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Machine Learning

§ Unsupervised learning

§ Supervised learning

§ Reinforcement learning

RL makes decisions!
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RL Success Stories

§ Games (e.g., G. Tesauro, D. Silver)

§ Operations research and scheduling (e.g., W. Powell, P. Tadepalli)

§ Recently: robotics (e.g., P. Abbeel, J. Peters, P. Stone, M.
Riedmiller)
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Motivation

§ Learning system in an unknown environment
§ Knowledge only through interacting with environment
§ Explores the environment and receives rewards
§ Find strategy/policy, which maximizes overall reward

Optimal behavior
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Bayesian Decision Theory

§ Make optimal decisions a˚ by maximizing an expected utility

a˚ P arg max
a
Errpaqs “ arg max

a

m
ÿ

j“1

rpsj, aqppsjq

a : decision

s : information about environment/state

§ Bayesian sequential decision theory (statistics)

§ Optimal control theory (engineering)

§ Reinforcement learning (computer science, psychology)
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Example: Winning the Lottery

Actions Outcomes
a1: play s1: Win the lottery
a2: don’t play s2: Don’t win the lottery

Optimal action

a˚ “ arg max
ai

2
ÿ

j“1

rij ppsj|aiq

pps1|a1q “ 10´7 r11 “ 500, 000 USD
pps2|a1q “ 1´ 10´7 r12 “ ´1 USD
pps1|a2q “ 0 r21 “ 0 USD
pps2|a2q “ 1 r22 “ 0 USD

What is the optimal action for this decision problem?
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From Bayesian Decision Theory to RL

§ So far: single decisions. How do we make a sequence of decisions
in order to achieve some long-term rewards?

§ What about state-dependent actions ai|sj ?
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Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search
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RL Set-up

Environment

Agent
action a

reward r

state s

§ Agent interacts with environment to gain knowledge
§ Explores and receives rewards
§ Actions change the state of the environment
§ Choose actions to maximize long-term reward

Markov Decision Process
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Markov Decision Process: Definition

§ S : State space (finite)

§ A: Action space (finite)

§ P : Transition probability ppsk`1|sk, akq

§ r: Reward function

§ γ P r0, 1q: Discount factor

sk

ak

rk rk+1

sk+1

ak+1

§ π: Policy
§ Deterministic: a “ πpsq
§ Stochastic: a „ pπpa|sq alternative notation: pπpa|sq “ πpa|sq

Objective
Find a policy π˚ that maximizes the expected long-term reward

Vπpsq “ E
“

ÿ8

k“0
γkrk`1

ˇ

ˇs0 “ s, πs , rk`1 “ rk`1psk, ak, sk`1q
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Categorization of RL Algorithms

§ Value function methods
Use structure of a value function to discover optimal policies

§ Value function-free methods (e.g., policy search)
Search in policy space directly
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Reinforcement Learning Set-Up

Value Function Methods

Policy Search
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Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` |s0 “ s, a0 “ a, π
‰

“ E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs
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Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14



Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14



Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)

TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14



Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14



Optimal Policies and Value Functions

§ Optimal policy π˚ ensures that Vπ˚psq ě Vπpsq @s P S , π

§ Existence of π˚? Uniqueness?

§ Optimal state value function:
@s P S : V˚psq “ Vπ˚psq “ maxπ Vπpsq

§ Optimal state-action value function:
@s P S : Q˚ps, aq “ maxπ Qπps, aq

Expected return of choosing action a in state s and
afterwards following the optimal policy π˚. Note that

Q˚ps, aq “ Errt`1 ` γV˚pst`1q|st “ s, at “ as
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Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“
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Solving MDPs

§ Assume you know V˚

§ One-step search: be “greedy” with respect to V˚

π˚psq “ arg max
a
Errps, a, s1q ` γV˚ps1qs

§ Assume you know Q˚

§ Zero-step search:
π˚psq “ max

a
Q˚ps, aq

Assumptions for solving the Bellman equations exactly:
§ Know the transition probabilities pps1|s, aq
§ Sufficient computational resources available
§ Markov property holds
Approximate solutions in practice
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Solving MDPs (2)

