

Tutorial on Reinforcement Learning

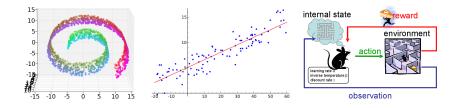
Marc Deisenroth Department of Computing Imperial College London

Department of Computer Science TU Darmstadt

m.deisenroth@imperial.ac.uk

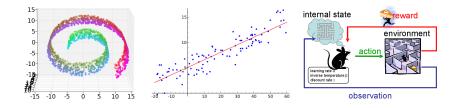
Machine Learning Summer School on Big Data Hammamet, September 17, 2013

Machine Learning



- Unsupervised learning
- Supervised learning
- Reinforcement learning

Machine Learning



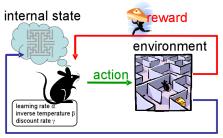
- Unsupervised learning
- Supervised learning
- Reinforcement learning

RL makes decisions!

RL Success Stories

- Games (e.g., G. Tesauro, D. Silver)
- · Operations research and scheduling (e.g., W. Powell, P. Tadepalli)
- Recently: robotics (e.g., P. Abbeel, J. Peters, P. Stone, M. Riedmiller)

Motivation



observation

- Learning system in an unknown environment
- · Knowledge only through interacting with environment
- Explores the environment and receives rewards
- Find strategy/policy, which maximizes overall reward
 Optimal behavior

Bayesian Decision Theory

• Make optimal decisions *a*^{*} by maximizing an expected utility

$$a^* \in \arg\max_a \mathbb{E}[r(a)] = \arg\max_a \sum_{j=1}^m r(s_j, a) p(s_j)$$

a : decision

s : information about environment/state

Bayesian Decision Theory

• Make optimal decisions *a** by maximizing an expected utility

$$a^* \in \arg\max_a \mathbb{E}[r(a)] = \arg\max_a \sum_{j=1}^m r(s_j, a) p(s_j)$$

a : decision

s : information about environment/state

- Bayesian sequential decision theory (statistics)
- Optimal control theory (engineering)
- Reinforcement learning (computer science, psychology)

Example: Winning the Lottery

Actions	Outcomes
<i>a</i> ₁ : play	s_1 : Win the lottery
<i>a</i> ₂ : don't play	s_2 : Don't win the lottery

Example: Winning the Lottery

Actions	Outcomes
<i>a</i> ₁ : play	s_1 : Win the lottery
<i>a</i> ₂ : don't play	s_2 : Don't win the lottery

Optimal action

$$a^* = \arg\max_{a_i} \sum_{j=1}^2 r_{ij} p(s_j | a_i)$$

Example: Winning the Lottery

Actions	Outcomes
	s_1 : Win the lottery
<i>a</i> ₂ : don't play	s_2 : Don't win the lottery

Optimal action

$$a^* = \arg\max_{a_i} \sum_{j=1}^2 r_{ij} p(s_j | a_i)$$

$$\begin{array}{ll} p(s_1|a_1) = 10^{-7} & r_{11} = 500,000 \text{ USD} \\ p(s_2|a_1) = 1 - 10^{-7} & r_{12} = -1 \text{ USD} \\ p(s_1|a_2) = 0 & r_{21} = 0 \text{ USD} \\ p(s_2|a_2) = 1 & r_{22} = 0 \text{ USD} \end{array}$$

▶ What is the optimal action for this decision problem?

Reinforcement Learning

Marc Deisenroth

From Bayesian Decision Theory to RL

- So far: single decisions. How do we make a sequence of decisions in order to achieve some long-term rewards?
- What about state-dependent actions $a_i | s_j$?

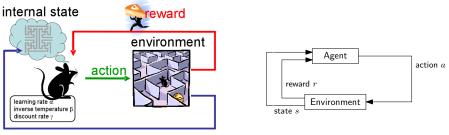
Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

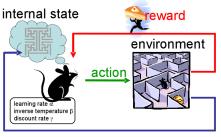
RL Set-up



observation

- Agent interacts with environment to gain knowledge
- Explores and receives rewards
- Actions change the state of the environment
- Choose actions to maximize long-term reward

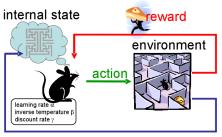
RL Set-up



observation

- Agent interacts with environment to gain knowledge
- Explores and receives rewards
- Actions change the state of the environment
- Choose actions to maximize long-term reward

RL Set-up



observation

- Agent interacts with environment to gain knowledge
- Explores and receives rewards
- Actions change the state of the environment
- Choose actions to maximize long-term reward

Markov Decision Process

Reinforcement Learning

Marc Deisenroth

Markov Decision Process: Definition

- ▶ S: State space (finite)
- ► *A*: Action space (finite)
- \mathcal{P} : Transition probability $p(\mathbf{s}_{k+1}|\mathbf{s}_k, \mathbf{a}_k)$
- r: Reward function
- $\gamma \in [0, 1)$: Discount factor
- π : Policy
 - Deterministic: $a = \pi(s)$
 - Stochastic: $a \sim p_{\pi}(a|s)$

alternative notation: $p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) = \pi(\boldsymbol{a}|\boldsymbol{s})$

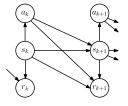
Markov Decision Process: Definition

- ▶ S: State space (finite)
- ► *A*: Action space (finite)
- \mathcal{P} : Transition probability $p(\mathbf{s}_{k+1}|\mathbf{s}_k, \mathbf{a}_k)$
- r: Reward function
- $\gamma \in [0, 1)$: Discount factor
- π : Policy
 - Deterministic: $a = \pi(s)$
 - Stochastic: $a \sim p_{\pi}(a|s)$

Objective

Find a policy π^* that maximizes the expected long-term reward

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, \pi\right], \qquad r_{k+1} = r_{k+1}(s_{k}, a_{k}, s_{k+1})$$



alternative notation: $p_{\pi}(a|s) = \pi(a|s)$

Categorization of RL Algorithms

Value function methods

▶ Use structure of a value function to discover optimal policies

• Value function-free methods (e.g., policy search)

Search in policy space directly

Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

State Value Function: How good is it to be in a particular state *s*?
 Well, this depends on the current policy:

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi] \qquad \text{Self-consistency}$$

• State Value Function: How good is it to be in a particular state *s*? Well, this depends on the current policy:

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi] \qquad \text{Self-consistency}$$

 State-Action Value Function: How good is it to be in a particular state *s* and apply action *a*, and afterwards follow policy *π*?

$$Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}, \boldsymbol{a}_0 = \boldsymbol{a}, \pi]$$
$$= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \boldsymbol{a}_0 = \boldsymbol{a}, \pi\right]$$

• State Value Function: How good is it to be in a particular state *s*? Well, this depends on the current policy:

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi] \qquad \text{Self-consistency}$$

• State-Action Value Function: How good is it to be in a particular state *s* and apply action *a*, and afterwards follow policy *π*?

$$Q^{\pi}(s, a) = \mathbb{E}[R|s_0 = s, a_0 = a, \pi]$$

= $\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, a_0 = a, \pi]$
= $\mathbb{E}[r_1(s_0, a_0, s_1) + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0 = s, a_0 = a, \pi]$

• State Value Function: How good is it to be in a particular state *s*? Well, this depends on the current policy:

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi] \qquad \text{Self-consistency}$$

• State-Action Value Function: How good is it to be in a particular state *s* and apply action *a*, and afterwards follow policy *π*?

$$Q^{\pi}(s, a) = \mathbb{E}[R|s_0 = s, a_0 = a, \pi]$$

= $\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, a_0 = a, \pi]$
= $\mathbb{E}[r_1(s_0, a_0, s_1) + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0 = s, a_0 = a, \pi]$

• State Value Function: How good is it to be in a particular state *s*? Well, this depends on the current policy:

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi] \qquad \text{Self-consistency}$$

• State-Action Value Function: How good is it to be in a particular state *s* and apply action *a*, and afterwards follow policy *π*?

$$Q^{\pi}(s, a) = \mathbb{E}[R|s_0 = s, a_0 = a, \pi]$$

= $\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, a_0 = a, \pi]$
= $\mathbb{E}[r_1(s_0, a_0, s_1) + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0 = s, a_0 = a, \pi]$
= $\mathbb{E}[r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = a, \pi]$

$$V^{\pi}(s) = \mathbb{E}[r_1 + \gamma V^{\pi}(s_1)|s_0 = s, \pi]$$

= $T^{\pi}[V^{\pi}](s)$
 $T^{\pi}[V^{\pi}](s) \coloneqq \mathbb{E}[r_1 + \gamma V^{\pi}(s_1)|s_0 = s, \pi]$

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$$

= $T^{\pi}[V^{\pi}](\boldsymbol{s})$
 $T^{\pi}[V^{\pi}](\boldsymbol{s}) \coloneqq \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$

▶ $V^{\pi} = T^{\pi}[V^{\pi}], T^{\pi}$: Bellman operator (linear affine)

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$$

= $T^{\pi}[V^{\pi}](\boldsymbol{s})$
 $T^{\pi}[V^{\pi}](\boldsymbol{s}) \coloneqq \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$

 $V^{\pi} = T^{\pi}[V^{\pi}], T^{\pi}$: Bellman operator (linear affine)

 Fixed point equation with a unique solution for V^π (Banach's FP theorem)

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$$

= $T^{\pi}[V^{\pi}](\boldsymbol{s})$
 $T^{\pi}[V^{\pi}](\boldsymbol{s}) \coloneqq \mathbb{E}[r_1 + \gamma V^{\pi}(\boldsymbol{s}_1) | \boldsymbol{s}_0 = \boldsymbol{s}, \pi]$

 $\blacktriangleright V^{\pi} = T^{\pi}[V^{\pi}], T^{\pi}$: Bellman operator (linear affine)

Fixed point equation with a unique solution for V^π (Banach's FP theorem)

$$T^{\pi}[V^{\pi}] = r^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi}$$
$$\implies V^{\pi} = r^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi}$$

for suitable representations r^{π} , \mathcal{P}^{π} , V^{π}

Optimal Policies and Value Functions

- Optimal policy π^* ensures that $V^{\pi^*}(s) \ge V^{\pi}(s) \quad \forall s \in S, \pi$
- Existence of π^* ? Uniqueness?

