
Learning deep dynamical models from
image pixels

Niklas Wahlström ∗ Thomas B. Schön ∗∗

Marc Peter Deisenroth ∗∗∗

∗Department of Electrical Engineering, Linköping University, Sweden,
(e-mail: nikwa@isy.liu.se)

∗∗Department of Information Technology, Uppsala University, Sweden,
(e-mail: thomas.schon@it.uu.se).

∗∗∗Department of Computing, Imperial College London, UK,
(e-mail: m.deisenroth@imperial.ac.uk)

Abstract: Modeling dynamical systems is important in many disciplines, such as control,
robotics, or neurotechnology. Commonly the state of these systems is not directly observed,
but only available through noisy and potentially high-dimensional observations. In these cases,
system identification, i.e., finding the measurement mapping and the transition mapping (system
dynamics) in latent space can be challenging. For linear system dynamics and measurement
mappings efficient solutions for system identification are available. However, in practical
applications, the linearity assumptions does not hold, requiring nonlinear system identification
techniques. If additionally the observations are high-dimensional (e.g., images), nonlinear system
identification is inherently hard. To address the problem of nonlinear system identification
from high-dimensional observations, we combine recent advances in deep learning and system
identification. In particular, we jointly learn a low-dimensional embedding of the observation by
means of deep auto-encoders and a predictive transition model in this low-dimensional space.
We demonstrate that our model enables learning good predictive models of dynamical systems
from pixel information only.

Keywords: Deep neural networks, system identification, nonlinear systems, low-dimensional
embedding, auto-encoder.

High-dimensional time series include video streams, elec-
troencephalography (EEG) and sensor network data. Dy-
namical models describing such data are desired for fore-
casting (prediction) and controller design, both of which
play an important role, e.g., in autonomous systems, ma-
chine translation, robotics and surveillance applications.
A key challenge is system identification, i.e., finding a
mathematical model of the dynamical system based on
the information provided by measurements from the un-
derlying system. In the context of state-space models this
includes finding two functional relationships between (a)
the states at different time steps (prediction/transition
model) and (b) states and corresponding measurements
(observation/measurement model). In the linear case, this
problem is well studied, and many standard techniques ex-
ist, e.g., subspace methods (Van Overschee and De Moor,
1996), expectation maximization (Shumway and Stoffer,
1982; Ghahramani, 1998; Gibson and Ninness, 2005) and
prediction-error methods (Ljung, 1999). However, in real-
istic and practical scenarios we require nonlinear system
identification techniques.

? This work was supported by the Swedish Foundation for Strategic
Research under the project Cooperative Localization and by the
Swedish Research Council under the project Probabilistic modeling
of dynamical systems (Contract number: 621-2013-5524). MPD was
supported by an Imperial College Junior Research Fellowship.

Learning nonlinear dynamical models is an inherently dif-
ficult problem, and it has been one of the most active
areas in system identification for the last decades (Ljung,
2010; Sjöberg et al., 1995). In recent years, sequential
Monte Carlo (SMC) methods have received attention for
identifying nonlinear state-space models (Schön et al.,
2011), see also the recent survey (Kantas et al., 2015).
While methods based on SMC are powerful, they are
also computationally expensive. Learning nonlinear dy-
namical models from very high-dimensional sensor data
is even more challenging. First, finding (nonlinear) func-
tional relationships in very high dimensions is hard (un-
identifiability, local optima, overfitting, etc.); second, the
amount of data required to find a good function approx-
imator is enormous. Fortunately, high-dimensional data
often possesses an intrinsic lower dimensionality. We will
exploit this property for system identification by finding a
low-dimensional representation of high-dimensional data
and learning predictive models in this low-dimensional
space. For this purpose, we need an automatic procedure
to find compact low-dimensional representations/features.
Doretto et al. (2003) implemented a subspace identifi-
cation routine to model dynamical textures from high-
dimensional pixel data. Whereas that method relies on a
linear dimensionality reduction method, we will consider
nonlinear mappings from the high-dimensional data to the
low-dimensional features.