§ Exact: Dynamic programming

§ Approximate: Monte Carlo, Temporal Difference Learning
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Dynamic Programming

Assumptions:

§ Perfect model pps1|s, aq is known

§ Typically finite state spaces S and action spaces A
§ Expected immediate rewards Errps, a, s1qs are known
Use value functions to structure the search for good policies
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Policy Evaluation

Objective
For a given policy π, find the corresponding value function Vπ

§ Exploit the fixed-point property of the value function
Vπ “ TπrVπs :

§ Initialize Vπ
0 arbitrarily

§ Find Vπ as the limit of the sequence Vπ
0 , Vπ

1 , . . .

Update Rule

@s P S : Vπ
k`1psq Ð Errps, a, s1q ` γVπ

k ps
1q|s, πs

a „ pπpa|sq , s1 „ pps1|s, aq

Bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 20



Policy Evaluation

Objective
For a given policy π, find the corresponding value function Vπ

§ Exploit the fixed-point property of the value function
Vπ “ TπrVπs :

§ Initialize Vπ
0 arbitrarily

§ Find Vπ as the limit of the sequence Vπ
0 , Vπ

1 , . . .

Update Rule

@s P S : Vπ
k`1psq Ð Errps, a, s1q ` γVπ

k ps
1q|s, πs

a „ pπpa|sq , s1 „ pps1|s, aq

Bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 20



Policy Improvement

§ So far: We know Vπ, but we want V˚

§ Find a better policy π1

Objective

Find a policy π1 ě π, i.e., Vπ1 ě Vπ
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Policy Improvement Theorem

Policy Improvement Theorem
If π, π1 are two (deterministic) policies with

@s P S : Qπps, π1psqq ě Qπps, πpsqq “ Vπpsq

then π1 ě π and Vπ1 ě Vπ, i.e., π1 improves π.

§ For stochastic policies:

Qπps, π1psqq “ EarQπps, aqs a „ pπ1pa|sq

“
ÿ

a
pπ1pa|sqQπps, aq
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Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq

“E
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‰
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ďE
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‰

“E
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r1 ` γr2 ` γ2|s0 “ s
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. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq
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Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)
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Policy Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ E: policy evaluation

§ I: policy improvement

§ Strict policy improvement at each step
(unless policy is already optimal)

§ Converges often after a few iterations

§ Each policy evaluation is itself an iterative process
Can be really slow!
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Value Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ Stop policy evaluation after a single update
No longer an iterative process

Update Rule

Vk`1psq “ max
a
E
“

rps, a, s1q ` γVkps1q|s, a
‰

“ max
a

ÿ

s1
pps1|s, aq

`

Errps, a, s1qs ` γVkps1q
˘

§ Bootstrapping
§ Bellman optimality equation as an update rule: Vk`1 Ð T˚rVks

§ Identical to policy evaluation backup if you add the max operator
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Generalized Policy Iteration (GPI)

V ∗

π∗

V = V π

π = greedy
(V )

§ Abstraction/generalization of policy iteration
§ Two interacting processes: policy evaluation/improvement

§ Update details abstracted away (policy needs to be greedy)
§ Don’t need to go full way to π or Vπ, just “in the direction”
§ Both processes converge to a single joint solution pV˚, π˚q

§ Value iteration (incomplete value function updates) is one
example of GPI
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Summary: Dynamic Programming

§ Find optimal policies via value functions and bootstrapping

§ Exact method (standard method in optimal control)

§ Computationally expensive (sweeps through state-action spaces)
Curse of dimensionality

§ Exponentially faster than any direct policy search method (if the
policy space is not restricted)

§ Requires a model pps1|s, aq and the knowledge of Errps, a, s1qs
before DP can be applied.