Optimal Policies and Value Functions

- Optimal policy π^* ensures that $V^{\pi^*}(s) \ge V^{\pi}(s) \quad \forall s \in S, \pi$
- Existence of π^* ? Uniqueness?
- Optimal state value function:

$$\forall s \in \mathcal{S} : V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$$

Optimal Policies and Value Functions

- Optimal policy π^* ensures that $V^{\pi^*}(s) \ge V^{\pi}(s) \quad \forall s \in S, \pi$
- Existence of π^* ? Uniqueness?
- Optimal state value function: $\forall s \in S : V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$
- Optimal state-action value function: $\forall s \in S : Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$
 - Solution Expected return of choosing action *a* in state *s* and afterwards following the optimal policy π^* . Note that

$$Q^*(\boldsymbol{s}, \boldsymbol{a}) = \mathbb{E}[r_{t+1} + \gamma V^*(\boldsymbol{s}_{t+1}) | \boldsymbol{s}_t = \boldsymbol{s}, \boldsymbol{a}_t = \boldsymbol{a}]$$

$$V^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$

$$V^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$
$$= \max_{\boldsymbol{a}} \mathbb{E} \Big[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \boldsymbol{a}_0 = \boldsymbol{a}, \pi^* \Big]$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E} \Big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E} \Big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*} \Big]$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E} \Big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*} \Big]$

 $\blacktriangleright V^* = T^*[V^*] \qquad T^* : \text{Bellman optimality operator (nonlinear)}$

Bellman Optimality Equations

=

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E} \Big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*} \Big]$
= $\max_{a} \mathbb{E} \Big[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*} \Big]$

 $V^* = T^*[V^*] \qquad T^* : \text{Bellman optimality operator (nonlinear)}$ $Q^*(s, a) = \mathbb{E}[r_1 + \gamma \max_{a'} Q^*(s_1, a') | s_0 = s, a_0 = a]$

Bellman Optimality Equations

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, a_{0} = a, \pi^{*}\right]$
= $\max_{a} \mathbb{E}\left[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, a_{0} = a, \pi^{*}\right]$
= $\max_{a} \mathbb{E}\left[r_{1} + \gamma V^{*}(s_{1}) | s_{0} = s, a_{0} = a, \pi^{*}\right]$

 $\blacktriangleright V^* = T^*[V^*] \qquad T^* : \text{Bellman optimality operator (nonlinear)}$ $Q^*(s, a) = \mathbb{E}[r_1 + \gamma \max_{a'} Q^*(s_1, a') | s_0 = s, a_0 = a]$ $= \mathbb{E}[r_1 + \gamma V^*(s_1) | s_0 = s, a_0 = a]$

- Assume you know V^*
- **One-step search**: be "greedy" with respect to *V**

$$\pi^*(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^*(s')]$$

- Assume you know V*
- **One-step search**: be "greedy" with respect to *V**

$$\pi^*(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^*(s')]$$

- Assume you know Q*
- Zero-step search:

$$\pi^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$

- ▸ Assume you know V*
- **One-step search**: be "greedy" with respect to *V**

$$\pi^*(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^*(s')]$$

- Assume you know Q*
- Zero-step search:

$$\pi^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$

Assumptions for solving the Bellman equations exactly:

- Know the transition probabilities p(s'|s, a)
- Sufficient computational resources available
- Markov property holds

- Assume you know V*
- **One-step search**: be "greedy" with respect to *V**

$$\pi^*(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^*(s')]$$

- Assume you know Q*
- Zero-step search:

$$\pi^*(\boldsymbol{s}) = \max_{\boldsymbol{a}} Q^*(\boldsymbol{s}, \boldsymbol{a})$$

Assumptions for solving the Bellman equations exactly:

- Know the transition probabilities p(s'|s, a)
- Sufficient computational resources available
- Markov property holds
- ➤ Approximate solutions in practice

Solving MDPs (2)

- Exact: Dynamic programming
- Approximate: Monte Carlo, Temporal Difference Learning

Dynamic Programming

Assumptions:

- Perfect model p(s'|s, a) is known
- Typically finite state spaces ${\mathcal S}$ and action spaces ${\mathcal A}$
- Expected immediate rewards $\mathbb{E}[r(s, a, s')]$ are known

▶ Use value functions to structure the search for good policies

Policy Evaluation

Objective

For a given policy π , find the corresponding value function V^{π}

- Exploit the fixed-point property of the value function $V^{\pi} = T^{\pi}[V^{\pi}]$:
 - Initialize V_0^{π} arbitrarily
 - Find V^{π} as the limit of the sequence $V_0^{\pi}, V_1^{\pi}, \ldots$

Policy Evaluation

Objective

For a given policy π , find the corresponding value function V^{π}

- Exploit the fixed-point property of the value function $V^{\pi} = T^{\pi}[V^{\pi}]$:
 - Initialize V_0^{π} arbitrarily
 - Find V^{π} as the limit of the sequence $V_0^{\pi}, V_1^{\pi}, \ldots$

Update Rule

$$\forall s \in \mathcal{S} : V_{k+1}^{\pi}(s) \leftarrow \mathbb{E}[r(s, a, s') + \gamma V_k^{\pi}(s') | s, \pi]$$
$$a \sim p_{\pi}(a | s), \quad s' \sim p(s' | s, a)$$

Bootstrapping

- So far: We know V^{π} , but we want V^*
- Find a better policy π'

Objective

Find a policy $\pi' \ge \pi$, i.e., $V^{\pi'} \ge V^{\pi}$

Policy Improvement Theorem

Policy Improvement Theorem

If π , π' are two (deterministic) policies with

$$orall oldsymbol{s} \in \mathcal{S}: \quad Q^{\pi}(oldsymbol{s},\pi'(oldsymbol{s})) \geqslant Q^{\pi}(oldsymbol{s},\pi(oldsymbol{s})) = V^{\pi}(oldsymbol{s})$$

then $\pi' \ge \pi$ and $V^{\pi'} \ge V^{\pi}$, i.e., π' improves π .

Policy Improvement Theorem

Policy Improvement Theorem

If π , π' are two (deterministic) policies with

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geqslant Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

then $\pi' \ge \pi$ and $V^{\pi'} \ge V^{\pi}$, i.e., π' improves π .

• For stochastic policies:

$$Q^{\pi}(\mathbf{s}, \pi'(\mathbf{s})) = \mathbb{E}_{\mathbf{a}}[Q^{\pi}(\mathbf{s}, \mathbf{a})] \qquad \mathbf{a} \sim p_{\pi'}(\mathbf{a}|\mathbf{s})$$
$$= \sum_{\mathbf{a}} p_{\pi'}(\mathbf{a}|\mathbf{s})Q^{\pi}(\mathbf{s}, \mathbf{a})$$

$\forall \boldsymbol{s} \in \mathcal{S}: \quad Q^{\pi}(\boldsymbol{s}, \pi'(\boldsymbol{s})) \geq V^{\pi}(\boldsymbol{s}) = Q^{\pi}(\boldsymbol{s}, \pi(\boldsymbol{s}))$

 $V^{\pi}(\boldsymbol{s}) \stackrel{(*)}{\leqslant} Q^{\pi}(\boldsymbol{s}, \pi'(\boldsymbol{s}))$

$$\forall \boldsymbol{s} \in \mathcal{S}: \quad Q^{\pi}(\boldsymbol{s}, \pi'(\boldsymbol{s})) \geq V^{\pi}(\boldsymbol{s}) = Q^{\pi}(\boldsymbol{s}, \pi(\boldsymbol{s}))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E}[r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)]$$

$$\forall \boldsymbol{s} \in \mathcal{S}: \quad Q^{\pi}(\boldsymbol{s}, \pi'(\boldsymbol{s})) \geq V^{\pi}(\boldsymbol{s}) = Q^{\pi}(\boldsymbol{s}, \pi(\boldsymbol{s}))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E}[r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\ \stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\ \stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\ \stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\ = \mathbb{E} [r_1 + \gamma \mathbb{E} [r_2 + \gamma V^{\pi}(s_2)] | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\ = \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\ \stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\ = \mathbb{E} [r_1 + \gamma \mathbb{E} [r_2 + \gamma V^{\pi}(s_2)] | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E}[r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\\stackrel{(*)}{\leq} \mathbb{E}[r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\= \mathbb{E}[r_1 + \gamma \mathbb{E}[r_2 + \gamma V^{\pi}(s_2)] | s_0 = s] \\= \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 V^{\pi}(s_2) | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E}[r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\\stackrel{(*)}{\leq} \mathbb{E}[r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\= \mathbb{E}[r_1 + \gamma \mathbb{E}[r_2 + \gamma V^{\pi}(s_2)] | s_0 = s] \\= \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 V^{\pi}(s_2) | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\= \mathbb{E} [r_1 + \gamma \mathbb{E} [r_2 + \gamma V^{\pi}(s_2)] | s_0 = s] \\= \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 V^{\pi}(s_2) | s_0 = s] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 Q^{\pi}(s_2, \pi'(s_2)) | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\= \mathbb{E} [r_1 + \gamma \mathbb{E} [r_2 + \gamma V^{\pi}(s_2)] | s_0 = s] \\= \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 V^{\pi}(s_2) | s_0 = s] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 Q^{\pi}(s_2, \pi'(s_2)) | s_0 = s]$$

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E}[r_{1}(s_{0}, a_{0}, s_{1}) + \gamma V^{\pi}(s_{1})|s_{0} = s, a_{0} = \pi'(s_{0})] \\\stackrel{(*)}{\leq} \mathbb{E}[r_{1} + \gamma Q^{\pi}(s_{1}, \pi'(s_{1}))|s_{0} = s, a_{0} = \pi'(s_{0}), a_{1} = \pi'(s_{1})] \\= \mathbb{E}[r_{1} + \gamma \mathbb{E}[r_{2} + \gamma V^{\pi}(s_{2})]|s_{0} = s] \\= \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} V^{\pi}(s_{2})|s_{0} = s] \\\stackrel{(*)}{\leq} \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} Q^{\pi}(s_{2}, \pi'(s_{2}))|s_{0} = s] \\= \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \gamma^{3} V^{\pi}(s_{3})|s_{0} = s]$$

Reinforcement Learning

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E} [r_1(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) | s_0 = s, a_0 = \pi'(s_0)] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma Q^{\pi}(s_1, \pi'(s_1)) | s_0 = s, a_0 = \pi'(s_0), a_1 = \pi'(s_1)] \\= \mathbb{E} [r_1 + \gamma \mathbb{E} [r_2 + \gamma V^{\pi}(s_2)] | s_0 = s] \\= \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 V^{\pi}(s_2) | s_0 = s] \\\stackrel{(*)}{\leq} \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 Q^{\pi}(s_2, \pi'(s_2)) | s_0 = s] \\= \mathbb{E} [r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 V^{\pi}(s_3) | s_0 = s]$$

