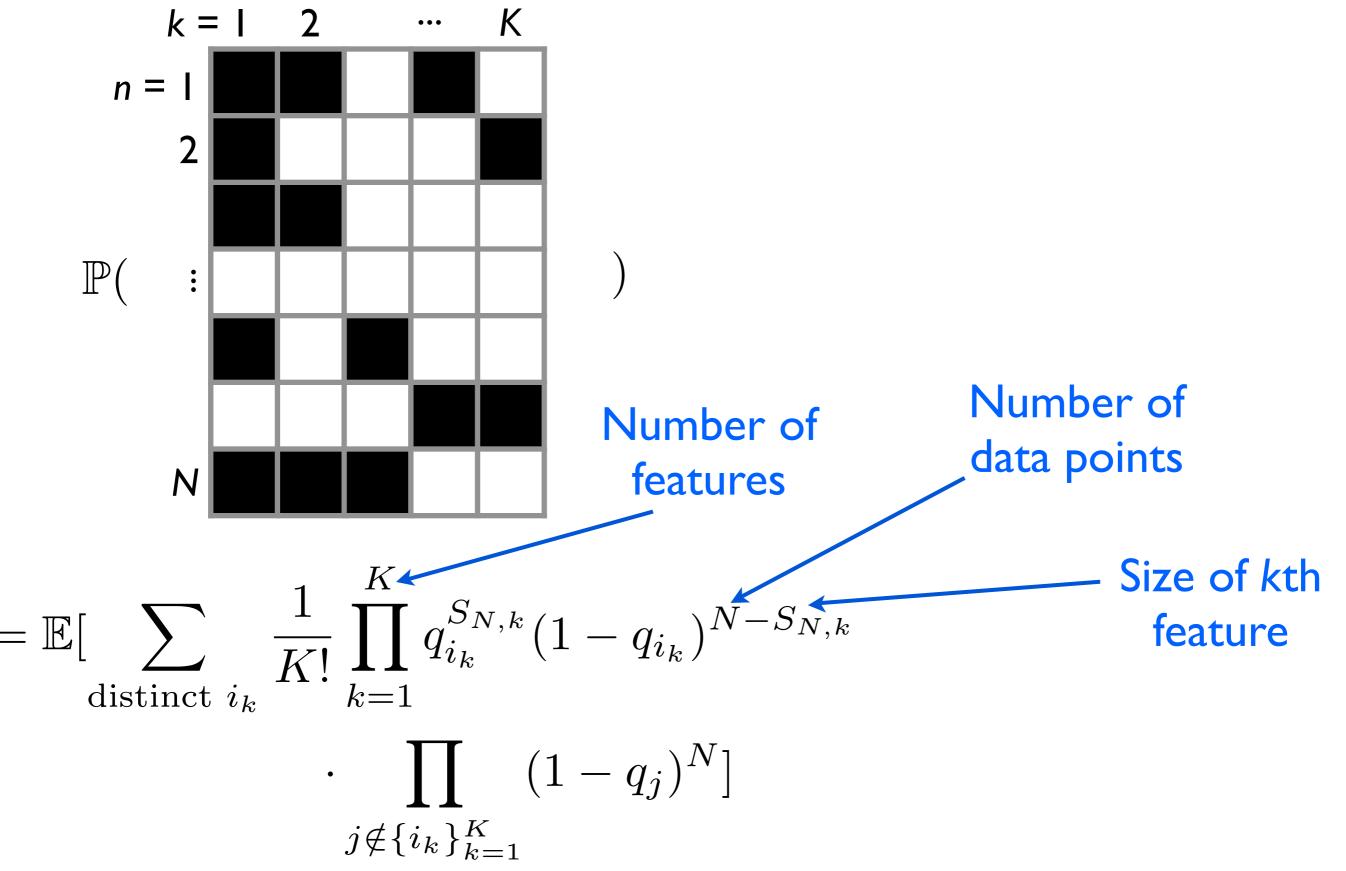


[Broderick, Pitman, Jordan 2013]

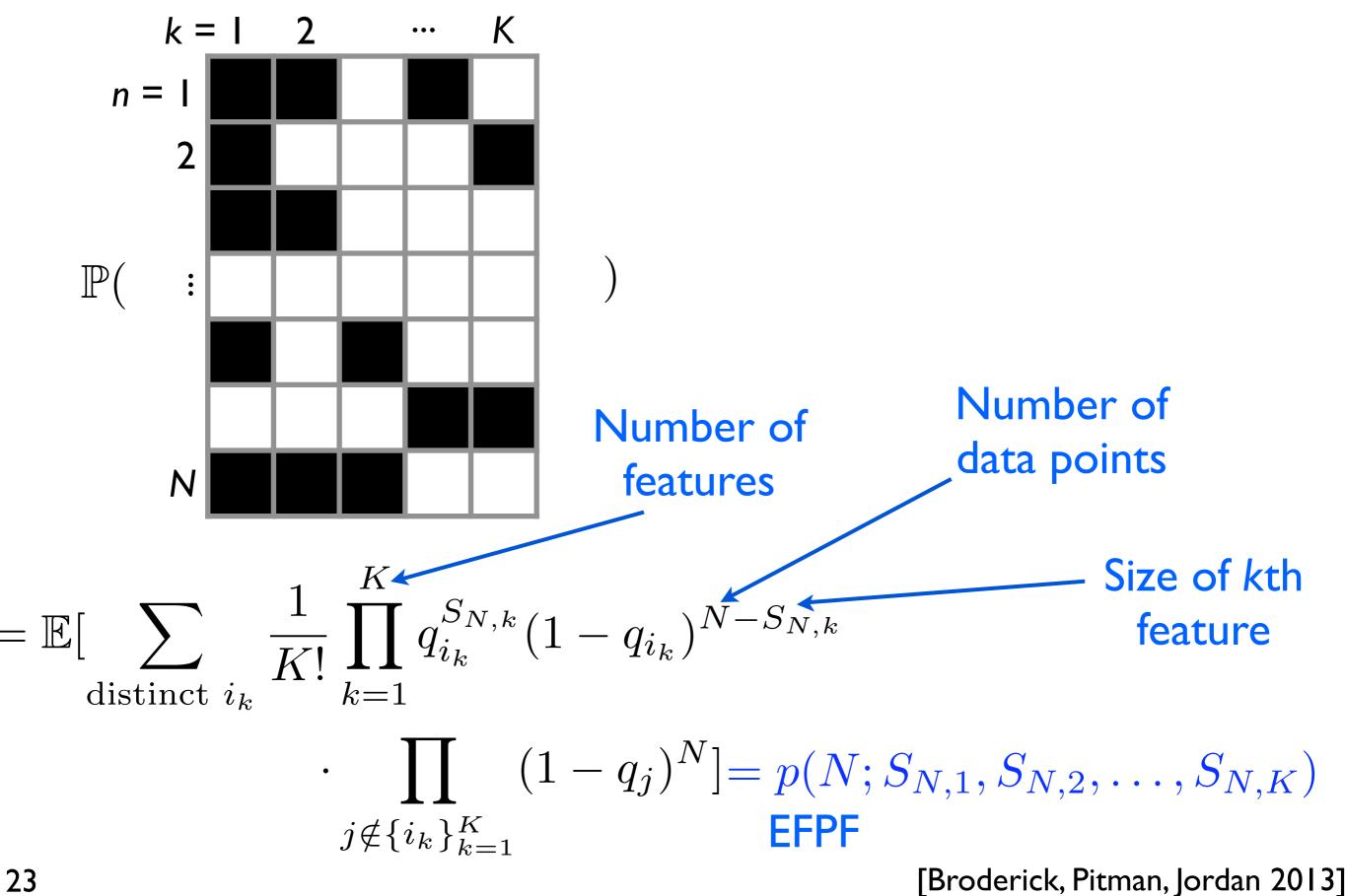




[Broderick, Pitman, Jordan 2013]



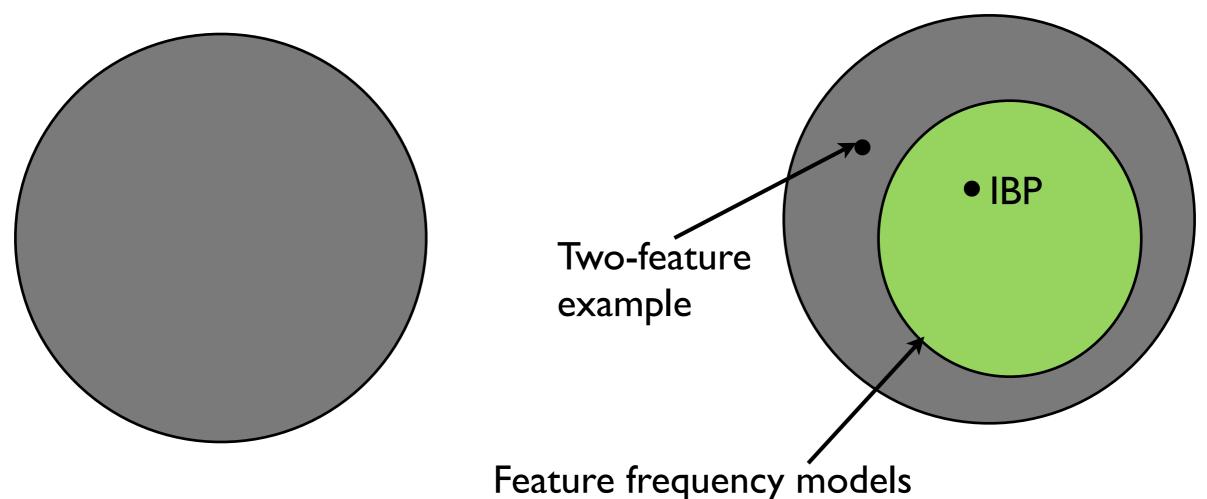
[Broderick, Pitman, Jordan 2013]



Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

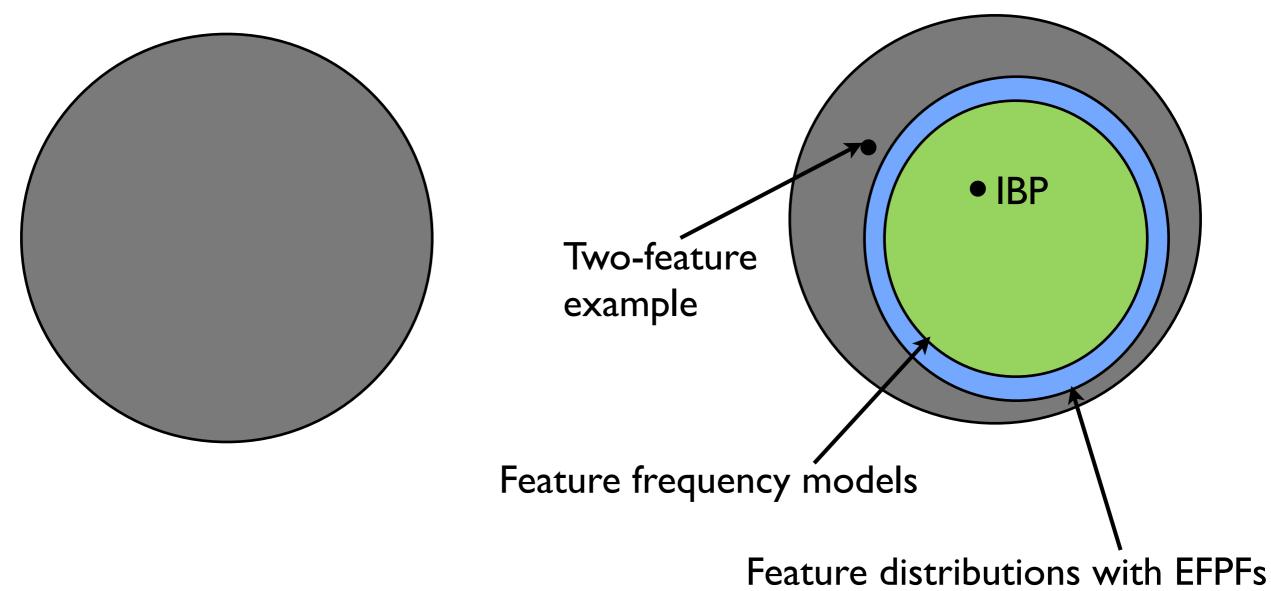


[Broderick, Pitman, Jordan 2013]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

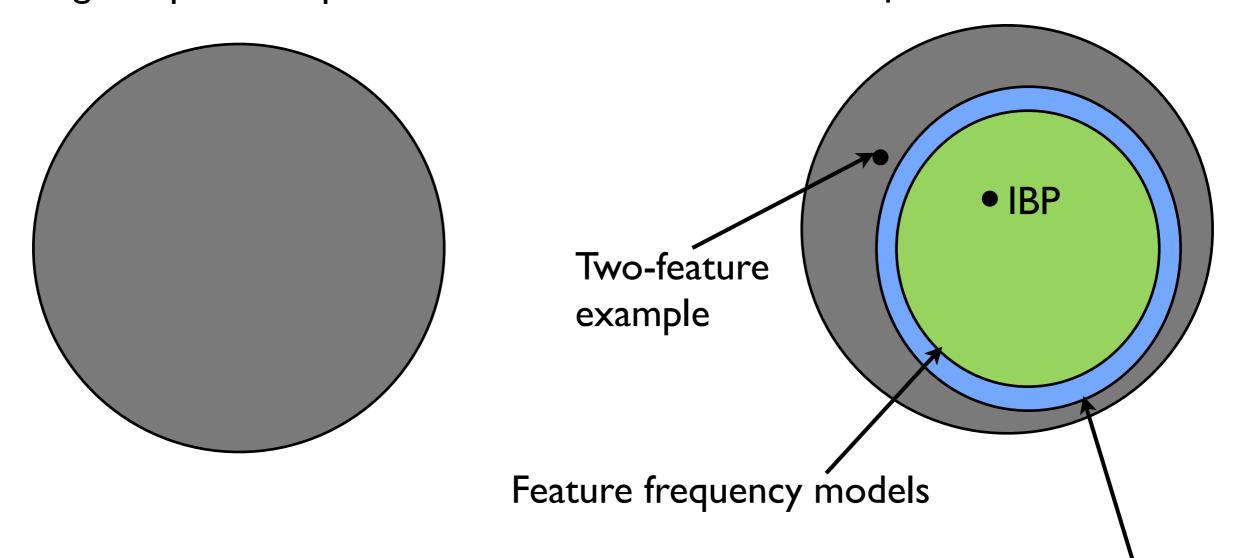
= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations



 Any number (+unbounded case) of features

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions



Exchangeable feature distributions = Feature paintbox allocations

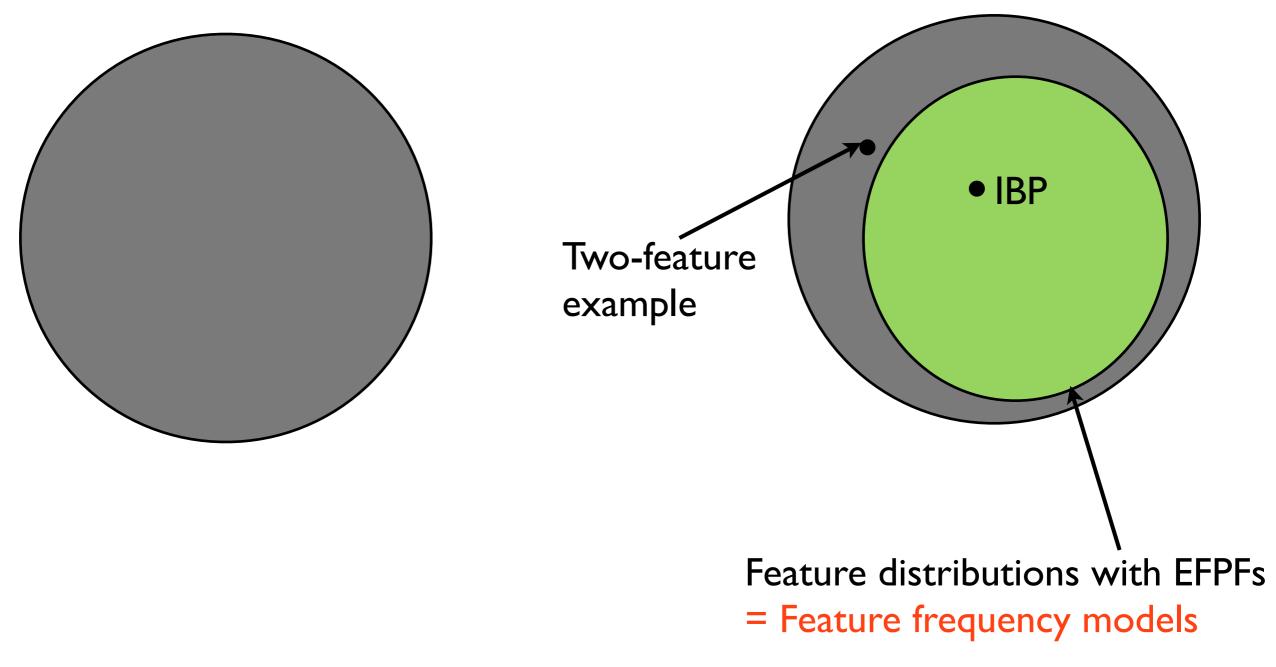
Feature distributions with EFPFs

[Broderick, Pitman, Jordan 2013]

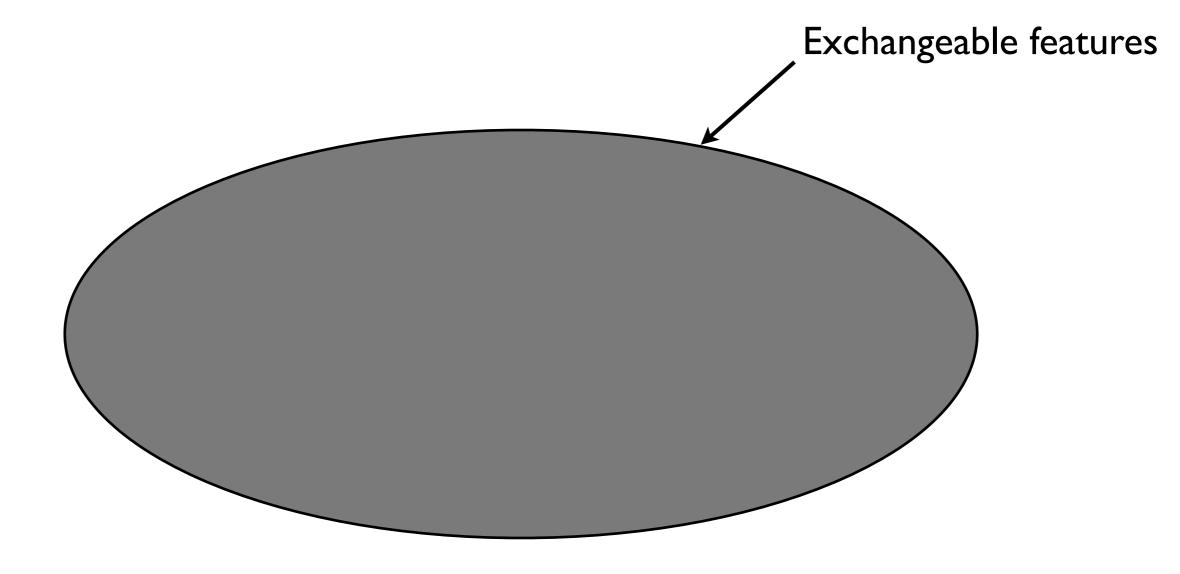
Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