The state of the art in learning parsimonious represen-
tations of high-dimensional data is currently defined by
deep learning architectures, such as deep neural net-
works (Hinton and Salakhutdinov, 2006), stacked/deep
auto-encoders (Vincent et al., 2008) and convolutional
neural networks (LeCun et al., 1998), all of which have
been successfully applied to image, text, speech and audio
data in commercial products, e.g., by Google, Amazon and
Facebook. Typically, these feature learning methods are
applied to static data sets, e.g., for image classification.
The auto-encoder gives explicit expressions of two gen-
erative mappings: 1) an encoder g−1 mapping the high-
dimensional data to the features, and 2) a decoder g
mapping the features to high-dimensional reconstructions.

In this paper, we combine feature/representation learning
and dynamical systems modeling to obtain good predictive
models for high-dimensional time series, e.g., videos. In
particular, we use deep auto-encoder neural networks for
automatically finding a compact low-dimensional repre-
sentation of an image. In this low-dimensional feature
space, we use a neural network for modeling the non-
linear system dynamics. An simplified illustration of our
approach is shown in Fig. 1. An encoder g−1 maps an
image yt−1 at time step t− 1 to a low-dimensional feature
zt−1. In this feature space, a prediction model l maps the
feature forward in time to zt. The decoder g can generate a
predicted image yt at the next time step. This framework
needs access to both the encoder g−1 and the decoder g,
which motivates our use of the auto-encoder as dimension-
ality reduction technique. Crucially, the embedding and
the predictive model in feature space are learned jointly.

The contributions of this paper are (a) a model for
learning a low-dimensional dynamical representation of
high-dimensional data, which can be used for long-term
predictions; (b) experimental evidence demonstrating that
joint learning of the parameters in the latent embedding
and in the predictive model in latent space can increase
the performance compared to separate training.

1. MODEL

We consider a dynamical system where control inputs are
denoted by u and observations are denoted by y. In this
paper, the observations are pixel information from images.
We assume that a low-dimensional latent variable z exists
that compactly represents the relevant properties of y.
Since we consider dynamical systems, a low-dimensional
representation z of a (static) image y is insufficient to
capture important dynamic information, such as velocities.
Thus, we introduce an additional latent variable x, the
state. In our case, the state xt contains features from
multiple time steps (e.g., t−1 and t) to capture velocity (or
higher-order) information. Therefore, our transition model
does not map features at time t−1 to time t (as illustrated
in Fig. 1), but the transition function f maps states xt−1
and control inputs ut−1 to states xt. The full dynamical
system is given as the state-space model

xt+1 = f(xt, ut; θ) + wt(θ), (1a)

zt = h(xt; θ) + vt(θ), (1b)

yt = g(zt; θ) + et(θ), (1c)

where each measurement yt can be described by a low-
dimensional feature representation zt (1c). These features

are in turn modeled with a low-dimensional state-space
model in (1a) and (1b), where the state xt contains the
full information about the state of the system at time
instant t, see also Fig. 2 (left). Here wt(θ), vt(θ) and
et(θ) are sequences of independent random variables and
θ are the model parameters. The control inputs ut will be
important in controller design, which is further elaborated
upon in Wahlström et al. (2015).

1.1 Approximate prediction model

To identify parameters in dynamical systems, the predic-
tion-error method will be used, which requires a prediction
model. In general, it is difficult to derive a prediction model
based on the nonlinear state-space model (1), and a closed-
form expression for the prediction is only available in a few
special cases (Ljung, 1999). However, by approximating
the optimal solution, a nonlinear autoregressive exogenous
model (NARX) (Ljung, 1999) can be used

ẑt|t−1(θM) = l(zt−1, ut−1, . . . , zt−n, ut−n; θM), (2)

where l is a nonlinear function, in our case a neural net-
work and θM is the corresponding model parameters. The
model parameters in the nonlinear function are normally
estimated by minimizing the sum of the prediction errors
‖zt− ẑt|t−1(θM)‖. However, as we are interested in a good
predictive performance for the high-dimensional data y
rather than for the features z, we transform the predictions
back to the high-dimensional space and obtain a prediction
ŷt|t−1 = g(ẑt|t−1; θD), which we use in our error measure.

