
Tutorial on Reinforcement Learning

Marc Deisenroth
Department of Computing
Imperial College London

Department of Computer Science
TU Darmstadt

m.deisenroth@imperial.ac.uk

Machine Learning Summer School on Big Data
Hammamet, September 17, 2013

m.deisenroth@imperial.ac.uk

Machine Learning

§ Unsupervised learning

§ Supervised learning

§ Reinforcement learning

RL makes decisions!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 2

Machine Learning

§ Unsupervised learning

§ Supervised learning

§ Reinforcement learning

RL makes decisions!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 2

RL Success Stories

§ Games (e.g., G. Tesauro, D. Silver)

§ Operations research and scheduling (e.g., W. Powell, P. Tadepalli)

§ Recently: robotics (e.g., P. Abbeel, J. Peters, P. Stone, M.
Riedmiller)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 3

Motivation

§ Learning system in an unknown environment
§ Knowledge only through interacting with environment
§ Explores the environment and receives rewards
§ Find strategy/policy, which maximizes overall reward

Optimal behavior

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 4

Bayesian Decision Theory

§ Make optimal decisions a˚ by maximizing an expected utility

a˚ P arg max
a
Errpaqs “ arg max

a

m
ÿ

j“1

rpsj, aqppsjq

a : decision

s : information about environment/state

§ Bayesian sequential decision theory (statistics)

§ Optimal control theory (engineering)

§ Reinforcement learning (computer science, psychology)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 5

Bayesian Decision Theory

§ Make optimal decisions a˚ by maximizing an expected utility

a˚ P arg max
a
Errpaqs “ arg max

a

m
ÿ

j“1

rpsj, aqppsjq

a : decision

s : information about environment/state

§ Bayesian sequential decision theory (statistics)

§ Optimal control theory (engineering)

§ Reinforcement learning (computer science, psychology)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 5

Example: Winning the Lottery

Actions Outcomes
a1: play s1: Win the lottery
a2: don’t play s2: Don’t win the lottery

Optimal action

a˚ “ arg max
ai

2
ÿ

j“1

rij ppsj|aiq

pps1|a1q “ 10´7 r11 “ 500, 000 USD
pps2|a1q “ 1´ 10´7 r12 “ ´1 USD
pps1|a2q “ 0 r21 “ 0 USD
pps2|a2q “ 1 r22 “ 0 USD

What is the optimal action for this decision problem?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 6

Example: Winning the Lottery

Actions Outcomes
a1: play s1: Win the lottery
a2: don’t play s2: Don’t win the lottery

Optimal action

a˚ “ arg max
ai

2
ÿ

j“1

rij ppsj|aiq

pps1|a1q “ 10´7 r11 “ 500, 000 USD
pps2|a1q “ 1´ 10´7 r12 “ ´1 USD
pps1|a2q “ 0 r21 “ 0 USD
pps2|a2q “ 1 r22 “ 0 USD

What is the optimal action for this decision problem?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 6

Example: Winning the Lottery

Actions Outcomes
a1: play s1: Win the lottery
a2: don’t play s2: Don’t win the lottery

Optimal action

a˚ “ arg max
ai

2
ÿ

j“1

rij ppsj|aiq

pps1|a1q “ 10´7 r11 “ 500, 000 USD
pps2|a1q “ 1´ 10´7 r12 “ ´1 USD
pps1|a2q “ 0 r21 “ 0 USD
pps2|a2q “ 1 r22 “ 0 USD

What is the optimal action for this decision problem?
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 6

From Bayesian Decision Theory to RL

§ So far: single decisions. How do we make a sequence of decisions
in order to achieve some long-term rewards?

§ What about state-dependent actions ai|sj ?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 7

Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 8

RL Set-up

Environment

Agent
action a

reward r

state s

§ Agent interacts with environment to gain knowledge
§ Explores and receives rewards
§ Actions change the state of the environment
§ Choose actions to maximize long-term reward

Markov Decision Process

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 9

RL Set-up

§ Agent interacts with environment to gain knowledge
§ Explores and receives rewards
§ Actions change the state of the environment
§ Choose actions to maximize long-term reward

Markov Decision Process

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 9

RL Set-up

§ Agent interacts with environment to gain knowledge
§ Explores and receives rewards
§ Actions change the state of the environment
§ Choose actions to maximize long-term reward

Markov Decision Process
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 9

Markov Decision Process: Definition

§ S : State space (finite)

§ A: Action space (finite)

§ P : Transition probability ppsk`1|sk, akq

§ r: Reward function

§ γ P r0, 1q: Discount factor

sk

ak

rk rk+1

sk+1

ak+1

§ π: Policy
§ Deterministic: a “ πpsq
§ Stochastic: a „ pπpa|sq alternative notation: pπpa|sq “ πpa|sq

Objective
Find a policy π˚ that maximizes the expected long-term reward

Vπpsq “ E
“

ÿ8

k“0
γkrk`1

ˇ

ˇs0 “ s, πs , rk`1 “ rk`1psk, ak, sk`1q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 10

Markov Decision Process: Definition

§ S : State space (finite)

§ A: Action space (finite)

§ P : Transition probability ppsk`1|sk, akq

§ r: Reward function

§ γ P r0, 1q: Discount factor

sk

ak

rk rk+1

sk+1

ak+1

§ π: Policy
§ Deterministic: a “ πpsq
§ Stochastic: a „ pπpa|sq alternative notation: pπpa|sq “ πpa|sq

Objective
Find a policy π˚ that maximizes the expected long-term reward

Vπpsq “ E
“

ÿ8

k“0
γkrk`1

ˇ

ˇs0 “ s, πs , rk`1 “ rk`1psk, ak, sk`1q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 10

Categorization of RL Algorithms

§ Value function methods
Use structure of a value function to discover optimal policies

§ Value function-free methods (e.g., policy search)
Search in policy space directly

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 11

Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 12

Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` |s0 “ s, a0 “ a, π
‰

“ E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 13

Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` |s0 “ s, a0 “ a, π
‰

“ E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 13

Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` γ
ÿ8

k“0
γkrk`2|s0 “ s, a0 “ a, π

‰

“

E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 13

Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` γ
ÿ8

k“0
γkrk`2|s0 “ s, a0 “ a, π

‰

“

E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 13

Value Functions

§ State Value Function: How good is it to be in a particular state s?
Well, this depends on the current policy:

Vπpsq “ E
“

R|s0 “ s
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, π

‰

“ Err1 ` γVπps1q|s0 “ s, πs Self-consistency

§ State-Action Value Function: How good is it to be in a particular
state s and apply action a, and afterwards follow policy π?

Qπps, aq “ E
“

R|s0 “ s, a0 “ a, π
‰

“ E
“

ÿ8

k“0
γkrk`1|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` γ
ÿ8

k“0
γkrk`2|s0 “ s, a0 “ a, π

‰

“ E
“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ a, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 13

Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14

Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14

Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)

TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14

Bellman Operator

Vπpsq “ Err1 ` γVπps1q|s0 “ s, πs

“ TπrVπspsq
TπrVπspsq :“ E

“

r1 ` γVπps1q|s0 “ s, π
‰

Vπ “ TπrVπs, Tπ : Bellman operator (linear affine)

§ Fixed point equation with a unique solution for Vπ

(Banach’s FP theorem)
TπrVπs “ rπ ` γPπVπ

ùñ Vπ “ rπ ` γPπVπ

for suitable representations rπ,Pπ, Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 14

Optimal Policies and Value Functions

§ Optimal policy π˚ ensures that Vπ˚psq ě Vπpsq @s P S , π

§ Existence of π˚? Uniqueness?

§ Optimal state value function:
@s P S : V˚psq “ Vπ˚psq “ maxπ Vπpsq

§ Optimal state-action value function:
@s P S : Q˚ps, aq “ maxπ Qπps, aq

Expected return of choosing action a in state s and
afterwards following the optimal policy π˚. Note that

Q˚ps, aq “ Errt`1 ` γV˚pst`1q|st “ s, at “ as

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 15

Optimal Policies and Value Functions

§ Optimal policy π˚ ensures that Vπ˚psq ě Vπpsq @s P S , π

§ Existence of π˚? Uniqueness?