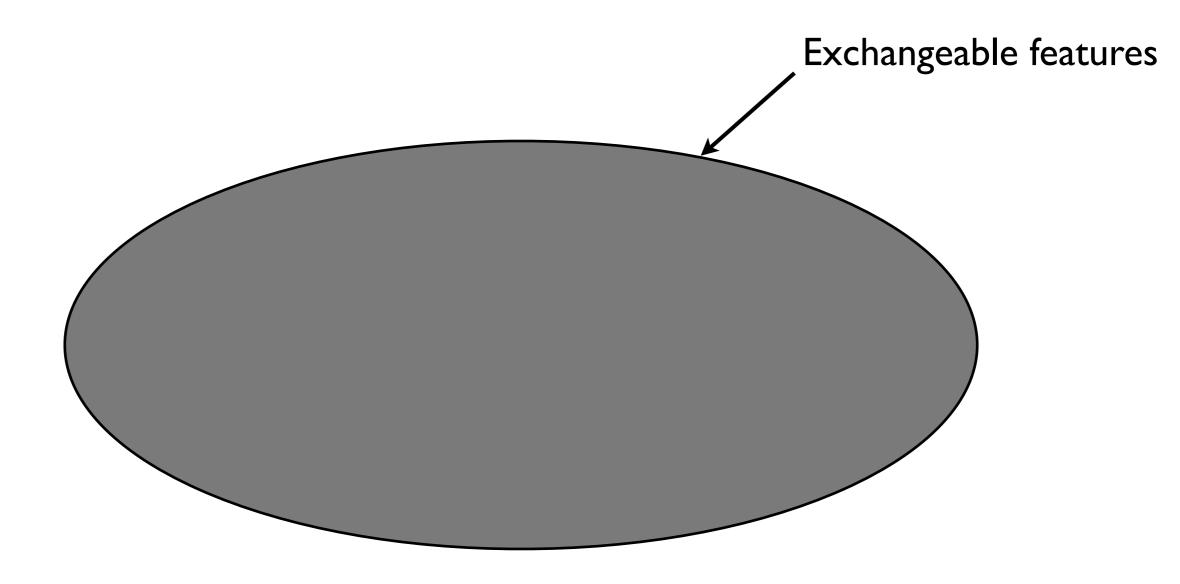
Exchangeable feature distributions = Feature paintbox allocations



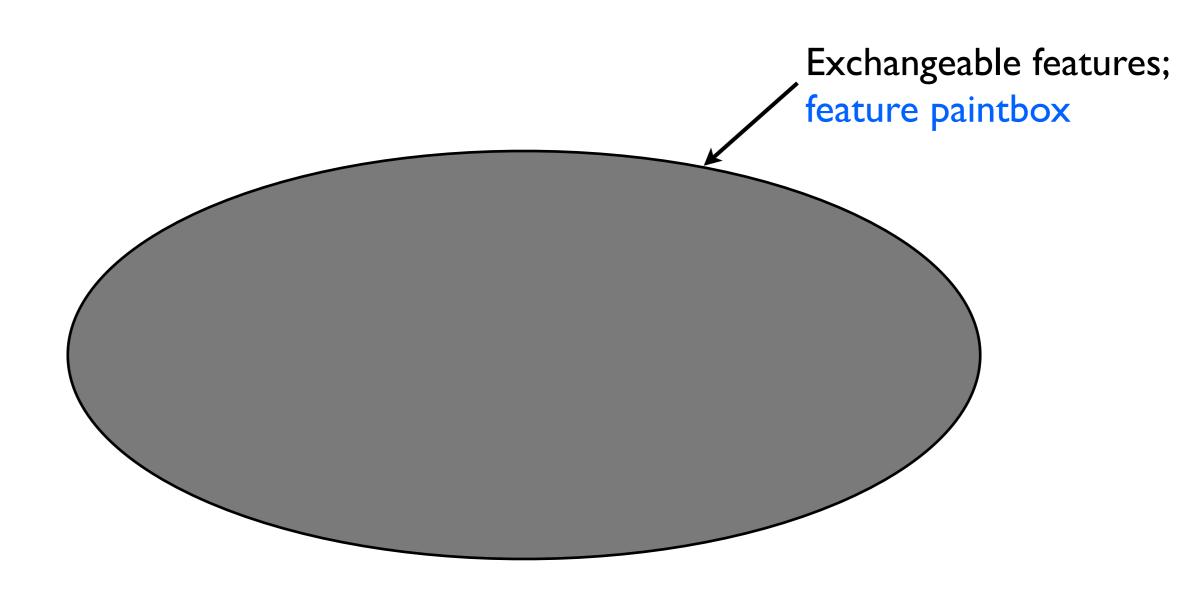
[Broderick, Pitman, Jordan 2013]



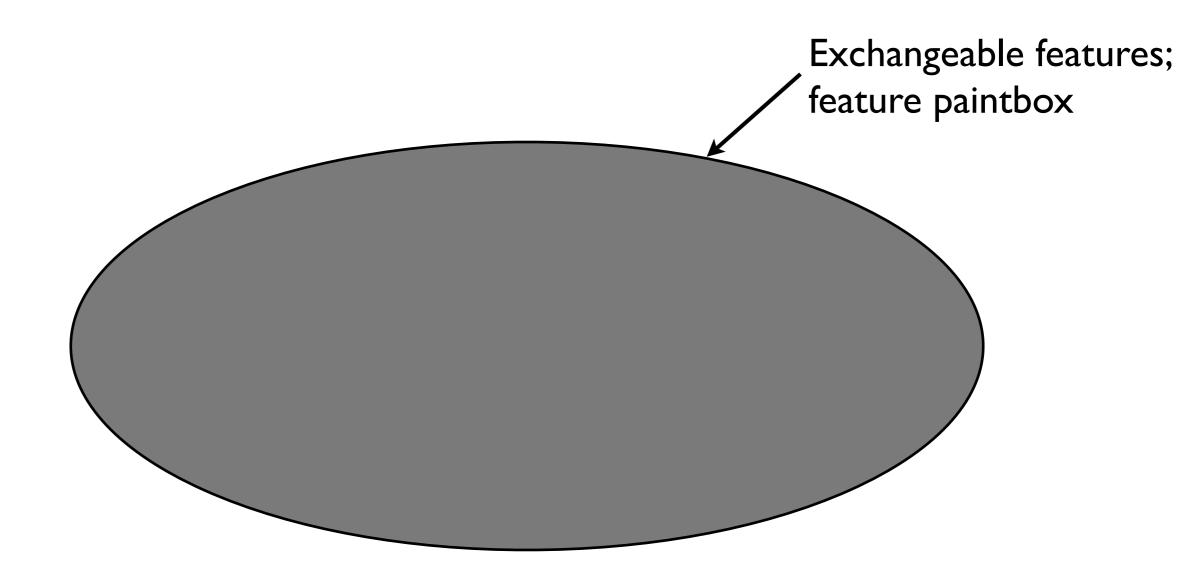
# • Feature paintbox: characterization of exchangeable feature models



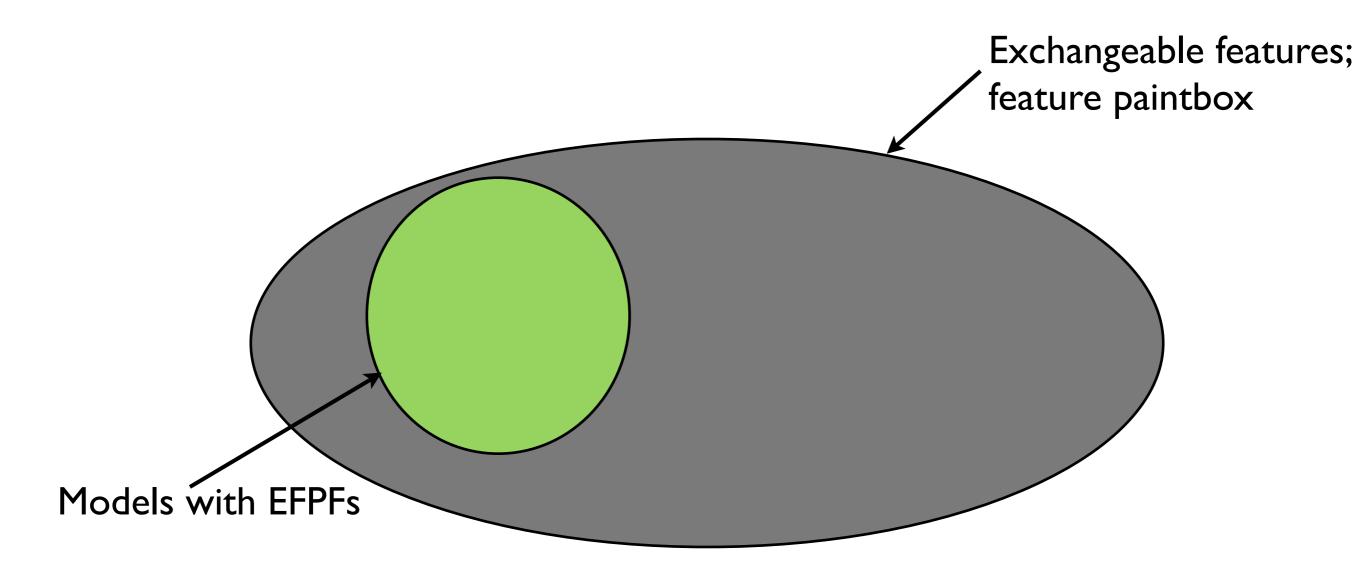
# • Feature paintbox: characterization of exchangeable feature models



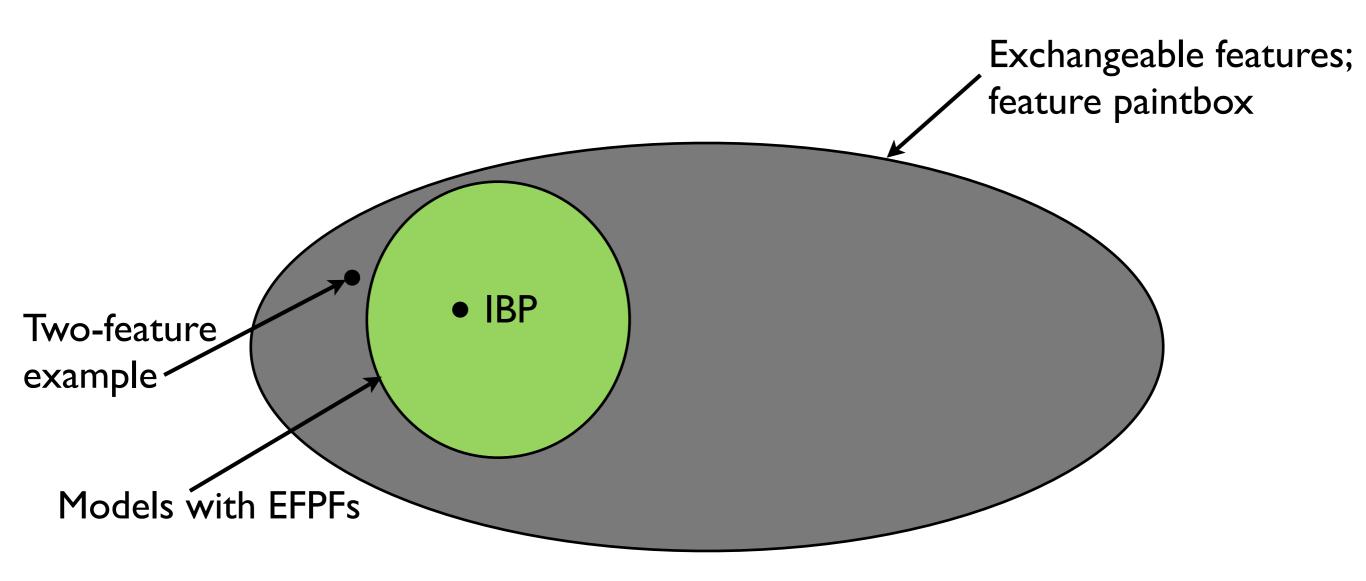
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



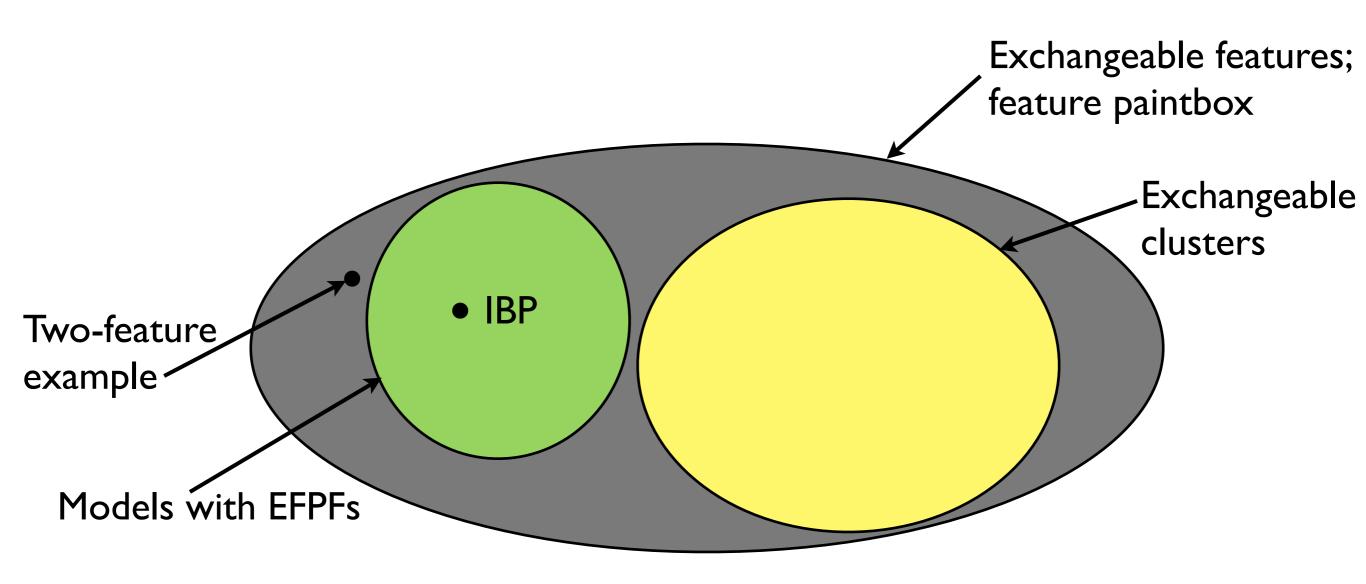
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



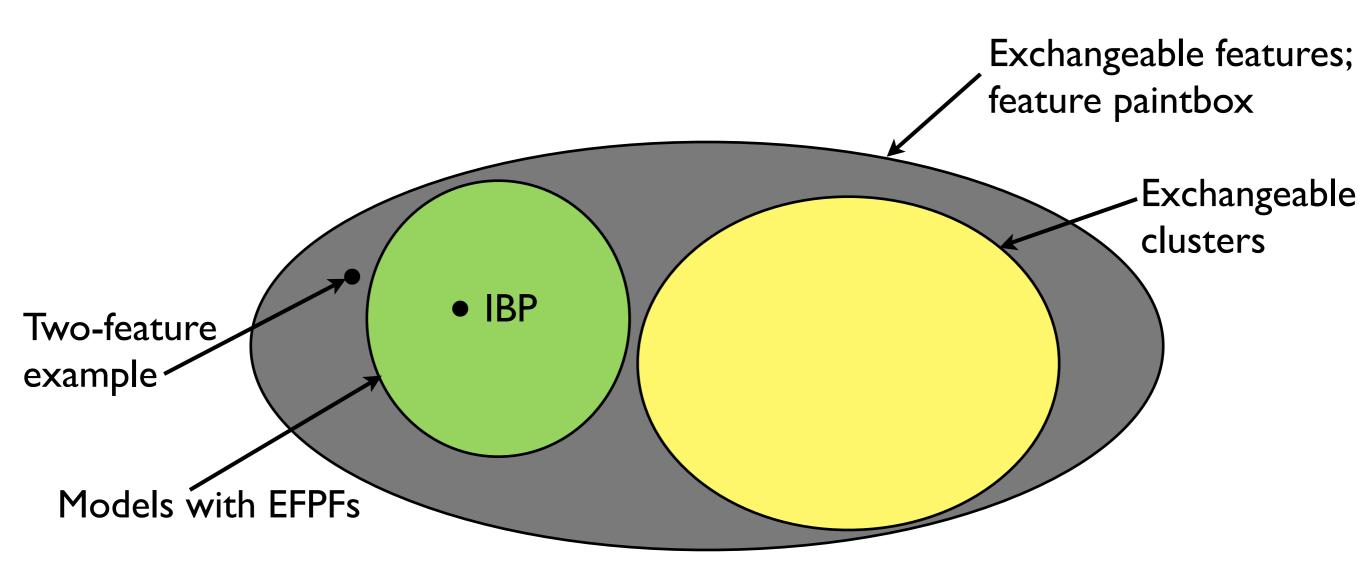
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



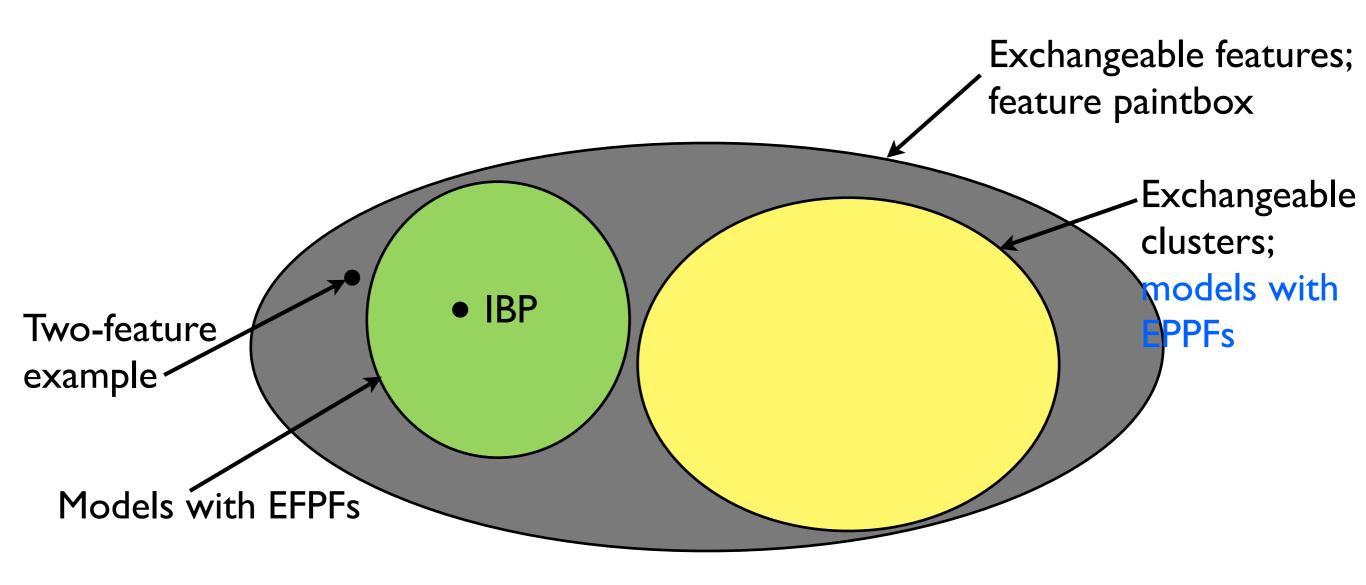
- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?