An additional complication is that we do not have access to
the features zt. Therefore, before training, the past values
of the time series have to be replaced with their feature
representation z = g−1(y; θE), which we compute from the
pixel information y. Here, g−1 is an approximate inverse of
g, which will be described in more detail the next section.
This gives the final prediction model

ŷt|t−1(θE, θD, θM) = g(ẑt|t−1(θE, θM); θD), (3a)

ẑt|t−1(θE, θM) = l(zt−1(θE), ut−1, . . . , zt−n(θE), ut−n; θM),

zt(θE) = g−1(yt; θE), (3b)

which is also illustrated in Fig. 2 (right). The correspond-
ing prediction error will be

εPt (θE, θD, θM) = yt − ŷt|t−1(θE, θD, θM). (4)

1.2 Auto-encoder

We use a deep auto-encoder neural network to parameter-
ize the feature mapping and its inverse. It consists of a
deep encoder network g−1 and a deep decoder network g.
Each layer k of the encoder neural network g−1 computes

y
(k+1)
t = σ(Aky

(k)
t + bk), where σ is an activation function

and Ak and bk are free parameters. The control input to

the first layer is the image, i.e., y
(1)
t = yt. The last layer

is the low-dimensional feature representation of the image
zt(θE) = g−1(yt; θE), where θE = [. . . , Ak, bk, . . .] are the
parameters of all neural network layers. The decoder g
consists of the same number of layers in reverse order, see
Fig. 3, and can be considered an approximate inverse of
the encoder g, such that ŷt|t(θE, θD) ≈ yt, where

ŷt|t(θE, θD) = g(g−1(yt; θE); θD) (5)

Fig. 1. Combination of deep learning architectures for feature learning and prediction models in feature space. A camera
observes a robot approaching an object. A good low-dimensional feature representation of an image is important
for learning a predictive model if the camera is the only sensor available.

xt−1 xt· · ·

· · ·

· · ·

zt−1 zt

yt−1 yt

ut−1

High-dim.
data

Features

Hidden
state

Control
inputs

f

h

g

h

g

ut−n ut−1

zt−n zt−1 ẑt|t−1

yt−n yt−1 ŷt|t−1
High-dim.

data

Features

Control
inputs

l

g−1g−1 g

General probabilistic model Approximate prediction model

Fig. 2. Left - The general graphical model: Each data point yt has a low-dimensional representation zt, which is modeled
using a state-space model with hidden state xt and control input ut. Right - The approximate prediction model:
The predicted feature ẑt|t−1 is a function of the n past features zt−n to zt−1 and n past control inputs ut−n to

ut−1. Each of the features zt−n to zt−1 is computed from high-dimensional data yt−n to yt−1 via the encoder g−1.
The predicted feature ẑt|t−1 is mapped to predicted high-dimensional data via the decoder g.

...

...
...

...

...

y1,t

y2,t

y3,t

yM,t

z1,t

zm,t

ŷ1,t|t

ŷ2,t|t

ŷ3,t|t

ŷM,t|t

Input layer
(high-dim. data)

Hidden layer
(feature)

Output layer
(reconstructed)

︸ ︷︷ ︸
Encoder g−1

︸ ︷︷ ︸
Decoder g

Fig. 3. An auto-encoder consisting of an encoder g−1 and
a decoder g. The original image yt = [y1,t, · · · , yM,t]

T

is mapped into its low-dimensional representation
zt = [z1,t, · · · , zm,t]T = g−1(yt) with the encoder,
and then back to a high-dimensional representation
ŷt|t−1 = g(ẑt|t−1) by the decoder g, where M � m.

is the reconstructed version of yt. The encoder and decoder
are trained jointly to minimize the reconstruction error

εRt (θE, θD) = yt − ŷt|t(θE, θD), (6)

and the parameters θD, θE of g and g−1, respectively, can
be coupled to constrain the solution to some degree (Vin-
cent et al., 2008).