§ 2 algorithms: Policy iteration, value iteration
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Approximate Value Function Methods

Look trajectory samples

§ Monte Carlo methods

§ Temporal difference learning

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 29



Monte Carlo Methods

Key Idea

Vπpsq “ E
“

8
ÿ

k“0

γkrk`1|π, s0 “ s
‰

Estimate value function by averaging returns
of sampled trajectories

Properties:

§ Model free (no knowledge of pps1|s, aq required) very general

§ Learn from online experience (sampled trajectories of states,
actions, rewards)

§ Compute the same value function as DP (in the limit)
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Episodic Set-up

§ Consider a finite time horizon of length T
§ Usually a fixed set of initial states s0

§ Observe rewards r1, r2, . . . , rT|s0, π

§ Value estimates Vπps0q updated at the end of an episode
(not after each time step)

s0

t=0 t=1 t=T
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First-Visit Monte Carlo Policy Evaluation

§ Generate trajectories with policy π

§ Record reward after visiting state s, average at the end

1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all states s P τi do
4: r Ð sum of rewards following the first occurrence of s
5: Rpsq Ð rRpsq , rs Ź Append r to array
6: end for

7: Vπpsq « ErRpsq|πs « 1
|Rpsq|

|Rpsq|
ř

j“1
Rpsqrjs

8: end for

§ Convergence to the correct value Vπ in the limit
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Properties

§ Computational complexity independent of the size of the state
space

§ Very valuable if we are only interested in values starting from a
small set of states s0 episodic set-up

§ No bootstrapping (unlike DP)
§ Learn from actual experience (DP only uses the model)

Next steps?

§ Low-cost (computation) solution to computer Vπ

§ Is this useful for policy improvement? Why? (not?)
§ If we only know Vπ, we need to perform a one-step search for

policy improvement...
Need an estimate of Qπ if we don’t have a model pps1|s, aq
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Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all states s P τi do
4: r Ð sum of rewards following the first occurrence of s
5: Rpsq Ð rRpsq , rs Ź Append r to array
6: end for

7: Vπpsq « ErRpsq|πs « 1
|Rpsq|

|Rpsq|
ř

j“1
Rpsqrjs

8: end for

§ Any potential problems?
§ Deterministic policy?
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)
Maintain exploration
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Exploration

§ Exploring starts: non-zero probability that each state-action pair
is chosen as the start (difficult in practice, not commonly used)

§ Stochastic policies with non-zero probability on each action
§ @s P S , a P A : pπpa|sq ą 0
§ Example: ε-greedy policies, softmax policies
§ ε-greedy:

pπpa|sq “

#

πpsq with probability 1´ ε

UpAq with probability ε

Trade off exploring the world and exploiting current knowledge
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On-Policy Monte Carlo Control

π0
E
ÝÑ Qπ0 I

ÝÑ π1
E
ÝÑ Qπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ Q˚ I

ÝÑ π˚

§ Approximate optimal policies
§ Follow GPI idea: ε-greedy policy

§ MC version of policy iteration:
§ Policy evaluation via Monte Carlo estimates (stochastic policy)

get Qπ

§ Policy improvement: select greedy policy with respect to Qπ

Q∗

π∗

Q = Qπ

π = greedy
(Q)
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Off-Policy Monte Carlo Control

§ So far on-policy: Evaluate Qπ and, subsequently, apply π when
interacting with the environment

§ Off-policy: Evaluate Qπ but when interacting with the
environment, follow π1 ‰ π

Experience only generated from π1. Can we still estimate Qπ?

§ Yes, if we ensure that every action under π is also (occasionally)
taken under π1, i.e.,

if pπpa|sq ą 0 then pπ1pa|sq ą 0

§ Learning can be slow if the policies are very explorative, i.e.,
ε " 0
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Summary: Monte Carlo Methods

§ Learn optimal behavior from interaction

§ Easy to focus them on a small set of start states

§ Incremental implementation (updates after each episode)
possible

§ Exploration required!

