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Problem Setting
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Objective

For a set of N observations yi “ f pxiq ` ε, ε „ N
`

0, σ2
ε

˘

, find a
distribution over functions pp f |X, yq that explains the data

GP is a good solution to this probabilistic regression problem
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GP Training via Marginal Likelihood Maximization

GP Training
Maximize the evidence/marginal likelihood ppy|X, θqwith respect to
the hyper-parameters θ: θ˚ P arg maxθ log ppy|X, θq

log ppy|X, θq “ ´1
2 yJK´1y ´ 1

2 log |K| ` const

§ Automatic trade-off between data fit and model complexity

§ Gradient-based optimization possible:

B log ppy|X, θq

Bθ
“ 1

2 yJK´1 BK
Bθ

K´1y´ 1
2 tr

`

K´1 BK
Bθ

˘

§ Computational complexity: OpN3q for |K| and K´1
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GP Predictions

At a test point x˚ the predictive (posterior) distribution is Gaussian:

pp f px˚q|x˚, X, y, θq “ N
`

f˚ |m˚, σ2
˚

˘

m˚ “ kpX, x˚qJK´1y

σ2
˚ “ kpx˚, x˚q ´ kpX, x˚qJK´1kpX, x˚q

When you cache K´1 and K´1y after training, then

§ The mean prediction can be computed in OpNq
§ The variance prediction can be computed in OpN2q

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 5



GP Predictions

At a test point x˚ the predictive (posterior) distribution is Gaussian:

pp f px˚q|x˚, X, y, θq “ N
`

f˚ |m˚, σ2
˚

˘

m˚ “ kpX, x˚qJK´1y

σ2
˚ “ kpx˚, x˚q ´ kpX, x˚qJK´1kpX, x˚q

When you cache K´1 and K´1y after training, then

§ The mean prediction can be computed in OpNq
§ The variance prediction can be computed in OpN2q

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 5



Application Areas

§ Bayesian Optimization (Experimental Design)
Model unknown utility functions with GPs

§ Reinforcement Learning and Robotics
Model value functions and/or dynamics with GPs

§ Data visualization
Nonlinear dimensionality reduction (GP-LVM)
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Limitations of Gaussian Processes

Computational and memory complexity

§ Training scales in OpN3q

§ Prediction (variances) scales in OpN2q

§ Memory requirement: OpND` N2q

Practical limit N « 10, 000
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GP Factor Graph

f(x1) f(xN ) f∗
1 f∗

L

Training data Test data

f(u1) f(uM )

Inducing function values Training function values fi

§ Probabilistic graphical model (factor graph) of a GP
§ All function values are jointly Gaussian distributed (e.g., training

and test function values)

§ GP prior

pp f , f˚q “ N
˜«

0
0

ff

,

«

K f f K f˚

K˚ f K˚˚

ff¸
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Inducing Variables

f(x1) f(xN ) f∗
1 f∗

L

Training data Test data

f(u1) f(uM )

Inducing function values Training function values fi

Hypothetical function values uj

§ Introduce inducing function values fu

“Hypothetical” function values

§ All function values are still jointly Gaussian distributed (e.g.,
training, test and inducing function values)

§ Approach: “Compress” real function values into inducing
function values
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Central Approximation Scheme

f(x1) f(xN ) f∗
1 f∗

L

Training data Test data

f(u1) f(uM )

Inducing function values

§ Approximation: Training and test set are conditionally
independent given the inducing function values: f KK f˚| fu

§ Then, the effective GP prior is

qp f , f˚q “
ż

pp f | fuqpp f˚| fuqpp fuqd fu “ N

¨

˝

«

0
0

ff

,

»

–

K f f Q f˚

Q˚ f K˚˚

fi

fl

˛

‚ ,

Q˚ f :“ K˚ fu K´1
fu fu

K fu f Nyström approximation
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FI(T)C Sparse Approximation

f(x1) f(xN ) f∗
1 f∗

L

Training data Test data

f(u1) f(uM )

Inducing function values

§ Assume that training (and test sets) are
fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

§ Effective GP prior with this approximation

qp f , f˚q “ N

¨

˝

«

0
0

ff

,

»

–

Q f f ´ diagpQ f f ´K f f q Q f˚

Q˚ f K˚˚

fi

fl

˛

‚

§ Q˚˚ ´ diagpQ˚˚ ´K˚˚q can be used instead of K˚˚ FIC

§ Training: OpNM2q, Prediction: OpM2q
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Inducing Inputs

§ FI(T)C sparse approximation exploits inducing function values
f puiq, where ui are the corresponding inputs

§ These inputs are unknown a priori Find “optimal” ones

§ Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard
hyper-parameters):

u˚1:M P arg max
u1:M

qFITCpy|X, u1:M, θq

§ Intuitively: The marginal likelihood is not only parameterized by
the hyper-parameters θ, but also by the inducing inputs u1:M.