The auto-encoder suits our system identification problem
well, since it provides an explicit expression of both the
mapping g as well as its approximate inverse g−1, which
we need for the predictions in (3a).

2. TRAINING

To summarize, our model contains the following free pa-
rameters: the parameters for the encoder θE, the param-
eters for the decoder θD and the parameters for the pre-
diction model θM. To train the model, we employ two cost
functions, the sum of the prediction errors (4),

VP(θE, θD, θM) =
∑N

t=1
‖εPt (θE, θD, θM)‖2, (7a)

and the sum of the reconstruction errors (6),

VR(θE, θD) =
∑N

t=1
‖εRt (θE, θD)‖2. (7b)

Generally, there are two ways of finding the model param-
eters: (i) separate training and (ii) joint training of the
auto-encoder and the prediction model, both of which are
explained below.

2.1 Separate training

Normally when features are used for learning dynamical
models, they are first extracted from the data in a pre-
processing step. In a second step the prediction model
is estimated based on these features. In our setting, this
corresponds to sequentially training the model using two
cost functions (7a)–(7b): We first learn a compact feature
representation by minimizing the reconstruction error(

θ̂E, θ̂D
)
∈ arg min

θE,θD

VR(θE, θD), (8a)

and, subsequently, train the prediction model by minimiz-
ing the prediction error

θ̂M = arg min
θM

VP(θ̂E, θ̂D, θM), (8b)

with fixed auto-encoder parameters θ̂E, θ̂D. The gradients
of these cost functions with respect to the model param-
eters can be computed efficiently by back-propagation.
The cost functions are then minimized by the BFGS algo-
rithm (Nocedal and Wright, 2006).

2.2 Joint training

An alternative to separate training is to minimize the
reconstruction error and the prediction error jointly by
considering the optimization problem(
θ̂E, θ̂D, θ̂M

)
=arg min
θE,θD,θM

(VR(θE, θD)+VP(θE, θD, θM)) , (9)

where we jointly optimize the free parameters in both the
auto-encoder θE, θD and the prediction model θM. Again,
back-propagation is used for computing the gradients of
this cost function. Note that in (9) it is crucial to include
not only the prediction error VP, but also the reconstruc-
tion error VR. Without this term the multi-step ahead
prediction performance will decrease because predicted
features are not consistent with features achieved from the
encoder. The multi-step ahead predictive performance is
crucial to design a controller for this system (Wahlström
et al., 2015).

2.3 Initialization

With a linear activation function the auto-encoder and
PCA are identical Bourlard and Kamp (1988), which we
exploit to initialize the parameters of the auto-encoder:
The auto-encoder network is unfolded, each pair of layers
in the encoder and the decoder are combined, and the
corresponding PCA solution is computed for each of these
pairs. We start with high-dimensional image data at the
top layer and use the principal components from that pair
of layers as input to the next pair of layers. Thereby, we
recursively compute a good initialization for all parame-
ters of the auto-encoder. Similar pre-training routines are
found in Hinton and Salakhutdinov (2006), in which a
restricted Boltzmann machine is used instead of PCA.

3. RESULTS

We report results on identification of the nonlinear dynam-
ics of a planar pendulum (1-link robot arm) and the torque
as control input. In this example, we learn the dynamics

solely based on pixel information. Each pixel y
(i)
t is a

component of the measurement yt = [y
(1)
t , . . . , y

(M)
t]T and

assumes a continuous gray-value in [0, 1]. In (Wahlström
et al., 2015) an model predictive controller is used to
compute the control inputs, whereas we in this work use
random control inputs.