§ No bootstrapping (unlike DP)

§ Model free (unlike DP)
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Temporal-Difference Learning

§ Between MC and DP
§ Bootstrapping
§ Model-free
§ MC waits until the end of the episode to update Vπ, Qπ

§ TD only waits until the next time step. Update value functions
based on observed reward and the current estimate of Vπ, Qπ
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TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping
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TD(0)

1: Init.: Set Vpsq arbitrarily
2: repeat for each episode
3: a Ð pπpa|sq Ź Sample action in current state
4: Apply a, observe r, s1 Ź Transition to next state
5: Vpsq Ð Vpsq ` α

`

r` γVps1q ´Vpsq
˘

Ź Update V
6: s Ð s1 Ź Re-set current state
7: until s is terminal

§ Temporal difference error: r` γVps1q ´Vpsq (“ Vnew ´Vold)
§ Difference to MC and DP:

§ MC waits until the end of the episode to update V
§ DP needs complete distribution pps1|s, aq of successor states to

update V
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TD(λ)

§ TD(0) uses 1-step returns to update Vπ

§ MC uses full trajectories to update Vπ

§ TD(λ), λ P r0, 1s, blends between them
§ λ “ 0: TD(0), λ “ 1: MC
§ TD(λ) update rule given as a mixture of multi-step returns
§ Mixing coefficients p1´ λqλk, k ě 0
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SARSA: On-Policy TD Control

§ Thus far, we only learned Vπ using TD
§ Not very useful without model when we want to do control

Learn Qπ

TD Update for Qπ

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γQps1, a1q ´Qps, aq
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“p1´αqQold`αQnew

§ Update rule needs ps, a, r, s1, a1q SARSA
§ On-policy algorithm
§ a1 chosen from s1 using policy derived from Q (e.g., ε-greedy)
§ Convergence proofs for ε-greedy policies

DEMO gridworld
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Q-Learning: Off-Policy TD Control

TD Update for Q˚

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γmaxa1Qps1, a1q ´Qps, aq
˘

§ Off-policy TD control

§ SARSA: learn Qπ, Q-learning: learn Q˚

§ Update the value function Q independent of the policy the agent
actually follows to generate the samples (max ...)

§ For convergence: keep updating all state-action pairs

DEMO gridworld 2
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DEMO gridworld 2
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RL in Continuous Spaces: Function Approximation

§ So far: discrete states and actions
Table representation sufficient

§ In continuous spaces: Function approximation for better
generalization:
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Function Approximation

§ Typically: (linear) basis function representation

Vpsq “
ÿ

i

θiφipsq

§ Basis functions φi are fixed, only parameters θi need to be learned

§ Gradient descent to update the parameters. Example TD(0):

θk`1 Ð θk ` α
`

vk ´Vkpskq
˘BVkpskq

Bθk

vk: approximation/estimate of Vπpskq, e.g., MC estimate
α: learning rate

§ Convergence if vk is unbiased, i.e., Ervks “ Vπpskq
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Summary: RL with Value Functions

§ Learn policies exploiting properties of the value functions V, Q

§ Bellman equations/optimality principle

§ Policy evaluation/improvement

§ Exact solution: Dynamic programming

§ Approximation solution: MC, TD

§ Exploration

§ Function approximation
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Applications

§ Board games (e.g., Tesauro, Silver, Riedmiller)

§ Power systems (e.g., D. Ernst)

§ Robocup (e.g., Stone, Riedmiller)

§ Scheduling tasks (e.g., W. Powell)
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Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search
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RL without Value Functions: Policy Search

§ Value function approximation is hard, especially in continuous
domains

§ Search directly in policy space?

§ Only feasible in a restricted class Π of policies

π “ πpθq

Vπpθq “ E
“

ÿT

k“0
rk`1|θ

‰

§ Consider an episodic set-up, i.e., pps0q is given

Objective (Policy Search)
For a given class Πpθq of policies, find an optimal policy

π˚ P arg max
πPΠpθq

Vπpθq
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Categorization of Policy Search Methods

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

§ Data: psi, ai, riq, i “ 1, . . . , n
§ Model-based vs. model-free policy search
§ Policy evaluation (red), policy improvement (green)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 52



Model-based Set-up: Interaction and Simulation

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

Two alternating phases:
§ Interaction: internal model is refined using experience from

interacting with the real system

§ Simulation: internal model simulates consequences of actions in
the real system, policy is refined
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Model Building

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search
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Model Learning

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

§ Pro:

No “real” experiments with robot for policy evaluation and
improvement (just simulate!) Protect hardware

§ Con: Model errors Effects of “wrong” models?
§ What are good models?
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Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Observed function values
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Useful Models

§ Probabilistic models!

