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Problem Setting

5-4-3-2-1 012345678910
X

For a set of N observations y; = f(x;) +¢, ¢~ N(0,0?),finda
distribution over functions p(f|X,y) that explains the data

» GP is a good solution to this probabilistic regression problem
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GP Training via Marginal Likelihood Maximization

Maximize the evidence/marginal likelihood p(y|X, 8) with respect to

the hyper-parameters 6: 0" € argmaxg log p(y|X, 0)

log p(y|X,0) = —%yTK‘ly — %log |K| + const
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GP Training via Marginal Likelihood Maximization

GP Training
Maximize the evidence/marginal likelihood p(y|X, 0) with respect to
the hyper-parameters 6: 0* € argmaxg log p(y|X, 6)

log p(y|X, 0) = —%yTK‘ly — %log |K| + const

» Automatic trade-off between data fit and model complexity

» Gradient-based optimization possible:

dlog p(y|X, 0)
00

- %yTK_lg—I;K_ly — ttr(K™

1Ky
00

» Computational complexity: O(N?) for |K| and K}

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015



GP Predictions

At a test point x, the predictive (posterior) distribution is Gaussian:

p(f(x*)|x*/X/y/ 9) = N(f* | my, 0'5)
my = k(X,x*)TK_ly
02 = k(xs, %5) — k(X, %) TK k(X x5
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GP Predictions

At a test point x, the predictive (posterior) distribution is Gaussian:

p(f(x*)|x*/X/y/ 9) = N(f* | my, 0'5)
my = k(X,x*)TK_ly
02 = k(xs, %5) — k(X, %) TK k(X x5

When you cache K~! and K™y after training, then
» The mean prediction can be computed in O(N)

» The variance prediction can be computed in O(N?)
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Application Areas
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» Bayesian Optimization (Experimental Design)

» Model unknown utility functions with GPs
» Reinforcement Learning and Robotics

» Model value functions and/or dynamics with GPs
» Data visualization

» Nonlinear dimensionality reduction (GP-LVM)
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Limitations of Gaussian Processes

Computational and memory complexity
» Training scales in O(N?)
» Prediction (variances) scales in O(N?)

» Memory requirement: O(ND + N?)

» Practical limit N ~ 10,000

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015



Table of Contents

Sparse Gaussian Processes

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015



GP Factor Graph

® Training function values f;

R e
CECHOEIO NI

Training data Test data [ ]

» Probabilistic graphical model (factor graph) of a GP
» All function values are jointly Gaussian distributed (e.g., training
and test function values)
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GP Factor Graph

® Training function values f;

R e
CECHOEIO NI

Training data Test data [ ]

» Probabilistic graphical model (factor graph) of a GP
» All function values are jointly Gaussian distributed (e.g., training
and test function values)

_ 0| |Kpr K
({28 2]
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Inducing Variables

Inducing fimction values ® Training function values f;

@u) cee Qu@ m Hypothetical function values u;
[ ] [ ]
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[ ] u e H H ]
| | [ ] [ ] L
! [ ] [ ] [ ] [ ]
Training data Test data [ ]

» Introduce inducing function values f,
» “Hypothetical” function values
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Inducing Variables

Inducing fimction values ® Training function values f;

@u) cee Qu@ m Hypothetical function values u;
[ ] [ ]

[ ] [ ] L
[ ] u e H H ]
| | [ ] [ ] L
! [ ] [ ] [ ] [ ]
Training data Test data [ ]

» Introduce inducing function values f,
» “Hypothetical” function values

» All function values are still jointly Gaussian distributed (e.g.,
training, test and inducing function values)

» Approach: “Compress” real function values into inducing

function values

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Central Approximation Scheme

Inducing function values

()G

OECIOH0

Training data Test data

» Approximation: Training and test set are conditionally
independent given the inducing function values: f I f.|f,
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Central Approximation Scheme

Inducing function values

QECIOEO

Training data Test data

» Approximation: Training and test set are conditionally
independent given the inducing function values: f 1L f.|f,
» Then, the effective GP prior is