§ Optimal state value function:
@s P S : V˚psq “ Vπ˚psq “ maxπ Vπpsq

§ Optimal state-action value function:
@s P S : Q˚ps, aq “ maxπ Qπps, aq

Expected return of choosing action a in state s and
afterwards following the optimal policy π˚. Note that

Q˚ps, aq “ Errt`1 ` γV˚pst`1q|st “ s, at “ as

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 15

Optimal Policies and Value Functions

§ Optimal policy π˚ ensures that Vπ˚psq ě Vπpsq @s P S , π

§ Existence of π˚? Uniqueness?

§ Optimal state value function:
@s P S : V˚psq “ Vπ˚psq “ maxπ Vπpsq

§ Optimal state-action value function:
@s P S : Q˚ps, aq “ maxπ Qπps, aq

Expected return of choosing action a in state s and
afterwards following the optimal policy π˚. Note that

Q˚ps, aq “ Errt`1 ` γV˚pst`1q|st “ s, at “ as

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 15

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Bellman Optimality Equations

V˚psq “ max
a

Q˚ps, aq

“ max
a
E
“

8
ÿ

k“0

γkrk`1|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, a0 “ a, π˚
‰

“ max
a
E
“

r1 ` γV˚ps1q|s0 “ s, a0 “ a, π˚
‰

V˚ “ T˚rV˚s T˚ : Bellman optimality operator (nonlinear)

Q˚ps, aq “ Err1 ` γ max
a1

Q˚ps1, a1q|s0 “ s, a0 “ as

“ Err1 ` γV˚ps1q|s0 “ s, a0 “ as

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 16

Solving MDPs

§ Assume you know V˚

§ One-step search: be “greedy” with respect to V˚

π˚psq “ arg max
a
Errps, a, s1q ` γV˚ps1qs

§ Assume you know Q˚

§ Zero-step search:
π˚psq “ max

a
Q˚ps, aq

Assumptions for solving the Bellman equations exactly:
§ Know the transition probabilities pps1|s, aq
§ Sufficient computational resources available
§ Markov property holds
Approximate solutions in practice

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 17

Solving MDPs

§ Assume you know V˚

§ One-step search: be “greedy” with respect to V˚

π˚psq “ arg max
a
Errps, a, s1q ` γV˚ps1qs

§ Assume you know Q˚

§ Zero-step search:
π˚psq “ max

a
Q˚ps, aq

Assumptions for solving the Bellman equations exactly:
§ Know the transition probabilities pps1|s, aq
§ Sufficient computational resources available
§ Markov property holds
Approximate solutions in practice

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 17

Solving MDPs

§ Assume you know V˚

§ One-step search: be “greedy” with respect to V˚

π˚psq “ arg max
a
Errps, a, s1q ` γV˚ps1qs

§ Assume you know Q˚

§ Zero-step search:
π˚psq “ max

a
Q˚ps, aq

Assumptions for solving the Bellman equations exactly:
§ Know the transition probabilities pps1|s, aq
§ Sufficient computational resources available
§ Markov property holds

Approximate solutions in practice

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 17

Solving MDPs

§ Assume you know V˚

§ One-step search: be “greedy” with respect to V˚

π˚psq “ arg max
a
Errps, a, s1q ` γV˚ps1qs

§ Assume you know Q˚

§ Zero-step search:
π˚psq “ max

a
Q˚ps, aq

Assumptions for solving the Bellman equations exactly:
§ Know the transition probabilities pps1|s, aq
§ Sufficient computational resources available
§ Markov property holds
Approximate solutions in practice

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 17

Solving MDPs (2)

§ Exact: Dynamic programming

§ Approximate: Monte Carlo, Temporal Difference Learning

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 18

Dynamic Programming

Assumptions:

§ Perfect model pps1|s, aq is known

§ Typically finite state spaces S and action spaces A
§ Expected immediate rewards Errps, a, s1qs are known
Use value functions to structure the search for good policies

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 19

Policy Evaluation

Objective
For a given policy π, find the corresponding value function Vπ

§ Exploit the fixed-point property of the value function
Vπ “ TπrVπs :

§ Initialize Vπ
0 arbitrarily

§ Find Vπ as the limit of the sequence Vπ
0 , Vπ

1 , . . .

Update Rule

@s P S : Vπ
k`1psq Ð Errps, a, s1q ` γVπ

k ps
1q|s, πs

a „ pπpa|sq , s1 „ pps1|s, aq

Bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 20

Policy Evaluation

Objective
For a given policy π, find the corresponding value function Vπ

§ Exploit the fixed-point property of the value function
Vπ “ TπrVπs :

§ Initialize Vπ
0 arbitrarily

§ Find Vπ as the limit of the sequence Vπ
0 , Vπ

1 , . . .

Update Rule

@s P S : Vπ
k`1psq Ð Errps, a, s1q ` γVπ

k ps
1q|s, πs

a „ pπpa|sq , s1 „ pps1|s, aq

Bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 20

Policy Improvement

§ So far: We know Vπ, but we want V˚

§ Find a better policy π1

Objective

Find a policy π1 ě π, i.e., Vπ1 ě Vπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 21

Policy Improvement Theorem

Policy Improvement Theorem
If π, π1 are two (deterministic) policies with

@s P S : Qπps, π1psqq ě Qπps, πpsqq “ Vπpsq

then π1 ě π and Vπ1 ě Vπ, i.e., π1 improves π.

§ For stochastic policies:

Qπps, π1psqq “ EarQπps, aqs a „ pπ1pa|sq

“
ÿ

a
pπ1pa|sqQπps, aq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 22

Policy Improvement Theorem

Policy Improvement Theorem
If π, π1 are two (deterministic) policies with

@s P S : Qπps, π1psqq ě Qπps, πpsqq “ Vπpsq

then π1 ě π and Vπ1 ě Vπ, i.e., π1 improves π.

§ For stochastic policies:

Qπps, π1psqq “ EarQπps, aqs a „ pπ1pa|sq

“
ÿ

a
pπ1pa|sqQπps, aq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 22

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq

“E
“

|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γ|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γ|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γ|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γ|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γ|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γ|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γ|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γ|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γ|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2Qπps2, π1ps2qq|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2Qπps2, π1ps2qq|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2Qπps2, π1ps2qq|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2r3 ` γ3Vπps3q|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2Qπps2, π1ps2qq|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2r3 ` γ3Vπps3q|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Proof

@s P S : Qπps, π1psqq ě Vπpsq “ Qπps, πpsqq (˚)

Vπpsq
p˚q

ďQπps, π1psqq
“E

“

r1ps0, a0, s1q ` γVπps1q|s0 “ s, a0 “ π1ps0q
‰

p˚q

ďE
“

r1 ` γQπps1, π1ps1qq|s0 “ s, a0 “ π1ps0q, a1 “ π1ps1q
‰

“E
“

r1 ` γErr2 ` γVπps2qs|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2Vπps2q|s0 “ s
‰

p˚q

ďE
“

r1 ` γr2 ` γ2Qπps2, π1ps2qq|s0 “ s
‰

“E
“

r1 ` γr2 ` γ2r3 ` γ3Vπps3q|s0 “ s
‰

. . .

ďE
“

ÿ8

k“0
γkrk`1|s0 “ s

‰

“ Vπ1psq
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 23

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Improvement

§ Easy to evaluate a change in the policy at a single state s

§ Extend this idea to all states:

@s P S : π1psq “ arg max
a
E
“

rps, a, s1q ` γVπps1q
‰

“ arg max
a

Qπps, aq

§ When π1 “ π then Vπ1 “ Vπ Convergence (Why?)

