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Abstract
We consider optimising bone neotissue growth in a 3D scaffold during dynamic perfusion
bioreactor culture. The goal is to choose design variables by optimising two conflicting
objectives: (i) maximising neotissue growth and (ii) minimising operating cost. Our con-
tribution is a novel extension of Bayesian multi-objective optimisation to the case of one
black-box (neotissue growth) and one analytical (operating cost) objective function, that
helps determine, within a reasonable amount of time, what design variables best manage
the trade-off between neotissue growth and operating cost. Our method is tested against
and outperforms the most common approach in literature, genetic algorithms, and shows
its important real-world applicability to problems that combine black-box models with
easy-to-quantify objectives like cost.
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1. Introduction

Bone tissue engineering (TE) develops methods for healing, improving or replacing dam-
aged bone tissue. Modern developments open up the possibilities of personalised health-
care, which is expected to improve the quality and cost-effectiveness of healthcare, as
it offers more personalised and targeted therapies (Fuentes-Garí et al., 2015). However,
quality and cost-effectiveness are often competing objectives, and a trade-off between the
two must be found to ensure the commercial viability of tissue-engineered products.

The application discussed in this paper is optimisation of design variables for bone neo-
tissue growth on a bioreactor scaffold, where we have two conflicting objectives; max-
imising neotissue growth while minimising operating cost. The first objective function
is an expensive-to-evaluate black box, modelled via a probabilistic surrogate model. The
second objective function is analytical and cheap to evaluate. In Sec. 3 we demonstrate
a method for finding solutions to this multi-objective optimisation (MOO) problem using
a novel extension of Bayesian MOO methods, and in Sec. 4 we compare this method to
a genetic algorithm (the most common approach in literature to solving MOO problems)
and show that our method performs better for a collection of test problems as well as for
the TE application.
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2. Background

The following sections describe (i) our multi-objective problem, (ii) the basics of Bayesian
optimisation, and (iii) different MOO strategies.

2.1. Objective Functions

In the process of neotissue growth in the scaffold during culture period, we are faced with
a multi-objective problem where we try to maximise the percentage of the scaffold filled
with neotissue (the filling) while minimising the amount of material (medium, growth
factors, operator handling) used by the bioreactor process (the cost). The filling objective
function is given by an in silico model (Guyot et al., 2015; Mehrian et al., 2017) that takes
two design variables as inputs: (i) the refreshment period r ∈ [12h,96h] for bioreactor
medium change, and (ii) the ratio a ∈ [0%, 100%] of the medium changed every r hours.

We assume the cost is given by the total amount of bioreactor medium used for a 504-hour
(21-day) experiment. The medium is changed a discrete number of times b504/rc, and
has an associated cost c` ≈ $0.50/mL, with V ≈ 10 mL of the medium in the system at
any time. Thus, the total cost of one experiment is c(r,a) = V · c` · (1+ b504/rc ·a). For
simplicity, the constant V · c` is ignored, and the cost simplifies to c(r,a) = 1+ b504/rc ·
a ∈ [1,43]. We compute ∂c/∂a exactly and approximate ∂c/∂ r by ignoring the floor
operator.

2.2. Bayesian Optimisation and Gaussian Processes

We begin by looking at an optimisation method for a single objective function f . Bayesian
optimisation (BO) is a global black-box optimisation method (Kushner, 1964), which is
useful for life science applications (see e.g. Ulmasov et al. (2016)). Function evaluations
are used to construct a Gaussian process (GP) model of the objective function. A GP is a
collection of random variables, any finite subset of which are jointly Gaussian distributed
(Rasmussen and Williams, 2006). We place a GP prior GP(µ(x),k(x,x′)) on the unknown
function f , where µ(·) and k(·, ·) is the mean and covariance function, respectively. The
choice of µ(·) and k(·, ·) fully specifies the GP prior.

The GP prior implies that the function values [f]i = f (xi) at points {xi} are jointly Gaus-
sian distributed with the function value f (x∗) at a query point x∗. Assume observations
y at points {xi} are made. GP regression uses Bayes’ theorem to compute the posterior
predictive distribution N ( f (x∗)|µ∗,σ2

∗ ), where µ∗ = µ(x∗)+k>∗ K−1(y− µµµ) and σ2
∗ =

k(x∗,x∗)−k>∗ K−1k∗, with, in turn, [µµµ]i = µ(xi), [K]i j = k(xi,x j) and [k∗]i = k(xi,x∗).

