Imperial College
London

Distributed Gaussian Processes

Marc Deisenroth

Department of Computing
Imperial College London

http://wp.doc.ic.ac.uk/sml/marc-deisenroth

Gaussian Process Summer School, University of Sheffield
15th September 2015

http://wp.doc.ic.ac.uk/sml/marc-deisenroth

Table of Contents

Gaussian Processes

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Problem Setting

5-4-3-2-1 012345678910
X

For a set of N observations y; = f(x;) +¢, ¢~ N(0,0?),finda
distribution over functions p(f|X,y) that explains the data

» GP is a good solution to this probabilistic regression problem

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 8]

GP Training via Marginal Likelihood Maximization

Maximize the evidence/marginal likelihood p(y|X, 8) with respect to

the hyper-parameters 6: 0" € argmaxg log p(y|X, 0)

log p(y|X,0) = —%yTK‘ly — %log |K| + const

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 4

GP Training via Marginal Likelihood Maximization

Maximize the evidence/marginal likelihood p(y|X, 8) with respect to

the hyper-parameters 6: 0" € argmaxg log p(y|X, 0)
log p(y|X,0) = —%yTK‘ly — %log |K| + const

» Automatic trade-off between data fit and model complexity

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 4

GP Training via Marginal Likelihood Maximization

GP Training
Maximize the evidence/marginal likelihood p(y|X, 0) with respect to
the hyper-parameters 6: 0* € argmaxg log p(y|X, 6)

log p(y|X, 0) = —%yTK‘ly — %log |K| + const

» Automatic trade-off between data fit and model complexity

» Gradient-based optimization possible:

dlog p(y|X, 0)
00

- %yTK_lg—I;K_ly — ttr(K™

1Ky
00

» Computational complexity: O(N?) for |K| and K}

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

GP Predictions

At a test point x, the predictive (posterior) distribution is Gaussian:

p(f(x*)|x*/X/y/ 9) = N(f* | my, 0'5)
my = k(X,x*)TK_ly
02 = k(xs, %5) — k(X, %) TK k(X x5

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

GP Predictions

At a test point x, the predictive (posterior) distribution is Gaussian:

p(f(x*)|x*/X/y/ 9) = N(f* | my, 0'5)
my = k(X,x*)TK_ly
02 = k(xs, %5) — k(X, %) TK k(X x5

When you cache K~! and K™y after training, then
» The mean prediction can be computed in O(N)

» The variance prediction can be computed in O(N?)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Application Areas

L
—-5-4-3-2-101 2 3 4 5
— T T

LA SN 4
54-3-2-10 1 2 3 45

» Bayesian Optimization (Experimental Design)

» Model unknown utility functions with GPs
» Reinforcement Learning and Robotics

» Model value functions and/or dynamics with GPs
» Data visualization

» Nonlinear dimensionality reduction (GP-LVM)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Limitations of Gaussian Processes

Computational and memory complexity
» Training scales in O(N?)
» Prediction (variances) scales in O(N?)

» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Table of Contents

Sparse Gaussian Processes

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

GP Factor Graph

® Training function values f;

R e
CECHOEIO NI

Training data Test data []

» Probabilistic graphical model (factor graph) of a GP
» All function values are jointly Gaussian distributed (e.g., training
and test function values)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

GP Factor Graph

® Training function values f;

R e
CECHOEIO NI

Training data Test data []

» Probabilistic graphical model (factor graph) of a GP
» All function values are jointly Gaussian distributed (e.g., training
and test function values)

_ 0| |Kpr K
({28 2]

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

» GP prior

Inducing Variables

Inducing fimction values ® Training function values f;

@u) cee Qu@ m Hypothetical function values u;
[] []

[] [] L
[] u e H H]
| | [] [] L
! [] [] [] []
Training data Test data []

» Introduce inducing function values f,
» “Hypothetical” function values

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

10

Inducing Variables

Inducing fimction values ® Training function values f;

@u) cee Qu@ m Hypothetical function values u;
[] []

[] [] L
[] u e H H]
| | [] [] L
! [] [] [] []
Training data Test data []

» Introduce inducing function values f,
» “Hypothetical” function values

» All function values are still jointly Gaussian distributed (e.g.,
training, test and inducing function values)

» Approach: “Compress” real function values into inducing

function values

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

10

Central Approximation Scheme

Inducing function values

()G

OECIOH0

Training data Test data

» Approximation: Training and test set are conditionally
independent given the inducing function values: f I f.|f,