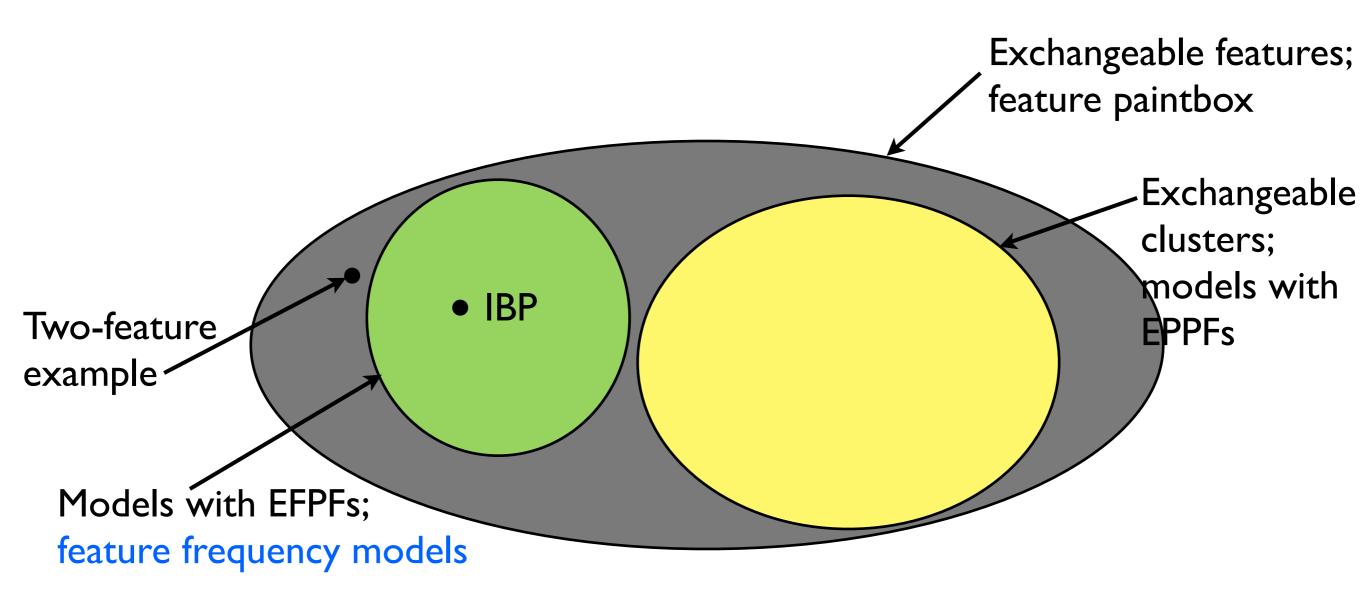
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



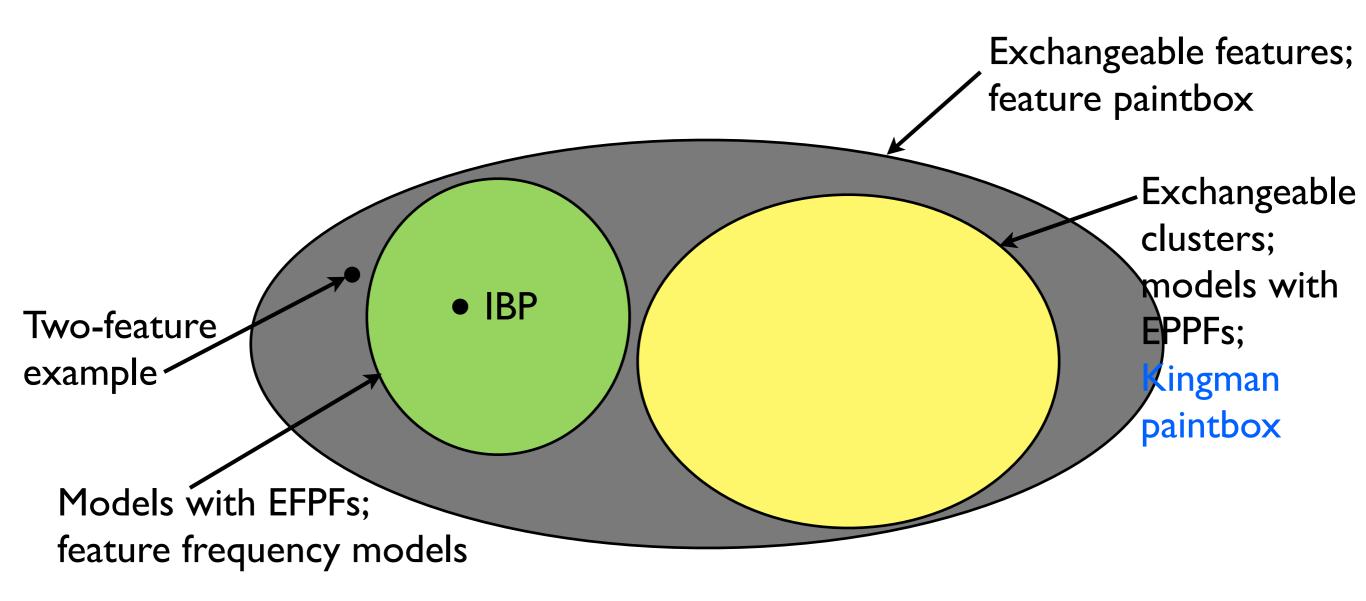
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



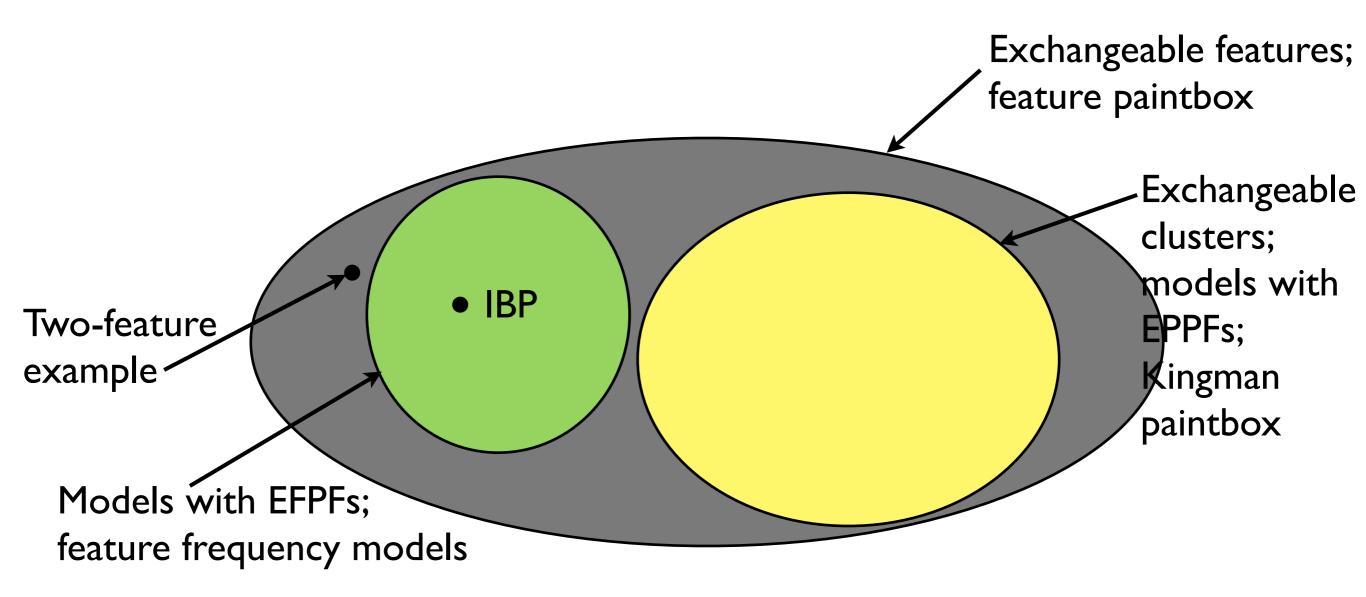
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



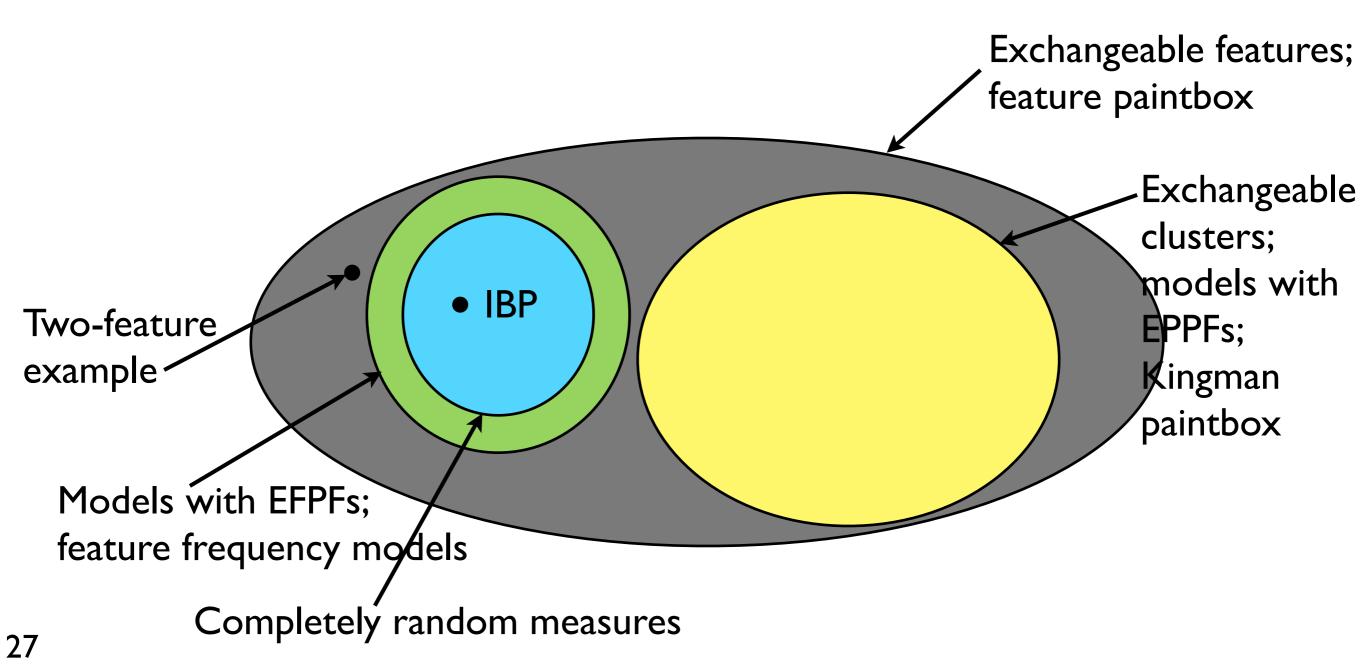
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure



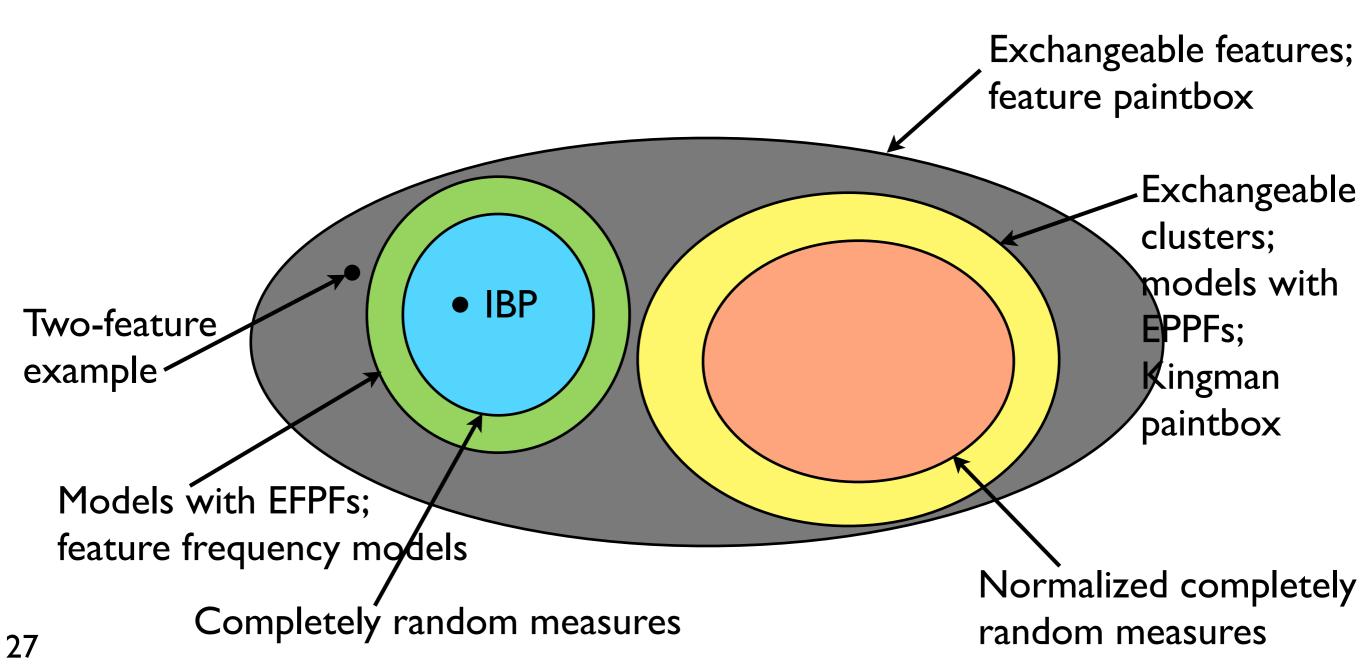
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections



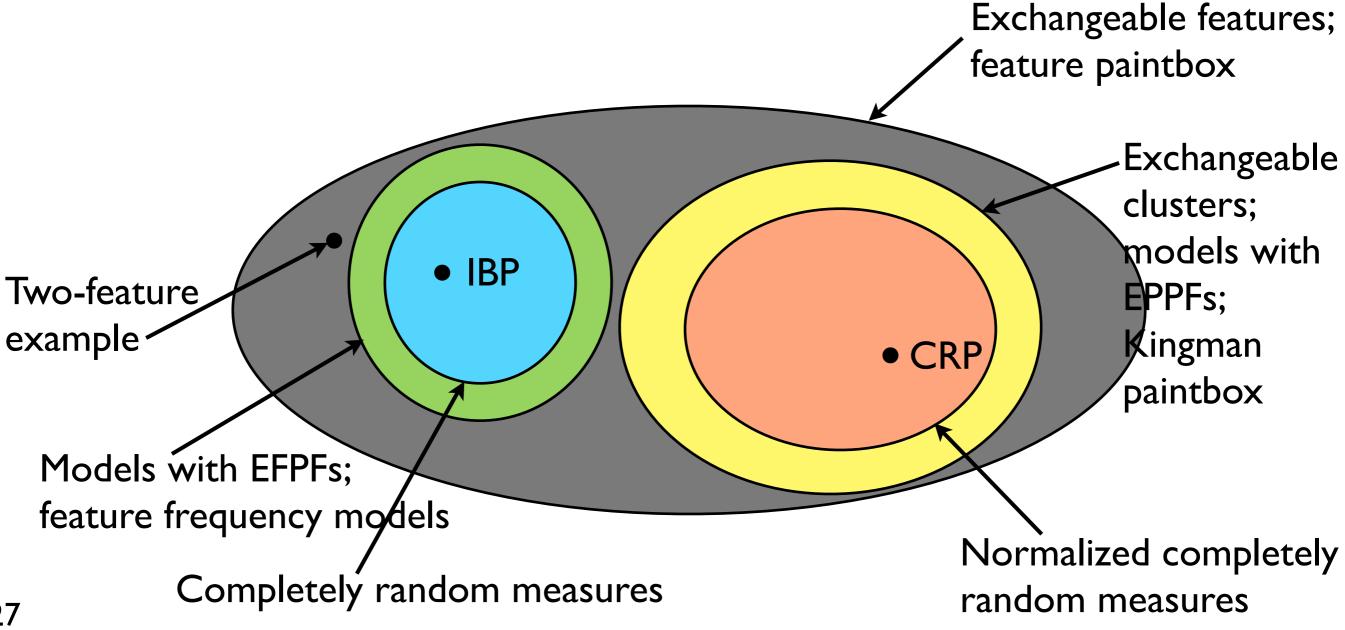
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



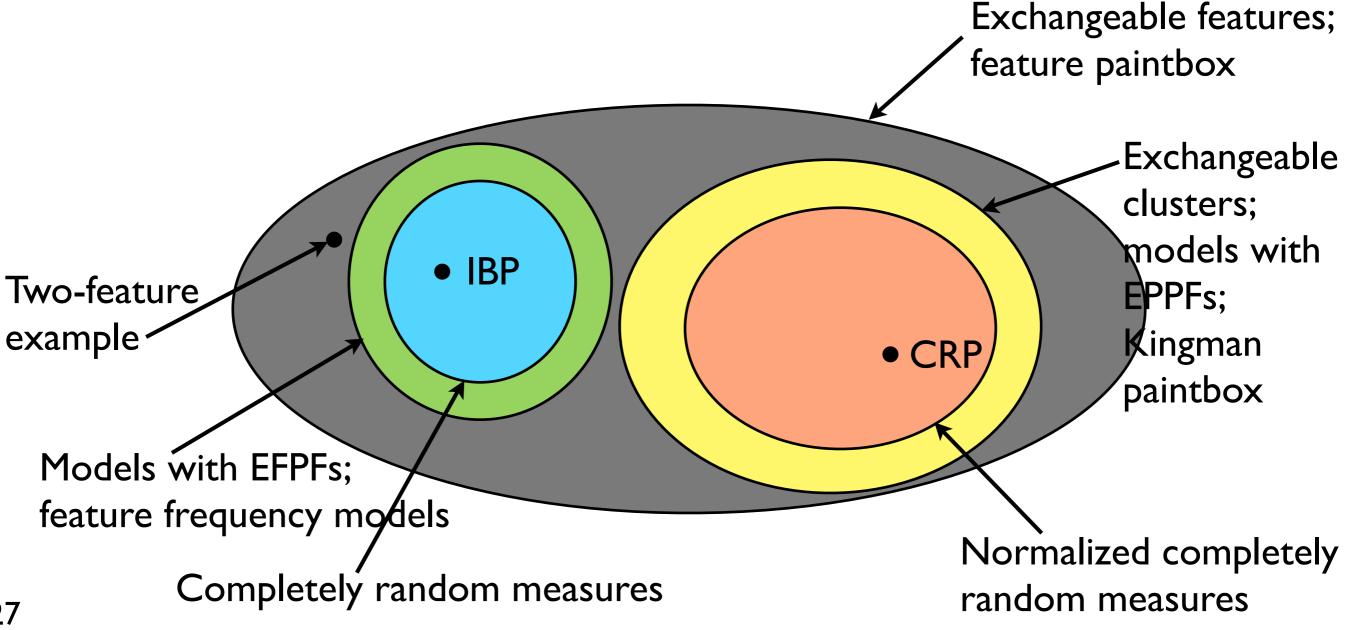
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



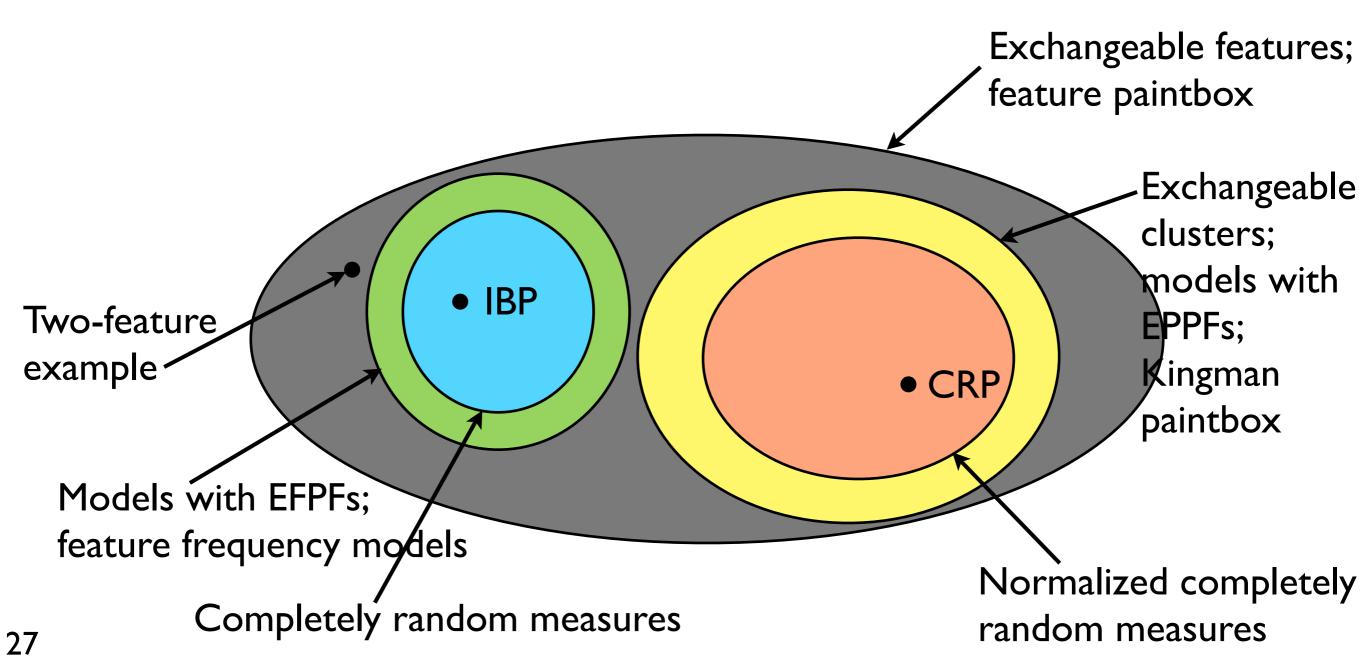
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)