By maximising an acquisition function, which has a built-in trade-off between explo-
ration and exploitation, we compute an optimal choice for the next function evalua-
tion. BO often needs fewer function evaluations than many other optimisation methods.
Possibly the most commonly used acquisition functions for single-objective BO is ex-
pected improvement (Mockus et al., 1978) E[ymax− f (x∗)] = σ∗ (µ̃Φ(µ̃)+φ(µ̃)), where
µ̃ = (ymax−µ∗)/σ∗, ymax =maxy, φ is the zero-mean, unit variance Gaussian probability
density function and Φ is the corresponding cumulative distribution function.



Bayesian Multi-Objective Optimisation for Neotissue Engineering 3

2.3. Multi-Objective Optimisation

In MOO, the goal is to reach a compromise between multiple, conflicting objectives. As-
sume a D-dimensional variable space and n f conflicting objective functions fi : RD→ R,
where the goal is to find the input argminx{ fi(x)} that minimises the objective functions.

There are two distinctly different ways of finding an optimal trade-off between the ob-
jectives (Hwang and Masud, 1979): (i) scalarisation, where the trade-off is made a priori
by choosing an aggregated, scalarised function fs and weight coefficients {ωi}, e.g. the
weighted sum fs(x) = ∑ωi fi(x), and (ii) computing the Pareto frontier (PF), where the
trade-off is made a posteriori by selecting the input that yields the most satisfying Pareto-
optimal output. Pareto-optimality is a state in which the value of one objective function
cannot be improved without impairing the value of another.

Scalarisation is easy to employ, but introduces a new problem as the weight coefficients
have to be chosen a priori, often with incomplete understanding of how the system per-
forms. Additionally, an optimal solution for a specific set of weights yields no information
about other possible optimal solutions for different sets of weights. Weighted sum scalar-
isation also suffers from the limitation that it can only converge on trade-offs lying on
convex sections (where d2 f2/d f 2

1 > 0 for the case n f = 2) of the PF (Messac et al., 2000),
and if the entire PF is concave, only the extreme points at the boundaries can be found.

3. Method

We present a novel extension of the expected hyper-volume improvement (EHVI) ac-
quisition function EHI(x) (Emmerich et al., 2008). Our application has two conflicting
objectives: maximising filling (i.e. minimising negative filling) and minimising cost.

We assume that an approximated PF Pα = {r j} = {(r j,1,r j,2)}, j = 1, . . . ,np, is given,
with np being the number of non-dominated observations so far (see Fig. 1a). An obser-
vation r(1) = (r(1)1 ,r(1)2 ) dominates another observation r(2) = (r(2)1 ,r(2)2 ) if ∀k : r(1)k ≤ r(2)k

and ∃k : r(1)k < r(2)k . Given Pα , Emmerich et al. (2008) define the EHVI as:

EHI(x) =
∫

IV (y,Pα)p(y|x)dy , (1)

where IV (y,Pα) = Vol(Pα ∪y)−Vol(Pα) is the area improvement given point y (see
Fig. 1b), computed with respect to a user-defined reference point. Note that IV (y,Pα)= 0
if y is dominated by any point in Pα .

Cost f1(x) is deterministic, whereas filling f2(x) ∼N (µ2(x),σ2
2 (x)) is modelled with

a GP. Thus the probability of observing y = (y1,y2) is p(y|x) = δ (y1− f1(x))p(y2|x),
where δ (·) is the Dirac delta function, which lets us derive a novel, closed-form expres-
sion for EHI(x). For notational convenience, we will not write out the dependency on x
of f1, µ2 and σ2

2 .

We assume that Pα is sorted, i.e. r j,1 < r j+1,1 and r j,2 > ri+1,2 for all j = 1, . . . ,np,
and introduce surrogate points r0 and rnp+1 such that the available objective space is the
rectangle with corners in r0 and rnp+1. We divide the region below Pα into rectangles
Ci j defined by corners (ri,1,r j,2) and (ri+1,1,r j+1,2), as in Fig. 1c. The reference point for
calculating Vol(·) is (rnp+1,1,r0,2). Now we utilise the fact that one objective function is
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Figure 1: Illustrations of (a) an approximated PF Pα (line) given observations (dots), (b)
improvement (grey area) an observation y would yield to Pα , and (c) the region below
Pα divided into rectangles.

deterministic and that p(y|x) = 0 for all y1 6= f1, and find the integer index 0 ≤ h ≤ np
such that rh,1 < f1 ≤ rh+1,1. Given this, Eq. (1) can be rewritten as:

EHI(x) =
np

∑
j=h

∫ r j,1

r j+1,1

IV (( f1,y2),Pα)p(y2|x)dy2 . (2)

Since y ∈Ci j is in the region below Pα , it is not dominated but might instead dominate
some points in Pα , and so Vol(Pα ∪ y) = Vol