Reinforcement Learning

$$\forall s \in \mathcal{S}: \quad Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$V^{\pi}(s) \stackrel{(*)}{\leq} Q^{\pi}(s, \pi'(s)) \\= \mathbb{E}[r_{1}(s_{0}, a_{0}, s_{1}) + \gamma V^{\pi}(s_{1})|s_{0} = s, a_{0} = \pi'(s_{0})] \\\stackrel{(*)}{\leq} \mathbb{E}[r_{1} + \gamma Q^{\pi}(s_{1}, \pi'(s_{1}))|s_{0} = s, a_{0} = \pi'(s_{0}), a_{1} = \pi'(s_{1})] \\= \mathbb{E}[r_{1} + \gamma \mathbb{E}[r_{2} + \gamma V^{\pi}(s_{2})]|s_{0} = s] \\= \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} V^{\pi}(s_{2})|s_{0} = s] \\\stackrel{(*)}{\leq} \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} Q^{\pi}(s_{2}, \pi'(s_{2}))|s_{0} = s] \\= \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \gamma^{3} V^{\pi}(s_{3})|s_{0} = s] \\\dots \\\dots$$

 $\leq \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s\right] = V^{\pi'}(s)$

Reinforcement Learning

Marc Deisenroth

• Easy to evaluate a change in the policy at a single state *s*

- Easy to evaluate a change in the policy at a single state *s*
- Extend this idea to all states:

$$\forall s \in S: \quad \pi'(s) = \arg\max_{a} \mathbb{E} \big[r(s, a, s') + \gamma V^{\pi}(s') \big]$$
$$= \arg\max_{a} Q^{\pi}(s, a)$$

- Easy to evaluate a change in the policy at a single state *s*
- Extend this idea to all states:

$$\forall s \in S : \quad \pi'(s) = \arg \max_{a} \mathbb{E} \big[r(s, a, s') + \gamma V^{\pi}(s') \big]$$
$$= \arg \max_{a} Q^{\pi}(s, a)$$

- Easy to evaluate a change in the policy at a single state *s*
- Extend this idea to all states:

$$\forall s \in S: \quad \pi'(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$$
$$= \arg\max_{a} Q^{\pi}(s, a)$$

- If V^π is known, we need a model p(s'|s, a) for the one-step look-ahead

- Easy to evaluate a change in the policy at a single state *s*
- Extend this idea to all states:

$$\forall s \in S: \quad \pi'(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$$
$$= \arg\max_{a} Q^{\pi}(s, a)$$

- If V^π is known, we need a model p(s'|s, a) for the one-step look-ahead
- If Q^{π} is known, we don't need a model (no prediction required)

- Easy to evaluate a change in the policy at a single state *s*
- Extend this idea to all states:

$$\forall s \in S: \quad \pi'(s) = \arg\max_{a} \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$$
$$= \arg\max_{a} Q^{\pi}(s, a)$$

- If V^π is known, we need a model p(s'|s, a) for the one-step look-ahead
- If Q^{π} is known, we don't need a model (no prediction required)
- Greedy policy update with respect to the value function (but look implicitly at long-term rewards)

Policy Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} V^* \xrightarrow{I} \pi^*$$

- E: policy evaluation
- I: policy improvement

Policy Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} V^* \xrightarrow{I} \pi^*$$

- E: policy evaluation
- I: policy improvement
- Strict policy improvement at each step (unless policy is already optimal)
- Converges often after a few iterations

Policy Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} V^* \xrightarrow{I} \pi^*$$

- E: policy evaluation
- I: policy improvement
- Strict policy improvement at each step (unless policy is already optimal)
- Converges often after a few iterations
- Each policy evaluation is itself an iterative process
 Can be really slow!

Value Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{l} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{l} \cdots \xrightarrow{E} V^* \xrightarrow{l} \pi^*$$

Stop policy evaluation after a single update
 No longer an iterative process

Value Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} V^* \xrightarrow{I} \pi^*$$

Stop policy evaluation after a single update No longer an iterative process

Update Rule

$$\begin{aligned} V_{k+1}(\boldsymbol{s}) &= \max_{\boldsymbol{a}} \mathbb{E}\big[r(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') + \gamma V_k(\boldsymbol{s}') | \boldsymbol{s}, \boldsymbol{a}\big] \\ &= \max_{\boldsymbol{a}} \sum_{\boldsymbol{s}'} p(\boldsymbol{s}' | \boldsymbol{s}, \boldsymbol{a}) \big(\mathbb{E}[r(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}')] + \gamma V_k(\boldsymbol{s}')\big) \end{aligned}$$

Value Iteration

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} V^* \xrightarrow{I} \pi^*$$

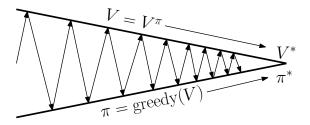
Stop policy evaluation after a single update No longer an iterative process

Update Rule

$$egin{aligned} V_{k+1}(m{s}) &= \max_{m{a}} \mathbb{E}ig[r(m{s},m{a},m{s}') + \gamma V_k(m{s}')|m{s},m{a}ig] \ &= \max_{m{a}} \sum_{m{s}'} p(m{s}'|m{s},m{a})ig(\mathbb{E}ig[r(m{s},m{a},m{s}')ig] + \gamma V_k(m{s}')ig) \end{aligned}$$

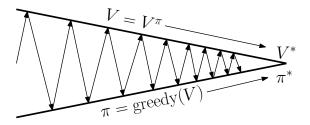
- Bootstrapping
- Bellman optimality equation as an update rule: $V_{k+1} \leftarrow T^*[V_k]$
- Identical to policy evaluation backup if you add the max operator

Generalized Policy Iteration (GPI)



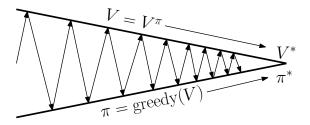
- Abstraction/generalization of policy iteration
- Two interacting processes: policy evaluation/improvement

Generalized Policy Iteration (GPI)



- Abstraction/generalization of policy iteration
- Two interacting processes: policy evaluation/improvement
- Update details abstracted away (policy needs to be greedy)
- Don't need to go full way to π or V^{π} , just "in the direction"

Generalized Policy Iteration (GPI)



- Abstraction/generalization of policy iteration
- Two interacting processes: policy evaluation/improvement
- Update details abstracted away (policy needs to be greedy)
- Don't need to go full way to π or V^{π} , just "in the direction"
- Both processes converge to a single joint solution (V^*, π^*)
- Value iteration (incomplete value function updates) is one example of GPI

Summary: Dynamic Programming

- Find optimal policies via value functions and bootstrapping
- Exact method (standard method in optimal control)

Summary: Dynamic Programming

- Find optimal policies via value functions and bootstrapping
- Exact method (standard method in optimal control)
- Computationally expensive (sweeps through state-action spaces)
 Curse of dimensionality

Summary: Dynamic Programming

- · Find optimal policies via value functions and bootstrapping
- Exact method (standard method in optimal control)
- Computationally expensive (sweeps through state-action spaces)
 Curse of dimensionality
- Exponentially faster than any direct policy search method (if the policy space is not restricted)
- Requires a model p(s'|s, a) and the knowledge of E[r(s, a, s')]
 before DP can be applied.
- 2 algorithms: Policy iteration, value iteration

Approximate Value Function Methods

Look trajectory samples

- Monte Carlo methods
- Temporal difference learning

Monte Carlo Methods

Key Idea

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}ig[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \pi, \boldsymbol{s}_0 = \boldsymbol{s}ig]$$

Estimate value function by averaging returns of sampled trajectories

Monte Carlo Methods

Key Idea

$$V^{\pi}(oldsymbol{s}) = \mathbb{E}ig[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \pi, oldsymbol{s}_0 = oldsymbol{s}ig]$$

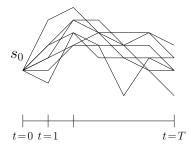
Estimate value function by averaging returns of sampled trajectories

Properties:

- Model free (no knowledge of p(s'|s, a) required) **••** very general
- Learn from online experience (sampled trajectories of states, actions, rewards)
- Compute the same value function as DP (in the limit)

Episodic Set-up

- Consider a finite time horizon of length *T*
- Usually a fixed set of initial states *s*₀
- Observe rewards $r_1, r_2, \ldots, r_T | s_0, \pi$
- Value estimates V^π(s₀) updated at the end of an episode (not after each time step)



First-Visit Monte Carlo Policy Evaluation

- Generate trajectories with policy π
- Record reward after visiting state *s*, average at the end
- 1: **for** i = 1 to ∞ **do**
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all states $s \in \tau_i$ **do**
 - $r \leftarrow$ sum of rewards following the <u>first</u> occurrence of *s*
- 5: $R(s) \leftarrow [R(s), r]$

 \triangleright Append *r* to array

6: end for

7:
$$V^{\pi}(\boldsymbol{s}) \approx \mathbb{E}[R(\boldsymbol{s})|\pi] \approx \frac{1}{|R(\boldsymbol{s})|} \sum_{j=1}^{|K(\boldsymbol{s})|} R(\boldsymbol{s})[j]$$

- 8: end for
 - Convergence to the correct value V^{π} in the limit

4:

Properties

- Computational complexity independent of the size of the state space
- Very valuable if we are only interested in values starting from a small set of states s₀ ▶ episodic set-up
- No bootstrapping (unlike DP)
- Learn from actual experience (DP only uses the model)

Properties

- Computational complexity independent of the size of the state space
- Very valuable if we are only interested in values starting from a small set of states s₀ ▶ episodic set-up
- No bootstrapping (unlike DP)
- Learn from actual experience (DP only uses the model)

Next steps?

- Low-cost (computation) solution to computer V^{π}
- Is this useful for policy improvement? Why? (not?)

Properties

- Computational complexity independent of the size of the state space
- Very valuable if we are only interested in values starting from a small set of states s₀ ▶ episodic set-up
- No bootstrapping (unlike DP)
- Learn from actual experience (DP only uses the model)

Next steps?

- Low-cost (computation) solution to computer V^{π}
- Is this useful for policy improvement? Why? (not?)
- If we only know V^π, we need to perform a one-step search for policy improvement...

▶ Need an estimate of Q^{π} if we don't have a model p(s'|s, a)

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all states $s \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of$ *s*
- 5: $R(s) \leftarrow [R(s), r]$

ightarrow Append *r* to array

- 6: end for
- 7: $V^{\pi}(s) \approx \mathbb{E}[R(s)|\pi] \approx \frac{1}{|R(s)|} \sum_{i=1}^{|R(s)|} R(s)[i]$
- 8: end for

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[i]$
- 8: end for

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[i]$
- 8: end for
 - Any potential problems?