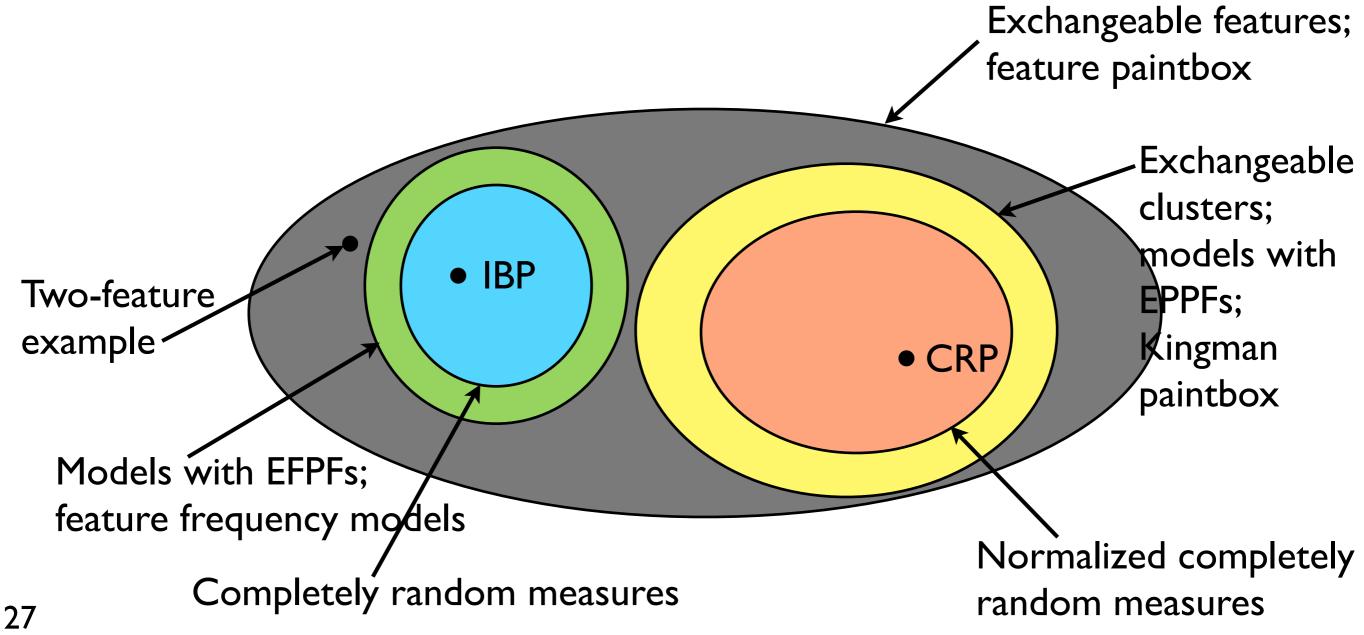
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust)



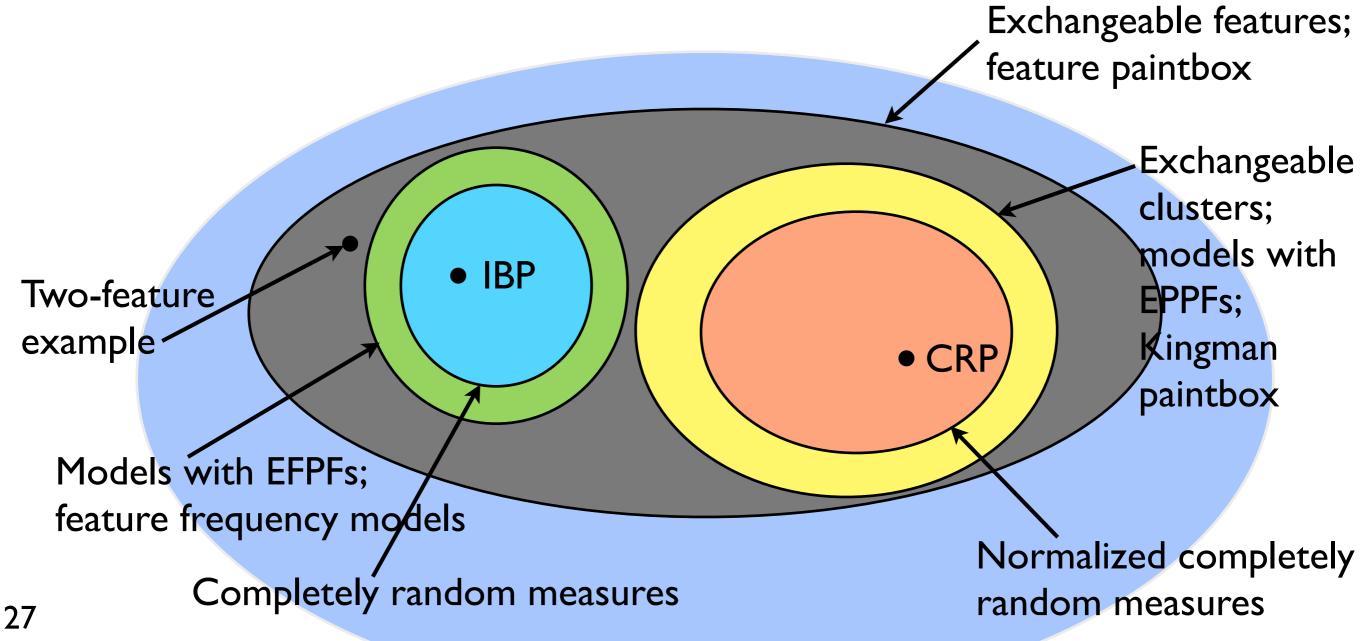
- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)



- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures



- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures



#### References

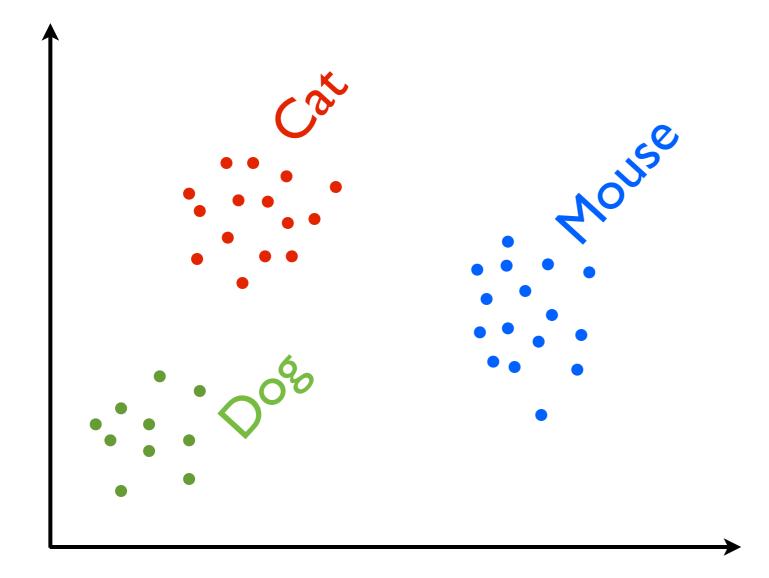
T. Broderick, J. Pitman, and M. I. Jordan. Feature allocations, probability functions, and paintboxes. *Bayesian Analysis*, 8(4):801-836, 2013.

T. Broderick, M. I. Jordan, and J. Pitman. Cluster and feature modeling from combinatorial stochastic processes. *Statistical Science*, 28(3):289-312, 2013.

T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and the beta negative binomial process. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2015.

T. Broderick, A. C. Wilson, and M. I. Jordan. Posteriors, conjugacy, and exponential families for completely random measures. Submitted.

#### Clusters

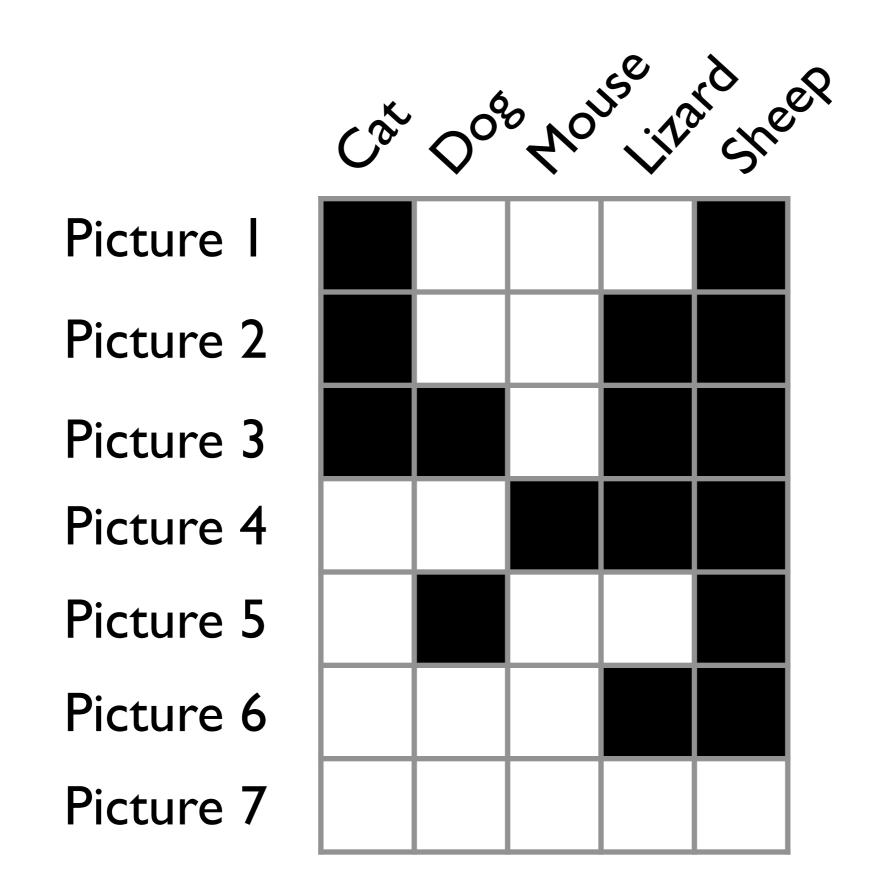


"clusters"

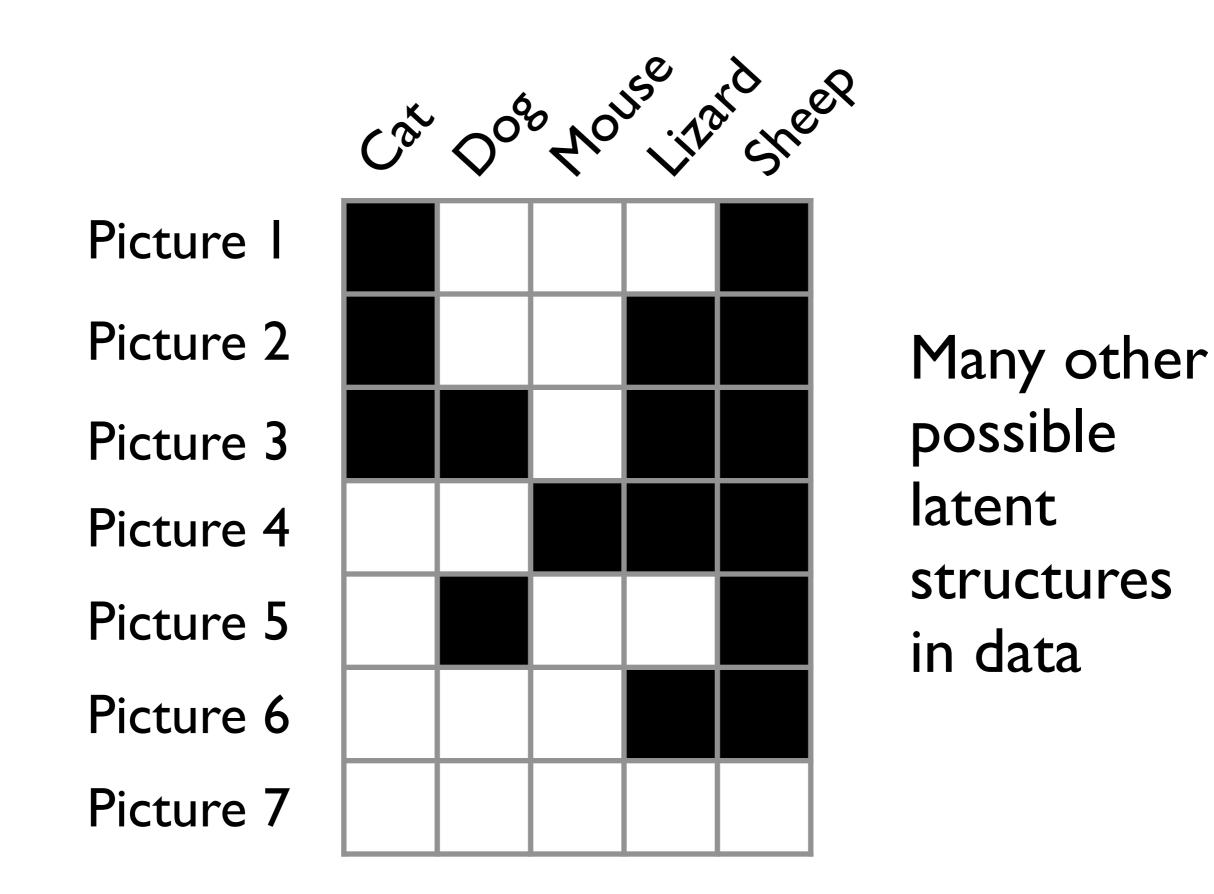
#### Clusters

|           | Car | 670 | 15e 17? | yd she | Ś |
|-----------|-----|-----|---------|--------|---|
| Picture I |     |     |         |        |   |
| Picture 2 |     |     |         |        |   |
| Picture 3 |     |     |         |        |   |
| Picture 4 |     |     |         |        |   |
| Picture 5 |     |     |         |        |   |
| Picture 6 |     |     |         |        |   |
| Picture 7 |     |     |         |        |   |

#### Features



Features



# K-meansFast

- Fast
- Can parallelize

- Fast
- Can parallelize
- Straightforward

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

# K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

# Nonparametric Bayes

# K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (general latent structure)

# How do we learn latent structure?

# K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (general latent structure) Flexible (K can grow as data grows)

# How do we learn latent structure?

# K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes Modular (concert

Modular (general

latent structure)

Flexible (K can grow

as data grows)

Coherent treatment

of uncertainty

# How do we learn latent structure?

# K-means

- Fast
- Can parallelize
- Straightforward
- Only works for K clusters

Nonparametric Bayes

Modular (general

latent structure)

Flexible (K can grow

as data grows)

Coherent treatment of uncertainty

# But...

- E.g., Silicon Valley: can have petabytes of data
- Practitioners turn to what runs

 Bayesian nonparametrics assists the optimizationbased inference community

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

Inspiration

Consider a finite Gaussian mixture model

 Bayesian nonparametrics assists the optimizationbased inference community

New, modular, flexible, nonparametric
 objectives & regularizers

Alternative perspective: fast initialization

Inspiration

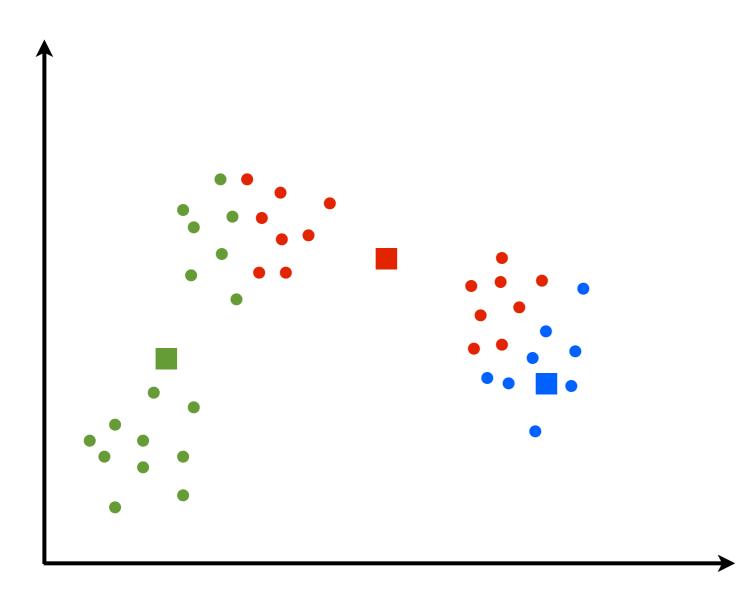
Consider a finite Gaussian mixture model
 The steps of the EM algorithm limit to the steps of the K-means algorithm as the Gaussian variance is taken to 0

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

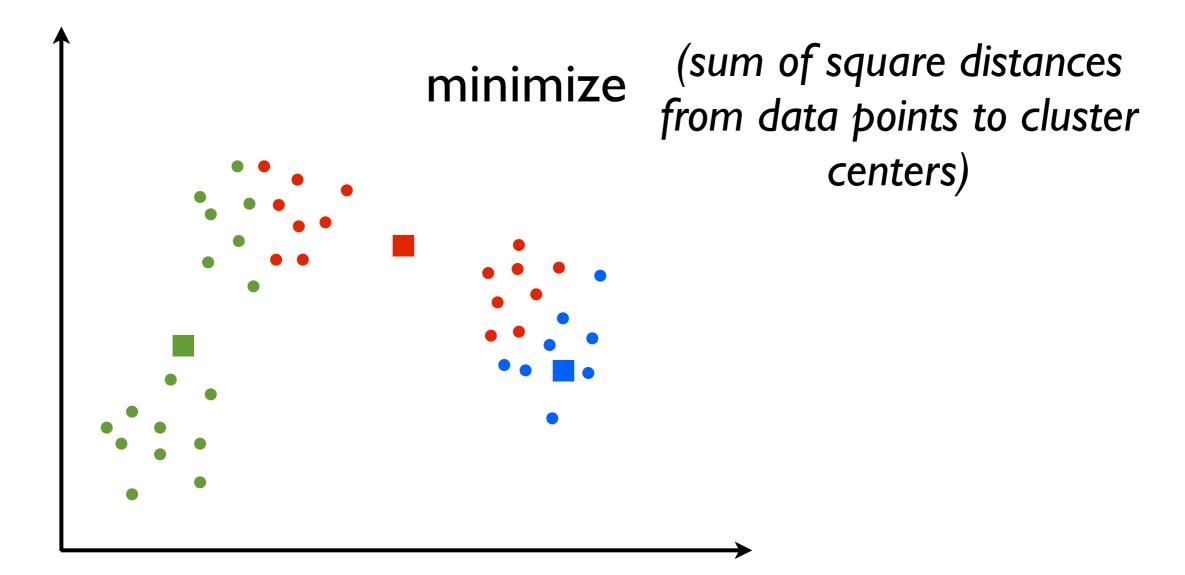
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