(
{r0, . . . ,ri,y,r j+1, . . . ,rnp+1}

)
. Now

define the area of the first n points in Pα as Vn = ∑
n
i=1(rnp+1,1− ri,1)(ri−1,2− ri,2), where

V0 = 0 and Vnp =Vnp+1 =Vol(Pα). We insert this into Eq. (2) and integrate out y2, which
yields the final expression:

EHI(x) =
np

∑
j=h

[(
Vh−Vj+1 + rh,2(rnp+1,1− f1)− r j+1,2(rnp+1,1− r j+1,1)

+µ2( f1− r j+1,1)
)

Φ−σ2( f1− r j+1,1)φ
]
,

(3)

where Φ = Φ

(
r j,2−µ2

σ2

)
−Φ

(
r j+1,2−µ2

σ2

)
and φ = φ

(
r j,2−µ2

σ2

)
− φ

(
r j+1,2−µ2

σ2

)
. The ex-

pression for the EHVI in Eq. (3) is easily differentiable with respect to f1, µ2 and σ2. The
objective functions are evaluated at argmaxxEHI(x) and Pα recomputed.

4. Results

We compare the performance of our novel method to a different commonly used MOO
method: genetic algorithms. Three different performance metrics are used: (i) the gen-
erational distance (GD) and (ii) maximum PF error (MPFE), which are measures of the
average and maximum Euclidean distance, respectively, between points in Pα to the true
PF Ptrue (Van Veldhuizen, 1999), and (iii) the volume ratio (VR) Vol(Pα)/Vol(Ptrue).
Good performance results in low GD and MPFE, and a VR close to 1.

We select three different multi-objective test problems: (a) the Fonzeca and Fleming
(1995) function for a two-dimensional input (concave PF), (b) the Schaffer (1984) two-
objective function (convex PF), and (c) the Kursawe (1991) function (discontinuous PF).
We also evaluate (d) the TE problem described in Sec. 2.1. Fig. 2 shows all of the PFs.
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Figure 2: PFs for test problems (a), (b) and (c), and for the TE problem (d).

The Bayesian MOO method is given 10 random initial observations. The chosen genetic
algorithm is the NGSA-III (Deb and Jain, 2014), which runs for 10 initial iterations. Both
optimisation methods then run for 50 (additional) iterations. In Table 1, we compare the
average performance (of 25 experiments) after 10, 25 and 50 iterations. We find that the
Bayesian method consistently performs better.

5. Discussion
We have shown that the Bayesian MOO method performs better than the genetic algorithm
for both the test problems and our TE application. This is unsurprising as the number of
design variables and iterations are low, and because we are able to exploit the combination
of black-box and analytical objective functions that occurs frequently in life sciences and
process engineering.

The computational time required to choose the next query point has not been taken into
account since our focus is on applications where evaluating the black-box function is
significantly more expensive than optimising for the next query point. Whereas genetic
algorithms can be preferable for applications with cheap function evaluations and higher
number of design variables, Bayesian methods’ maximal use of prior information and
previous observations give them an advantage for problems such as the TE application
discussed in this paper.

Table 1: Performance of the Bayesian method compared with the NSGA-III genetic algo-
rithm, after 10, 25 and 50 iterations. Bold font denotes best average performance.

GD MPFE VR
Iter. EHVI NSGA-III EHVI NSGA-III EHVI NSGA-III

Fonzeca and
Fleming (1995)

10 0.001 0.1163 0.1344 0.7137 0.8635 0.185
25 0.0005 0.0708 0.0488 0.5913 0.9511 0.3016
50 0.0004 0.0393 0.0244 0.4356 0.981 0.4933

Schaffer (1984)
10 0.0022 0.0742 0.5455 1.4463 0.9967 0.984
25 0.0013 0.031 0.2992 1.0601 0.9989 0.991
50 0.001 0.0064 0.1689 0.5782 0.9996 0.9973

Kursawe (1991)
10 0.0197 3.4157 1.4276 9.1451 0.9937 0.5247
25 0.0068 2.5024 0.9333 7.8127 0.9979 0.5834
50 0.0032 1.3879 0.6699 6.4637 0.9991 0.6596

TE problem
10 0.0764 0.1321 11.8454 13.6394 0.9877 0.9737
25 0.0314 0.0967 10.871 12.6811 0.9932 0.9802
50 0.0185 0.067 11.179 12.2367 0.9962 0.9854
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6. Conclusions
The novel Bayesian method outperforms competing MOO methods, for a diverse test set
and for our tissue engineering application. The results show that the Bayesian method
is highly applicable to real-world problems combining expensive black-box models with
easy-to-quantify objectives like cost.
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