§ End up with a high-dimensional non-convex optimization
problem with MD additional parameters
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FITC Example

Figure from Ed Snelson

§ Pink: Original data

§ Red crosses: Initialization of
inducing inputs

§ Blue crosses: Location of inducing
inputs after optimization

§ Efficient compression of the original data set
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Summary Sparse Gaussian Processes

§ Sparse approximations typically approximate a GP with N data
points by a model with M ! N data points

§ Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

§ Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

§ Computational complexity: OpM3q or OpNM2q for training

§ Practical limit M ď 104. Often: M P Op102q in the case of
inducing variables

§ If we set M “ N{100, i.e., each inducing function value
summarizes 100 real function values, our practical limit is
N P Op106q
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Distributed Gaussian Processes

Joint work with Jun Wei Ng
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An Orthogonal Approximation: Distributed GPs

−1

−1 −1
−1
−1
−1

=

Standard GP

Data set Kernel
matrix

Distributed GP

GP GP GP GP

O(N 3)

O(MP 3)

§ Randomly split the full data set into M chunks

§ Place M independent GP models (experts) on these small chunks

§ Independent computations can be distributed

§ Block-diagonal approximation of kernel matrix K

§ Combine independent computations to an overall result
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Training the Distributed GP

§ Split data set of size N into M chunks of size P

§ Independence of experts Factorization of marginal likelihood:

log ppy|X, θq «
ÿM

k“1
log pkpypkq|Xpkq, θq

§ Distributed optimization and training straightforward

§ Computational complexity: OpMP3q [instead of OpN3q]
But distributed over many machines

§ Memory footprint: OpMP2 ` NDq [instead of OpN2 ` NDq]
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Empirical Training Time
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§ NLML is proportional to training time

§ Full GP (16K training points) « sparse GP (50K training points)
« distributed GP (16M training points)

Push practical limit by order(s) of magnitude
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Practical Training Times

§ Training* with N “ 106, D “ 1 on a laptop: « 10–30 min

§ Training* with N “ 5ˆ 106, D “ 8 on a workstation: « 4 hours

*: Maximize the marginal likelihood, stop when converged**

**: Convergence often after 30–80 line searches***

***: Line search « 2–3 evaluations of marginal likelihood and
its gradient (usually OpN3q)
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Predictions with the Distributed GP

µ, σ

§ Prediction of each GP expert is Gaussian N
`

µi, σ2
i

˘

§ How to combine them to an overall prediction N
`

µ, σ2
˘

?

Product-of-GP-experts

§ PoE (product of experts; Ng & Deisenroth, 2014)

§ gPoE (generalized product of experts; Cao & Fleet, 2014)

§ BCM (Bayesian Committee Machine; Tresp, 2000)

§ rBCM (robust BCM; Deisenroth & Ng, 2015)
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Objectives

µ, σ

µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

Figure: Two computational graphs

§ Scale to large data sets 3

§ Good approximation of full GP (“ground truth”)

§ Predictions independent of computational graph
Runs on heterogeneous computing infrastructures (laptop,

cluster, ...)

§ Reasonable predictive variances
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Running Example

Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions
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Product of GP Experts

§ Prediction model (independent predictors):

pp f˚|x˚,Dq9
M
ź

k“1

pkp f˚|x˚,Dpkqq ,

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision (inverse variance) and mean:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

µ
poe
˚ “ pσ

poe
˚ q2

ÿ

k
σ´2

k px˚qµkpx˚q
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Computational Graph

GP Experts

PoE

PoE

Prediction:

pp f˚|x˚,Dq9
M
ź

k“1

pkp f˚|x˚,Dpkqq

Multiplication is associative: a ˚ b ˚ c ˚ d “ pa ˚ bq ˚ pc ˚ dq

M
ź

k“1

pkp f˚|Dpkqq “
L
ź

k“1

Lk
ź

i“1

pkip f˚|Dpkiqq ,
ÿ

k

Lk “ M

Independent of computational graph 3
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Product of GP Experts

§ Unreasonable variances for M ą 1:

pσ
poe
˚ q´2 “

ÿ

k
σ´2

k px˚q

§ The more experts the more certain the prediction, even if every
expert itself is very uncertain 7 Cannot fall back to the prior
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Generalized Product of GP Experts

§ Weight the responsiblity of each expert in PoE with βk

§ Prediction model (independent predictors):

pp f˚|x˚,Dq9
M
ź

k“1

p
βk

k p f˚|x˚,Dpkqq

pkp f˚|x˚,Dpkqq “ N
`

f˚ | µkpx˚q, σ2
k px˚q

˘

§ Predictive precision and mean:

pσ
gpoe
˚ q´2 “

ÿ

k
βkσ´2

k px˚q

µ
gpoe
˚ “ pσ

gpoe
˚ q2

ÿ

k
βkσ´2

k px˚q µkpx˚q

§ With
ř

k βk “ 1, the model can fall back to the prior 3

“Log-opinion pool” model (Heskes, 1998)
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Computational Graph