§ If Vπ is known, we need a model pps1|s, aq for the one-step
look-ahead

§ If Qπ is known, we don’t need a model (no prediction required)

§ Greedy policy update with respect to the value function
(but look implicitly at long-term rewards)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 24

Policy Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ E: policy evaluation

§ I: policy improvement

§ Strict policy improvement at each step
(unless policy is already optimal)

§ Converges often after a few iterations

§ Each policy evaluation is itself an iterative process
Can be really slow!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 25

Policy Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ E: policy evaluation

§ I: policy improvement

§ Strict policy improvement at each step
(unless policy is already optimal)

§ Converges often after a few iterations

§ Each policy evaluation is itself an iterative process
Can be really slow!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 25

Policy Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ E: policy evaluation

§ I: policy improvement

§ Strict policy improvement at each step
(unless policy is already optimal)

§ Converges often after a few iterations

§ Each policy evaluation is itself an iterative process
Can be really slow!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 25

Value Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ Stop policy evaluation after a single update
No longer an iterative process

Update Rule

Vk`1psq “ max
a
E
“

rps, a, s1q ` γVkps1q|s, a
‰

“ max
a

ÿ

s1
pps1|s, aq

`

Errps, a, s1qs ` γVkps1q
˘

§ Bootstrapping
§ Bellman optimality equation as an update rule: Vk`1 Ð T˚rVks

§ Identical to policy evaluation backup if you add the max operator

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 26

Value Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ Stop policy evaluation after a single update
No longer an iterative process

Update Rule

Vk`1psq “ max
a
E
“

rps, a, s1q ` γVkps1q|s, a
‰

“ max
a

ÿ

s1
pps1|s, aq

`

Errps, a, s1qs ` γVkps1q
˘

§ Bootstrapping
§ Bellman optimality equation as an update rule: Vk`1 Ð T˚rVks

§ Identical to policy evaluation backup if you add the max operator

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 26

Value Iteration

π0
E
ÝÑ Vπ0 I

ÝÑ π1
E
ÝÑ Vπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ V˚ I

ÝÑ π˚

§ Stop policy evaluation after a single update
No longer an iterative process

Update Rule

Vk`1psq “ max
a
E
“

rps, a, s1q ` γVkps1q|s, a
‰

“ max
a

ÿ

s1
pps1|s, aq

`

Errps, a, s1qs ` γVkps1q
˘

§ Bootstrapping
§ Bellman optimality equation as an update rule: Vk`1 Ð T˚rVks

§ Identical to policy evaluation backup if you add the max operator

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 26

Generalized Policy Iteration (GPI)

V ∗

π∗

V = V π

π = greedy
(V)

§ Abstraction/generalization of policy iteration
§ Two interacting processes: policy evaluation/improvement

§ Update details abstracted away (policy needs to be greedy)
§ Don’t need to go full way to π or Vπ, just “in the direction”
§ Both processes converge to a single joint solution pV˚, π˚q

§ Value iteration (incomplete value function updates) is one
example of GPI

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 27

Generalized Policy Iteration (GPI)

V ∗

π∗

V = V π

π = greedy
(V)

§ Abstraction/generalization of policy iteration
§ Two interacting processes: policy evaluation/improvement
§ Update details abstracted away (policy needs to be greedy)
§ Don’t need to go full way to π or Vπ, just “in the direction”

§ Both processes converge to a single joint solution pV˚, π˚q

§ Value iteration (incomplete value function updates) is one
example of GPI

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 27

Generalized Policy Iteration (GPI)

V ∗

π∗

V = V π

π = greedy
(V)

§ Abstraction/generalization of policy iteration
§ Two interacting processes: policy evaluation/improvement
§ Update details abstracted away (policy needs to be greedy)
§ Don’t need to go full way to π or Vπ, just “in the direction”
§ Both processes converge to a single joint solution pV˚, π˚q

§ Value iteration (incomplete value function updates) is one
example of GPI

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 27

Summary: Dynamic Programming

§ Find optimal policies via value functions and bootstrapping

§ Exact method (standard method in optimal control)

§ Computationally expensive (sweeps through state-action spaces)
Curse of dimensionality

§ Exponentially faster than any direct policy search method (if the
policy space is not restricted)

§ Requires a model pps1|s, aq and the knowledge of Errps, a, s1qs
before DP can be applied.

§ 2 algorithms: Policy iteration, value iteration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 28

Summary: Dynamic Programming

§ Find optimal policies via value functions and bootstrapping

§ Exact method (standard method in optimal control)

§ Computationally expensive (sweeps through state-action spaces)
Curse of dimensionality

§ Exponentially faster than any direct policy search method (if the
policy space is not restricted)

§ Requires a model pps1|s, aq and the knowledge of Errps, a, s1qs
before DP can be applied.

§ 2 algorithms: Policy iteration, value iteration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 28

Summary: Dynamic Programming

§ Find optimal policies via value functions and bootstrapping

§ Exact method (standard method in optimal control)

§ Computationally expensive (sweeps through state-action spaces)
Curse of dimensionality

§ Exponentially faster than any direct policy search method (if the
policy space is not restricted)

§ Requires a model pps1|s, aq and the knowledge of Errps, a, s1qs
before DP can be applied.

§ 2 algorithms: Policy iteration, value iteration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 28

Approximate Value Function Methods

Look trajectory samples

§ Monte Carlo methods

§ Temporal difference learning

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 29

Monte Carlo Methods

Key Idea

Vπpsq “ E
“

8
ÿ

k“0

γkrk`1|π, s0 “ s
‰

Estimate value function by averaging returns
of sampled trajectories

Properties:

§ Model free (no knowledge of pps1|s, aq required) very general

§ Learn from online experience (sampled trajectories of states,
actions, rewards)

§ Compute the same value function as DP (in the limit)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 30

Monte Carlo Methods

Key Idea

Vπpsq “ E
“

8
ÿ

k“0

γkrk`1|π, s0 “ s
‰

Estimate value function by averaging returns
of sampled trajectories

Properties:

§ Model free (no knowledge of pps1|s, aq required) very general

§ Learn from online experience (sampled trajectories of states,
actions, rewards)

§ Compute the same value function as DP (in the limit)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 30

Episodic Set-up

§ Consider a finite time horizon of length T
§ Usually a fixed set of initial states s0

§ Observe rewards r1, r2, . . . , rT|s0, π

§ Value estimates Vπps0q updated at the end of an episode
(not after each time step)

s0

t=0 t=1 t=T

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 31

First-Visit Monte Carlo Policy Evaluation

§ Generate trajectories with policy π

§ Record reward after visiting state s, average at the end

1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all states s P τi do
4: r Ð sum of rewards following the first occurrence of s
5: Rpsq Ð rRpsq , rs Ź Append r to array
6: end for

7: Vπpsq « ErRpsq|πs « 1
|Rpsq|

|Rpsq|
ř

j“1
Rpsqrjs

8: end for

§ Convergence to the correct value Vπ in the limit

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 32

Properties

§ Computational complexity independent of the size of the state
space

§ Very valuable if we are only interested in values starting from a
small set of states s0 episodic set-up

§ No bootstrapping (unlike DP)
§ Learn from actual experience (DP only uses the model)

Next steps?

§ Low-cost (computation) solution to computer Vπ

§ Is this useful for policy improvement? Why? (not?)
§ If we only know Vπ, we need to perform a one-step search for

policy improvement...
Need an estimate of Qπ if we don’t have a model pps1|s, aq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 33

Properties

§ Computational complexity independent of the size of the state
space

§ Very valuable if we are only interested in values starting from a
small set of states s0 episodic set-up

§ No bootstrapping (unlike DP)
§ Learn from actual experience (DP only uses the model)

Next steps?

§ Low-cost (computation) solution to computer Vπ

§ Is this useful for policy improvement? Why? (not?)

§ If we only know Vπ, we need to perform a one-step search for
policy improvement...

Need an estimate of Qπ if we don’t have a model pps1|s, aq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 33

Properties

§ Computational complexity independent of the size of the state
space

§ Very valuable if we are only interested in values starting from a
small set of states s0 episodic set-up

§ No bootstrapping (unlike DP)
§ Learn from actual experience (DP only uses the model)

Next steps?