We simulated 500 frames of a pendulum moving in a plane
with 51 × 51 = 2 601 pixels in each frame. To speed up
training, the image input has been reduced to dim(yt) =
50 prior to model learning (system identification) using
PCA. With these 50 dimensional inputs, four layers have
been used for the encoder g−1 as well as the decoder
g with dimension 50-25-12-6-2. Hence, the features have
dimension dim(xt) = 2. The order of the dynamics was
chosen as n = 2 to capture velocity information. For the

yt+0 yt+1 yt+2 yt+3

True video frames

yt+4 yt+5 yt+6 yt+7 yt+8

ŷt+0|t ŷt+1|t ŷt+2|t ŷt+3|t

Predicted video frames − joint training

ŷt+4|t ŷt+5|t ŷt+6|t ŷt+7|t ŷt+8|t

ŷt+0|t ŷt+1|t ŷt+2|t ŷt+3|t

Predicted video frames − separate training

ŷt+4|t ŷt+5|t ŷt+6|t ŷt+7|t ŷt+8|t

Fig. 4. A typical image sequence and corresponding pre-
diction results (validation data), computed according
to (10). The top rows show nine consecutive ground
truth image frames from time instant t to t+ 8. The
second and the third rows display the corresponding
long-term ahead predictions based on measured im-
ages up to time t for both joint (center) and separate
training (bottom) of the model parameters.

prediction model l we used a two-layer neural network with
a 6-4-2 architecture.

We evaluate the performance in terms of long-term pre-
dictions where we assumed that a sequence of open-loop
torques was given. These predictions are constructed by
concatenating multiple 1-step ahead predictions. More
precisely, the p-step ahead prediction ŷt+p|t = g(ẑt+p|t)
is computed iteratively as

ẑt+1|t = l(ẑt|t, ut, . . .), (10a)

. . .

ẑt+p|t = l(ẑt+p−1|t, ut+p−1|t, . . .), (10b)

where ẑt|t = g−1(yt) are the image features at time t.

The predictive performance on an exemplary image se-
quence of the validation data of our system identification
models is illustrated in Fig. 4. The top row shows the
ground truth images, the center row shows the predictions
based on a model using joint training (9), the bottom
row shows the corresponding predictions of a model where
the auto-encoder and the predictive model were trained
sequentially according to (8). The model that jointly learns
all parameters yields a good predictive performance for
both one-step ahead prediction and multiple-step ahead
prediction. Compared to this, the predictive performance
of the model that learns features and the dynamics sepa-
rately is worse. Although the auto-encoder does a perfect
job (left-most frame, 0-step ahead prediction), already the
(reconstructed) one-step ahead prediction is dissimilar to
the ground-truth image. This is also shown in Table 1
where the reconstruction error is equally good for both
models, but for the prediction error we manage to get
a better value using joint training than using separate
training. Let us have a closer look at the model based on
separate training: As the auto-encoder performs well, the
learned transition model is the cause of bad predictive per-
formance. We believe that the auto-encoder found a good
feature representation for reconstruction, but this repre-
sentation was not ideal for learning a transition model.

Joint learning Separate learning

z1

z
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z1

z
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. The feature space z ∈ [−1, 1] × [−1, 1] is divided into 9 × 9 grid points. For each grid point the decoded high-
dimensional image is displayed. The features corresponding to the training (red) and validation (yellow) data are
displayed. Feature spaces found by joint (left) and separate (right) parameter learning.

Table 1. Prediction error VP and reconstruc-
tion error VR for separate and joint training.

Training VP VR

Joint training (9) 0.0011 0.0011
Separate training (8) 0.0051 0.0011

Fig. 5 displays the “decoded” images corresponding to the
latent representations using joint and separate training,
respectively. After joint training the relevant features line
up in a circular shape, such that a relatively simple
prediction model is sufficient to describe the dynamics.
However, for the separate training such an advantageous
structure of the feature values are not obtained. Separate
training extracts the low-dimensional features without
context, i.e., the knowledge that these features constitute
a time series.