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[i]$

8: end for

Any potential problems?

$\rightarrow \infty$ many trajectories (use GPI idea)

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[i]$

8: end for

- Any potential problems?
- Deterministic policy?

$\rightarrow \infty$ many trajectories (use GPI idea)

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[i]$

8: end for

- Any potential problems?
- Deterministic policy? Not many state-action pairs are visited!

$\rightarrow \infty$ many trajectories (use GPI idea)

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[j]$

8: end for

- Any potential problems?
- Deterministic policy? Not many state-action pairs are visited!
- Ideally, estimate $Q^{\pi}(s, a)$ for all actions $a \in \mathcal{A}$
- $\rightarrow \infty$ many trajectories (use GPI idea)

- 1: for i = 1 to ∞ do
- 2: Generate trajectory τ_i^{π} with policy π
- 3: **for** all state-action pairs $(s, a) \in \tau_i$ **do**
- 4: $r \leftarrow \text{sum of rewards following the <u>first</u> occurrence of ($ *s*,*a*)
- 5: $R(s, a) \leftarrow [R(s, a), r]$
- 6: end for
- 7: $Q^{\pi}(s, a) \approx \mathbb{E}[R(s, a)|\pi] \approx \frac{1}{|R(s, a)|} \sum_{i=1}^{|R(s, a)|} R(s, a)[j]$

8: end for

- Any potential problems?
- Deterministic policy? Not many state-action pairs are visited!
- Ideally, estimate $Q^{\pi}(s, a)$ for all actions $a \in \mathcal{A}$
- ▶ ∞ many trajectories (use GPI idea)▶ Maintain exploration

Exploration

• Exploring starts: non-zero probability that each state-action pair is chosen as the start (difficult in practice, not commonly used)

Exploration

- Exploring starts: non-zero probability that each state-action pair is chosen as the start (difficult in practice, not commonly used)
- Stochastic policies with non-zero probability on each action
 - $\forall s \in \mathcal{S}, a \in \mathcal{A}: p_{\pi}(a|s) > 0$
 - Example: ε-greedy policies, softmax policies

$$p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} \pi(\boldsymbol{s}) & \text{with probability } 1 - \epsilon \\ \mathcal{U}(\mathcal{A}) & \text{with probability } \epsilon \end{cases}$$

Exploration

- Exploring starts: non-zero probability that each state-action pair is chosen as the start (difficult in practice, not commonly used)
- Stochastic policies with non-zero probability on each action
 - $\forall s \in \mathcal{S}, a \in \mathcal{A}: p_{\pi}(a|s) > 0$
 - Example: ε-greedy policies, softmax policies

$$p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) = \begin{cases} \pi(\boldsymbol{s}) & \text{with probability } 1 - \epsilon \\ \mathcal{U}(\mathcal{A}) & \text{with probability } \epsilon \end{cases}$$

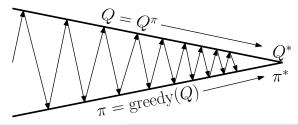
▶ Trade off exploring the world and exploiting current knowledge

$$\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} Q^* \xrightarrow{I} \pi^*$$

- Approximate optimal policies
- ▶ Follow GPI idea: *ϵ*-greedy policy

$$\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \cdots \xrightarrow{E} Q^* \xrightarrow{I} \pi^*$$

- Approximate optimal policies
- ▶ Follow GPI idea: *ϵ*-greedy policy
- MC version of policy iteration:
 - Policy evaluation via Monte Carlo estimates (stochastic policy)
 ▶ get Q^π
 - + Policy improvement: select greedy policy with respect to Q^{π}



 So far on-policy: Evaluate Q^π and, subsequently, apply π when interacting with the environment

- So far on-policy: Evaluate Q^π and, subsequently, apply π when interacting with the environment
- Off-policy: Evaluate Q^{π} but when interacting with the environment, follow $\pi' \neq \pi$
 - ▶ Experience only generated from π' . Can we still estimate Q^{π} ?

- So far on-policy: Evaluate Q^π and, subsequently, apply π when interacting with the environment
- Off-policy: Evaluate Q^{π} but when interacting with the environment, follow $\pi' \neq \pi$
 - ▶ Experience only generated from π' . Can we still estimate Q^{π} ?
- Yes, if we ensure that every action under π is also (occasionally) taken under π' , i.e.,

if
$$p_{\pi}(a|s) > 0$$
 then $p_{\pi'}(a|s) > 0$

- So far on-policy: Evaluate Q^π and, subsequently, apply π when interacting with the environment
- Off-policy: Evaluate Q^{π} but when interacting with the environment, follow $\pi' \neq \pi$
 - ▶ Experience only generated from π' . Can we still estimate Q^{π} ?
- Yes, if we ensure that every action under π is also (occasionally) taken under π' , i.e.,

if
$$p_{\pi}(a|s) > 0$$
 then $p_{\pi'}(a|s) > 0$

• Learning can be slow if the policies are very explorative, i.e., $\epsilon \gg 0$

Summary: Monte Carlo Methods

- Learn optimal behavior from interaction
- Easy to focus them on a small set of start states
- Incremental implementation (updates after each episode) possible
- Exploration required!
- No bootstrapping (unlike DP)
- Model free (unlike DP)

Temporal-Difference Learning

- Between MC and DP
- Bootstrapping
- Model-free
- MC waits until the end of the episode to update V^{π} , Q^{π}
- TD only waits until the next time step. Update value functions based on observed reward and the current estimate of V^π, Q^π

Reinforcement Learning

Marc Deisenroth

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

 κ : "target"

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

$$V^{\pi}(s) = \mathbb{E}[\mathbf{R}(s)|s_0 = s]$$

= $\mathbb{E}[\sum_k \gamma^k r_{k+1}|s_0 = s]$
= $\mathbb{E}[r_1 + \gamma V^{\pi}(s_1)|s_0 = s]$

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

κ: "target"

$$egin{aligned} V^{\pi}(oldsymbol{s}) &= \mathbb{E}[oldsymbol{R}(oldsymbol{s})|oldsymbol{s}_{0} &= oldsymbol{s}] \ &= \mathbb{E}igg[\sum_{k} \gamma^{k} r_{k+1}|oldsymbol{s}_{0} &= oldsymbol{s}igg] \ &= \mathbb{E}igg[r_{1} + \gamma V^{\pi}(oldsymbol{s}_{1})|oldsymbol{s}_{0} &= oldsymbol{s}igg] \end{aligned}$$

• MC uses an estimate of R(s) as target κ (sample average)

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

$$egin{aligned} V^{\pi}(oldsymbol{s}) &= \mathbb{E}[oldsymbol{R}(oldsymbol{s})|oldsymbol{s}_{0} &= oldsymbol{s}] \ &= \mathbb{E}igg[\sum_{k} \gamma^{k} r_{k+1}|oldsymbol{s}_{0} &= oldsymbol{s}igg] \ &= \mathbb{E}ig[r_{1} + \gamma V^{\pi}(oldsymbol{s}_{1})|oldsymbol{s}_{0} &= oldsymbol{s}igg] \end{aligned}$$

- MC uses an estimate of R(s) as target κ (sample average)
- DP uses an estimate of $r_1 + \gamma V^{\pi}(s_1)$ as target κ (V_k instead of V^{π})

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

$$egin{aligned} &\mathcal{V}^{\pi}(oldsymbol{s}) = \mathbb{E}[oldsymbol{R}(oldsymbol{s})|oldsymbol{s}_{0} = oldsymbol{s}] \ &= \mathbb{E}igg[\sum_{k}\gamma^{k}r_{k+1}|oldsymbol{s}_{0} = oldsymbol{s}igg] \ &= \mathbb{E}ig[r_{1}+\gamma V^{\pi}(oldsymbol{s}_{1})|oldsymbol{s}_{0} = oldsymbol{s}igg] \end{aligned}$$

- MC uses an estimate of R(s) as target κ (sample average)
- DP uses an estimate of $r_1 + \gamma V^{\pi}(s_1)$ as target κ (V_k instead of V^{π})
- TD target: $\kappa = r_1 + \gamma V^{\pi}(s_1)$

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

$$egin{aligned} &\mathcal{V}^{\pi}(oldsymbol{s}) = \mathbb{E}[oldsymbol{R}(oldsymbol{s})|oldsymbol{s}_{0} = oldsymbol{s}] \ &= \mathbb{E}igg[\sum_{k}\gamma^{k}r_{k+1}|oldsymbol{s}_{0} = oldsymbol{s}igg] \ &= \mathbb{E}ig[r_{1}+\gamma V^{\pi}(oldsymbol{s}_{1})|oldsymbol{s}_{0} = oldsymbol{s}igg] \end{aligned}$$

- MC uses an estimate of R(s) as target κ (sample average)
- DP uses an estimate of $r_1 + \gamma V^{\pi}(s_1)$ as target κ (V_k instead of V^{π})
- TD target: $\kappa = r_1 + \gamma V^{\pi}(s_1)$
 - Approximate V^{π} by V_k (same as DP)

Generic Update Rule

$$V(s) \leftarrow V(s) + \alpha (\kappa - V(s)) = (1 - \alpha)V(s) + \alpha \kappa$$

κ: "target"

$$egin{aligned} &\mathcal{V}^{\pi}(oldsymbol{s}) = \mathbb{E}[oldsymbol{R}(oldsymbol{s})|oldsymbol{s}_{0} = oldsymbol{s}] \ &= \mathbb{E}igg[\sum_{k}\gamma^{k}r_{k+1}|oldsymbol{s}_{0} = oldsymbol{s}igg] \ &= \mathbb{E}ig[r_{1}+\gamma V^{\pi}(oldsymbol{s}_{1})|oldsymbol{s}_{0} = oldsymbol{s}igg] \end{aligned}$$

- MC uses an estimate of R(s) as target κ (sample average)
- DP uses an estimate of $r_1 + \gamma V^{\pi}(s_1)$ as target κ (V_k instead of V^{π})
- TD target: $\kappa = r_1 + \gamma V^{\pi}(s_1)$
 - Approximate V^{π} by V_k (same as DP)
 - Sample trajectories (same as MC)
 - ➤ Combine MC sampling with DP bootstrapping

Marc Deisenroth

TD(0)

- 1: Init.: Set V(s) arbitrarily
- 2: repeat for each episode
- 3: $a \leftarrow p_{\pi}(a|s)$ \rhd Sample action in current state4:Apply a, observe r, s' \rhd Transition to next state5: $V(s) \leftarrow V(s) + \alpha (r + \gamma V(s') V(s))$ \rhd Update V6: $s \leftarrow s'$ \triangleright Re-set current state
- 7: **until** *s* is terminal