§ Low-cost (computation) solution to computer Vπ

§ Is this useful for policy improvement? Why? (not?)
§ If we only know Vπ, we need to perform a one-step search for

policy improvement...
Need an estimate of Qπ if we don’t have a model pps1|s, aq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 33

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all states s P τi do
4: r Ð sum of rewards following the first occurrence of s
5: Rpsq Ð rRpsq , rs Ź Append r to array
6: end for

7: Vπpsq « ErRpsq|πs « 1
|Rpsq|

|Rpsq|
ř

j“1
Rpsqrjs

8: end for

§ Any potential problems?
§ Deterministic policy?
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)
Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?
§ Deterministic policy?
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)
Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?

§ Deterministic policy?
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)
Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?

§ Deterministic policy?
§ Ideally, estimate Qπps, aq for all actions a P A

8many trajectories (use GPI idea)

Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?
§ Deterministic policy?

§ Ideally, estimate Qπps, aq for all actions a P A

8many trajectories (use GPI idea)

Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?
§ Deterministic policy? Not many state-action pairs are visited!

§ Ideally, estimate Qπps, aq for all actions a P A

8many trajectories (use GPI idea)

Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?
§ Deterministic policy? Not many state-action pairs are visited!
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)

Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Monte Carlo for Q Function
1: for i “ 1 to8 do
2: Generate trajectory τπ

i with policy π

3: for all state-action pairs ps, aq P τi do
4: r Ð sum of rewards following the first occurrence of ps, aq
5: Rps, aq Ð rRps, aq , rs Ź Append r to array
6: end for

7: Qπps, aq « ErRps, aq|πs « 1
|Rps,aq|

|Rps,aq|
ř

j“1
Rps, aqrjs

8: end for

§ Any potential problems?
§ Deterministic policy? Not many state-action pairs are visited!
§ Ideally, estimate Qπps, aq for all actions a P A
8many trajectories (use GPI idea)
Maintain exploration

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 34

Exploration

§ Exploring starts: non-zero probability that each state-action pair
is chosen as the start (difficult in practice, not commonly used)

§ Stochastic policies with non-zero probability on each action
§ @s P S , a P A : pπpa|sq ą 0
§ Example: ε-greedy policies, softmax policies
§ ε-greedy:

pπpa|sq “

#

πpsq with probability 1´ ε

UpAq with probability ε

Trade off exploring the world and exploiting current knowledge

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 35

Exploration

§ Exploring starts: non-zero probability that each state-action pair
is chosen as the start (difficult in practice, not commonly used)

§ Stochastic policies with non-zero probability on each action
§ @s P S , a P A : pπpa|sq ą 0
§ Example: ε-greedy policies, softmax policies
§ ε-greedy:

pπpa|sq “

#

πpsq with probability 1´ ε

UpAq with probability ε

Trade off exploring the world and exploiting current knowledge

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 35

Exploration

§ Exploring starts: non-zero probability that each state-action pair
is chosen as the start (difficult in practice, not commonly used)

§ Stochastic policies with non-zero probability on each action
§ @s P S , a P A : pπpa|sq ą 0
§ Example: ε-greedy policies, softmax policies
§ ε-greedy:

pπpa|sq “

#

πpsq with probability 1´ ε

UpAq with probability ε

Trade off exploring the world and exploiting current knowledge

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 35

On-Policy Monte Carlo Control

π0
E
ÝÑ Qπ0 I

ÝÑ π1
E
ÝÑ Qπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ Q˚ I

ÝÑ π˚

§ Approximate optimal policies
§ Follow GPI idea: ε-greedy policy

§ MC version of policy iteration:
§ Policy evaluation via Monte Carlo estimates (stochastic policy)

get Qπ

§ Policy improvement: select greedy policy with respect to Qπ

Q∗

π∗

Q = Qπ

π = greedy
(Q)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 36

On-Policy Monte Carlo Control

π0
E
ÝÑ Qπ0 I

ÝÑ π1
E
ÝÑ Qπ1 I

ÝÑ ¨ ¨ ¨
E
ÝÑ Q˚ I

ÝÑ π˚

§ Approximate optimal policies
§ Follow GPI idea: ε-greedy policy
§ MC version of policy iteration:

§ Policy evaluation via Monte Carlo estimates (stochastic policy)
get Qπ

§ Policy improvement: select greedy policy with respect to Qπ

Q∗

π∗

Q = Qπ

π = greedy
(Q)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 36

Off-Policy Monte Carlo Control

§ So far on-policy: Evaluate Qπ and, subsequently, apply π when
interacting with the environment

§ Off-policy: Evaluate Qπ but when interacting with the
environment, follow π1 ‰ π

Experience only generated from π1. Can we still estimate Qπ?

§ Yes, if we ensure that every action under π is also (occasionally)
taken under π1, i.e.,

if pπpa|sq ą 0 then pπ1pa|sq ą 0

§ Learning can be slow if the policies are very explorative, i.e.,
ε " 0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 37

Off-Policy Monte Carlo Control

§ So far on-policy: Evaluate Qπ and, subsequently, apply π when
interacting with the environment

§ Off-policy: Evaluate Qπ but when interacting with the
environment, follow π1 ‰ π

Experience only generated from π1. Can we still estimate Qπ?

§ Yes, if we ensure that every action under π is also (occasionally)
taken under π1, i.e.,

if pπpa|sq ą 0 then pπ1pa|sq ą 0

§ Learning can be slow if the policies are very explorative, i.e.,
ε " 0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 37

Off-Policy Monte Carlo Control

§ So far on-policy: Evaluate Qπ and, subsequently, apply π when
interacting with the environment

§ Off-policy: Evaluate Qπ but when interacting with the
environment, follow π1 ‰ π

Experience only generated from π1. Can we still estimate Qπ?

§ Yes, if we ensure that every action under π is also (occasionally)
taken under π1, i.e.,

if pπpa|sq ą 0 then pπ1pa|sq ą 0

§ Learning can be slow if the policies are very explorative, i.e.,
ε " 0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 37

Off-Policy Monte Carlo Control

§ So far on-policy: Evaluate Qπ and, subsequently, apply π when
interacting with the environment

§ Off-policy: Evaluate Qπ but when interacting with the
environment, follow π1 ‰ π

Experience only generated from π1. Can we still estimate Qπ?

§ Yes, if we ensure that every action under π is also (occasionally)
taken under π1, i.e.,

if pπpa|sq ą 0 then pπ1pa|sq ą 0

§ Learning can be slow if the policies are very explorative, i.e.,
ε " 0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 37

Summary: Monte Carlo Methods

§ Learn optimal behavior from interaction

§ Easy to focus them on a small set of start states

§ Incremental implementation (updates after each episode)
possible

§ Exploration required!

§ No bootstrapping (unlike DP)

§ Model free (unlike DP)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 38

Temporal-Difference Learning

§ Between MC and DP
§ Bootstrapping
§ Model-free
§ MC waits until the end of the episode to update Vπ, Qπ

§ TD only waits until the next time step. Update value functions
based on observed reward and the current estimate of Vπ, Qπ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 39

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)

§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)

§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)

§ Sample trajectories (same as MC)
Combine MC sampling with DP bootstrapping

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD Policy Evaluation

Generic Update Rule

Vpsq Ð Vpsq ` α
`

κ´Vpsq
˘

“ p1´ αqVpsq ` ακ

κ: “target”

Vπpsq “ ErRpsq|s0 “ ss

“ E
“

ÿ

k
γkrk`1|s0 “ s

‰

“ E
“

r1 ` γVπps1q|s0 “ s
‰

§ MC uses an estimate of Rpsq as target κ (sample average)
§ DP uses an estimate of r1 ` γVπps1q as target κ (Vk instead of Vπ)
§ TD target: κ “ r1 ` γVπps1q

§ Approximate Vπ by Vk (same as DP)
§ Sample trajectories (same as MC)

Combine MC sampling with DP bootstrapping
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 40

TD(0)

1: Init.: Set Vpsq arbitrarily
2: repeat for each episode
3: a Ð pπpa|sq Ź Sample action in current state
4: Apply a, observe r, s1 Ź Transition to next state
5: Vpsq Ð Vpsq ` α