K *
0, £2) = | PULEIPUEIFIPGIAS = N H 7

0 Q* i K *k
Q.r =K., quﬁ}“K fuf » Nystrom approximation
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FI(T)C Sparse Approximation

Inducing function values

» Assume that training (and test sets) are

‘3"‘\

fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data
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FI(T)C Sparse Approximation

Inducing function values

» Assume that training (and test sets) are
fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data

» Effective GP prior with this approximation

A f) = N [0] Qs —diag(Qsr —Kyr) Qe

0 Q*f K**

» Q,, —diag(Q,., — K.x) can be used instead of K. » FIC
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FI(T)C Sparse Approximation

Inducing function values

S

@
s » Assume that training (and test sets) are
ot °* fully independent given the inducing
variables (Snelson & Ghahramani, 2006)

Training data Test data

» Effective GP prior with this approximation

B 0 Qs —diag(Qsr —Kyr) Qe
1 fe) =N ([0] ’ [ Q*f K ])

» Q,, —diag(Q,., — K.x) can be used instead of K. » FIC
» Training: O(NM?), Prediction: O(M?)
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Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs
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Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):

%
Uj:p € Arg MaX JrrTC (y| X, u1.m, 0)
1:M
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Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):
Uy € arg max gerrc (yX, u1.m, 6)

» Intuitively: The marginal likelihood is not only parameterized by
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Inducing Inputs

» FI(T)C sparse approximation exploits inducing function values
f(u;), where u; are the corresponding inputs

» These inputs are unknown a priori ® Find “optimal” ones

» Find them by maximizing the FI(T)C marginal likelihood with
respect to the inducing inputs (and the standard

hyper-parameters):
Uy € arg max gerrc (yX, u1.m, 6)

» Intuitively: The marginal likelihood is not only parameterized by
the hyper-parameters 6, but also by the inducing inputs u1.y.

» End up with a high-dimensional non-convex optimization

problem with MD additional parameters
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FITC Example

» Pink: Original data

» Red crosses: Initialization of

inducing inputs

» Blue crosses: Location of inducing

inputs after optimization

+ A+
X

Figure from Ed Snelson

» Efficient compression of the original data set
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Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points
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Summary Sparse Gaussian Processes

» Sparse approximations typically approximate a GP with N data
points by a model with M « N data points

» Selection of these M data points can be tricky and may involve
non-trivial computations (e.g., optimizing inducing inputs)

» Simple (random) subset selection is fast and generally robust
(Chalupka et al., 2013)

» Computational complexity: O(M?) or O(NM?) for training

» Practical limit M < 10*. Often: M € O(10?) in the case of
inducing variables

» If we set M = N/100, i.e., each inducing function value
summarizes 100 real function values, our practical limit is
N e O(10%)
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Distributed Gaussian Processes

Joint work with Jun Wei Ng
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An Orthogonal Approximation: Distributed GPs

: Standard GP
—_—

Distributed Gaussian Processes

—1

Kernel
matrix

Marc Deisenroth

O(N3)
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An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]eartrlgl O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

» Randomly split the full data set into M chunks
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An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'f]:rtrlﬂ O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

Randomly split the full data set into M chunks

v

v

Place M independent GP models (experts) on these small chunks

v

Independent computations can be distributed

v

Block-diagonal approximation of kernel matrix K
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An Orthogonal Approximation: Distributed GPs

: Standard GP —1

— r'fgrtr;g! O(N?)
Distributed GP _1 ~

[6P] [GP] [GP] [GP] — A‘Zt" = | O(MP3)

Randomly split the full data set into M chunks

v

» Place M independent GP models (experts) on these small chunks
» Independent computations can be distributed

» Block-diagonal approximation of kernel matrix K

» Combine independent computations to an overall result

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)
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Training the Distributed GP

» Split data set of size N into M chunks of size P

» Independence of experts M Factorization of marginal likelihood:

M
log p(y|X,0) ~ Zkzl log Pk(y(k) \X(k), 0)

v

Distributed optimization and training straightforward

» Computational complexity: O(MP?) [instead of O(N?)]
But distributed over many machines

» Memory footprint: O(MP? + ND) [instead of O(N? + ND)]

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Empirical Training Time
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Training data set size

» NLML is proportional to training time
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Empirical Training Time
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10° . . . . 0
10° 10* 10° 10° 10’ 10°

Training data set size
» NLML is proportional to training time

» Full GP (16K training points) ~ sparse GP (50K training points)
~ distributed GP (16M training points)

» Push practical limit by order(s) of magnitude

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015



Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours
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Practical Training Times

» Training* with N = 10%, D = 1 on a laptop: ~ 10-30 min

» Training* with N = 5 x 10°, D = 8 on a workstation: ~ 4 hours

*'  Maximize the marginal likelihood, stop when converged**

**: Convergence often after 30-80 line searches***

***: Line search ~ 2-3 evaluations of marginal likelihood and
its gradient (usually O(N?))

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?
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Predictions with the Distributed GP

fh, o

» Prediction of each GP expert is Gaussian N (y;, 07)

» How to combine them to an overall prediction NV (p, 02) ?

» Product-of-GP-experts
» PoE (product of experts; Ng & Deisenroth, 2014)
» gPoE (generalized product of experts; Cao & Fleet, 2014)
» BCM (Bayesian Committee Machine; Tresp, 2000)
» rBCM (robust BCM; Deisenroth & Ng, 2015)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Objectives

Figure: Two computational graphs

» Scale to large data sets v/

Distributed Gaussian Processes

Marc Deisenroth @GPSS, 15th September 2015
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Objectives

Figure: Two computational graphs

» Scale to large data sets v/
» Good approximation of full GP (“ground truth”)

» Predictions independent of computational graph
» Runs on heterogeneous computing infrastructures (laptop,
cluster, ...)

» Reasonable predictive variances

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 23



Running Example

Full GP

-5 0 5 10 15

» Investigate various product-of-experts models
Same training procedure, but different mechanisms for predictions

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 24



Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D)ec | | pilfulxe, DY),
k=1

Pr(felee, DY) = N (£ | (), 07 (x4))
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Product of GP Experts

» Prediction model (independent predictors):

M
p(felxe, D)ec | | pilfulxe, DY),
k=1

Pr(felee, DY) = N (£ | (), 07 (x4))

» Predictive precision (inverse variance) and mean:

poe Zk

Plgoe = (Ugoe) Ek Oy z(x*)yk(x*)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 25



Computational Graph

aun

Prediction:

PN

‘nun

M

p(fslxs, D)oc 1_[ Pk(f*|x*rD(k))

Distributed Gaussian Processes

k=1

Marc Deisenroth

@GPSS, 15th September 2015
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Computational Graph

aun

Prediction:

M
p(felxe, D)ok | | pi(filxe, DX
k=1

PN

‘e

‘e

[ PoE |

Multiplication is associative: a xbscsd = (a*b) = (c d)

M
[ [ pefelD®
k=1

L L

» Independent of computational graph v/

Distributed Gaussian Processes

Marc Deisenroth

) =TIl [P (D), Y Le=M

k=1i=1
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Product of GP Experts

Full GP
---PoE

» Unreasonable variances for M > 1:

Distributed Gaussian Processes Marc Deisenroth

@GPSS, 15th September 2015
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Product of GP Experts

Full GP
---PoE

» Unreasonable variances for M > 1:

oey—2 -2
(0P 72 = Zk 0 (%)
» The more experts the more certain the prediction, even if every
expert itself is very uncertain X " Cannot fall back to the prior

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 27



Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By
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Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [ [ " (Fula, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))
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Generalized Product of GP Experts

» Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [ [ " (Fula, D)
k=1

Pr(falxe, DO) = N (fi | (34, 0 (32))
» Predictive precision and mean:
(o8 Poe Z ﬁkak (%)
BPO° _ (8P0%) Z Bror2(ee) e (x2)
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Generalized Product of GP Experts

v

Weight the responsiblity of each expert in PoE with By

» Prediction model (independent predictors):