TD(0)

- 1: Init.: Set V(s) arbitrarily 2: repeat for each episode 3: $a \leftarrow p_{\pi}(a|s)$ \triangleright Sample action in current state 4: Apply a, observe r, s' \triangleright Transition to next state 5: $V(s) \leftarrow V(s) + \alpha (r + \gamma V(s') - V(s))$ \triangleright Update V6: $s \leftarrow s'$ \triangleright Re-set current state 7: until a is terminal
- 7: **until** *s* is terminal
 - Temporal difference error: $r + \gamma V(s') V(s)$ (= $V^{\text{new}} V^{\text{old}}$)
 - Difference to MC and DP:
 - MC waits until the end of the episode to update V
 - DP needs complete distribution p(s'|s, a) of successor states to update V

$TD(\lambda)$

- TD(0) uses 1-step returns to update V^{π}
- MC uses full trajectories to update V^{π}
- TD(λ), $\lambda \in [0, 1]$, blends between them
 - $\lambda = 0$: TD(0), $\lambda = 1$: MC
 - TD(λ) update rule given as a mixture of multi-step returns
 - Mixing coefficients $(1 \lambda)\lambda^k$, $k \ge 0$

- Thus far, we only learned V^{π} using TD
- Not very useful without model when we want to do control
 ▶ Learn Q^π

- Thus far, we only learned V^{π} using TD
- Not very useful without model when we want to do control
 ▶ Learn Q^π

TD Update for Q^{π} $Q(s, a) \leftarrow \underbrace{Q(s, a) + \alpha (r(s, a, s') + \gamma Q(s', a') - Q(s, a))}_{=(1-\alpha)Q^{\text{old}} + \alpha Q^{\text{new}}}$

- Thus far, we only learned V^{π} using TD
- Not very useful without model when we want to do control
 ▶ Learn Q^π

TD Update for Q^{π}

$$Q(s, a) \leftarrow \underbrace{Q(s, a) + \alpha \big(r(s, a, s') + \gamma Q(s', a') - Q(s, a) \big)}_{=(1-\alpha)Q^{\text{old}} + \alpha Q^{\text{new}}}$$

- Update rule needs $(s, a, r, s', a') \Rightarrow$ SARSA
- On-policy algorithm
- a' chosen from s' using policy derived from Q (e.g., ϵ -greedy)
- Convergence proofs for ε-greedy policies

- Thus far, we only learned V^{π} using TD
- Not very useful without model when we want to do control
 ▶ Learn Q^π

TD Update for Q^{π}

$$Q(s, a) \leftarrow \underbrace{Q(s, a) + \alpha \big(r(s, a, s') + \gamma Q(s', a') - Q(s, a) \big)}_{= (1 - \alpha)Q^{\text{old}} + \alpha Q^{\text{new}}}$$

- Update rule needs (s, a, r, s', a') **>** SARSA
- On-policy algorithm
- a' chosen from s' using policy derived from Q (e.g., ϵ -greedy)
- Convergence proofs for ϵ -greedy policies

DEMO gridworld

Q-Learning: Off-Policy TD Control

TD Update for Q^*

 $Q(s, a) \leftarrow Q(s, a) + \alpha \big(r(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a) \big)$

Q-Learning: Off-Policy TD Control

TD Update for Q^*

 $Q(s, a) \leftarrow Q(s, a) + \alpha \big(r(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a) \big)$

- Off-policy TD control
- SARSA: learn Q^{π} , Q-learning: learn Q^*
- Update the value function *Q* independent of the policy the agent actually follows to generate the samples (max ...)
- For convergence: keep updating all state-action pairs

Q-Learning: Off-Policy TD Control

TD Update for Q^*

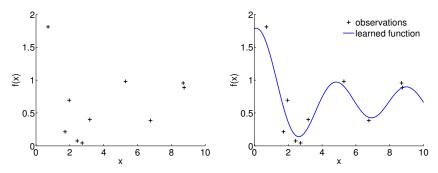
 $Q(s, a) \leftarrow Q(s, a) + \alpha \big(r(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a) \big)$

- Off-policy TD control
- SARSA: learn Q^{π} , Q-learning: learn Q^*
- Update the value function *Q* independent of the policy the agent actually follows to generate the samples (max ...)
- For convergence: keep updating all state-action pairs

DEMO gridworld 2

RL in Continuous Spaces: Function Approximation

- So far: discrete states and actions
 Table representation sufficient
- In continuous spaces: Function approximation for better generalization:



Function Approximation

• Typically: (linear) basis function representation

$$V(m{s}) = \sum_i heta_i \phi_i(m{s})$$

• Basis functions ϕ_i are fixed, only parameters θ_i need to be learned

Function Approximation

• Typically: (linear) basis function representation

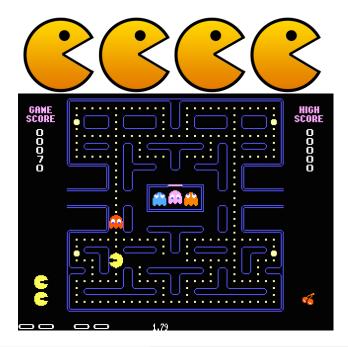
$$V(\boldsymbol{s}) = \sum_i heta_i \phi_i(\boldsymbol{s})$$

- Basis functions ϕ_i are fixed, only parameters θ_i need to be learned
- Gradient descent to update the parameters. Example TD(0):

$$\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \alpha \left(v_k - V_k(\boldsymbol{s}_k) \right) \frac{\partial V_k(\boldsymbol{s}_k)}{\partial \boldsymbol{\theta}_k}$$

 v_k : approximation/estimate of $V^{\pi}(s_k)$, e.g., MC estimate α : learning rate

• Convergence if v_k is unbiased, i.e., $\mathbb{E}[v_k] = V^{\pi}(s_k)$



Summary: RL with Value Functions

- Learn policies exploiting properties of the value functions *V*, *Q*
- Bellman equations/optimality principle
- Policy evaluation/improvement
- Exact solution: Dynamic programming
- Approximation solution: MC, TD
- Exploration
- Function approximation

Applications

- Board games (e.g., Tesauro, Silver, Riedmiller)
- Power systems (e.g., D. Ernst)
- Robocup (e.g., Stone, Riedmiller)
- Scheduling tasks (e.g., W. Powell)

Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

RL without Value Functions: Policy Search

- Value function approximation is hard, especially in continuous domains
- Search directly in policy space?

RL without Value Functions: Policy Search

- Value function approximation is hard, especially in continuous domains
- Search directly in policy space?
- Only feasible in a restricted class ∏ of policies

$$egin{aligned} \pi &= \pi(oldsymbol{ heta}) \ V^{\pi}(oldsymbol{ heta}) &= \mathbb{E}igg[\sum_{k=0}^T r_{k+1} |oldsymbol{ heta}igg] \end{aligned}$$

• Consider an episodic set-up, i.e., $p(s_0)$ is given

RL without Value Functions: Policy Search

- Value function approximation is hard, especially in continuous domains
- Search directly in policy space?
- Only feasible in a restricted class ∏ of policies

$$\pi = \pi(\boldsymbol{\theta})$$
$$V^{\pi}(\boldsymbol{\theta}) = \mathbb{E}\left[\sum_{k=0}^{T} r_{k+1} |\boldsymbol{\theta}\right]$$

• Consider an episodic set-up, i.e., $p(s_0)$ is given

Objective (Policy Search)

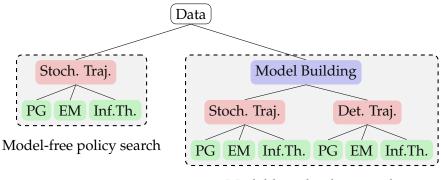
For a given class $\Pi(\theta)$ of policies, find an optimal policy

$$\pi^* \in \arg \max_{\pi \in \Pi(\theta)} V^{\pi}(\theta)$$

Reinforcement Learning

Marc Deisenroth

Categorization of Policy Search Methods



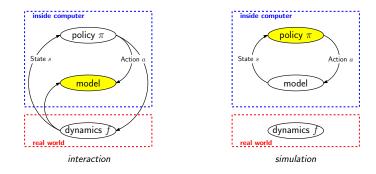
Model-based policy search

- Data: $(s_i, a_i, r_i), i = 1, ..., n$
- Model-based vs. model-free policy search
- Policy evaluation (red), policy improvement (green)

Reinforcement Learning

Marc Deisenroth

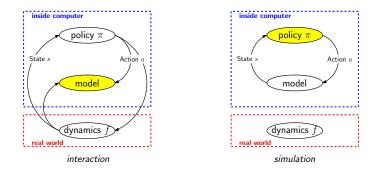
Model-based Set-up: Interaction and Simulation



Two alternating phases:

• **Interaction:** internal model is refined using experience from interacting with the real system

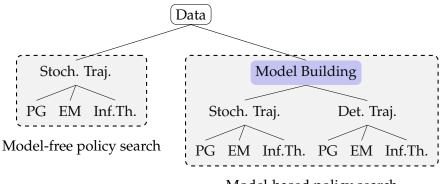
Model-based Set-up: Interaction and Simulation



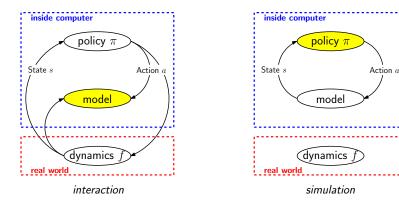
Two alternating phases:

- **Interaction:** internal model is refined using experience from interacting with the real system
- **Simulation:** internal model simulates consequences of actions in the real system, policy is refined

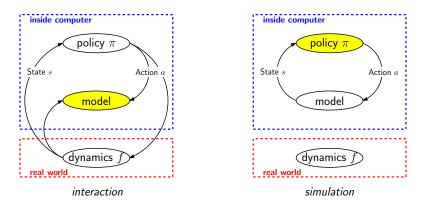
Model Building



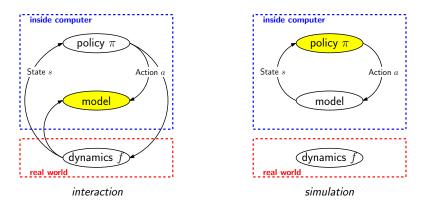
Model-based policy search



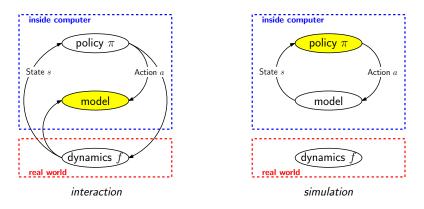
► Pro:



- Pro: No "real" experiments with robot for policy evaluation and improvement (just simulate!) >> Protect hardware
- Con:

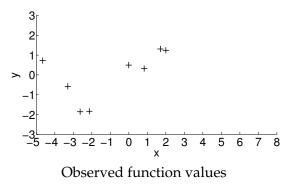


- Pro: No "real" experiments with robot for policy evaluation and improvement (just simulate!) >> Protect hardware
- ▸ Con: Model errors ➤ Effects of "wrong" models?