`

r` γVps1q ´Vpsq
˘

Ź Update V
6: s Ð s1 Ź Re-set current state
7: until s is terminal

§ Temporal difference error: r` γVps1q ´Vpsq (“ Vnew ´Vold)
§ Difference to MC and DP:

§ MC waits until the end of the episode to update V
§ DP needs complete distribution pps1|s, aq of successor states to

update V

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 41

TD(0)

1: Init.: Set Vpsq arbitrarily
2: repeat for each episode
3: a Ð pπpa|sq Ź Sample action in current state
4: Apply a, observe r, s1 Ź Transition to next state
5: Vpsq Ð Vpsq ` α

`

r` γVps1q ´Vpsq
˘

Ź Update V
6: s Ð s1 Ź Re-set current state
7: until s is terminal

§ Temporal difference error: r` γVps1q ´Vpsq (“ Vnew ´Vold)
§ Difference to MC and DP:

§ MC waits until the end of the episode to update V
§ DP needs complete distribution pps1|s, aq of successor states to

update V

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 41

TD(λ)

§ TD(0) uses 1-step returns to update Vπ

§ MC uses full trajectories to update Vπ

§ TD(λ), λ P r0, 1s, blends between them
§ λ “ 0: TD(0), λ “ 1: MC
§ TD(λ) update rule given as a mixture of multi-step returns
§ Mixing coefficients p1´ λqλk, k ě 0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 42

SARSA: On-Policy TD Control

§ Thus far, we only learned Vπ using TD
§ Not very useful without model when we want to do control

Learn Qπ

TD Update for Qπ

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γQps1, a1q ´Qps, aq
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“p1´αqQold`αQnew

§ Update rule needs ps, a, r, s1, a1q SARSA
§ On-policy algorithm
§ a1 chosen from s1 using policy derived from Q (e.g., ε-greedy)
§ Convergence proofs for ε-greedy policies

DEMO gridworld

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 43

SARSA: On-Policy TD Control

§ Thus far, we only learned Vπ using TD
§ Not very useful without model when we want to do control

Learn Qπ

TD Update for Qπ

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γQps1, a1q ´Qps, aq
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“p1´αqQold`αQnew

§ Update rule needs ps, a, r, s1, a1q SARSA
§ On-policy algorithm
§ a1 chosen from s1 using policy derived from Q (e.g., ε-greedy)
§ Convergence proofs for ε-greedy policies

DEMO gridworld

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 43

SARSA: On-Policy TD Control

§ Thus far, we only learned Vπ using TD
§ Not very useful without model when we want to do control

Learn Qπ

TD Update for Qπ

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γQps1, a1q ´Qps, aq
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“p1´αqQold`αQnew

§ Update rule needs ps, a, r, s1, a1q SARSA
§ On-policy algorithm
§ a1 chosen from s1 using policy derived from Q (e.g., ε-greedy)
§ Convergence proofs for ε-greedy policies

DEMO gridworld

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 43

SARSA: On-Policy TD Control

§ Thus far, we only learned Vπ using TD
§ Not very useful without model when we want to do control

Learn Qπ

TD Update for Qπ

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γQps1, a1q ´Qps, aq
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“p1´αqQold`αQnew

§ Update rule needs ps, a, r, s1, a1q SARSA
§ On-policy algorithm
§ a1 chosen from s1 using policy derived from Q (e.g., ε-greedy)
§ Convergence proofs for ε-greedy policies

DEMO gridworld
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 43

Q-Learning: Off-Policy TD Control

TD Update for Q˚

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γmaxa1Qps1, a1q ´Qps, aq
˘

§ Off-policy TD control

§ SARSA: learn Qπ, Q-learning: learn Q˚

§ Update the value function Q independent of the policy the agent
actually follows to generate the samples (max ...)

§ For convergence: keep updating all state-action pairs

DEMO gridworld 2

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 44

Q-Learning: Off-Policy TD Control

TD Update for Q˚

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γmaxa1Qps1, a1q ´Qps, aq
˘

§ Off-policy TD control

§ SARSA: learn Qπ, Q-learning: learn Q˚

§ Update the value function Q independent of the policy the agent
actually follows to generate the samples (max ...)

§ For convergence: keep updating all state-action pairs

DEMO gridworld 2

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 44

Q-Learning: Off-Policy TD Control

TD Update for Q˚

Qps, aq Ð Qps, aq ` α
`

rps, a, s1q ` γmaxa1Qps1, a1q ´Qps, aq
˘

§ Off-policy TD control

§ SARSA: learn Qπ, Q-learning: learn Q˚

§ Update the value function Q independent of the policy the agent
actually follows to generate the samples (max ...)

§ For convergence: keep updating all state-action pairs

DEMO gridworld 2

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 44

RL in Continuous Spaces: Function Approximation

§ So far: discrete states and actions
Table representation sufficient

§ In continuous spaces: Function approximation for better
generalization:

0 2 4 6 8 10
0

0.5

1

1.5

2

x

f(
x
)

0 2 4 6 8 10
0

0.5

1

1.5

2

x

f(
x
)

observations

learned function

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 45

Function Approximation

§ Typically: (linear) basis function representation

Vpsq “
ÿ

i

θiφipsq

§ Basis functions φi are fixed, only parameters θi need to be learned

§ Gradient descent to update the parameters. Example TD(0):

θk`1 Ð θk ` α
`

vk ´Vkpskq
˘BVkpskq

Bθk

vk: approximation/estimate of Vπpskq, e.g., MC estimate
α: learning rate

§ Convergence if vk is unbiased, i.e., Ervks “ Vπpskq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 46

Function Approximation

§ Typically: (linear) basis function representation

Vpsq “
ÿ

i

θiφipsq

§ Basis functions φi are fixed, only parameters θi need to be learned

§ Gradient descent to update the parameters. Example TD(0):

θk`1 Ð θk ` α
`

vk ´Vkpskq
˘BVkpskq

Bθk

vk: approximation/estimate of Vπpskq, e.g., MC estimate
α: learning rate

§ Convergence if vk is unbiased, i.e., Ervks “ Vπpskq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 46

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 47

Summary: RL with Value Functions

§ Learn policies exploiting properties of the value functions V, Q

§ Bellman equations/optimality principle

§ Policy evaluation/improvement

§ Exact solution: Dynamic programming

§ Approximation solution: MC, TD

§ Exploration

§ Function approximation

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 48

Applications

§ Board games (e.g., Tesauro, Silver, Riedmiller)

§ Power systems (e.g., D. Ernst)

§ Robocup (e.g., Stone, Riedmiller)

§ Scheduling tasks (e.g., W. Powell)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 49

Motivation

Reinforcement Learning Set-Up

Value Function Methods

Policy Search

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 50

RL without Value Functions: Policy Search

§ Value function approximation is hard, especially in continuous
domains

§ Search directly in policy space?

§ Only feasible in a restricted class Π of policies

π “ πpθq

Vπpθq “ E
“

ÿT

k“0
rk`1|θ

‰

§ Consider an episodic set-up, i.e., pps0q is given

Objective (Policy Search)
For a given class Πpθq of policies, find an optimal policy

π˚ P arg max
πPΠpθq

Vπpθq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 51

RL without Value Functions: Policy Search

§ Value function approximation is hard, especially in continuous
domains

§ Search directly in policy space?
§ Only feasible in a restricted class Π of policies

π “ πpθq

Vπpθq “ E
“

ÿT

k“0
rk`1|θ

‰

§ Consider an episodic set-up, i.e., pps0q is given

Objective (Policy Search)
For a given class Πpθq of policies, find an optimal policy

π˚ P arg max
πPΠpθq

Vπpθq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 51

RL without Value Functions: Policy Search

§ Value function approximation is hard, especially in continuous
domains

§ Search directly in policy space?
§ Only feasible in a restricted class Π of policies

π “ πpθq

Vπpθq “ E
“

ÿT

k“0
rk`1|θ

‰

§ Consider an episodic set-up, i.e., pps0q is given

Objective (Policy Search)
For a given class Πpθq of policies, find an optimal policy