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 11

Central Approximation Scheme

Inducing function values

QECIOEO

Training data Test data

» Approximation: Training and test set are conditionally
independent given the inducing function values: f 1L f.|f,
» Then, the effective GP prior is

K *
0, £2) = | PULEIPUEIFIPGIAS = N H 7

0 Q* i K *k
Q.r =K., quﬁ}“K fuf » Nystrom approximation

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

FI(T)C Sparse Approximation

Inducing function values

» Assume that training (and test sets) are

‘3"‘\

fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 12

FI(T)C Sparse Approximation

Inducing function values

» Assume that training (and test sets) are
fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data

» Effective GP prior with this approximation

A f) = N [0] Qs —diag(Qsr —Kyr) Qe

0 Q*f K**

» Q,, —diag(Q,., — K.x) can be used instead of K. » FIC

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

FI(T)C Sparse Approximation

Inducing function values

S

@
s » Assume that training (and test sets) are
ot °* fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data

» Effective GP prior with this approximation

B 0 Qs —diag(Qsr —Kyr) Qe
1 fe) =N ([0] ’ [Q*f K])

» Q,, —diag(Q,., — K.x) can be used instead of K. » FIC
» Training: O(NM?), Prediction: O(M?)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

13

Inducing Inputs
» FI(T)C sparse approximation exploits inducing function values

f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

13

Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):

%
Uj:p € Arg MaX JrrTC (y| X, u1.m, 0)
1:M

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 13

Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):
Uy € arg max gerrc (yX, u1.m, 6)

» Intuitively: The marginal likelihood is not only parameterized by
the hyper-parameters 6, but also by the inducing inputs u1.y.

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 13

Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):
Uy € arg max gerrc (yX, u1.m, 6)

» Intuitively: The marginal likelihood is not only parameterized by
the hyper-parameters 6, but also by the inducing inputs u1.y.

» End up with a high-dimensional non-convex optimization

problem with MD additional parameters

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 13

FITC Example

» Pink: Original data

» Red crosses: Initialization of

inducing inputs

» Blue crosses: Location of inducing

inputs after optimization

+ A+
X

Figure from Ed Snelson

» Efficient compression of the original data set

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 14

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

15

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 15

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

15

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

15

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training

» Practical limit M < 10*. Often: M € O(10?) in the case of
inducing variables

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 15

Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training

» Practical limit M < 10*. Often: M € O(10?) in the case of
inducing variables

» If we set M = N/100, i.e., each inducing function value
summarizes 100 real function values, our practical limit is
N e O(10%)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

15

Table of Contents

Distributed Gaussian Processes

Distributed Gaussian Processes

Marc Deisenroth

@GPSS, 15th September 2015

16

Distributed Gaussian Processes

Joint work with Jun Wei Ng

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

17

An Orthogonal Approximation: Distributed GPs

: Standard GP
—_—

Distributed Gaussian Processes

—1

Kernel
matrix

Marc Deisenroth

O(N3)

@GPSS, 15th September 2015

18

An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]eartrlgl O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

» Randomly split the full data set into M chunks

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

18

An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]eartrlgl O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

» Randomly split the full data set into M chunks

» Place M independent GP models (experts) on these small chunks

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]:rtrlﬂ O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

» Randomly split the full data set into M chunks

» Place M independent GP models (experts) on these small chunks

» Independent computations can be distributed

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]:rtrlﬂ O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

Randomly split the full data set into M chunks

v

v

Place M independent GP models (experts) on these small chunks

v

Independent computations can be distributed

v

Block-diagonal approximation of kernel matrix K

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

18

An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'fgrtr;g! O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

Randomly split the full data set into M chunks

v

» Place M independent GP models (experts) on these small chunks
» Independent computations can be distributed

» Block-diagonal approximation of kernel matrix K

» Combine independent computations to an overall result

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

18

Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 19

Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

» Distributed optimization and training straightforward

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 19

Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

v

Distributed optimization and training straightforward

» Computational complexity: O(MP?) [instead of O(N?)]
But distributed over many machines

» Memory footprint: O(MP? + ND) [instead of O(N? + ND)]

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

19

Empirical Training Time

10° 10’
O
2
s 2 {10°
3 10% b R
5 [}
2 1105 2
st oy
c 10" b 5
g .8
410
z &
.= '
o 0
@ 100 ¢ 2
£ {10° 8
S
5 2
g 107 f
5 / B - - B Computation time (DGP) 1102
g - ® - - B Computation time (Full GP)
S ’ B - - m Computation time (FITC)
, ’/ ® — @ Number of GP experts (DGP) .
10° 0
10° 10* 10° 10° 10’ 10°