§ Reduce model errors and simulation/optimization bias
§ Examples of probabilistic models

§ Bayesian linear regression
§ Gaussian process
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Bayesian Linear Regression: Model

§ Model: y “ θJφpxq “
ř

i θiφipxq

§ φpxq: “Features”, e.g., φpxq “ rx, x2sJ

§ Distribution over model parameters θ:

ppθq “ N
`

θ |m, S
˘

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

DEMO Bayesian regression
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Bayesian Linear Regression: Predictions

§ Model: y “ φJpxqθ, θ „ N
`

m, S
˘

§ Predict function values y “ ry1, . . . , yns
J at inputs

X “ rx1, . . . , xns

Define Φ “ φpXq ñ y “ ΦJθ

Erys “

ErΦJθs “ ΦJErθs “ ΦJm

Vrys “

VrΦJθs “ ΦJVrθsΦ “ ΦJSΦ
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Introduction to Gaussian Processes

§ Generalization of Bayesian linear regression
§ Nonparametric Bayesian regression method
§ Probability distribution over functions
§ Fully specified by

§ Mean function m (average function)
§ Covariance function/kernel k (assumptions on structure)

Covr f pxpq, f pxqqs “ kpxp, xqq

§ Posterior predictive distribution at x˚ is Gaussian:

pp f px˚q| x˚ , X, y q “ N
`

f px˚q |mpx˚q, σ2px˚q
˘

Test input Training data
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Gaussian Process: Definition

Definition
A Gaussian process is a collection of random variables, any finite
number of which has a joint Gaussian distribution.

§ Look at Gaussian distributions of function values f1, f2, . . .

§ All of them are jointly Gaussian distributed

Er f pxqs “ mpxq

Covr f pxiq, f pxjqs “ kpxi, xjq
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Gaussian Process: Predictions

§ Given a training set
`

xi, f pxiq
˘n

i“1, we can predict function values
f˚j at test inputs x˚j

§ First, compute the joint distribution:

pp f , f˚|X, X˚q “ N
ˆ„

mpXq
mpX˚q



,
„

K kpX, X˚q
kpX˚, Xq K˚

˙

Kij “ kpxi, xjq “ Covr f pxiq, f pxjqs

§ Second, compute the conditional pp f˚|X, X˚, f q by plain
Gaussian conditioning:

pp f˚|X, X˚, f q “ N
`

µ˚, Σ˚
˘

µ˚ “ mpX˚q ` kpX˚, XqK´1p f ´mpXqq

Σ˚ “ K˚ ´ kpX˚, XqK´1kpX, X˚q
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Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Prior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|∅s “ mpx˚q “ 0
Vr f px˚q|∅s “ σ2px˚q “ Covr f px˚q, f px˚qs “ kpx˚, x˚q
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Properties

§ Universal function approximator extremely expressive

§ Model gives “free” variance estimates

§ Computationally involved:
§ Training: OpN3q Repeated inversion of N ˆ N matrix
§ Mean prediction: OpNq Scalar product
§ Variance prediction: OpN2q Matrix-vector multiplication

§ Sparse approximations exist

§ Code/book online: http://www.gaussianprocess.org
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§ Code/book online: http://www.gaussianprocess.org
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Policy Evaluation

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Policy evaluation: Compute expected long-term reward
§ Stochastic trajectory evaluation
§ Deterministic trajectory evaluation
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Policy Evaluation

§ Stochastic inference (sampling) using either the learned model
(simulator) or the real system

§ Deterministic inference—only with a learned model
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Stochastic Inference

§ Sample trajectories psi, ai, riq Monte Carlo

§ Conceptually very simple

§ Requires a lot of “interactions” (if you don’t have a model or a
good simulator)

Potentially impractical (e.g., in robotics)
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Deterministic Inference