π˚ P arg max
πPΠpθq

Vπpθq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 51

Categorization of Policy Search Methods

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

§ Data: psi, ai, riq, i “ 1, . . . , n
§ Model-based vs. model-free policy search
§ Policy evaluation (red), policy improvement (green)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 52

Model-based Set-up: Interaction and Simulation

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

Two alternating phases:
§ Interaction: internal model is refined using experience from

interacting with the real system

§ Simulation: internal model simulates consequences of actions in
the real system, policy is refined

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 53

Model-based Set-up: Interaction and Simulation

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

Two alternating phases:
§ Interaction: internal model is refined using experience from

interacting with the real system
§ Simulation: internal model simulates consequences of actions in

the real system, policy is refined
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 53

Model Building

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 54

Model Learning

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

§ Pro:

No “real” experiments with robot for policy evaluation and
improvement (just simulate!) Protect hardware

§ Con: Model errors Effects of “wrong” models?
§ What are good models?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 55

Model Learning

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

§ Pro: No “real” experiments with robot for policy evaluation and
improvement (just simulate!) Protect hardware

§ Con:

Model errors Effects of “wrong” models?
§ What are good models?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 55

Model Learning

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

§ Pro: No “real” experiments with robot for policy evaluation and
improvement (just simulate!) Protect hardware

§ Con: Model errors Effects of “wrong” models?

§ What are good models?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 55

Model Learning

policy π

model

dynamics f

inside computer

real world

State s Action a

interaction

policy π

model

dynamics f

simulation

real world

inside computer

State s Action a

§ Pro: No “real” experiments with robot for policy evaluation and
improvement (just simulate!) Protect hardware

§ Con: Model errors Effects of “wrong” models?
§ What are good models?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 55

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Observed function values

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Plausible function approximators

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Plausible function approximators

Predictions? Decision Making?

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Plausible function approximators

Predictions? Decision Making? Model Errors!

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Distribution over plausible functions

Express uncertainty about the underlying function
Bayesian models (Bayesian linear regression, Gaussian process, ...)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Model Learning

Model learning problem: Find a function f : x ÞÑ f pxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

y

Distribution over plausible functions

Express uncertainty about the underlying function
Bayesian models (Bayesian linear regression, Gaussian process, ...)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 56

Useful Models

§ Probabilistic models!

§ Reduce model errors and simulation/optimization bias
§ Examples of probabilistic models

§ Bayesian linear regression
§ Gaussian process

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 57

Bayesian Linear Regression: Model

§ Model: y “ θJφpxq “
ř

i θiφipxq

§ φpxq: “Features”, e.g., φpxq “ rx, x2sJ

§ Distribution over model parameters θ:

ppθq “ N
`

θ |m, S
˘

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

DEMO Bayesian regression

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 58

Bayesian Linear Regression: Model

§ Model: y “ θJφpxq “
ř

i θiφipxq

§ φpxq: “Features”, e.g., φpxq “ rx, x2sJ

§ Distribution over model parameters θ:

ppθq “ N
`

θ |m, S
˘

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

DEMO Bayesian regression

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 58

Bayesian Linear Regression: Model

§ Model: y “ θJφpxq “
ř

i θiφipxq

§ φpxq: “Features”, e.g., φpxq “ rx, x2sJ

§ Distribution over model parameters θ:

ppθq “ N
`

θ |m, S
˘

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

DEMO Bayesian regression

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 58

Bayesian Linear Regression: Model

§ Model: y “ θJφpxq “
ř

i θiφipxq

§ φpxq: “Features”, e.g., φpxq “ rx, x2sJ

§ Distribution over model parameters θ:

ppθq “ N
`

θ |m, S
˘

For any θ, one particular function is defined
Distribution over θ induces distribution over functions

DEMO Bayesian regression

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 58

Bayesian Linear Regression: Predictions

§ Model: y “ φJpxqθ, θ „ N
`

m, S
˘

§ Predict function values y “ ry1, . . . , yns
J at inputs

X “ rx1, . . . , xns

Define Φ “ φpXq ñ y “ ΦJθ

Erys “

ErΦJθs “ ΦJErθs “ ΦJm

Vrys “

VrΦJθs “ ΦJVrθsΦ “ ΦJSΦ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 59

Bayesian Linear Regression: Predictions

§ Model: y “ φJpxqθ, θ „ N
`

m, S
˘

§ Predict function values y “ ry1, . . . , yns
J at inputs

X “ rx1, . . . , xns

Define Φ “ φpXq ñ y “ ΦJθ

Erys “

ErΦJθs “ ΦJErθs “ ΦJm

Vrys “

VrΦJθs “ ΦJVrθsΦ “ ΦJSΦ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 59

Bayesian Linear Regression: Predictions

§ Model: y “ φJpxqθ, θ „ N
`

m, S
˘

§ Predict function values y “ ry1, . . . , yns
J at inputs

X “ rx1, . . . , xns

Define Φ “ φpXq ñ y “ ΦJθ

Erys “ ErΦJθs “ ΦJErθs “ ΦJm

Vrys “

VrΦJθs “ ΦJVrθsΦ “ ΦJSΦ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 59

Bayesian Linear Regression: Predictions

§ Model: y “ φJpxqθ, θ „ N
`

m, S
˘

§ Predict function values y “ ry1, . . . , yns
J at inputs

X “ rx1, . . . , xns

Define Φ “ φpXq ñ y “ ΦJθ

Erys “ ErΦJθs “ ΦJErθs “ ΦJm

Vrys “ VrΦJθs “ ΦJVrθsΦ “ ΦJSΦ

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 59

Introduction to Gaussian Processes

§ Generalization of Bayesian linear regression
§ Nonparametric Bayesian regression method
§ Probability distribution over functions
§ Fully specified by

§ Mean function m (average function)
§ Covariance function/kernel k (assumptions on structure)

Covr f pxpq, f pxqqs “ kpxp, xqq

§ Posterior predictive distribution at x˚ is Gaussian:

pp f px˚q| x˚ , X, y q “ N
`

f px˚q |mpx˚q, σ2px˚q
˘

Test input Training data

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 60

Introduction to Gaussian Processes

§ Generalization of Bayesian linear regression
§ Nonparametric Bayesian regression method
§ Probability distribution over functions
§ Fully specified by

§ Mean function m (average function)
§ Covariance function/kernel k (assumptions on structure)

Covr f pxpq, f pxqqs “ kpxp, xqq

§ Posterior predictive distribution at x˚ is Gaussian:

pp f px˚q| x˚ , X, y q “ N
`

f px˚q |mpx˚q, σ2px˚q
˘

Test input Training data

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 60

Gaussian Process: Definition

Definition
A Gaussian process is a collection of random variables, any finite
number of which has a joint Gaussian distribution.

§ Look at Gaussian distributions of function values f1, f2, . . .

§ All of them are jointly Gaussian distributed

Er f pxqs “ mpxq

Covr f pxiq, f pxjqs “ kpxi, xjq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 61

Gaussian Process: Definition

Definition
A Gaussian process is a collection of random variables, any finite
number of which has a joint Gaussian distribution.

§ Look at Gaussian distributions of function values f1, f2, . . .