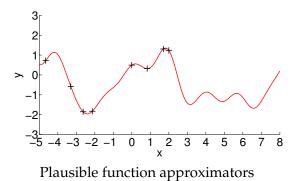


- Pro: No "real" experiments with robot for policy evaluation and improvement (just simulate!) >> Protect hardware
- ▸ Con: Model errors ▶ Effects of "wrong" models?
- What are good models?

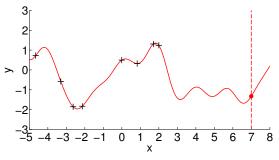
Model learning problem: Find a function $f : x \mapsto f(x) = y$



Model learning problem: Find a function $f : x \mapsto f(x) = y$



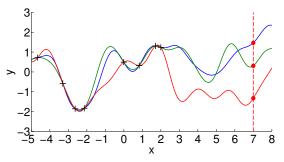
Model learning problem: Find a function $f : x \mapsto f(x) = y$



Plausible function approximators

Predictions? Decision Making?

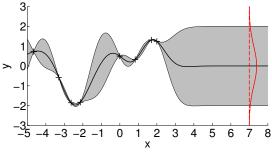
Model learning problem: Find a function $f : x \mapsto f(x) = y$



Plausible function approximators

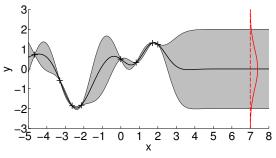
Predictions? Decision Making? Model Errors!

Model learning problem: Find a function $f : x \mapsto f(x) = y$



Distribution over plausible functions

Model learning problem: Find a function $f : x \mapsto f(x) = y$



Distribution over plausible functions

Express uncertainty about the underlying function
 Bayesian models (Bayesian linear regression, Gaussian process, ...)

Useful Models

- Probabilistic models!
- Reduce model errors and simulation/optimization bias
- Examples of probabilistic models
 - Bayesian linear regression
 - Gaussian process

• Model:
$$\boldsymbol{y} = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i} \theta_{i} \boldsymbol{\phi}_{i}(\boldsymbol{x})$$

•
$$\phi(x)$$
: "Features", e.g., $\phi(x) = [x, x^2]^{\top}$

• Model:
$$\boldsymbol{y} = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i} \theta_{i} \phi_{i}(\boldsymbol{x})$$

- $\phi(x)$: "Features", e.g., $\phi(x) = [x, x^2]^{\top}$
- Distribution over model parameters θ:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \,|\, \boldsymbol{m}, \, \boldsymbol{S})$$

• Model:
$$\boldsymbol{y} = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i} \theta_{i} \phi_{i}(\boldsymbol{x})$$

- $\phi(x)$: "Features", e.g., $\phi(x) = [x, x^2]^{\top}$
- Distribution over model parameters θ:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \boldsymbol{m}, \boldsymbol{S})$$

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

• Model:
$$\boldsymbol{y} = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i} \theta_{i} \phi_{i}(\boldsymbol{x})$$

•
$$\phi(x)$$
: "Features", e.g., $\phi(x) = [x, x^2]^{\top}$

Distribution over model parameters θ:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \boldsymbol{m}, \boldsymbol{S})$$

For any θ, one particular function is defined
 Distribution over θ induces distribution over functions

DEMO Bayesian regression

• Model:
$$y = \phi^{\top}(x)\theta$$
, $\theta \sim \mathcal{N}(m, S)$

• Model:
$$y = \phi^{\top}(x)\theta$$
, $\theta \sim \mathcal{N}(m, S)$

• Predict function values $y = [y_1, \dots, y_n]^\top$ at inputs $X = [x_1, \dots, x_n]$

Define
$$\mathbf{\Phi} = \phi(X) \Rightarrow \mathbf{y} = \mathbf{\Phi}^{\top} \mathbf{\theta}$$

 $\mathbb{E}[\mathbf{y}] =$
 $\mathbb{V}[\mathbf{y}] =$

• Model:
$$y = \phi^{\top}(x)\theta$$
, $\theta \sim \mathcal{N}(m, S)$

• Predict function values $y = [y_1, \dots, y_n]^\top$ at inputs $X = [x_1, \dots, x_n]$

Define
$$\Phi = \phi(X) \Rightarrow y = \Phi^{\top} \theta$$

 $\mathbb{E}[y] = \mathbb{E}[\Phi^{\top} \theta] = \Phi^{\top} \mathbb{E}[\theta] = \Phi^{\top} m$
 $\mathbb{V}[y] =$

• Model:
$$y = \phi^{\top}(x)\theta$$
, $\theta \sim \mathcal{N}(m, S)$

• Predict function values $y = [y_1, \dots, y_n]^\top$ at inputs $X = [x_1, \dots, x_n]$

Define
$$\Phi = \phi(X) \Rightarrow y = \Phi^{\top} \theta$$

 $\mathbb{E}[y] = \mathbb{E}[\Phi^{\top}\theta] = \Phi^{\top}\mathbb{E}[\theta] = \Phi^{\top}m$
 $\mathbb{V}[y] = \mathbb{V}[\Phi^{\top}\theta] = \Phi^{\top}\mathbb{V}[\theta]\Phi = \Phi^{\top}S\Phi$

Introduction to Gaussian Processes

- Generalization of Bayesian linear regression
- Nonparametric Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function *m* (average function)
 - Covariance function/kernel *k* (assumptions on structure)

 $\operatorname{Cov}[f(\boldsymbol{x}_p), f(\boldsymbol{x}_q)] = k(\boldsymbol{x}_p, \boldsymbol{x}_q)$

Introduction to Gaussian Processes

- Generalization of Bayesian linear regression
- Nonparametric Bayesian regression method
- Probability distribution over functions
- Fully specified by
 - Mean function *m* (average function)
 - Covariance function/kernel *k* (assumptions on structure)

$$\operatorname{Cov}[f(\boldsymbol{x}_p), f(\boldsymbol{x}_q)] = k(\boldsymbol{x}_p, \boldsymbol{x}_q)$$

• Posterior predictive distribution at *x*_{*} is Gaussian:

$$p(f(\mathbf{x}_*)|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f(\mathbf{x}_*) | m(\mathbf{x}_*), \sigma^2(\mathbf{x}_*))$$
Test input Training data

Gaussian Process: Definition

Definition

A Gaussian process is a collection of random variables, any finite number of which has a joint Gaussian distribution.

Gaussian Process: Definition

Definition

A Gaussian process is a collection of random variables, any finite number of which has a joint Gaussian distribution.

- Look at Gaussian distributions of function values f_1, f_2, \ldots
- · All of them are jointly Gaussian distributed

 $\mathbb{E}[f(\mathbf{x})] = m(\mathbf{x})$ $\operatorname{Cov}[f(\mathbf{x}_i), f(\mathbf{x}_j)] = k(\mathbf{x}_i, \mathbf{x}_j)$

Gaussian Process: Predictions

- Given a training set $(x_i, f(x_i))_{i=1}^n$, we can predict function values f_{*_i} at test inputs x_{*_i}
- First, compute the joint distribution:

$$p(f, f_* | X, X_*) = \mathcal{N}\left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K & k(X, X_*) \\ k(X_*, X) & K_* \end{bmatrix} \right)$$
$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{Cov}[f(\mathbf{x}_i), f(\mathbf{x}_j)]$$

Gaussian Process: Predictions

- Given a training set $(x_i, f(x_i))_{i=1}^n$, we can predict function values f_{*_i} at test inputs x_{*_i}
- First, compute the joint distribution:

$$p(f, f_* | \mathbf{X}, \mathbf{X}_*) = \mathcal{N}\left(\begin{bmatrix} m(\mathbf{X}) \\ m(\mathbf{X}_*) \end{bmatrix}, \begin{bmatrix} \mathbf{K} & k(\mathbf{X}, \mathbf{X}_*) \\ k(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}_* \end{bmatrix} \right)$$
$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{Cov}[f(\mathbf{x}_i), f(\mathbf{x}_j)]$$

• Second, compute the conditional $p(f_*|X, X_*, f)$ by plain Gaussian conditioning:

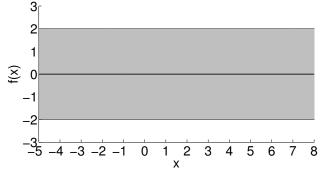
Gaussian Process: Predictions

- Given a training set $(x_i, f(x_i))_{i=1}^n$, we can predict function values f_{*_i} at test inputs x_{*_i}
- First, compute the joint distribution:

$$p(f, f_* | \mathbf{X}, \mathbf{X}_*) = \mathcal{N}\left(\begin{bmatrix} m(\mathbf{X}) \\ m(\mathbf{X}_*) \end{bmatrix}, \begin{bmatrix} \mathbf{K} & k(\mathbf{X}, \mathbf{X}_*) \\ k(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}_* \end{bmatrix} \right)$$
$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{Cov}[f(\mathbf{x}_i), f(\mathbf{x}_j)]$$

 Second, compute the conditional p(f_{*}|X, X_{*}, f) by plain Gaussian conditioning:

$$\begin{split} p(f_*|X, X_*, f) &= \mathcal{N}(\mu_*, \Sigma_*) \\ \mu_* &= m(X_*) + k(X_*, X)K^{-1}(f - m(X)) \\ \Sigma_* &= K_* - k(X_*, X)K^{-1}k(X, X_*) \end{split}$$



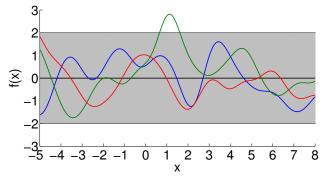
Prior belief about the function

Predictive (marginal) mean and variance:

$$\mathbb{E}[f(\mathbf{x}_*)|\varnothing] = m(\mathbf{x}_*) = 0$$

$$\mathbb{V}[f(\mathbf{x}_*)|\varnothing] = \sigma^2(\mathbf{x}_*) = \operatorname{Cov}[f(\mathbf{x}_*), f(\mathbf{x}_*)] = k(\mathbf{x}_*, \mathbf{x}_*)$$