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

§ Analytically propagate uncertainty through the model

§ Computationally/mathematically more involved

§ Can’t do this for arbitrary systems, but for some.
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Deterministic Inference: Example

Linear system

ppstq “ N
`

st |mt, St
˘

st`1 “ Ast

Successor state distribution ppst`1q?

ppst`1q “ N
`

st`1 |mt`1, St`1
˘

mt`1 “ Amt , St`1 “ ASt AJ

§ In nonlinear/non-Gaussian systems, we need approximations
(e.g., linearization, moment matching)
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Policy Improvement

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Policy improvement (green)
§ Policy gradients
§ Expectation Maximization
§ Information theory
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Policy Search: Policy Improvement

Objective
Find policy parameters θ˚, which maximize the expected long-term
reward

Vπpθq “ E
“

T
ÿ

k“0

γkrk`1|θ
‰

, s0 „ pps0q

§ No global value function model Vπ or Qπ

§ Search directly in (policy) parameter space

One way: gradient-based optimization

§ Compute Vπ with corresponding gradients dVπ{dθ

§ Gradient-based optimizer for maximization (e.g., CG, BFGS)
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Gradient Estimation for Stochastic Inference

§ Finite (central) differences

dVπpθq

dθ
«

Vπpθ` εq ´Vπpθ´ εq

2ε

§ Model ppsk`1|sk, akq not required but useful
§ Large variance of estimator many samples needed

§ PEGASUS trick:
§ Fix the random seed and re-set
§ Smaller variance of the estimate of Vπ and its gradient
§ No model ppsk`1|sk, akq required
§ Only with simulator (where we can run exactly the same

experiment)
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Gradient Estimation for Deterministic Inference

§ Finite differences and PEGASUS still work

§ Analytic (=exact) gradients. Example (assume r “ rpsq):

dVpθq
dθ

“
ÿ

t

γt drpstq

dθ
“

ÿ

t

γt Brpstq

Bst

dst

dθ

“
ÿ

t

γt Brpstq

Bst

ˆ

Bst

Bst´1

dst´1

dθ
`

Bst

Bat´1

Bat´1

Bθ

˙

§ Requires
§ Forward model st “ f pst´1, at´1q

§ Differentiable policy a “ πps, θq

§ Mathematically more involved

§ Gradients are exact (no variance): single trajectory evaluation
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Policy Search

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search
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Applications in Robotics and Control

§ Cart-pole: e.g., Riedmiller (2005), Deisenroth & Rasmussen (2011)
§ Throttle valve control: Bischoff et al. (2013)
§ Autonomous helicopter: e.g., Abbeel, Ng et al. (2003–2010),

Bagnell & Schneider (2001)
§ Pancake flipping (Kormushev et al., 2010)
§ Throwing and catching balls (Kober et al., 2012)
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Summary

§ RL is a principled framework for sequential decision making
under uncertainty

§ Value functions V, Q
§ Exact RL: Dynamic programming
§ Approximate RL: Monte Carlo, TD
§ Policy Search with applications in robotics

m.deisenroth@imperial.ac.uk

Thank you for your attention
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Key References

§ Sutton, Barto: Reinforcement Learning: An Introduction (online)

§ Bertsekas: Dynamic Programming and Optimal Control, Vol. 1–2

§ Szepesvári: Algorithms for Reinforcement Learning (online)

§ Deisenroth et al.: A Survey on Policy Search for Robotics (online)
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RL Software Packages

§ RLGlue: http://glue.rl-community.org/

§ RLPy: http://acl.mit.edu/RLPy/

§ CLSquare: http://www.ni.uos.de/index.php?id=70

§ PIQLE: http://piqle.sourceforge.net/

§ RL Toolbox: http://www.igi.tugraz.at/ril-toolbox/

§ LibPG: http://code.google.com/p/libpgrl/

§ PILCO (policy search): http://mlg.eng.cam.ac.uk/pilco
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Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

|s0 “ s, π
‰

“ |s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs
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Demo: Policy Iteration

Example: Shortest-path problem
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