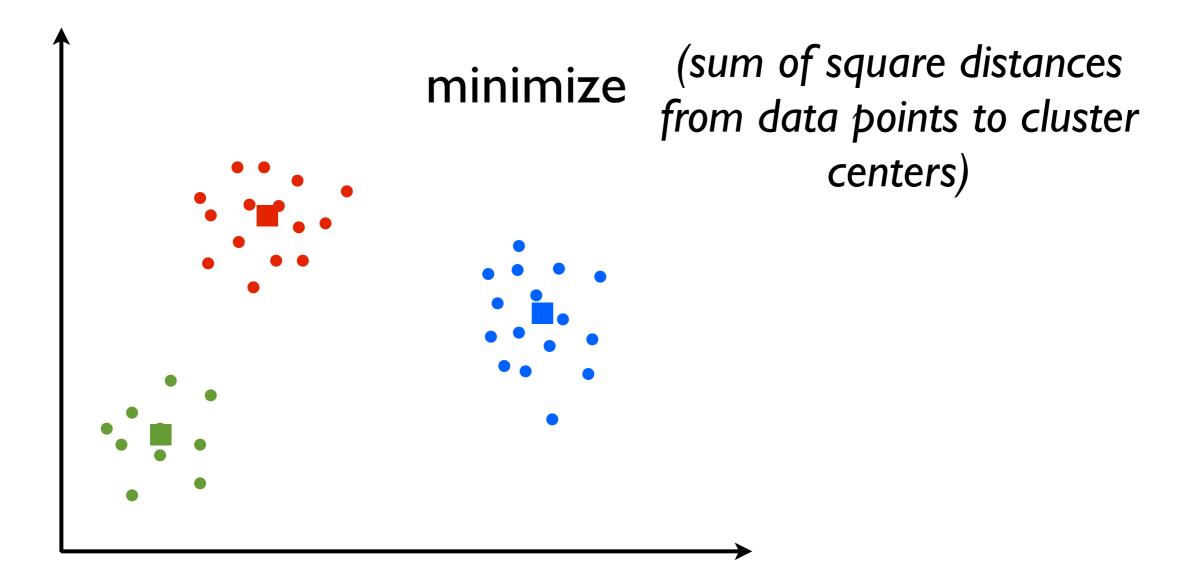
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

#### K-means clustering problem

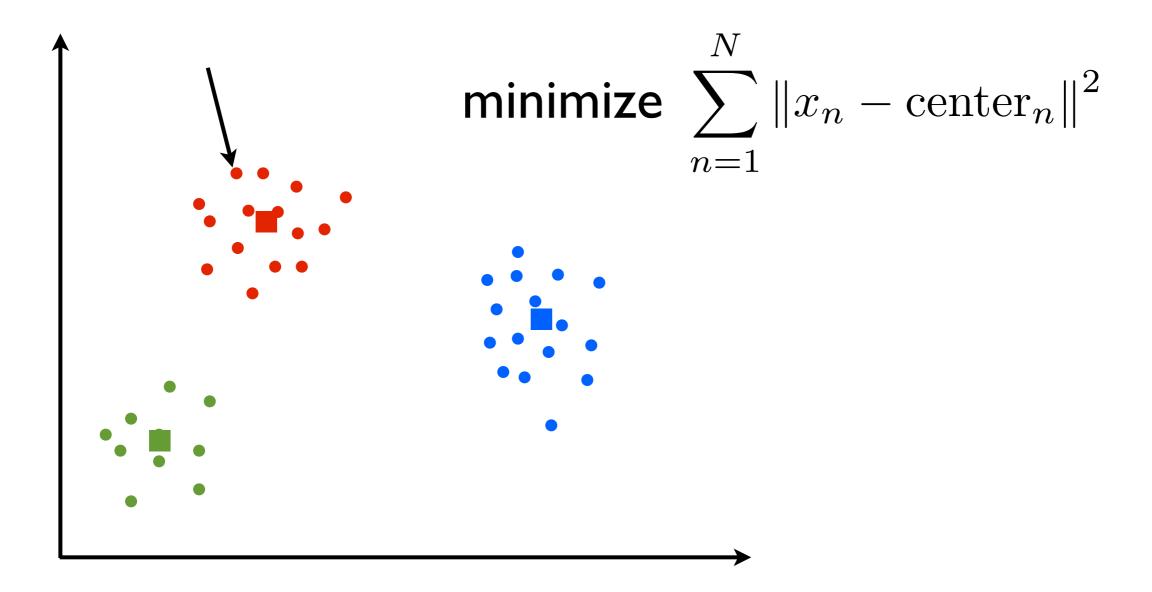


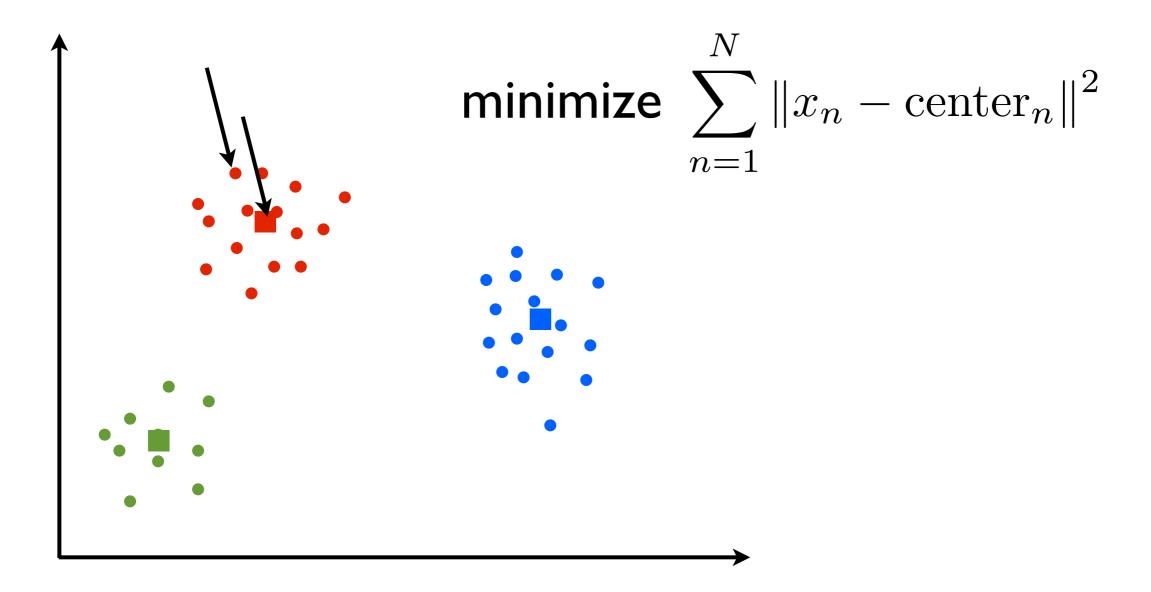
7

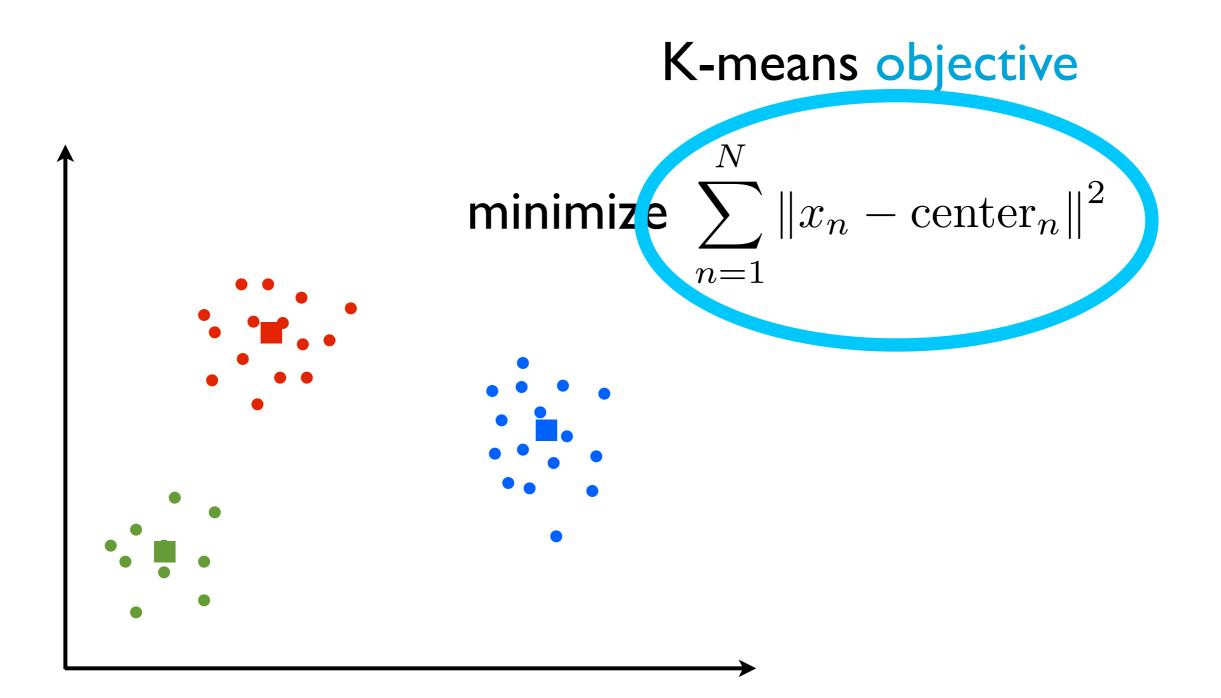


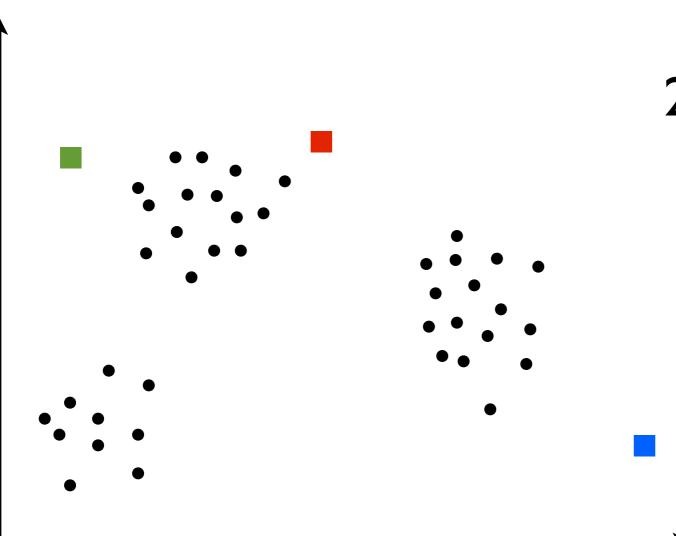












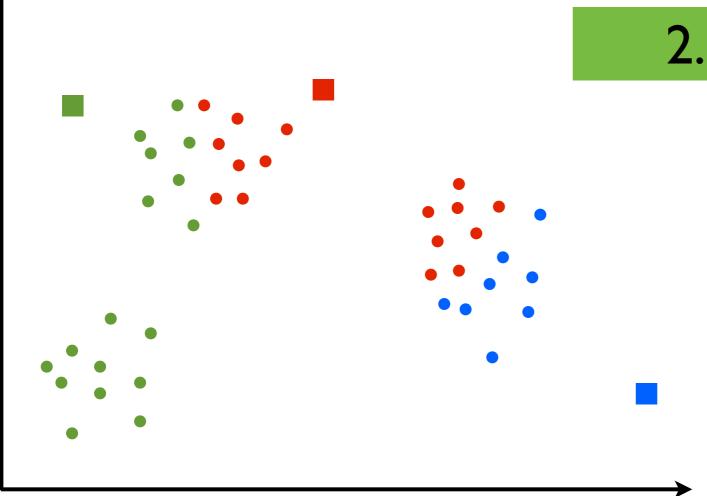
Iterate until no changes: I. For n = I, ..., N Assign point n to a cluster

# Iterate until no changes: I.For n = I,...,N Assign point n to a cluster

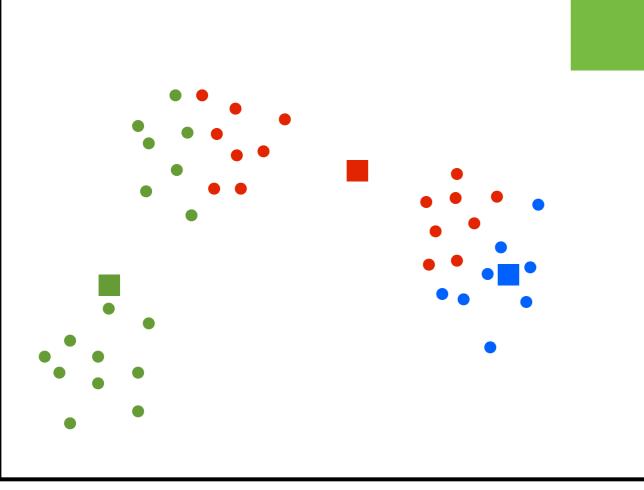
Iterate until no changes:

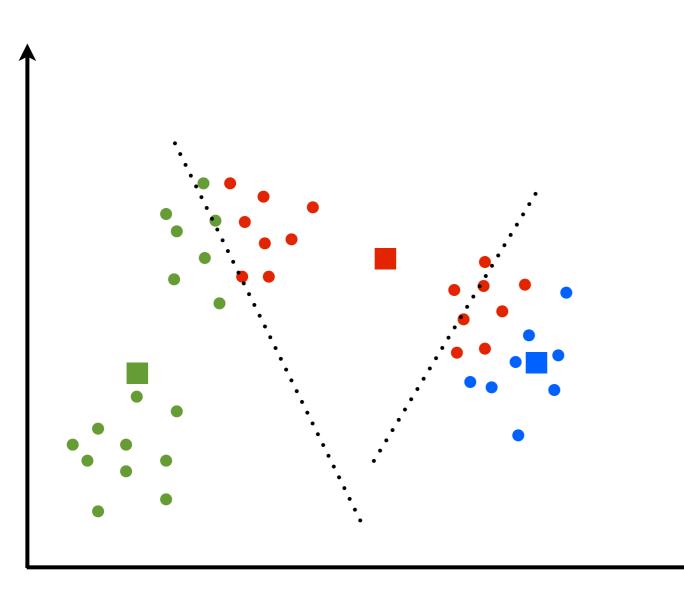
For n = I, ..., N
Assign point n to a cluster

2. Update cluster means



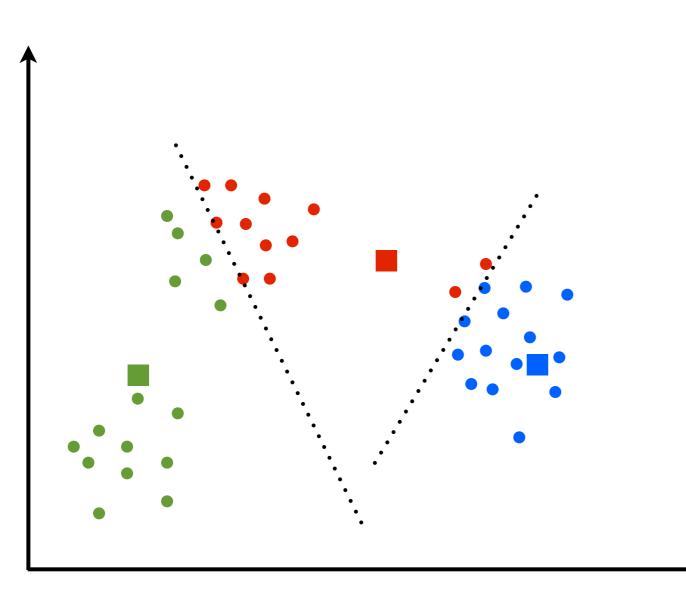
Iterate until no changes:
I. For n = I, ..., N
Assign point n to a cluster
2. Update cluster means





Iterate until no changes:
I.For n = I,..., N

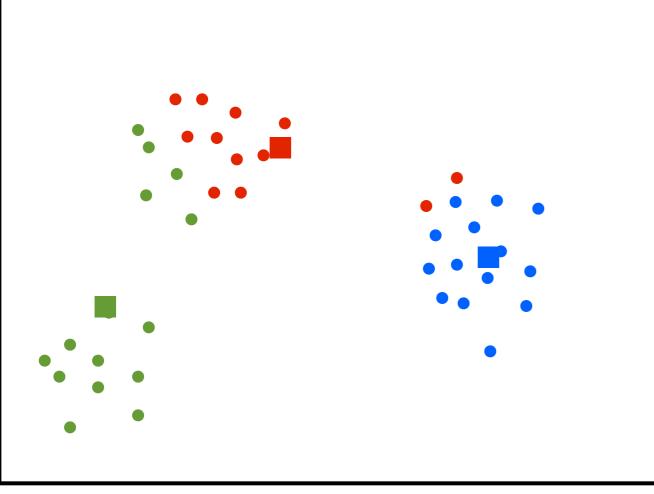
 Assign point n to a
 cluster



Iterate until no changes:
I.For n = I,..., N

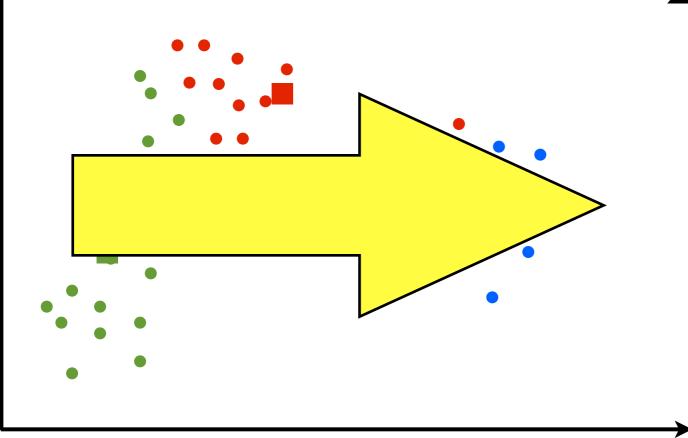
 Assign point n to a
 cluster

Iterate until no changes: I. For n = I, ..., N Assign point n to a cluster



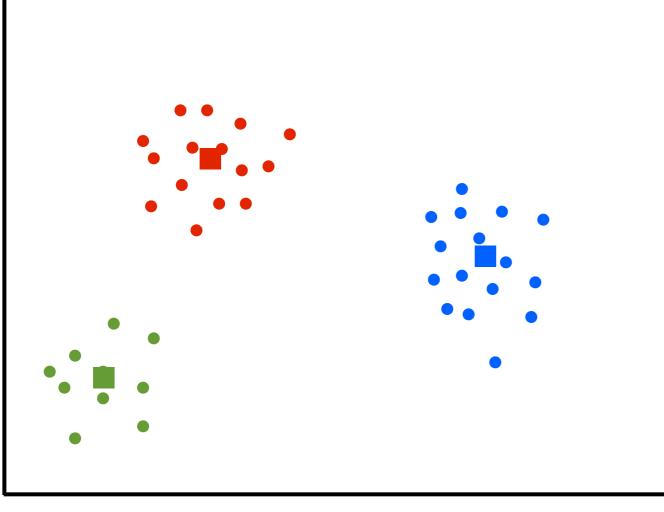
Iterate until no changes:

- I. For n = I, ..., N
  - Assign point n to a cluster
- 2. Update cluster means



Iterate until no changes:

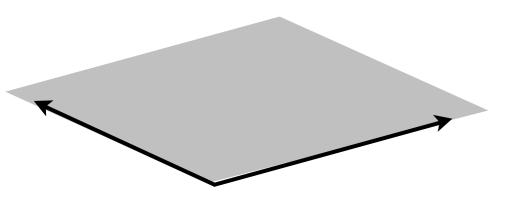
- I. For n = I, ..., N
  - Assign point n to a cluster
- 2. Update cluster means



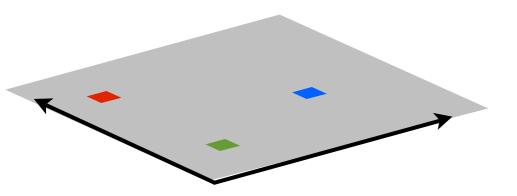
- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