M
p(fulxa D)o [ [ " (Fula, D)
k=1

Pr(felee, D) = N (£ | pr(), 07 (x4))

Predictive precision and mean:

(o8 Poe Z ﬁkak (%)
UBPOC _ (BP0 Z Bro2 () ()

With ), B = 1, the model can fall back to the prior v/
“Log-opinion pool” model (Heskes, 1998)

v

v

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Computational Graph

A
aHEN dudn

Prediction:

M B
p(f*\x*,D)ochk (felxs, DW)
k=1

Distributed Gaussian Processes

L L

=111

k=1i=1

Marc Deisenroth

B,
Pk,

PoE

Po
gPoE

GP Experts

(fD®), S,
ki

@GPSS, 15th September 2015
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Computational Graph

):]\
lﬁl ﬂ ﬂ :
gPoE
Prediction:
M Br k L b Br; k:
p(felxe, D)o [ [ o (felxe, DW) = HHPki (D)), > B =1
k=1 k=1i=1 ki

» Independent of computational graph if > ; B, = 1/

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015
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Computational Graph

P=y
lﬁl ﬂ ﬁ -
gPoE
Prediction:
M Br k L b Br; k:
p(felxe, D)o [ [ o (felxe, DW) = HHP;@ (D)), > B =1
k=1 k=1i=1 ki

» Independent of computational graph if > ; B, = 1/

» A priori setting of By, required X
» By, = 1/M a priori (V)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 29



Generalized Product of GP Experts

Full GP

» Same mean as PoE
» Model no longer overconfident and falls back to prior v/
» Very conservative variances X

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

30



Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)
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Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| fi):

o Hljc\il Pi(fa |2, D(k))
pM(fe)

p(f«|x«, D)
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Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljc\il Pi(fa |2, D(k))
pM(fe)

p(filxs, D)oc

» Predictive precision and mean:
gbem)— 2(xy) —(M —1)0;2
k= 1 * *%k

'u}icm _ bcm Zk ) x* ,uk x*)
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Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljcvil Pi(fa |2, D(k))
pM(fe)

p(filxs, D)oc

» Predictive precision and mean:
ob -2
) g Y 2(x4) —(M — 1)

'u}icm _ bcm Zk ) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015 31



Bayesian Committee Machine

» Apply Bayes’ theorem when combining predictions (and not only
for computing predictions)

» Prediction model (D7) 1L D®)| f):

Hljc\il Pi(fa |2, D(k))
pM(fe)

p(flxs, D)oc

» Predictive precision and mean:
gbem)— 2(xy) —(M —1)0;2
k= 1 * *%k

'u}icm _ bcm Zk ) x* ,uk x*)

» Product of GP experts, divided by M — 1 times the prior
» Guaranteed to fall back to the prior outside data regime v/
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Computational Graph

]

wun

‘e

‘e

Prediction:

p(f«lxs, D)
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Computational Graph

wun

Prediction:

p(f«lxs, D)

]

‘e

‘e

LI pilfalxs, DY)

pM(fs)

[T, pe(FelD®) Tl TTiy pis (f[ D&

pM(fe)

Distributed Gaussian Processes

pM(fe)
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Computational Graph

]

wun

‘e

‘e

Prior

PoE

PoE

GP Experts

Prediction:

p(f«lx:, D)

I pelfule, DY)
M)

[T, pe(FelD®) Tl TTiy pis(f[ D&

pM(fe)

Distributed Gaussian Processes

pM(fe)

» Independent of computational graph v/
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Bayesian Committee Machine

Full GP

» Variance estimates are about right v/
» When leaving the data regime, the BCM can produce junk X
» Robustify
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Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’

theorem when combining predictions)
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Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

» Prediction model (conditional independence D) 1. D®)|f,):

ocHljcvil Pkﬁk (f*|x*,D(k))
PZkﬁk_l(f*)

p(fslxs, D)
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Robust Bayesian Committee Machine