Reinforcement Learning



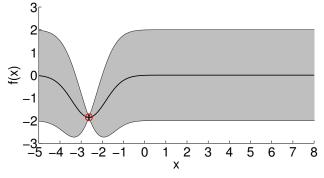
Prior belief about the function

Predictive (marginal) mean and variance:

$$\mathbb{E}[f(\mathbf{x}_*)|\varnothing] = m(\mathbf{x}_*) = 0$$

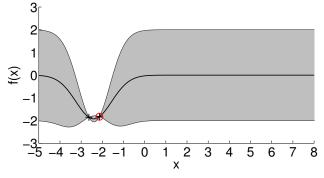
$$\mathbb{V}[f(\mathbf{x}_*)|\varnothing] = \sigma^2(\mathbf{x}_*) = \operatorname{Cov}[f(\mathbf{x}_*), f(\mathbf{x}_*)] = k(\mathbf{x}_*, \mathbf{x}_*)$$

Reinforcement Learning



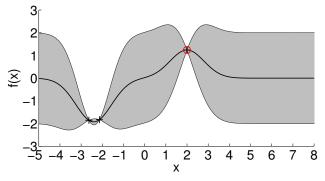
Posterior belief about the function

$$\begin{split} \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] &= m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] &= \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



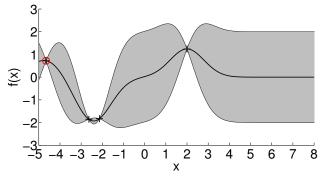
Posterior belief about the function

$$\mathbb{E}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = m(\boldsymbol{x}_{*}) = k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y} \\ \mathbb{V}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = \sigma^{2}(\boldsymbol{x}_{*}) = k(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}) - k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} k(\boldsymbol{X}, \boldsymbol{x}_{*})$$



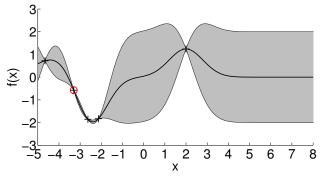
Posterior belief about the function

$$\mathbb{E}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = m(\boldsymbol{x}_{*}) = k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y} \\ \mathbb{V}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = \sigma^{2}(\boldsymbol{x}_{*}) = k(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}) - k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} k(\boldsymbol{X}, \boldsymbol{x}_{*})$$



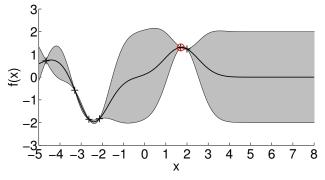
Posterior belief about the function

$$\begin{split} & \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ & \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



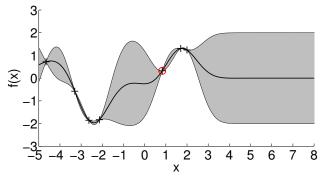
Posterior belief about the function

$$\begin{split} & \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ & \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



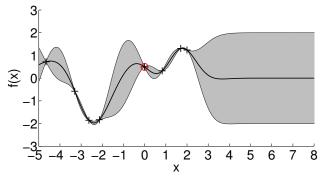
Posterior belief about the function

$$\begin{split} & \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ & \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



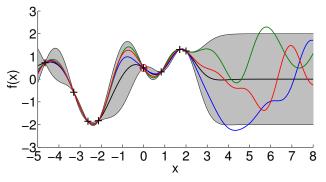
Posterior belief about the function

$$\begin{split} & \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ & \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



Posterior belief about the function

$$\begin{split} & \mathbb{E}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = m(\pmb{x}_*) = k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}\pmb{y} \\ & \mathbb{V}[f(\pmb{x}_*)|\pmb{X},\pmb{y}] = \sigma^2(\pmb{x}_*) = k(\pmb{x}_*,\pmb{x}_*) - k(\pmb{X},\pmb{x}_*)^\top k(\pmb{X},\pmb{X})^{-1}k(\pmb{X},\pmb{x}_*) \end{split}$$



Posterior belief about the function

$$\mathbb{E}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = m(\boldsymbol{x}_{*}) = k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y} \\ \mathbb{V}[f(\boldsymbol{x}_{*})|\boldsymbol{X}, \boldsymbol{y}] = \sigma^{2}(\boldsymbol{x}_{*}) = k(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}) - k(\boldsymbol{X}, \boldsymbol{x}_{*})^{\top} k(\boldsymbol{X}, \boldsymbol{X})^{-1} k(\boldsymbol{X}, \boldsymbol{x}_{*})$$

Properties

- Universal function approximator ▶ extremely expressive
- Model gives "free" variance estimates

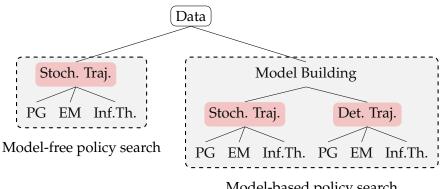
Properties

- Universal function approximator ▶ extremely expressive
- Model gives "free" variance estimates
- Computationally involved:
 - Training: $\mathcal{O}(N^3)$ **•** Repeated inversion of $N \times N$ matrix
 - Mean prediction: $\mathcal{O}(N)$ **>** Scalar product
 - Variance prediction: $\mathcal{O}(N^2)$ **>** Matrix-vector multiplication

Properties

- Universal function approximator ▶ extremely expressive
- Model gives "free" variance estimates
- Computationally involved:
 - Training: $\mathcal{O}(N^3)$ **•** Repeated inversion of $N \times N$ matrix
 - Mean prediction: $\mathcal{O}(N)$ **>** Scalar product
 - + Variance prediction: $\mathcal{O}(N^2)$ Matrix-vector multiplication
- Sparse approximations exist
- Code/book online: http://www.gaussianprocess.org

Policy Evaluation



Model-based policy search

Policy evaluation: Compute expected long-term reward

- Stochastic trajectory evaluation
- Deterministic trajectory evaluation

Reinforcement Learning

Marc Deisenroth

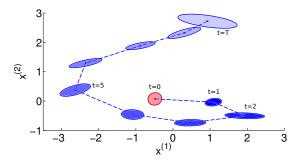
Policy Evaluation

- Stochastic inference (sampling) using either the learned model (simulator) or the real system
- Deterministic inference—only with a learned model

Stochastic Inference

- Sample trajectories (s_i, a_i, r_i) **>** Monte Carlo
- Conceptually very simple
- Requires a lot of "interactions" (if you don't have a model or a good simulator)
 - ▶ Potentially impractical (e.g., in robotics)

Deterministic Inference



- · Analytically propagate uncertainty through the model
- · Computationally/mathematically more involved
- Can't do this for arbitrary systems, but for some.

Deterministic Inference: Example

Linear system

$$p(\mathbf{s}_t) = \mathcal{N}(\mathbf{s}_t | \mathbf{m}_t, \mathbf{S}_t)$$
$$\mathbf{s}_{t+1} = \mathbf{A}\mathbf{s}_t$$

Successor state distribution $p(s_{t+1})$?

Deterministic Inference: Example

Linear system

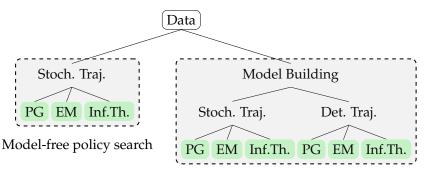
$$p(\mathbf{s}_t) = \mathcal{N}(\mathbf{s}_t \mid \mathbf{m}_t, \mathbf{S}_t)$$
$$\mathbf{s}_{t+1} = \mathbf{A}\mathbf{s}_t$$

Successor state distribution $p(s_{t+1})$?

$$p(\boldsymbol{s}_{t+1}) = \mathcal{N} \left(\boldsymbol{s}_{t+1} \, | \, \boldsymbol{m}_{t+1}, \, \boldsymbol{S}_{t+1} \right)$$
$$\boldsymbol{m}_{t+1} = \boldsymbol{A} \boldsymbol{m}_t \, , \quad \boldsymbol{S}_{t+1} = \boldsymbol{A} \boldsymbol{S}_t \boldsymbol{A}^\top$$

 In nonlinear/non-Gaussian systems, we need approximations (e.g., linearization, moment matching)

Policy Improvement



Model-based policy search

Policy improvement (green)

- Policy gradients
- Expectation Maximization
- Information theory

Reinforcement Learning

Marc Deisenroth

Policy Search: Policy Improvement

Objective

Find policy parameters θ^* , which maximize the expected long-term reward

$$V^{\pi}(oldsymbol{ heta}) = \mathbb{E}ig[\sum_{k=0}^T \gamma^k r_{k+1} | oldsymbol{ heta}ig], \qquad oldsymbol{s}_0 \sim p(oldsymbol{s}_0)$$

- No global value function model V^{π} or Q^{π}
- Search directly in (policy) parameter space

Policy Search: Policy Improvement

Objective

Find policy parameters θ^* , which maximize the expected long-term reward

$$V^{\pi}(oldsymbol{ heta}) = \mathbb{E}ig[\sum_{k=0}^T \gamma^k r_{k+1} |oldsymbol{ heta}ig], \qquad oldsymbol{s}_0 \sim p(oldsymbol{s}_0)$$

- No global value function model V^{π} or Q^{π}
- Search directly in (policy) parameter space
- ➤ One way: gradient-based optimization
 - Compute V^{π} with corresponding gradients $dV^{\pi}/d\theta$
 - Gradient-based optimizer for maximization (e.g., CG, BFGS)

Gradient Estimation for Stochastic Inference

Gradient Estimation for Stochastic Inference

Finite (central) differences

$$\frac{\mathrm{d}V^{\pi}(\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}} \approx \frac{V^{\pi}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - V^{\pi}(\boldsymbol{\theta} - \boldsymbol{\epsilon})}{2\boldsymbol{\epsilon}}$$

- Model $p(s_{k+1}|s_k, a_k)$ not required but useful
- Large variance of estimator ▶ many samples needed

Gradient Estimation for Stochastic Inference

Finite (central) differences

$$\frac{\mathrm{d}V^{\pi}(\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}} \approx \frac{V^{\pi}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) - V^{\pi}(\boldsymbol{\theta} - \boldsymbol{\epsilon})}{2\boldsymbol{\epsilon}}$$

- Model $p(s_{k+1}|s_k, a_k)$ not required but useful
- Large variance of estimator ▶ many samples needed
- PEGASUS trick:
 - Fix the random seed and re-set
 - Smaller variance of the estimate of V^{π} and its gradient
 - No model $p(s_{k+1}|s_k, a_k)$ required
 - Only with simulator (where we can run exactly the same experiment)