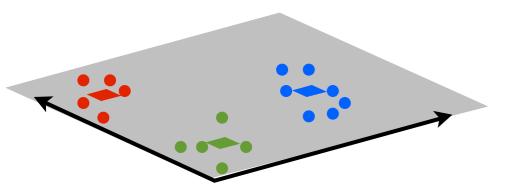




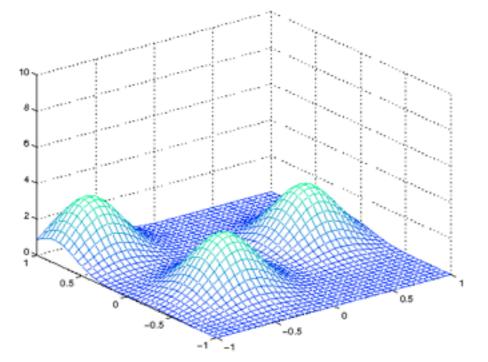




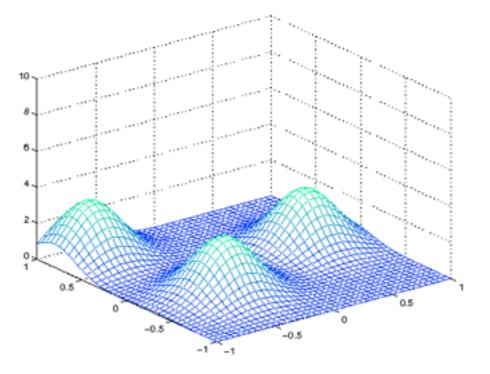












#### Nonparametric

number of parameters can grow with the number of data points

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

- Start with nonparametric Bayes model
- Take a similar limit to get a K-means-like objective

# Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$ 

# Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$ 

We take a limit of the objective (posterior) and get one like K-means

# Maximum a Posteriori (MAP) is an optimization problem

 $\operatorname{argmax}_{\operatorname{parameters}} \mathbb{P}(\operatorname{parameters}|\operatorname{data})$ 

 We take a limit of the objective (posterior) and get one like K-means \$\$ "Small-variance asymptotics"