§ All of them are jointly Gaussian distributed

Er f pxqs “ mpxq

Covr f pxiq, f pxjqs “ kpxi, xjq

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 61

Gaussian Process: Predictions

§ Given a training set
`

xi, f pxiq
˘n

i“1, we can predict function values
f˚j at test inputs x˚j

§ First, compute the joint distribution:

pp f , f˚|X, X˚q “ N
ˆ„

mpXq
mpX˚q

,
„

K kpX, X˚q
kpX˚, Xq K˚

˙

Kij “ kpxi, xjq “ Covr f pxiq, f pxjqs

§ Second, compute the conditional pp f˚|X, X˚, f q by plain
Gaussian conditioning:

pp f˚|X, X˚, f q “ N
`

µ˚, Σ˚
˘

µ˚ “ mpX˚q ` kpX˚, XqK´1p f ´mpXqq

Σ˚ “ K˚ ´ kpX˚, XqK´1kpX, X˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 62

Gaussian Process: Predictions

§ Given a training set
`

xi, f pxiq
˘n

i“1, we can predict function values
f˚j at test inputs x˚j

§ First, compute the joint distribution:

pp f , f˚|X, X˚q “ N
ˆ„

mpXq
mpX˚q

,
„

K kpX, X˚q
kpX˚, Xq K˚

˙

Kij “ kpxi, xjq “ Covr f pxiq, f pxjqs

§ Second, compute the conditional pp f˚|X, X˚, f q by plain
Gaussian conditioning:

pp f˚|X, X˚, f q “ N
`

µ˚, Σ˚
˘

µ˚ “ mpX˚q ` kpX˚, XqK´1p f ´mpXqq

Σ˚ “ K˚ ´ kpX˚, XqK´1kpX, X˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 62

Gaussian Process: Predictions

§ Given a training set
`

xi, f pxiq
˘n

i“1, we can predict function values
f˚j at test inputs x˚j

§ First, compute the joint distribution:

pp f , f˚|X, X˚q “ N
ˆ„

mpXq
mpX˚q

,
„

K kpX, X˚q
kpX˚, Xq K˚

˙

Kij “ kpxi, xjq “ Covr f pxiq, f pxjqs

§ Second, compute the conditional pp f˚|X, X˚, f q by plain
Gaussian conditioning:

pp f˚|X, X˚, f q “ N
`

µ˚, Σ˚
˘

µ˚ “ mpX˚q ` kpX˚, XqK´1p f ´mpXqq

Σ˚ “ K˚ ´ kpX˚, XqK´1kpX, X˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 62

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Prior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|∅s “ mpx˚q “ 0
Vr f px˚q|∅s “ σ2px˚q “ Covr f px˚q, f px˚qs “ kpx˚, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Prior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|∅s “ mpx˚q “ 0
Vr f px˚q|∅s “ σ2px˚q “ Covr f px˚q, f px˚qs “ kpx˚, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Intuitive Introduction to Gaussian Processes

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x

f(
x
)

Posterior belief about the function

Predictive (marginal) mean and variance:

Er f px˚q|X, ys “ mpx˚q “ kpX, x˚qJkpX, Xq´1y
Vr f px˚q|X, ys “ σ2px˚q “ kpx˚, x˚q ´ kpX, x˚qJkpX, Xq´1kpX, x˚q

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 63

Properties

§ Universal function approximator extremely expressive

§ Model gives “free” variance estimates

§ Computationally involved:
§ Training: OpN3q Repeated inversion of N ˆ N matrix
§ Mean prediction: OpNq Scalar product
§ Variance prediction: OpN2q Matrix-vector multiplication

§ Sparse approximations exist

§ Code/book online: http://www.gaussianprocess.org

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 64

http://www.gaussianprocess.org

Properties

§ Universal function approximator extremely expressive

§ Model gives “free” variance estimates
§ Computationally involved:

§ Training: OpN3q Repeated inversion of N ˆ N matrix
§ Mean prediction: OpNq Scalar product
§ Variance prediction: OpN2q Matrix-vector multiplication

§ Sparse approximations exist

§ Code/book online: http://www.gaussianprocess.org

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 64

http://www.gaussianprocess.org

Properties

§ Universal function approximator extremely expressive

§ Model gives “free” variance estimates
§ Computationally involved:

§ Training: OpN3q Repeated inversion of N ˆ N matrix
§ Mean prediction: OpNq Scalar product
§ Variance prediction: OpN2q Matrix-vector multiplication

§ Sparse approximations exist

§ Code/book online: http://www.gaussianprocess.org

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 64

http://www.gaussianprocess.org

Policy Evaluation

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Policy evaluation: Compute expected long-term reward
§ Stochastic trajectory evaluation
§ Deterministic trajectory evaluation

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 65

Policy Evaluation

§ Stochastic inference (sampling) using either the learned model
(simulator) or the real system

§ Deterministic inference—only with a learned model

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 66

Stochastic Inference

§ Sample trajectories psi, ai, riq Monte Carlo

§ Conceptually very simple

§ Requires a lot of “interactions” (if you don’t have a model or a
good simulator)

Potentially impractical (e.g., in robotics)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 67

Deterministic Inference

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

§ Analytically propagate uncertainty through the model

§ Computationally/mathematically more involved

§ Can’t do this for arbitrary systems, but for some.

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 68

Deterministic Inference: Example

Linear system

ppstq “ N
`

st |mt, St
˘

st`1 “ Ast

Successor state distribution ppst`1q?

ppst`1q “ N
`

st`1 |mt`1, St`1
˘

mt`1 “ Amt , St`1 “ ASt AJ

§ In nonlinear/non-Gaussian systems, we need approximations
(e.g., linearization, moment matching)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 69

Deterministic Inference: Example

Linear system

ppstq “ N
`

st |mt, St
˘

st`1 “ Ast

Successor state distribution ppst`1q?

ppst`1q “ N
`

st`1 |mt`1, St`1
˘

mt`1 “ Amt , St`1 “ ASt AJ

§ In nonlinear/non-Gaussian systems, we need approximations
(e.g., linearization, moment matching)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 69

Policy Improvement

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Policy improvement (green)
§ Policy gradients
§ Expectation Maximization
§ Information theory

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 70

Policy Search: Policy Improvement

Objective
Find policy parameters θ˚, which maximize the expected long-term
reward

Vπpθq “ E
“

T
ÿ

k“0

γkrk`1|θ
‰

, s0 „ pps0q

§ No global value function model Vπ or Qπ

§ Search directly in (policy) parameter space

One way: gradient-based optimization

§ Compute Vπ with corresponding gradients dVπ{dθ

§ Gradient-based optimizer for maximization (e.g., CG, BFGS)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 71

Policy Search: Policy Improvement

Objective
Find policy parameters θ˚, which maximize the expected long-term
reward

Vπpθq “ E
“

T
ÿ

k“0

γkrk`1|θ
‰

, s0 „ pps0q

§ No global value function model Vπ or Qπ

§ Search directly in (policy) parameter space

One way: gradient-based optimization

§ Compute Vπ with corresponding gradients dVπ{dθ

§ Gradient-based optimizer for maximization (e.g., CG, BFGS)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 71

Gradient Estimation for Stochastic Inference

§ Finite (central) differences

dVπpθq

dθ
«

Vπpθ` εq ´Vπpθ´ εq

2ε

§ Model ppsk`1|sk, akq not required but useful
§ Large variance of estimator many samples needed

§ PEGASUS trick:
§ Fix the random seed and re-set
§ Smaller variance of the estimate of Vπ and its gradient
§ No model ppsk`1|sk, akq required
§ Only with simulator (where we can run exactly the same

experiment)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 72

Gradient Estimation for Stochastic Inference

§ Finite (central) differences

dVπpθq

dθ
«

Vπpθ` εq ´Vπpθ´ εq

2ε

§ Model ppsk`1|sk, akq not required but useful
§ Large variance of estimator many samples needed

§ PEGASUS trick:
§ Fix the random seed and re-set
§ Smaller variance of the estimate of Vπ and its gradient
§ No model ppsk`1|sk, akq required
§ Only with simulator (where we can run exactly the same

experiment)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 72

Gradient Estimation for Stochastic Inference

§ Finite (central) differences

dVπpθq

dθ
«

Vπpθ` εq ´Vπpθ´ εq

2ε

§ Model ppsk`1|sk, akq not required but useful
§ Large variance of estimator many samples needed