Gradient Estimation for Deterministic Inference

- Finite differences and PEGASUS still work
- Analytic (=exact) gradients. Example (assume r = r(s)):

$$\frac{\mathrm{d}V(\theta)}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\mathrm{d}r(s_{t})}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \frac{\mathrm{d}s_{t}}{\mathrm{d}\theta}$$
$$= \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \left(\frac{\partial s_{t}}{\partial s_{t-1}} \frac{\mathrm{d}s_{t-1}}{\mathrm{d}\theta} + \frac{\partial s_{t}}{\partial a_{t-1}} \frac{\partial a_{t-1}}{\partial \theta} \right)$$

Gradient Estimation for Deterministic Inference

- Finite differences and PEGASUS still work
- Analytic (=exact) gradients. Example (assume r = r(s)):

$$\frac{\mathrm{d}V(\theta)}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\mathrm{d}r(s_{t})}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \frac{\mathrm{d}s_{t}}{\mathrm{d}\theta}$$
$$= \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \left(\frac{\partial s_{t}}{\partial s_{t-1}} \frac{\mathrm{d}s_{t-1}}{\mathrm{d}\theta} + \frac{\partial s_{t}}{\partial a_{t-1}} \frac{\partial a_{t-1}}{\partial \theta} \right)$$

- Requires
 - Forward model $\mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{a}_{t-1})$
 - Differentiable policy $a = \pi(s, \theta)$

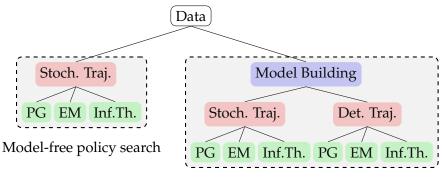
Gradient Estimation for Deterministic Inference

- Finite differences and PEGASUS still work
- Analytic (=exact) gradients. Example (assume r = r(s)):

$$\frac{\mathrm{d}V(\theta)}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\mathrm{d}r(s_{t})}{\mathrm{d}\theta} = \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \frac{\mathrm{d}s_{t}}{\mathrm{d}\theta}$$
$$= \sum_{t} \gamma^{t} \frac{\partial r(s_{t})}{\partial s_{t}} \left(\frac{\partial s_{t}}{\partial s_{t-1}} \frac{\mathrm{d}s_{t-1}}{\mathrm{d}\theta} + \frac{\partial s_{t}}{\partial a_{t-1}} \frac{\partial a_{t-1}}{\partial \theta} \right)$$

- Requires
 - Forward model $s_t = f(s_{t-1}, a_{t-1})$
 - Differentiable policy $\mathbf{a} = \pi(\mathbf{s}, \mathbf{\theta})$
- Mathematically more involved
- Gradients are exact (no variance): single trajectory evaluation

Policy Search



Model-based policy search

Applications in Robotics and Control

- Cart-pole: e.g., Riedmiller (2005), Deisenroth & Rasmussen (2011)
- Throttle valve control: Bischoff et al. (2013)
- Autonomous helicopter: e.g., Abbeel, Ng et al. (2003–2010), Bagnell & Schneider (2001)
- Pancake flipping (Kormushev et al., 2010)
- Throwing and catching balls (Kober et al., 2012)

Reinforcement Learning

Marc Deisenroth

Summary

- RL is a principled framework for sequential decision making under uncertainty
- Value functions V, Q
- Exact RL: Dynamic programming
- Approximate RL: Monte Carlo, TD
- · Policy Search with applications in robotics

m.deisenroth@imperial.ac.uk

Thank you for your attention

Key References

- Sutton, Barto: Reinforcement Learning: An Introduction (online)
- Bertsekas: Dynamic Programming and Optimal Control, Vol. 1-2
- Szepesvári: Algorithms for Reinforcement Learning (online)
- Deisenroth et al.: A Survey on Policy Search for Robotics (online)

RL Software Packages

- RLGlue: http://glue.rl-community.org/
- RLPy: http://acl.mit.edu/RLPy/
- CLSquare: http://www.ni.uos.de/index.php?id=70
- > PIQLE: http://piqle.sourceforge.net/
- RL Toolbox: http://www.igi.tugraz.at/ril-toolbox/
- LibPG:http://code.google.com/p/libpgrl/
- PILCO (policy search): http://mlg.eng.cam.ac.uk/pilco

References

- P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An Application of Reinforcement Learning to Aerobatic Helicopter Flight. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, *Advances in Neural Information Processing Systems* 19, volume 19, page 2007. The MIT Press, Cambridge, MA, USA, 2007.
- [2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005.
- [3] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2007.
- [4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013.
- [5] M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics, volume 2 of Foundations and Trends in Robotics. NOW Publishers, 2013.
- [6] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning, pages 465–472, New York, NY, USA, June 2011. ACM.
- [7] S. Gelly, M. Schoenauer, M. Sebag, O. Teytaud, L. Kocsis, D. Silver, and C. Szepesvári. The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions. *Communications of the ACM*, 55(3), 2012.
- [8] Q. Gemine, E. Karangelos, D. Ernst, and B. Cornélusse. Active Network Management: Planning under Uncertainty for Exploiting Load Modulation. In Proceedings of the 2013 IREP Symposium-Bulk Power System Dynamics and Control, 2013.
- [9] J. Kober, K. Mülling, and J. Peters. Learning Throwing and Catching Skills. In Proceedings of the IEEE/RSJ International Conference on Robot Systems, 2012.
- [10] P. Kormushev, S. Calinon, and D. G. Caldwell. Robot Motor Skill Coordination with EM-based Reinforcement Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
- [11] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality, volume 703. John Wiley & Sons, 2007.
- [12] M. Riedmiller. Neural Fitted Q Iteration—First Experiences with a Data Efficient Neural Reinforcement Learning Method. In Proceedings of the 16th European Conference on Machine Learning, Porto, Portugal, 2005.
- [13] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, USA, 1998.
- [14] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.
- [15] G. J. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. Neural Computation, 6(2):215–219, 1994.

Reinforcement Learning

Marc Deisenroth

@MLSS, September 2013

Appendix

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[R|\boldsymbol{s}_0 = \boldsymbol{s}, \pi]$$

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}\big[\boldsymbol{R}|\boldsymbol{s}_0 = \boldsymbol{s}, \boldsymbol{\pi}\big]$$

$$V^{\pi}(s) = \mathbb{E}[\frac{R}{s_0} = s, \pi]$$
$$= \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, \pi]$$

$$V^{\pi}(s) = \mathbb{E}[R|s_0 = s, \pi]$$
$$= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, \pi\right]$$

$$V^{\pi}(s) = \mathbb{E}[R|s_0 = s, \pi]$$
$$= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, \pi\right]$$
$$= \mathbb{E}[r_1 + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0 = s, \pi]$$

$$V^{\pi}(s) = \mathbb{E}[R|s_0 = s, \pi]$$

= $\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | s_0 = s, \pi\right]$
= $\mathbb{E}[r_1 + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | s_0 = s, \pi]$

$$\begin{aligned} V^{\pi}(\boldsymbol{s}) &= \mathbb{E} \big[R | \boldsymbol{s}_0 = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^k r_{k+1} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[r_1 + \gamma \sum_{k=0}^{\infty} \gamma^k r_{k+2} | \boldsymbol{s}_0 = \boldsymbol{s}, \pi \big] \\ &= \sum_{\boldsymbol{a}} p_{\pi}(\boldsymbol{a} | \boldsymbol{s}) \sum_{\boldsymbol{s}'} p(\boldsymbol{s}' | \boldsymbol{s}, \boldsymbol{a}) \left(\mathbb{E} [r_1] + \gamma \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^k r_{k+2} | \boldsymbol{s}_1 = \boldsymbol{s}', \pi \big] \right) \end{aligned}$$

Reinforcement Learning

$$V^{\pi}(\mathbf{s}) = \mathbb{E}[R|\mathbf{s}_{0} = \mathbf{s}, \pi]$$

= $\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | \mathbf{s}_{0} = \mathbf{s}, \pi\right]$
= $\mathbb{E}[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \mathbf{s}_{0} = \mathbf{s}, \pi]$
= $\sum_{a} p_{\pi}(a|\mathbf{s}) \sum_{\mathbf{s}'} p(\mathbf{s}'|\mathbf{s}, a) \left(\mathbb{E}[r_{1}] + \gamma \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \mathbf{s}_{1} = \mathbf{s}', \pi\right]\right)$

Reinforcement Learning

$$\begin{aligned} V^{\pi}(\boldsymbol{s}) &= \mathbb{E} \big[R | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \sum_{a} p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) \sum_{s'} p(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) \left(\mathbb{E} [r_{1}] + \gamma \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \boldsymbol{s}_{1} = \boldsymbol{s}', \pi \big] \right) \\ &= \sum_{a} p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) \sum_{s'} p(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) \left(\mathbb{E} [r_{1}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}')] + \gamma V^{\pi}(\boldsymbol{s}') \right) \end{aligned}$$

$$\begin{aligned} V^{\pi}(\boldsymbol{s}) &= \mathbb{E} \big[R | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \mathbb{E} \big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \boldsymbol{s}_{0} = \boldsymbol{s}, \pi \big] \\ &= \sum_{a} p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) \sum_{s'} p(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) \left(\mathbb{E} [r_{1}] + \gamma \mathbb{E} \big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | \boldsymbol{s}_{1} = \boldsymbol{s}', \pi \big] \right) \\ &= \sum_{a} p_{\pi}(\boldsymbol{a}|\boldsymbol{s}) \sum_{s'} p(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) \left(\mathbb{E} [r_{1}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}')] + \gamma V^{\pi}(\boldsymbol{s}') \right) \end{aligned}$$

Reinforcement Learning

$$\begin{split} V^{\pi}(s) &= \mathbb{E}[R|s_{0} = s, \pi] \\ &= \mathbb{E}\Big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} | s_{0} = s, \pi\Big] \\ &= \mathbb{E}\big[r_{1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{0} = s, \pi\big] \\ &= \sum_{a} p_{\pi}(a|s) \sum_{s'} p(s'|s, a) \left(\mathbb{E}[r_{1}] + \gamma \mathbb{E}\big[\sum_{k=0}^{\infty} \gamma^{k} r_{k+2} | s_{1} = s', \pi\big]\right) \\ &= \sum_{a} p_{\pi}(a|s) \sum_{s'} p(s'|s, a) \left(\mathbb{E}[r_{1}(s, a, s')] + \gamma V^{\pi}(s')\right) \\ &= \mathbb{E}[r_{1} + \gamma V^{\pi}(s_{1}) | s_{0} = s, \pi] \end{split}$$