#### **Bayesian posterior**

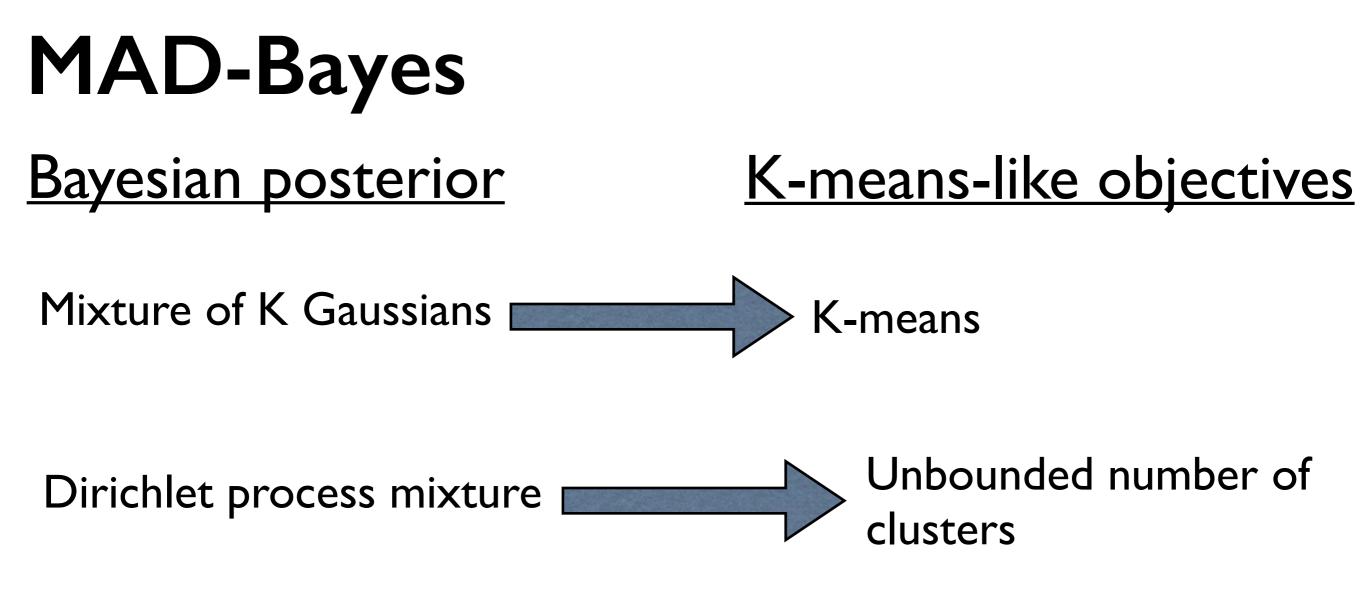
#### K-means-like objectives

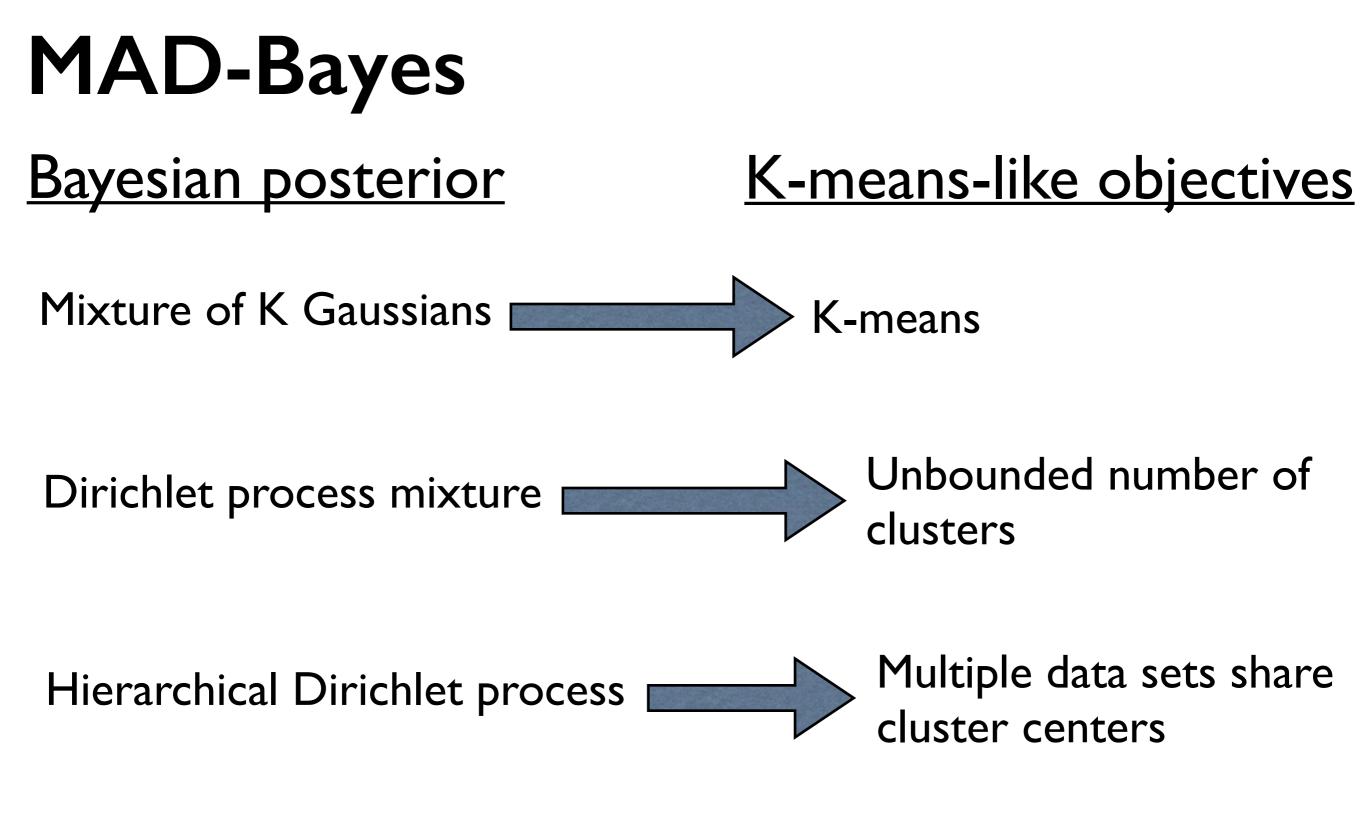
#### **Bayesian posterior**

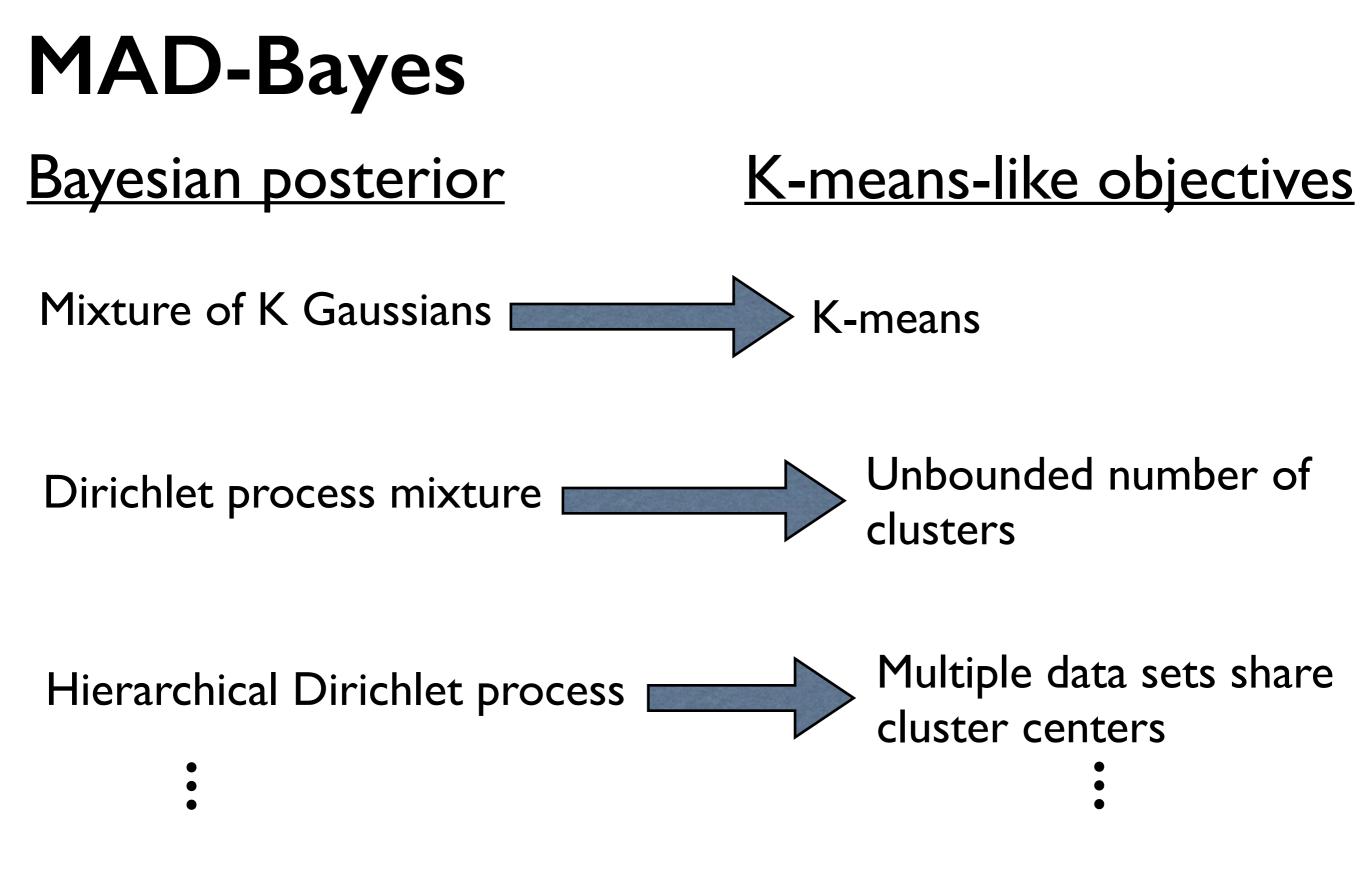
#### K-means-like objectives

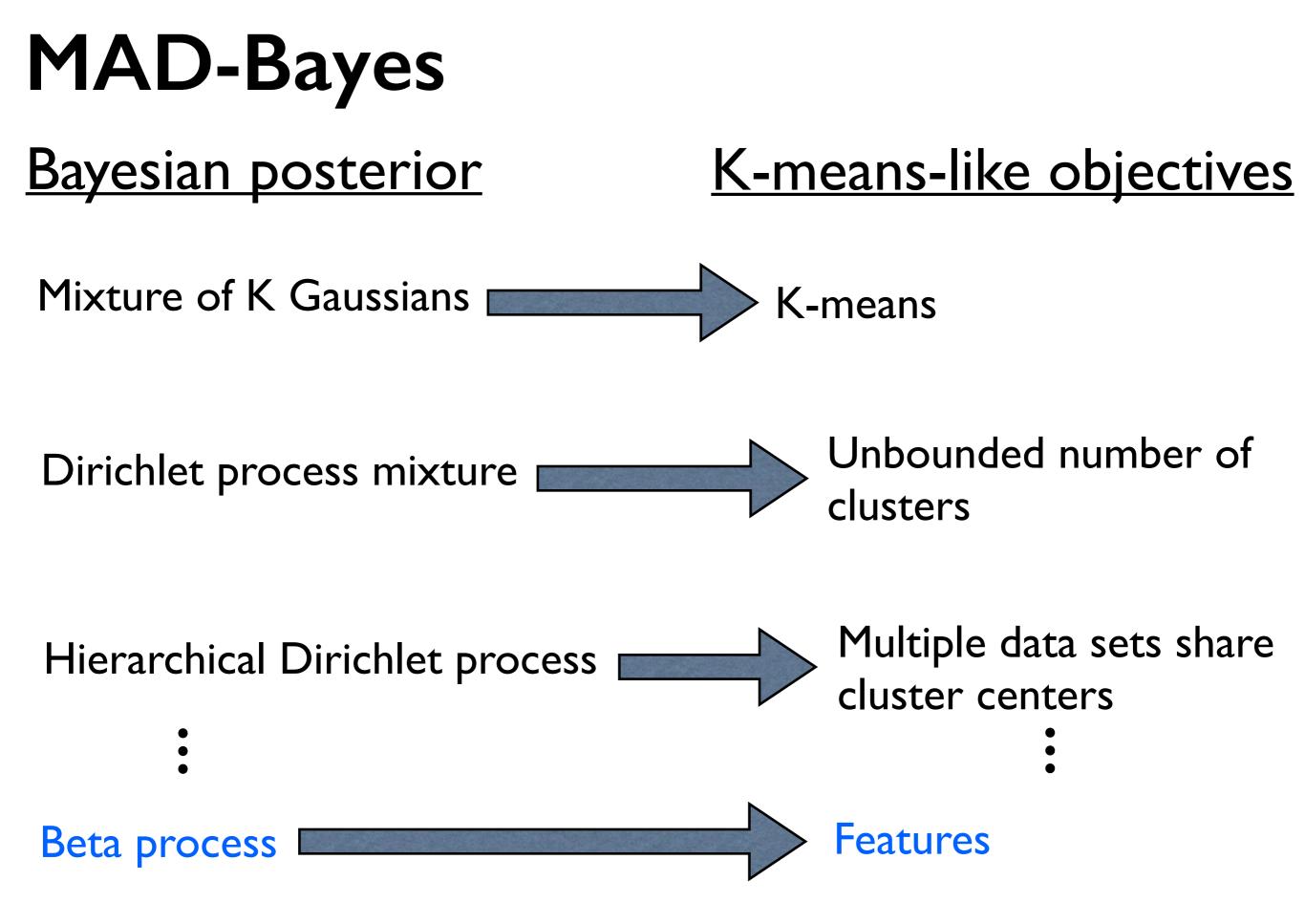
Mixture of K Gaussians [



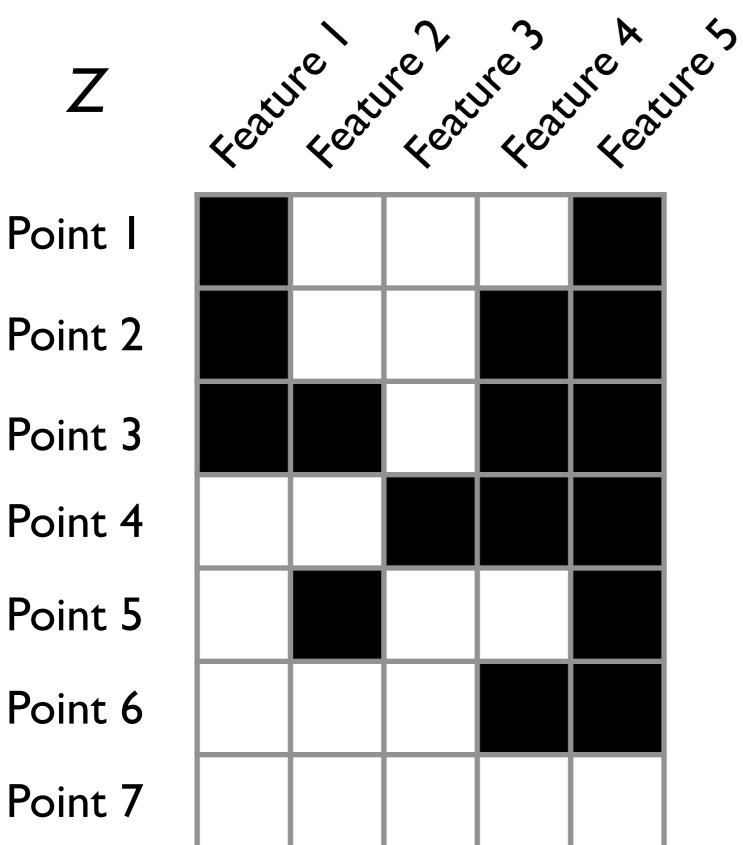




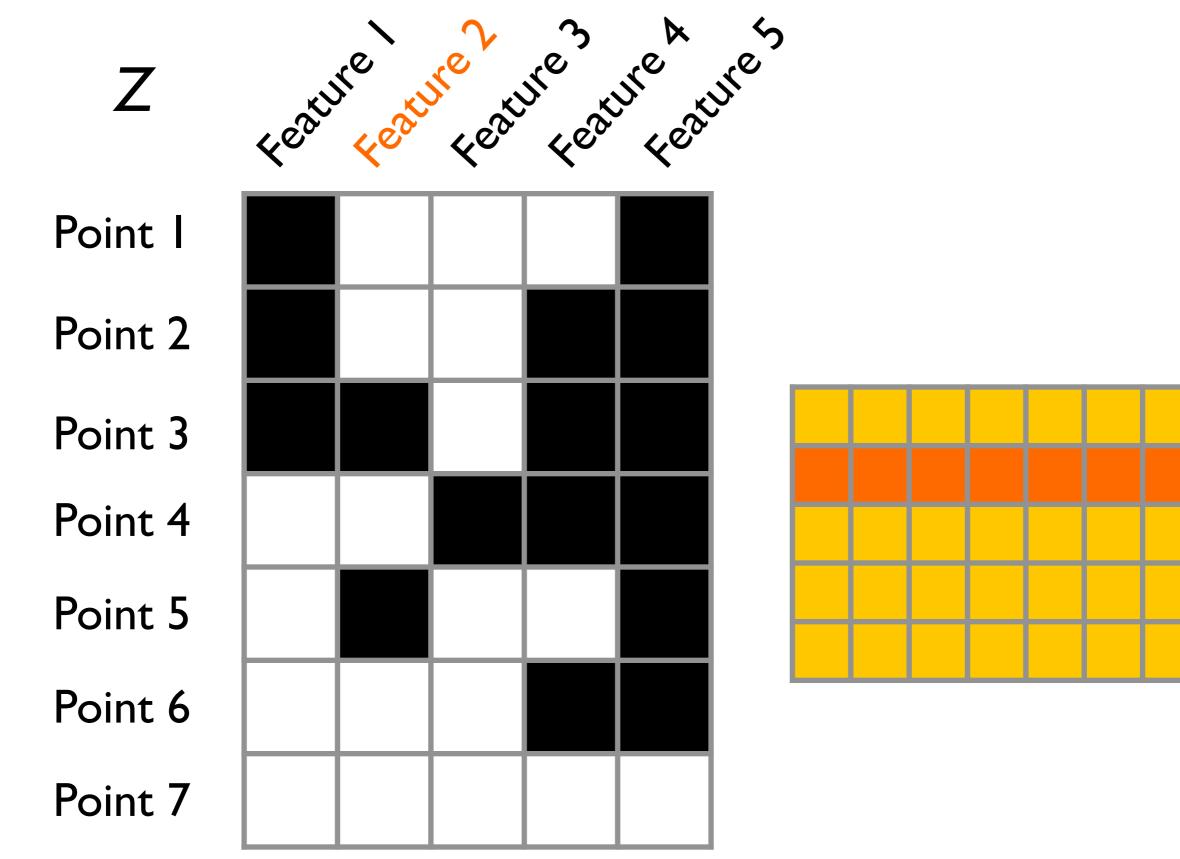




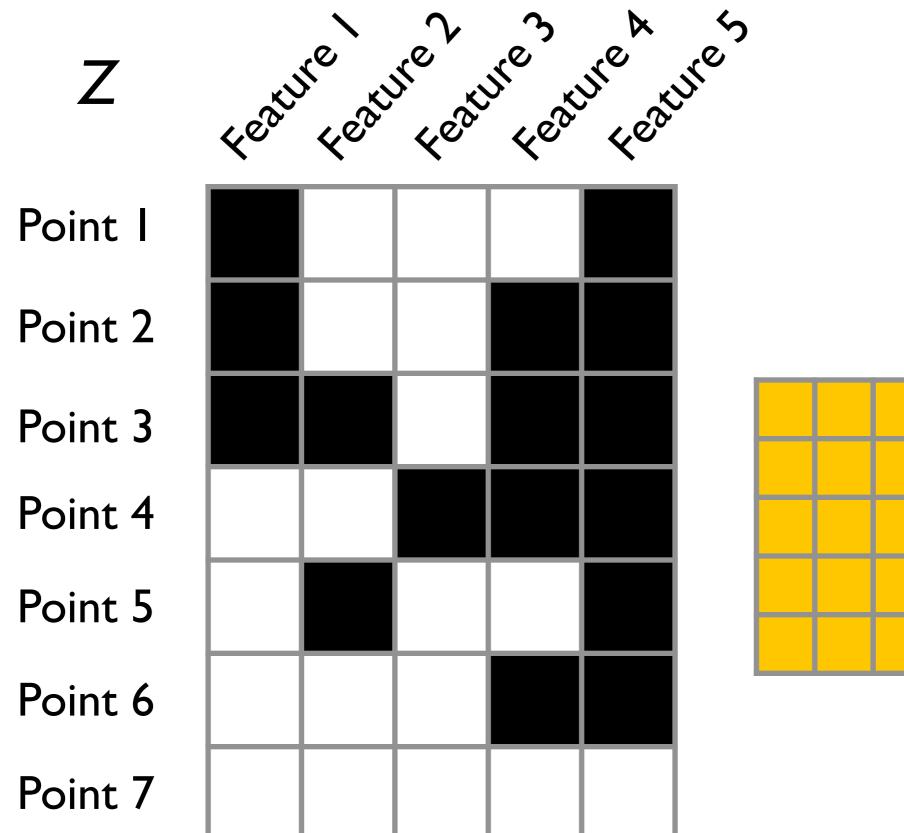
### Features



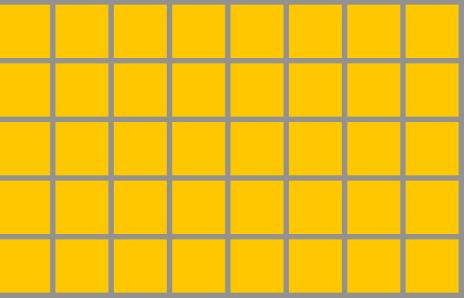
### Features



### Features



Α

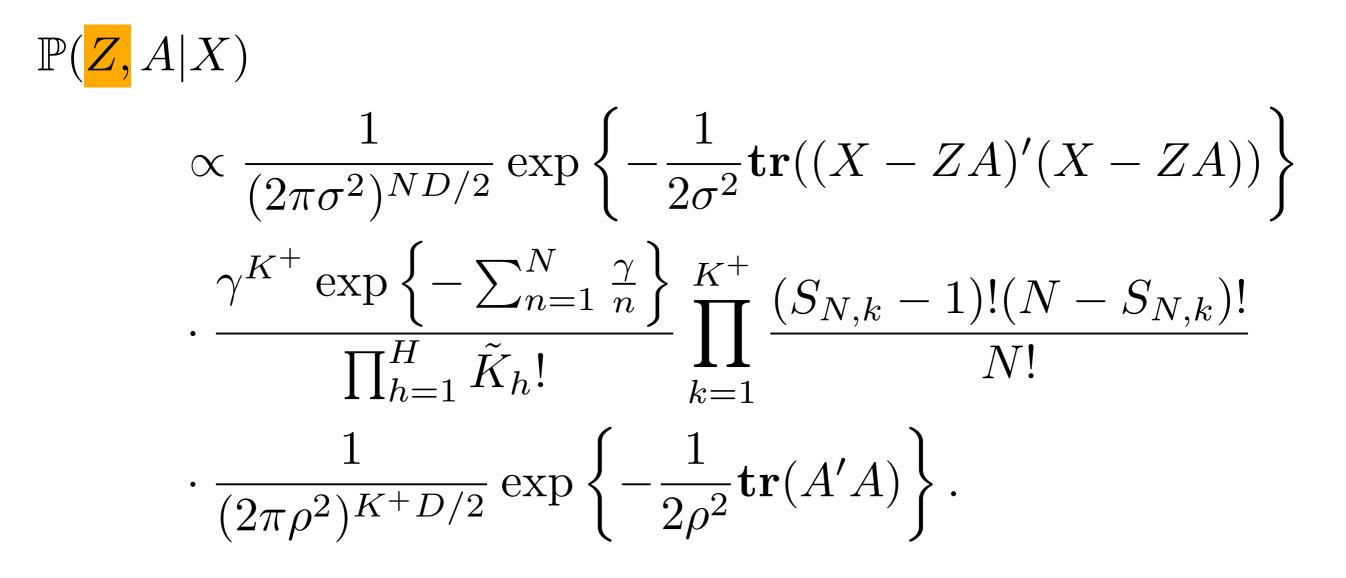


#### **Bayesian posterior**

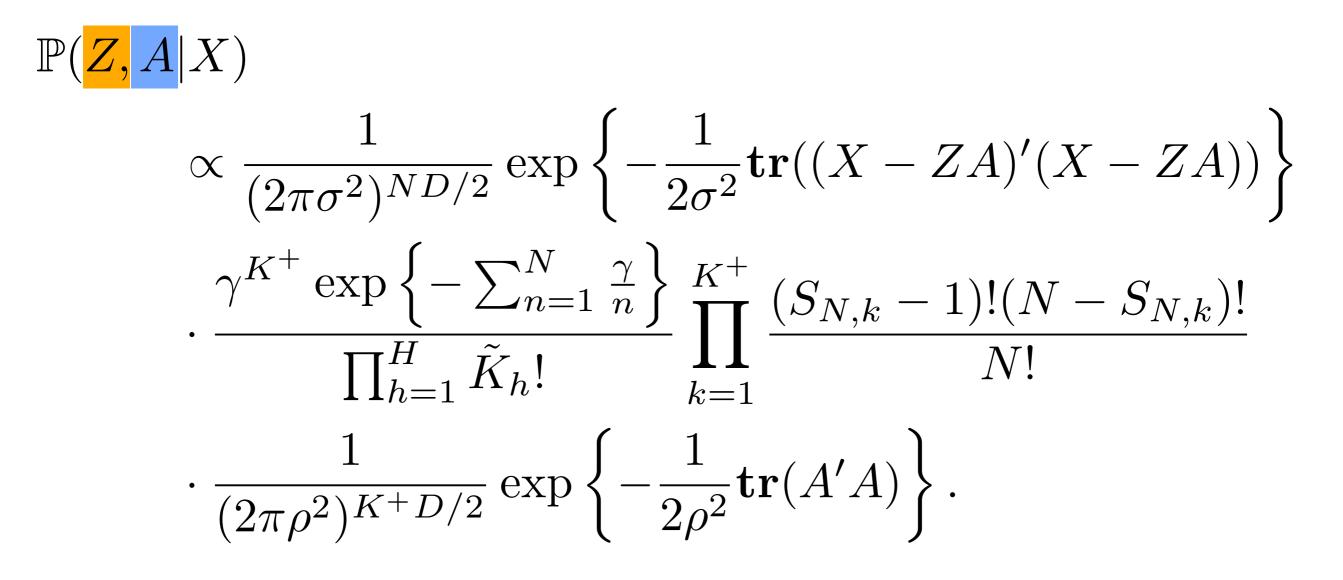
 $\mathbb{P}(Z,A|X)$ 

$$\propto \frac{1}{(2\pi\sigma^2)^{ND/2}} \exp\left\{-\frac{1}{2\sigma^2} \mathbf{tr}((X-ZA)'(X-ZA))\right\} \cdot \frac{\gamma^{K^+} \exp\left\{-\sum_{n=1}^N \frac{\gamma}{n}\right\}}{\prod_{h=1}^H \tilde{K}_h!} \prod_{k=1}^{K^+} \frac{(S_{N,k}-1)!(N-S_{N,k})!}{N!} \cdot \frac{1}{(2\pi\rho^2)^{K^+D/2}} \exp\left\{-\frac{1}{2\rho^2} \mathbf{tr}(A'A)\right\}.$$

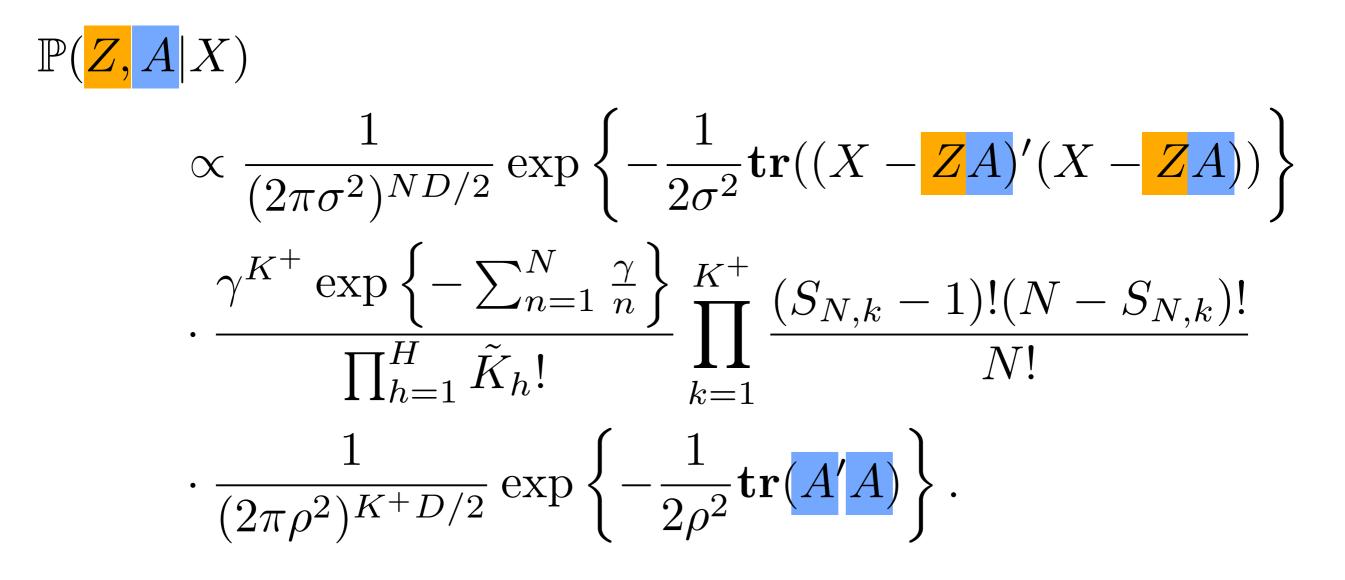
**MAD-Bayes** 

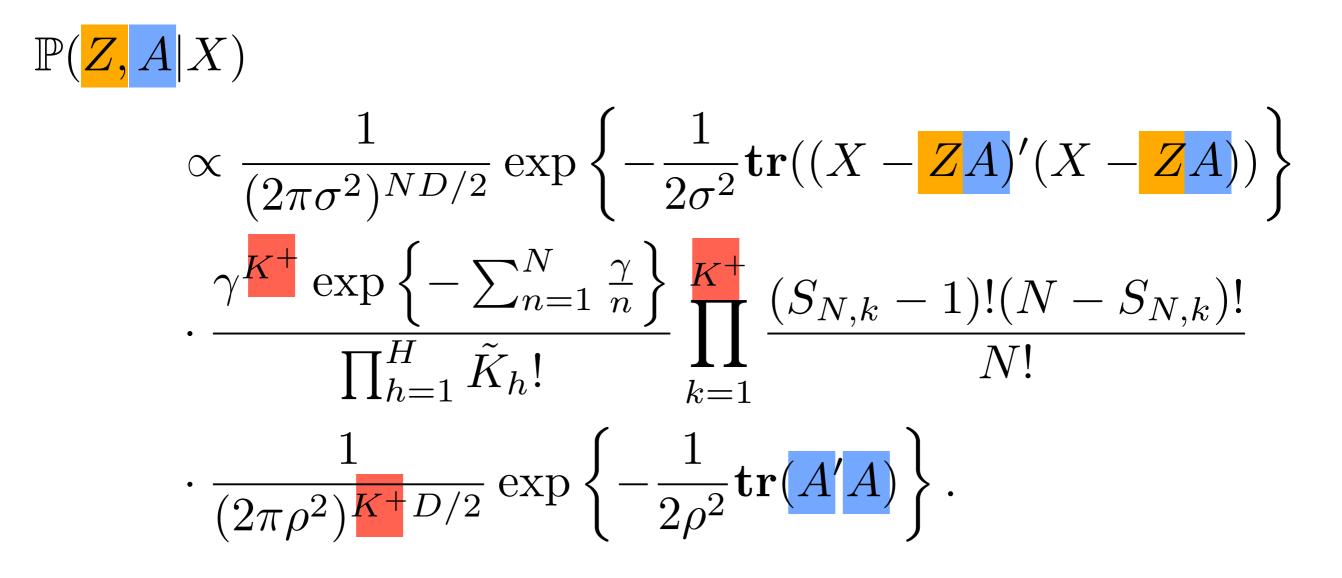


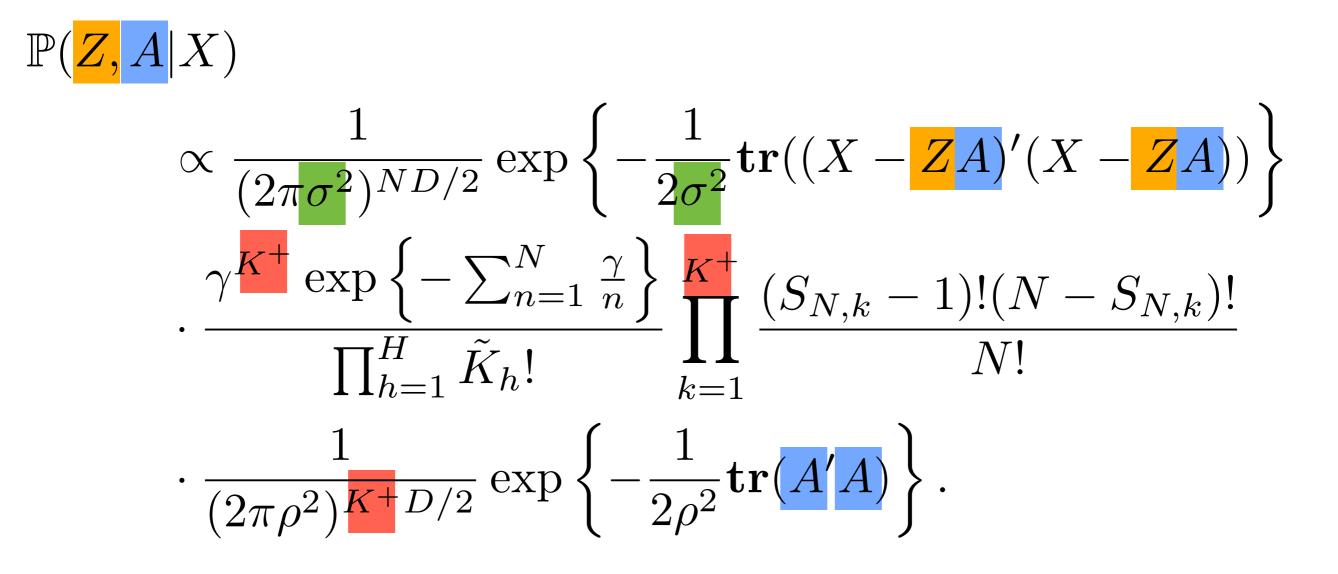
**MAD-Bayes** 

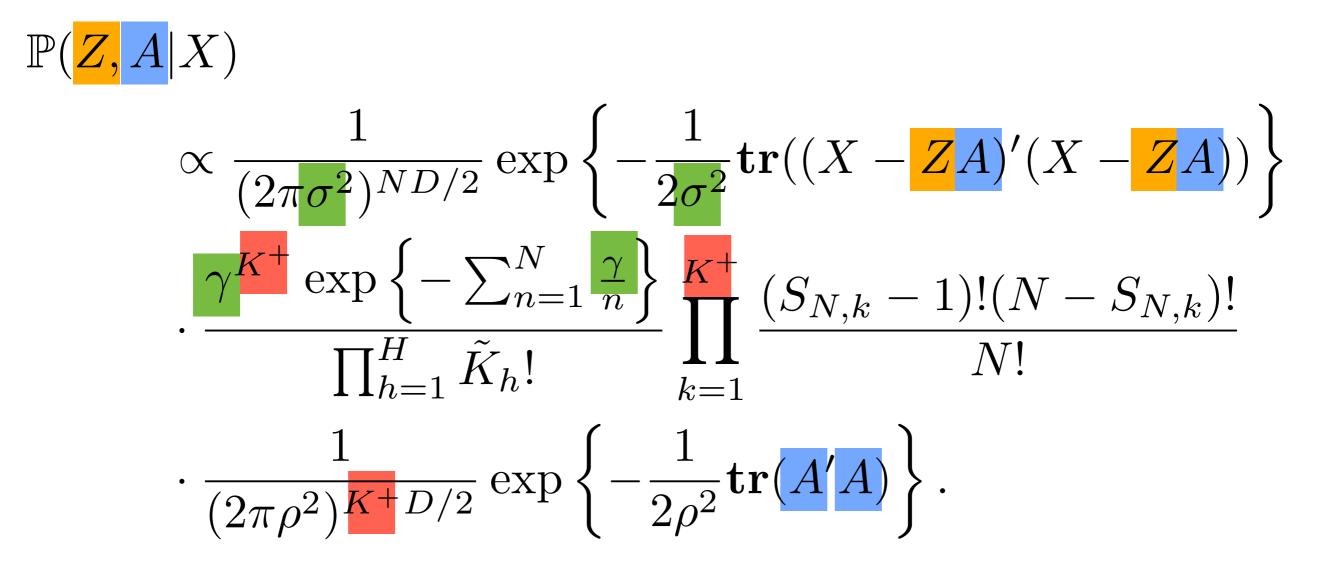


**MAD-Bayes** 









#### **BP-means objective**

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$ 

#### **BP-means objective**

### $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$

#### **BP-means objective**

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$ 

### **BP-means objective**

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$ 

#### **BP-means algorithm**

Iterate until no changes:

I. For n = I, ..., N

Assign point n to features

• Create a new feature if it lowers the objective 2. Update feature means  $A \leftarrow (Z'Z)^{-1}Z'X$ 

### **BP-means objective**

```
\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.
```

#### **BP-means algorithm**

Iterate until no changes:

I.For n = I, ..., N

Assign point n to features

• Create a new feature if it lowers the objective 2. Update feature means  $A \leftarrow (Z'Z)^{-1}Z'X$ 

### **BP-means objective**

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$ 

#### **BP-means algorithm**

Iterate until no changes:

I. For n = I, ..., N

Assign point n to features

Create a new feature if it lowers the objective

**2.** Update feature means  $A \leftarrow (Z'Z)^{-1}Z'X$ 

### **BP-means objective**

 $\operatorname{argmin}_{K^+,Z,A} \operatorname{tr}[(X - ZA)'(X - ZA)] + K^+ \lambda^2.$ 

#### **BP-means algorithm**

Iterate until no changes:

I. For n = 1, ..., N

Assign point n to features

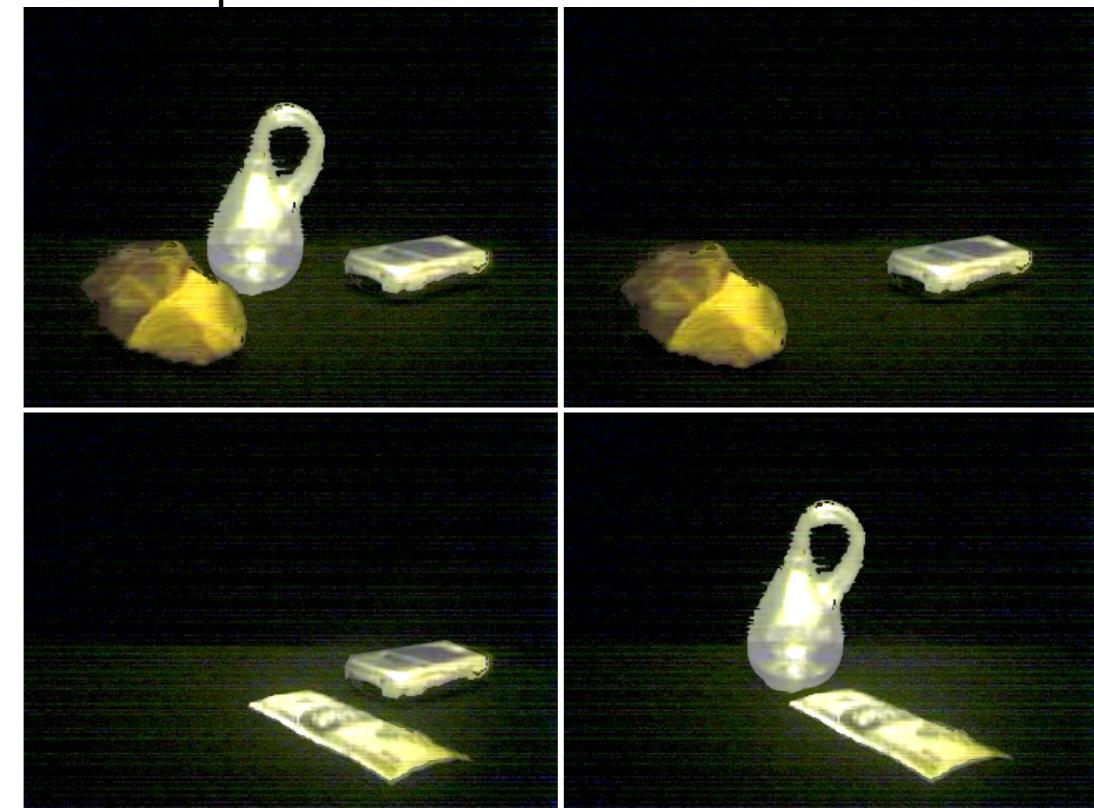
Create a new feature if it lowers the objective

**2.** Update feature means  $A \leftarrow (Z'Z)^{-1}Z'X$ 

# Griffiths & Ghahramani (2006) computer vision problem "tabletop data"



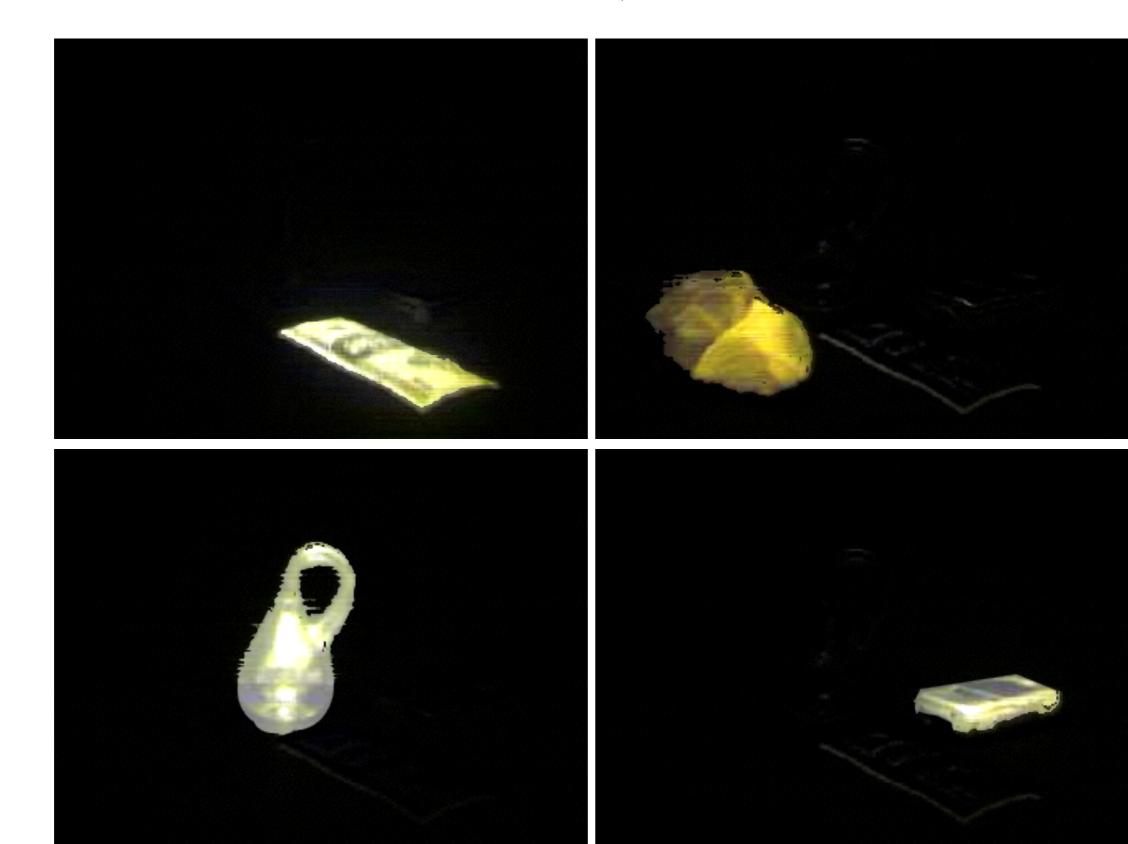
# Griffiths & Ghahramani (2006) computer vision problem "tabletop data"



#### BP-means features: table and four objects



#### BP-means features: table and four objects



Griffiths & Ghahramani (2006) computer vision problem "tabletop data"

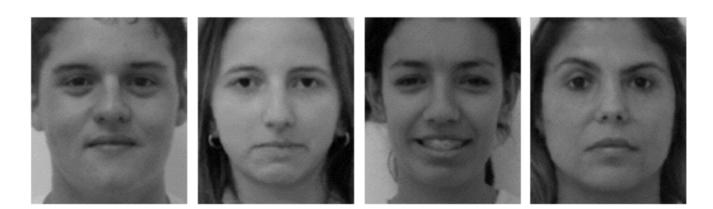
Bayesian posterior Gibbs sampler BP-means algorithm

8.5 \* 10<sup>3</sup> sec 0.36 sec Still faster by order of magnitude if restart 1000 times



#### Pre-aligned faces

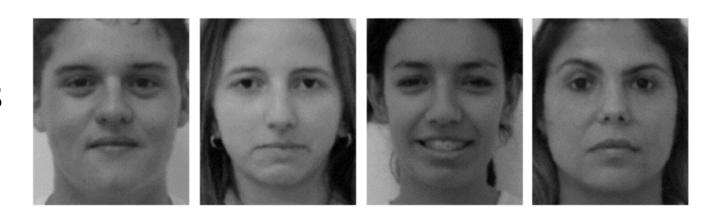
Samples





#### Pre-aligned faces

Samples



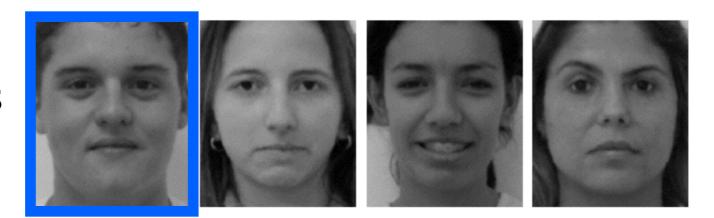
3 <u>features</u> (BP-means)



### Face data

#### Pre-aligned faces

Samples



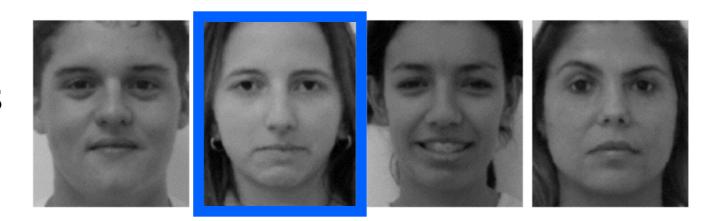
3 <u>features</u> (BP-means)





#### Pre-aligned faces

Samples





3 <u>features</u> (BP-means)



Samples

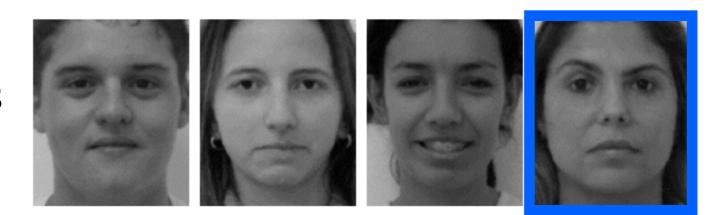


3 <u>features</u> (BP-means)





Samples

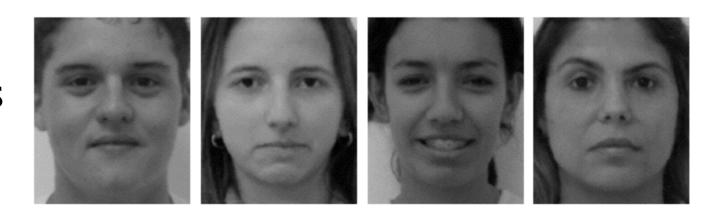


3 <u>features</u> (BP-means)





Samples

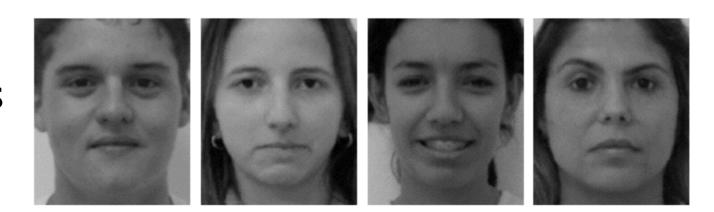


4 clusters (K-means, K=4)

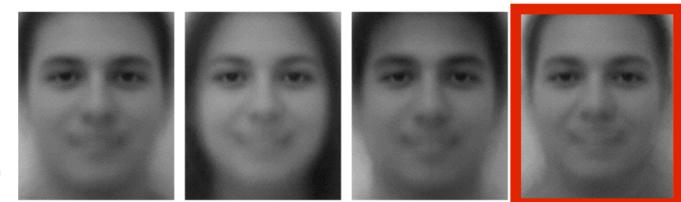




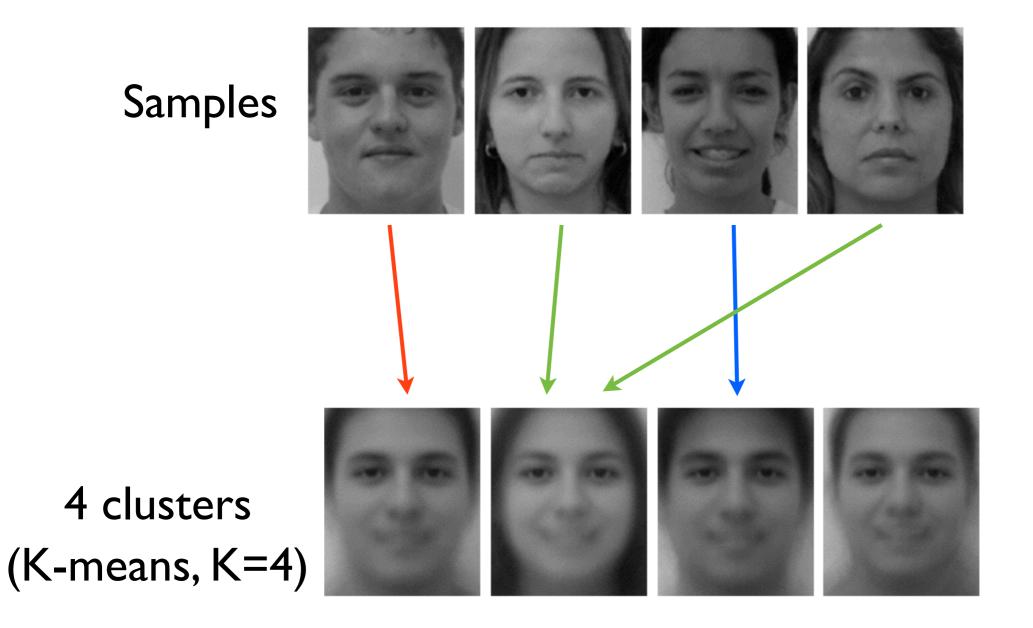
Samples



4 clusters (K-means, K=4)





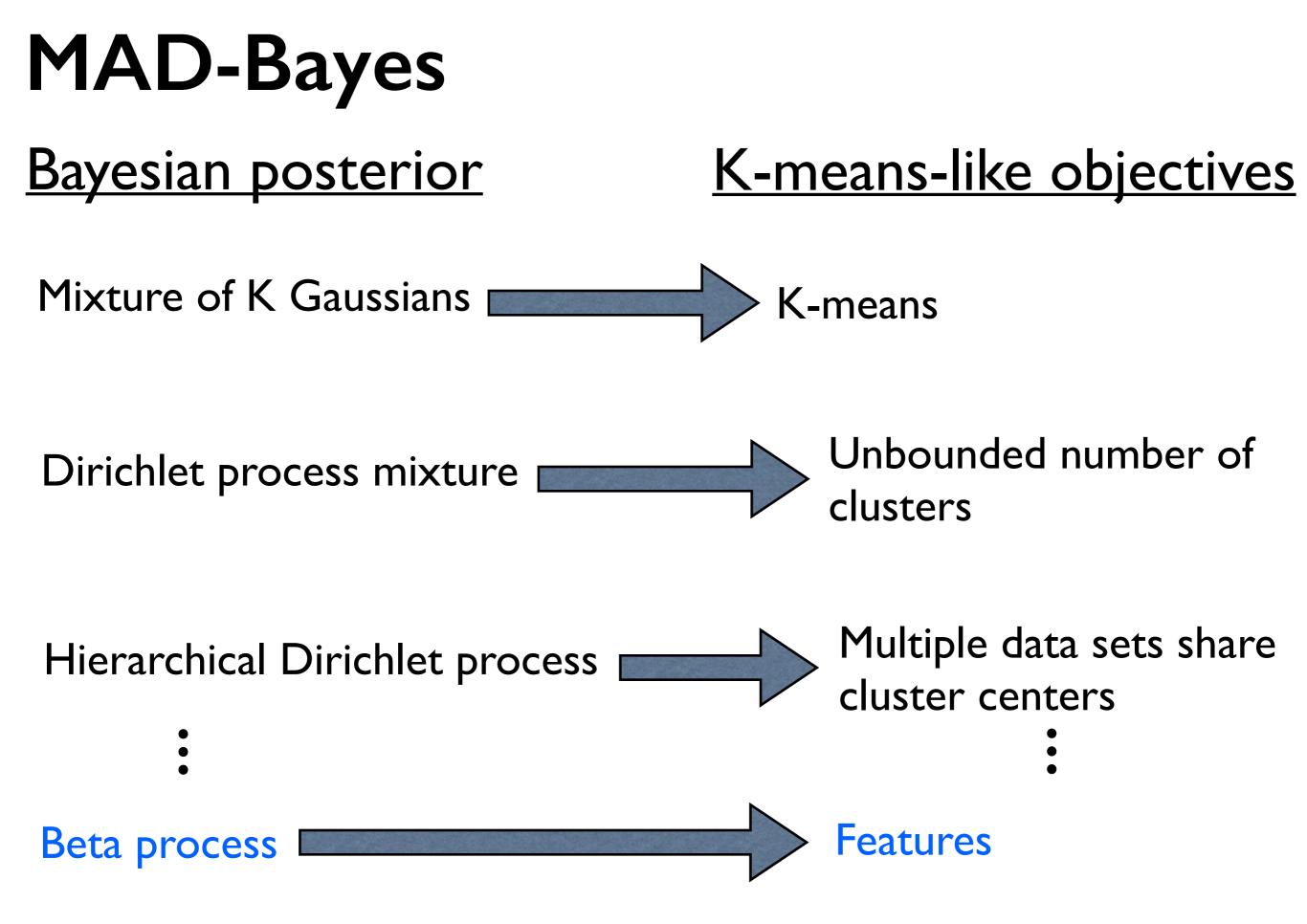


21

# **MAD-Bayes**

Parallelism and optimistic concurrency control

|                    | DP-means alg. | BP-means alg. |
|--------------------|---------------|---------------|
| # data points      | I34M          | 8M            |
| time per iteration | 5.5 min       | 4.3 min       |



# We provide new optimization objectives and regularizers

 We provide new optimization objectives and regularizers
 In fact, general means of obtaining more

We provide new optimization objectives and regularizers

- In fact, general means of obtaining more
- Straightforward, fast algorithms

## References

T. Broderick, B. Kulis, and M. I. Jordan. MAD-Bayes: MAP-based asymptotic derivations from Bayes. In *International Conference on Machine Learning*, 2013.

X. Pan, J. E. Gonzales, S. Jegelka, T. Broderick, and M. I. Jordan. Optimistic concurrency control for distributed unsupervised learning. In *Neural Information Processing Systems*, 2013.

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational Bayes. In *Neural Information Processing Systems*, 2013.

R. Giordano and T. Broderick. Linear response methods for accurate covariance estimates from mean field variational Bayes. In *Neural Information Processing Systems*, 2015.

## **Further References**

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In *Neural Information Processing Systems*, 2006.

N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. *Annals of Statistics*, 18(3):1259–1294, 1990.

J. F. C. Kingman. The representation of partition structures. *Journal of the London Mathematical Society*, 2(2):374, 1978.

B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In *International Conference on Machine Learning*, 2012.

J. Pitman. Exchangeable and partially exchangeable random partitions. *Probability Theory and Related Fields*, 102(2):145–158, 1995.

R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In *International Conference on Artificial Intelligence and Statistics*, 2007.

# **BP-means: Tabletop data**







[Griffiths, Ghahramani 2006]

# **BP-means: Tabletop data results**

K-means (K=4) cluster centers:



# **BP-means: Tabletop data results**

BP-means features: table and four objects