Training data set size

» NLML is proportional to training time

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Empirical Training Time

10° 10’

O
oy
£, {10°
2 10° ¢ R
5 %
£ 10° €
° 10 £
€ 10]
o
3 lio# 8
= &
.= '
g 10°F s
1 3 @
£ {10° 2
5]
= =4
£ 10*
5 / B - - B Computation time (DGP) 1102
g - ® - - B Computation time (Full GP)
S ’ B - - m Computation time (FITC)
, ’/ ® — @ Number of GP experts (DGP) .
10° 0
10° 10* 10° 10° 10’ 10°

Training data set size
» NLML is proportional to training time

» Full GP (16K training points) ~ sparse GP (50K training points)
~ distributed GP (16M training points)

» Push practical limit by order(s) of magnitude

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

21

Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

*' Maximize the marginal likelihood, stop when converged**

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

21

Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

*' Maximize the marginal likelihood, stop when converged**

: Convergence often after 30-80 line searches*

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

21

Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

*' Maximize the marginal likelihood, stop when converged**

: Convergence often after 30-80 line searches*

***: Line search ~ 2-3 evaluations of marginal likelihood and
its gradient (usually O(N?))

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

21

Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

22

Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

» Product-of-GP-experts
» PoE (product of experts; Ng & Deisenroth, 2014)
» gPoE (generalized product of experts; Cao & Fleet, 2014)
» BCM (Bayesian Committee Machine; Tresp, 2000)
» rBCM (robust BCM; Deisenroth & Ng, 2015)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

22

Objectives

Figure: Two computational graphs

» Scale to large data sets v/

Distributed Gaussian Processes

Marc Deisenroth @GPSS, 15th September 2015

23

Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

23

Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Runs on heterogeneous computing infrastructures (laptop,
cluster, ...)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

23

Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Runs on heterogeneous computing infrastructures (laptop,
cluster, ...)

» Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 23

Running Example

Full GP

-5 0 5 10 15

» Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 24

Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D)ec | | pilfulxe, DY),
k=1

Pr(felee, DY) = N (£ | (), 07 (x4))

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

25

Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D)ec | | pilfulxe, DY),
k=1

Pr(felee, DY) = N (£ | (), 07 (x4))

» Predictive precision (inverse variance) and mean:

poe Zk

Plgoe = (Ugoe) Ek Oy z(x*)yk(x*)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 25

Computational Graph

aun

Prediction:

PN

‘nun

M

p(fslxs, D)oc 1_[Pk(f*|x*rD(k))

Distributed Gaussian Processes

k=1

Marc Deisenroth

@GPSS, 15th September 2015

26

Computational Graph

aun

Prediction:

M
p(felxe, D)ok | | pi(filxe, DX
k=1

PN

‘e

‘e

[PoE |

Multiplication is associative: a xbscsd = (a*b) = (c d)

M
[[pefelD®
k=1

L L

» Independent of computational graph v/

Distributed Gaussian Processes

Marc Deisenroth

) =TIl [P (D), Y Le=M

k=1i=1

@GPSS, 15th September 2015

Product of GP Experts

Full GP
---PoE

» Unreasonable variances for M > 1:

Distributed Gaussian Processes Marc Deisenroth

@GPSS, 15th September 2015

27

Product of GP Experts

Full GP
---PoE

» Unreasonable variances for M > 1:

oey—2 -2
(0P 72 = Zk 0 (%)
» The more experts the more certain the prediction, even if every
expert itself is very uncertain X " Cannot fall back to the prior

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 27

Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

28

Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [[" (Fula, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

28

Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [[" (Fula, D)
k=1

Pr(falxe, DO) = N (fi | (34, 0 (32))
» Predictive precision and mean:
(o8 Poe Z ﬁkak (%)
BPO° _ (8P0%) Z Bror2(ee) e (x2)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

28

Generalized Product of GP Experts

v

Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [[" (Fula, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Predictive precision and mean:

(o8 Poe Z ﬁkak (%)
UBPOC _ (BP0 Z Bro2 () ()

With), B = 1, the model can fall back to the prior v/
“Log-opinion pool” model (Heskes, 1998)

v

v

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

28

Computational Graph

A
aHEN dudn

Prediction:

M B
p(f*\x*,D)ochk (felxs, DW)
k=1

Distributed Gaussian Processes

L L

=111

k=1i=1

Marc Deisenroth

B,
Pk,

PoE

Po
gPoE

GP Experts

(fD®), S,
ki

@GPSS, 15th September 2015

29

Computational Graph

):]\
lﬁl ﬂ ﬂ :
gPoE
Prediction:
M Br k L b Br; k:
p(felxe, D)o [[o (felxe, DW) = HHPki (D)), > B =1
k=1 k=1i=1 ki

» Independent of computational graph if > ; B, = 1/

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

29

Computational Graph

P=y
lﬁl ﬂ ﬁ -
gPoE
Prediction:
M Br k L b Br; k:
p(felxe, D)o [[o (felxe, DW) = HHP;@ (D)), > B =1
k=1 k=1i=1 ki

» Independent of computational graph if > ; B, = 1/

» A priori setting of By, required X
» By, = 1/M a priori (V)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 29

Generalized Product of GP Experts

Full GP

» Same mean as PoE
» Model no longer overconfident and falls back to prior v/
» Very conservative variances X

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

30

Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31

Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| fi):

o Hljc\il Pi(fa |2, D(k))
pM(fe)

p(f«|x«, D)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31

Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljc\il Pi(fa |2, D(k))
pM(fe)

p(filxs, D)oc

» Predictive precision and mean:
gbem)— 2(xy) —(M —1)0;2
k= 1 * *%k

'u}icm _ bcm Zk) x* ,uk x*)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31

Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljcvil Pi(fa |2, D(k))
pM(fe)

p(filxs, D)oc

» Predictive precision and mean:
ob -2
) g Y 2(x4) —(M — 1)

'u}icm _ bcm Zk) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31

Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljc\il Pi(fa |2, D(k))
pM(fe)

p(flxs, D)oc

» Predictive precision and mean:
gbem)— 2(xy) —(M —1)0;2
k= 1 * *%k

'u}icm _ bcm Zk) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior
» Guaranteed to fall back to the prior outside data regime v/

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31

Computational Graph

]

wun

‘e

‘e

Prediction:

p(f«lxs, D)

Distributed Gaussian Processes

Marc Deisenroth

I pelfule, DO)
M)

@GPSS, 15th September 2015

32

Computational Graph

wun

Prediction:

p(f«lxs, D)

]

‘e

‘e

LI pilfalxs, DY)

pM(fs)

[T, pe(FelD®) Tl TTiy pis (f[D&

pM(fe)

Distributed Gaussian Processes

pM(fe)

Marc Deisenroth

@GPSS, 15th September 2015

32

Computational Graph

]

wun

‘e

‘e

Prior

PoE

PoE

GP Experts

Prediction:

p(f«lx:, D)

I pelfule, DY)
M)

[T, pe(FelD®) Tl TTiy pis(f[D&

pM(fe)

Distributed Gaussian Processes

pM(fe)

» Independent of computational graph v/

Marc Deisenroth

@GPSS, 15th September 2015 32

Bayesian Committee Machine

Full GP

» Variance estimates are about right v/
» When leaving the data regime, the BCM can produce junk X
» Robustify

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 33

Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

34

Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

» Prediction model (conditional independence D) 1. D®)|f,):

ocHljcvil Pkﬁk (f*|x*,D(k))
PZkﬁk_l(f*)

p(fslxs, D)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 34

Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

» Prediction model (conditional independence D))] fi):

Hk 1Pk (f*|x*,D(k))
PZkﬁk Y(fe)

p(felxs, D)o
» Predictive precision and mean:

(@) 2 = S o) -1 S0 Bros2

rbem

PP = (0P Y Bro (%) pe ()

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 34

Computational Graph

A
“EEE dnd

Prediction:

Hk 1pk (f*|x*ID(k)) Hk 11_11 1pk (f*|D(k))

p(fslxs, D)oc B (f,) P B £,)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

35

Computational Graph

Prior
PoE

[PoE |
gPoE

Prediction:

Hk lpk (f*|x*ID(k)) Hk 11_11 1pk (f*|D(k))

(fil2e, D)ox
P X kaﬁk 1(f*) kalﬂki (f*)

» Independent of computational graph, even with arbitrary g, v/

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

35

Robust Bayesian Committee Machine
6
A FullGP
4hamny 1y ---rBCMaT
2f
> .
0 |
-2 \
-4

» Does not break down in case of weak experts M Robustified v/
» Robust version of BCM M Reasonable predictions v/