In this particular data set, the data points clearly reside
on one-dimensional manifold, encoded by the pendulum
angle. However, a one-dimensional feature space would be
insufficient since this one-dimensional manifold is cyclic,
see Fig. 5, compare also with the 2π period of an angle.
Therefore, we have used a two-dimensional latent space.

To analyze the long-term predictive performance of both
training methods, we define the fitting quality as

FITp = 1−
√

1
NM

∑N

t=1
‖yt − ŷt|t−p‖2. (11)

As a reference, the predictive performance is compared
with a baseline prediction using the previous frame at time
step t− p as the prediction at t as ŷt|t−p = yt−p.

The result for a prediction horizon ranging from p = 0 to
p = 8 is displayed in Fig. 6. Clearly, joint learning (blue)
outperforms separate learning in terms of predictive per-
formance for prediction horizons greater than 0. Even by
using the last available image frame for prediction (const.
pred., brown), we obtain a better fit than the model that
learns its parameter sequentially (red). This is due to the
fact that the dynamical model often predicts frames, which

0 2 4 6 8

90

95

100

Prediction horizon p

F
it

(%
)

Joint learning

Separate learning

Const. pred. ŷt|t−p = yt−p

Linear subspace identification

Fig. 6. Fitting quality (11) for joint and separate learning
of features and dynamics for different prediction hori-
zons p. The fit is compared with the naive prediction
ŷt|t−p = yt−p, where the most recent image is used
and a linear subspace-ID method.

do not correspond to any real pendulum, see Fig. 4, leading
to a poor fit. Furthermore, joint training gives better pre-
dictions than the naive constant prediction. The predictive
performance slightly degrades when the prediction hori-
zon p increases, which is to be expected. Finally we also
compare with the subspace identification method (Van
Overschee and De Moor, 1996) (black, starred), which is
restricted to linear models. Such a restriction does not
capture the nonlinear, embedded features and, hence, the
predictive performance is sub-optimal.

4. DISCUSSION

From a system identification point of view, the prediction-
error method, where we minimize the one-step ahead pre-
diction error, is fairly standard. However, in a control or
reinforcement learning setting (Wahlström et al., 2015),
we are primarily interested in good predictive performance
on a longer horizon to do planning. Thus, we have also
investigated to include a multi-step ahead prediction error

in the cost (4). These models achieved similar perfor-
mance, but no significantly better prediction error could
be observed either for one-step ahead predictions nor for
longer prediction horizons.

Instead of computing the prediction errors in image space,
see (4), we can compute errors directly in feature space.
However, this will require an extra penalty term to avoid
trivial solutions that map everything to zero, resulting in
a more complicated and less intuitive cost function.

Although joint learning aims at finding a feature represen-
tation that is suitable for modeling the low-dimensional
dynamical behavior, the pre-training initialization as de-
scribed in Section 2.3 does not. If this pre-training yields
feature values far from “useful” ones for modeling the
dynamics, joint training might not find a good model.

The autoencoder structure has to be chosen before the
actual training starts. Especially the dimension of the
latent state and the order of the dynamics have to be
chosen by the user, which requires some prior knowledge
about the system to be identified. In our examples, we
chose the latent dimensionality based on insights about
the true dynamics of the problem. In general, a model
selection procedure will be preferable to find both a good
network structure and a good latent dimensionality.

5. CONCLUSIONS AND FUTURE WORK

We have presented an approach to nonlinear system identi-
fication from high-dimensional time series data. Our model
combines techniques from both the system identification
and the machine learning community. In particular, we
used a deep auto-encoder for finding low-dimensional fea-
tures from high-dimensional data, and a nonlinear autore-
gressive exogenous model was used to describe the low-
dimensional dynamics. The framework has been applied
to a identifying the dynamics of a planar pendulum from
image pixels. The proposed model exhibits good long-term
predictive performance, and a major advantage has been
identified by training the auto-encoder and the dynamical
model jointly compared to training them sequentially.