» Merge gPoE (weighting of experts) with the BCM (Bayes’
theorem when combining predictions)

» Prediction model (conditional independence D) )] fi):

Hk 1Pk (f*|x*,D(k))
PZkﬁk Y(fe)

p(felxs, D)o
» Predictive precision and mean:

(@) 2 = S o) -1 S0 Bros2

rbem

PP = (0P Y Bro (%) pe ()
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Computational Graph

A
“EEE dnd

Prediction:

Hk 1pk (f*|x*ID(k)) Hk 11_11 1pk (f*|D(k))

p(fslxs, D)oc B (f,) P B £,)

Distributed Gaussian Processes Marc Deisenroth @GPSS, 15th September 2015

35



Computational Graph

Prior
PoE

[ PoE |
gPoE

Prediction:

Hk lpk (f*|x*ID(k)) Hk 11_11 1pk (f*|D(k))

(fil2e, D)ox
P X kaﬁk 1(f*) kalﬂki (f*)

» Independent of computational graph, even with arbitrary g, v/
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Robust Bayesian Committee Machine
6
A FullGP
4hamny 1y ---rBCMaT
2f
> .
0 |
-2 \
-4

» Does not break down in case of weak experts M Robustified v/
» Robust version of BCM M Reasonable predictions v/

» Independent of computational graph (for all choices of Bi) v/

Distributed Gaussian Processes
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Empirical Approximation Error

#Points/Expert

0.2?9 1§6 6?5 2500 10000

0.7l e—e rBCM|

0.6 =—a BCM |
w 0.5k — gPoE-
2 o4f *-% POE 1
@ 0.3} SOD

0.2+ - E

Offpmmmmmmmmmmcmccac S

00 10° 10° 102 10°

Gradient time in sec
Simulated robot arm data (10K training, 10K test)
» Hyper-parameters of ground-truth full GP

v

» RMSE as a function of the training time
» Sparse GP (SOR) performs worse than any distributed GP
» 'BCM performs best with “weak” GP experts
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Empirical Approximation Error (2)

#Points/Expert
2’39 156 625 2500

NLPD

Gradient time in sec

» NLPD as a function of the training time P Mean and variance
» BCM and PoE are not robust for weak experts
» gPoE suffers from too conservative variances

» rBCM consistently outperforms other methods
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Large Data Sets: Airline Data (700K)

s ' ' E)GP, ra;\dom ;;ta assivgnmen;: ' ' > (T)BCM and (g)POE with

Al § sparse GP 4096 GP experts

» Gradient time: 13 seconds

g | (12 cores)

gl » Inducing inputs:

2 Dist-VGP (Gal et al., 2014),

24 SVI-GP (Hensman et al.,

rBCM BCM gPoE PoE Dist-VGP SVI-GP 2013)

» rBCM performs best
» (g)PoE and BCM perform not worse than sparse GPs
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Large Data Sets: Airline Data (700K)

Airline Delay, 700K

o OGP, random dataassignment | > (r)BCM and (g)PoE with
il {» : o e e sment 4096 GP experts

» Gradient time: 13 seconds

%30- (12 cores)
gl » Inducing inputs:
2 Dist-VGP (Gal et al., 2014)
24 SVI-GP (Hensman et al.,
I I e . 2013)

» rBCM performs best

» (g)PoE and BCM perform not worse than sparse GPs

» KD-tree data assignment clearly helps (r)BCM

Distributed Gaussian Processes

Marc Deisenroth @GPSS, 15th September 2015

7

39



Summary: Distributed Gaussian Processes

H11,011 112,012 22, 022 H23, 023

» Scale Gaussian processes to large data (beyond 10°)
» Model conceptually straightforward and easy to train

v

Key: Distributed computation
» Currently tested with N € O(107)
Scales to arbitrarily large data sets (with enough computing

v

power)

m.deisenroth@imperial.ac.uk
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