GP Experts

gPoE

PoE

PoE

Prediction:

pp f˚|x˚,Dq9
M
ź

k“1

p
βk

k p f˚|x˚,Dpkqq “
L
ź

k“1

Lk
ź

i“1

p
βki

ki
p f˚|Dpkiqq ,

ÿ

k,i

βki “ 1

§ Independent of computational graph if
ř

k,i βki “ 1 3

§ A priori setting of βki required 7

βki “ 1{M a priori (3)
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Generalized Product of GP Experts

§ Same mean as PoE
§ Model no longer overconfident and falls back to prior 3

§ Very conservative variances 7
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Bayesian Committee Machine

§ Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

§ Prediction model (Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq9
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

§ Predictive precision and mean:

pσbcm
˚ q´2 “

ÿM

k“1
σ´2

k px˚q ´pM´ 1qσ´2
˚˚

µbcm
˚ “ pσbcm

˚ q2
ÿM

k“1
σ´2

k px˚qµkpx˚q

§ Product of GP experts, divided by M´ 1 times the prior

§ Guaranteed to fall back to the prior outside data regime 3
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Computational Graph

GP Experts

PoE

PoE

Prior

Prediction:

pp f˚|x˚,Dq9
śM

k“1 pkp f˚|x˚,Dpkqq
pM´1p f˚q

śM
k“1 pkp f˚|Dpkqq

pM´1p f˚q
“

śL
k“1

śLk
i“1 pkip f˚|Dpkiqq

pM´1p f˚q

Independent of computational graph 3
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Bayesian Committee Machine

§ Variance estimates are about right 3

§ When leaving the data regime, the BCM can produce junk 7

Robustify
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Robust Bayesian Committee Machine

§ Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

§ Prediction model (conditional independence Dpjq KK Dpkq| f˚):

pp f˚|x˚,Dq9
śM

k“1 p
βk

k p f˚|x˚,Dpkqq
p
ř

k βk´1p f˚q

§ Predictive precision and mean:

pσrbcm
˚ q´2 “

ÿM

k“1
βkσ´2

k px˚q `p1´
řM

k“1 βkqσ
´2
˚˚ ,

µrbcm
˚ “ pσrbcm

˚ q2
ÿ

k
βkσ´2

k px˚q µkpx˚q
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Computational Graph

GP Experts

gPoE

PoE

PoE

Prior

Prediction:

pp f˚|x˚,Dq9
śM

k“1 p
βk

k p f˚|x˚,Dpkqq
p
ř

k βk´1p f˚q
“

śL
k“1

śLk
i“1 p

βki

ki
p f˚|Dpkiqq

p
ř

ki
βki
´1
p f˚q

Independent of computational graph, even with arbitrary βki 3
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Robust Bayesian Committee Machine

§ Does not break down in case of weak experts Robustified 3

§ Robust version of BCM Reasonable predictions 3

§ Independent of computational graph (for all choices of βk) 3
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Empirical Approximation Error
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Gradient time in sec
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SOD

GP
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§ Simulated robot arm data (10K training, 10K test)
§ Hyper-parameters of ground-truth full GP
§ RMSE as a function of the training time
§ Sparse GP (SOR) performs worse than any distributed GP
§ rBCM performs best with “weak” GP experts
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Empirical Approximation Error (2)
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Gradient time in sec
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§ NLPD as a function of the training time Mean and variance
§ BCM and PoE are not robust for weak experts
§ gPoE suffers from too conservative variances
§ rBCM consistently outperforms other methods
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Large Data Sets: Airline Data (700K)

rBCM BCM gPoE PoE Dist−VGP SVI−GP

24

26

28

30

32

34
DGP, random data assignment

Sparse GP

Airline Delay, 700K

RM
SE

§ (r)BCM and (g)PoE with
4096 GP experts

§ Gradient time: 13 seconds
(12 cores)

§ Inducing inputs:
Dist-VGP (Gal et al., 2014),
SVI-GP (Hensman et al.,
2013)

§ rBCM performs best

§ (g)PoE and BCM perform not worse than sparse GPs

§ KD-tree data assignment clearly helps (r)BCM
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Summary: Distributed Gaussian Processes

µ, σ

µ1, σ1 µ2, σ2

µ11, σ11 µ12, σ12 µ13, σ13 µ21, σ21 µ22, σ22 µ23, σ23

§ Scale Gaussian processes to large data (beyond 106)
§ Model conceptually straightforward and easy to train
§ Key: Distributed computation
§ Currently tested with N P Op107q

§ Scales to arbitrarily large data sets (with enough computing
power)

m.deisenroth@imperial.ac.uk

Thank you for your attention
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