Possible directions for future work include (a) robustify
learning by using denoising autoencoders (Vincent et al.,
2008) to deal with noisy real-world data; (b) apply convo-
lutional neural networks, which are often more suitable for
images; (c) continue the work in Wahlström et al. (2015)
using the model for learning controllers purely based on
pixel information; (d) investigate Sequential Monte Carlo
methods for systematic treatments of such nonlinear prob-
abilistic models, which are required in a reinforcement
learning setting.

In a setting where we make decisions based on predic-
tions, such as optimal control or model-based reinforce-
ment learning, a probabilistic model is often needed for
robust decision making as we need to account for model
errors (Schneider, 1997; Deisenroth et al., 2015). An exten-
sion of our model to a probabilistic setting is non-trivial
since random variables have to be transformed through
the neural networks, and their exact probability density
functions will be intractable to compute. Sampling-based
approaches or deterministic approximate inference are two
options that we will investigate in future.

REFERENCES

Bourlard, H. and Kamp, Y. (1988). Auto-association by
multilayer perceptrons and singular value decomposi-
tion. Biological cybernetics, 59(4-5), 291–294.

Deisenroth, M.P., Fox, D., and Rasmussen, C.E. (2015).
Gaussian processes for data-efficient learning in robotics
and control. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 37(2), 408–423.

Doretto, G., Chiuso, A., Wu, Y.N., and Soatto, S. (2003).
Dynamic textures. International Journal of Computer
Vision, 51(2), 91–109.

Ghahramani, Z. (1998). Learning dynamic bayesian net-
works. In C. Giles and M. Gori (eds.), Adaptive Process-
ing of Sequences and Data Structures, volume 1387 of
Lecture Notes in Computer Science, 168–197. Springer.

Gibson, S. and Ninness, B. (2005). Robust maximum-
likelihood estimation of multivariable dynamic systems.
Automatica, 41(10), 1667–1682.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the
dimensionality of data with neural networks. Science,
313, 504–507.

Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J., and
Chopin, N. (2015). On particle methods for parameter
estimation in state-space models. Statistical Science.
Accepted for publication.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11), 2278–2324.

Ljung, L. (1999). System identification, Theory for the
user. System sciences series. Prentice Hall, Upper Saddle
River, NJ, USA, second edition.

Ljung, L. (2010). Perspectives on system identification.
Annual Reviews in Control, 34(1), 1–12.

Nocedal, J. and Wright, S.J. (2006). Numerical Optimiza-
tion. Springer Series in Operations Research. New York,
USA, 2 edition.

Schneider, J.G. (1997). Exploiting model uncertainty
estimates for safe dynamic control learning. In NIPS.

Schön, T.B., Wills, A., and Ninness, B. (2011). System
identification of nonlinear state-space models. Automat-
ica, 47(1), 39–49.

Shumway, R.H. and Stoffer, D.S. (1982). An approach
to time series smoothing and forecasting using the EM
algorithm. Journal of Time Series Analysis, 3(4), 253–
264.

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon,
B., Glorennec, P.Y., Hjalmarsson, H., and Juditsky,
A. (1995). Nonlinear black-box modeling in system
identification: a unified overview. Automatica, 31(12),
1691–1724.

Van Overschee, P. and De Moor, B. (1996). Subspace iden-
tification for linear systems - theory, implementation,
applications. Kluwer Academic Publishers.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol,
P.A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning (ICML).
Helsinki, Finland.

Wahlström, N., Schön, T.B., and Deisenroth, M.P. (2015).
From pixels to torques: Policy learning with deep dy-
namical models. Preprint, arXiv:1502.02251.