§ PEGASUS trick:
§ Fix the random seed and re-set
§ Smaller variance of the estimate of Vπ and its gradient
§ No model ppsk`1|sk, akq required
§ Only with simulator (where we can run exactly the same

experiment)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 72

Gradient Estimation for Deterministic Inference

§ Finite differences and PEGASUS still work

§ Analytic (=exact) gradients. Example (assume r “ rpsq):

dVpθq
dθ

“
ÿ

t

γt drpstq

dθ
“

ÿ

t

γt Brpstq

Bst

dst

dθ

“
ÿ

t

γt Brpstq

Bst

ˆ

Bst

Bst´1

dst´1

dθ
`

Bst

Bat´1

Bat´1

Bθ

˙

§ Requires
§ Forward model st “ f pst´1, at´1q

§ Differentiable policy a “ πps, θq

§ Mathematically more involved

§ Gradients are exact (no variance): single trajectory evaluation

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 73

Gradient Estimation for Deterministic Inference

§ Finite differences and PEGASUS still work

§ Analytic (=exact) gradients. Example (assume r “ rpsq):

dVpθq
dθ

“
ÿ

t

γt drpstq

dθ
“

ÿ

t

γt Brpstq

Bst

dst

dθ

“
ÿ

t

γt Brpstq

Bst

ˆ

Bst

Bst´1

dst´1

dθ
`

Bst

Bat´1

Bat´1

Bθ

˙

§ Requires
§ Forward model st “ f pst´1, at´1q

§ Differentiable policy a “ πps, θq

§ Mathematically more involved

§ Gradients are exact (no variance): single trajectory evaluation

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 73

Gradient Estimation for Deterministic Inference

§ Finite differences and PEGASUS still work

§ Analytic (=exact) gradients. Example (assume r “ rpsq):

dVpθq
dθ

“
ÿ

t

γt drpstq

dθ
“

ÿ

t

γt Brpstq

Bst

dst

dθ

“
ÿ

t

γt Brpstq

Bst

ˆ

Bst

Bst´1

dst´1

dθ
`

Bst

Bat´1

Bat´1

Bθ

˙

§ Requires
§ Forward model st “ f pst´1, at´1q

§ Differentiable policy a “ πps, θq

§ Mathematically more involved

§ Gradients are exact (no variance): single trajectory evaluation

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 73

Policy Search

Data

Model Building

Det. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Stoch. Traj.

Inf.Th.EMPG

Model-free policy search

Model-based policy search

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 74

Applications in Robotics and Control

§ Cart-pole: e.g., Riedmiller (2005), Deisenroth & Rasmussen (2011)
§ Throttle valve control: Bischoff et al. (2013)
§ Autonomous helicopter: e.g., Abbeel, Ng et al. (2003–2010),

Bagnell & Schneider (2001)
§ Pancake flipping (Kormushev et al., 2010)
§ Throwing and catching balls (Kober et al., 2012)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 75

Summary

§ RL is a principled framework for sequential decision making
under uncertainty

§ Value functions V, Q
§ Exact RL: Dynamic programming
§ Approximate RL: Monte Carlo, TD
§ Policy Search with applications in robotics

m.deisenroth@imperial.ac.uk

Thank you for your attention
Reinforcement Learning Marc Deisenroth @MLSS, September 2013 76

m.deisenroth@imperial.ac.uk

Key References

§ Sutton, Barto: Reinforcement Learning: An Introduction (online)

§ Bertsekas: Dynamic Programming and Optimal Control, Vol. 1–2

§ Szepesvári: Algorithms for Reinforcement Learning (online)

§ Deisenroth et al.: A Survey on Policy Search for Robotics (online)

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 77

RL Software Packages

§ RLGlue: http://glue.rl-community.org/

§ RLPy: http://acl.mit.edu/RLPy/

§ CLSquare: http://www.ni.uos.de/index.php?id=70

§ PIQLE: http://piqle.sourceforge.net/

§ RL Toolbox: http://www.igi.tugraz.at/ril-toolbox/

§ LibPG: http://code.google.com/p/libpgrl/

§ PILCO (policy search): http://mlg.eng.cam.ac.uk/pilco

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 78

http://glue.rl-community.org/
http://acl.mit.edu/RLPy/
http://www.ni.uos.de/index.php?id=70
http://piqle.sourceforge.net/
http://www.igi.tugraz.at/ril-toolbox/
http://code.google.com/p/libpgrl/
http://mlg.eng.cam.ac.uk/pilco

References
[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An Application of Reinforcement Learning to Aerobatic Helicopter Flight.

In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, volume 19, page
2007. The MIT Press, Cambridge, MA, USA, 2007.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena
Scientific, Belmont, MA, USA, 3rd edition, 2005.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena
Scientific, Belmont, MA, USA, 3rd edition, 2007.

[4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search.
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013.

[5] M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics, volume 2 of Foundations and Trends in
Robotics. NOW Publishers, 2013.

[6] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In
Proceedings of the International Conference on Machine Learning, pages 465–472, New York, NY, USA, June 2011. ACM.

[7] S. Gelly, M. Schoenauer, M. Sebag, O. Teytaud, L. Kocsis, D. Silver, and C. Szepesvári. The Grand Challenge of Computer
Go: Monte Carlo Tree Search and Extensions. Communications of the ACM, 55(3), 2012.

[8] Q. Gemine, E. Karangelos, D. Ernst, and B. Cornélusse. Active Network Management: Planning under Uncertainty for
Exploiting Load Modulation. In Proceedings of the 2013 IREP Symposium-Bulk Power System Dynamics and Control, 2013.

[9] J. Kober, K. Mülling, and J. Peters. Learning Throwing and Catching Skills. In Proceedings of the IEEE/RSJ International
Conference on Robot Systems, 2012.

[10] P. Kormushev, S. Calinon, and D. G. Caldwell. Robot Motor Skill Coordination with EM-based Reinforcement Learning.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.

[11] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality, volume 703. John Wiley & Sons, 2007.
[12] M. Riedmiller. Neural Fitted Q Iteration—First Experiences with a Data Efficient Neural Reinforcement Learning Method.

In Proceedings of the 16th European Conference on Machine Learning, Porto, Portugal, 2005.
[13] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning. The

MIT Press, Cambridge, MA, USA, 1998.
[14] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning.

Morgan & Claypool Publishers, 2010.
[15] G. J. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. Neural Computation,

6(2):215–219, 1994.

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 79

Appendix

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 80

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

|s0 “ s, π
‰

“ |s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

|s0 “ s, π
‰

“ |s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ |s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ |s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

˜

Err1s ` γE
“

8
ÿ

k“0

γkrk`2|s1 “ s1, π
‰

¸

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

˜

Err1s ` γE
“

8
ÿ

k“0

γkrk`2|s1 “ s1, π
‰

¸

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

˜

Err1s ` γE
“

8
ÿ

k“0

γkrk`2|s1 “ s1, π
‰

¸

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

`

Err1ps, a, s1qs ` γVπps1q
˘

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

˜

Err1s ` γE
“

8
ÿ

k“0

γkrk`2|s1 “ s1, π
‰

¸

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

`

Err1ps, a, s1qs ` γVπps1q
˘

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Self-Consistency of Value Functions

Vπpsq “ E
“

R|s0 “ s, π
‰

“ E
“

8
ÿ

k“0

γkrk`1|s0 “ s, π
‰

“ E
“

r1 ` γ
8
ÿ

k“0

γkrk`2|s0 “ s, π
‰

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

˜

Err1s ` γE
“

8
ÿ

k“0

γkrk`2|s1 “ s1, π
‰

¸

“
ÿ

a
pπpa|sq

ÿ

s1
pps1|s, aq

`

Err1ps, a, s1qs ` γVπps1q
˘

“ Err1 ` γVπps1q|s0 “ s, πs

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 81

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

π0

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

4

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

2policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

3

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

12

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy update

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy evaluation 2

1

2

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy evaluation 2

1

2

2

3

2

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

policy evaluation 2

1

2

2

3

2

3

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Policy Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

converged! 2

1

2

2

3

2

3

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 82

Demo: Value Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

1

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

1

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

1

2 X

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

1

2 X

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

2

1

2 X

3

X

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

22

1

2 X

3

X

X

X

2

2

2

2

2

2 1

1

1

1

1
0

1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

Demo: Value Iteration

Example: Shortest-path problem

2

22

1

2

3

X

3

X

XX

X

2

2

2

2

2

2 1

1

1

1

1
0

X
1

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 83

	Motivation
	Reinforcement Learning Set-Up
	Value Function Methods
	Value Functions
	Dynamic Programming
	Monte Carlo Methods
	Temporal-Difference Learning
	Function Approximation

	Policy Search
	Appendix