» Independent of computational graph (for all choices of Bi) v/

Distributed Gaussian Processes

Marc Deisenroth @GPSS, 15th September 2015

36

Empirical Approximation Error

#Points/Expert

0.2?9 1§6 6?5 2500 10000

0.7l e—e rBCM|

0.6 =—a BCM |
w 0.5k — gPoE-
2 o4f *-% POE 1
@ 0.3} SOD

0.2+ - E

Offpmmmmmmmmmmcmccac S

00 10° 10° 102 10°

Gradient time in sec
Simulated robot arm data (10K training, 10K test)
» Hyper-parameters of ground-truth full GP

v

» RMSE as a function of the training time
» Sparse GP (SOR) performs worse than any distributed GP
» 'BCM performs best with “weak” GP experts

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 37

Empirical Approximation Error (2)

#Points/Expert
2’39 156 625 2500

NLPD

Gradient time in sec

» NLPD as a function of the training time P Mean and variance
» BCM and PoE are not robust for weak experts
» gPoE suffers from too conservative variances

» rBCM consistently outperforms other methods

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

38

Large Data Sets: Airline Data (700K)

s ' ' E)GP, ra;\dom ;;ta assivgnmen;: ' ' > (T)BCM and (g)POE with

Al § sparse GP 4096 GP experts

» Gradient time: 13 seconds

g | (12 cores)

gl » Inducing inputs:

2 Dist-VGP (Gal et al., 2014),

24 SVI-GP (Hensman et al.,

rBCM BCM gPoE PoE Dist-VGP SVI-GP 2013)

» rBCM performs best
» (g)PoE and BCM perform not worse than sparse GPs

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 39

Large Data Sets: Airline Data (700K)

Airline Delay, 700K

o OGP, random dataassignment | > (r)BCM and (g)PoE with
il {» : o e e sment 4096 GP experts

» Gradient time: 13 seconds

%30- (12 cores)
gl » Inducing inputs:
2 Dist-VGP (Gal et al., 2014)
24 SVI-GP (Hensman et al.,
I I e . 2013)

» rBCM performs best

» (g)PoE and BCM perform not worse than sparse GPs

» KD-tree data assignment clearly helps (r)BCM

Distributed Gaussian Processes

Marc Deisenroth @GPSS, 15th September 2015

7

39

Summary: Distributed Gaussian Processes

H11,011 112,012 22, 022 H23, 023

» Scale Gaussian processes to large data (beyond 10°)
» Model conceptually straightforward and easy to train

v

Key: Distributed computation
» Currently tested with N € O(107)
Scales to arbitrarily large data sets (with enough computing

v

power)

m.deisenroth@imperial.ac.uk

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 40

m.deisenroth@imperial.ac.uk

References

(1

[21

[3]

[4]

151

[l

[71

181

1

[10]1

[11]

[12]

[13]

Y. Cao and D. J. Fleet. Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process
Predictions. http://arxiv.org/abs/1410.7827, October 2014.

K. Chalupka, C. K. I. Williams, and I. Murray. A Framework for Evaluating Approximate Methods for Gaussian Process
Regression. Journal of Machine Learning Research, 14:333-350, February 2013.

M. P. Deisenroth and J. W. Ng. Distributed Gaussian Processes. In Proceedings of the International Conference on Machine
Learning, 2015.

M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient
Reinforcement Learning. In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.

Y. Gal, M. van der Wilk, and C. E. Rasmussen. Distributed Variational Inference in Sparse Gaussian Process Regression
and Latent Variable Models. In Advances in Neural Information Processing Systems. 2014.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian Processes for Big Data. In A. Nicholson and P. Smyth, editors,
Proceedings of the Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2013.

T. Heskes. Selecting Weighting Factors in Logarithmic Opinion Pools. In Advances in Neural Information Processing Systems,
pages 266-272. Morgan Kaufman, 1998.

N. Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models.
Journal of Machine Learning Research, 6:1783-1816, November 2005.

J. Ng and M. P. Deisenroth. Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression.
http://arxiv.org/abs/1412.3078, December 2014.

J. Quifionero-Candela and C. E. Rasmussen. A Unifying View of Sparse Approximate Gaussian Process Regression.
Journal of Machine Learning Research, 6(2):1939-1960, 2005.

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In Y. Weiss, B. Schélkopf, and J. C. Platt,
editors, Advances in Neural Information Processing Systems 18, pages 1257-1264. The MIT Press, Cambridge, MA, USA, 2006.

M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2009.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719-2741, 2000.

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

41

http://arxiv.org/abs/1410.7827
http://arxiv.org/abs/1412.3078

	Gaussian Processes
	Sparse Gaussian Processes
	Distributed Gaussian Processes

