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1 Introduction

1.1 Project Description

Gaussian process models (henceforth Gaussian Processes) provide a probabilistic, non-parametric
framework for inferring posterior distributions over functions from general prior information and ob-
served noisy function values. This, however, comes with a computational burden of O(N3) for training
and O(N2) for prediction, where N is the size of the training set [1]. Therefore, this method does
not lend itself well to problems where N is large — a common occurrence in many modern machine
learning or ‘big data’ problems. There are two routes to address this challenge, and they are (1) using
approximations, or (2) the exploitation of modern processors, which we will explore in our project.

Modern-day graphics processing units (GPUs) have been shown to achieve performance improvements
of up to two orders of magnitude in various applications by performing massively parallel computations
on a large number of cores [2]. In this project, we will investigate whether the parallel processing power
of these GPUs can be suitably exploited to scale Gaussian Processes to larger data sets. We also aim
to develop a GPU - GP software package for exact GP regression.

1.2 Gaussian Processes

The set-up of a regression problem is as follows: given a set of training data T = {xi, yi}i∈{1,2,··· ,n}
consisting of inputs xi ∈ Rd, and observations yi ∈ R, what is the best function f(·) that describes
the relationship between each input-observation pair?

In Gaussian process regression, we model any finite number of observations yi as a zero-mean mul-
tivariate Gaussian distribution with covariance matrix K, with (K)ij = k(xi,xj). Here k(·, ·) is the
covariance or kernel function which, can be loosely interpreted as the similarity between two data
points. The kernel function can take many forms, as long as it satisfies Mercer’s condition (not dis-
cussed within the scope of this project [3]). Choosing the right kernel function is integral to the
success of a Gaussian process. In our project, we use the Squared Exponential function with an
isotropic distance measure (SEiso for short), where the process is depicted in Figure 2. It takes the
form:

k(xi,xj) = σ2f exp

(
−||xi − xj ||2

2l2

)
+ σ2nδ(xi,xj)

Where δ(xi,xj) is the Kronecker delta function. σ2n represents the observation variance in the regres-
sion problem.

Suppose we have a new input point x∗ and we would like to predict y∗, the target observation associated
with it. In Gaussian process regression, we would model our training data and prediction data as
follows:

(y1, y2, · · · , yn, y∗)T ∼ N (0,Σ)

where

Σ =

(
K KT

∗
K∗ K∗∗

)

Kij = k(xi,xj) ∈ R,K∗ = (k(x∗,x1), k(x∗,x2), · · · , k(x∗,xn)) ∈ R1×n,K∗∗ = k(x∗,x∗) ∈ R

Given that y = y1, · · · , yn and the entire covariance matrix are known, we can derive a conditional
distribution for y∗

y∗|y,X,x∗ ∼ N (K∗K
−1y,K∗∗ −K∗K−1KT

∗ )
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Our regression estimate for y∗ is the mean of this distribution K∗K
−1y and the uncertainty in our

prediction is expressed by the variance K∗∗ −K∗K−1KT
∗ .

In addition to choosing an appropriate kernel function, we need to select a set of optimal kernel
parameters in order to maximize the performance of the Gaussian process. In the case of the SEiso
kernel, the hyperparameters are θ = {σf , l, σn}. In a Gaussian process, given a set of hyperparameters,
we evaluate the effectiveness of the model using the negative marginal log likelihood nll, where

nll(θ; T) = − log p(y|X, θ) =
1

2
yTK−1y +

1

2
log |K|+ n

2
log 2π

which is depicted by Figure 1.

The marginal likelihood is a probabilistic measure, which gives us an indication of how likely the
observed data is, given a certain set of kernel parameters. The larger the likelihood value, the more
effective our model is in explaining the observations. The marginal likelihood obeys Occams’ Razor
and trades off data fit and model complexity of the function, and hence is a robust metric for evaluation
the model. Taking the log (monotonic increasing function) allows us to simplify the expression, and
using the negative of this value allows us to combine this with any of the optimizers more naturally,
most of which have been designed to find the minimum of functions. This process involves computing
the derivative of the marginal likelihood, which is given by the expression

∂nll

∂θ
= trace

(
K−1

∂K

∂θ

)
+ yTK−1

∂K

∂θ
K−1y

for θ ∈ θ.

1.2.1 Computational Costs

The computational cost in a Gaussian process regression can be broken down into a few major parts:

• Generating the covariance matrix

– Computing each element of the n× n matrix requires a inner product of size d, where d is
the dimension of the input space (xi ∈ Rd). This part is O(n2d).

• Decomposing the kernel matrix

– Expressions involving K−1 can be computed using the Cholesky decomposition (K = LLT ).
The derived Cholesky factor as an intermediate from K to K−1 can also be used to derive
expressions such as K−1y by solving Kz = y for z without having to compute K−1 and
incurring the cost of the matrix-vector multiplication operation. The Cholesky decompo-
sition, solving of linear systems and computing the inverse using the Cholesky factor are
O(n3).

• Matrix-matrix/matrix-vector multiplication

– Computing the predictive means for n training data points and m test inputs can be
expressed as a multiplication between an m×n matrix and n length vector. This is O(mn),
given K−1y has been precomputed from a previous routine.

– Computing the predictive variances for n training data points and m prediction inputs
requires m size n inner products with respect to K−1 (given K−1 has been precomputed
from a previous routine). This is O(mn2).

– In computing the derivatives of the negative log marginal likelihood, the trace term can
be rewritten as the sum of the element-wise product of both matrices, which is an O(n2)
operation instead of an O(n3) operation.

4
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2 Specification

The software package consists of three parts: a Core Library, a Testing Framework and an Application
Programming Interface (API) for portability. The three components work together and are interfaced
using MATLAB. The structure is chosen to make the code intuitive from the point of view of a generic
regression problem and can be augmented to incorporate additional features. This also provides group
members with a basis for designing and working each of their parts in the initial stages, allowing the
development of prototypes to be completed swiftly. We kept strictly to our proposed timeline (Refer
to Section 4.2) and this is unchanged from the original requirements.

2.1 Core Library

The first part of the software package is the core library. This library provides all the necessary
functionalities required for implementing Gaussian Processes using GPUs. In this library, every section
of code that is written for the GPU will have a corresponding, suitably optimized CPU version to
ensure a consistent and fair way of comparing the implementation of Gaussian Processes on both
CPUs and GPUs. Since computational performance is the main focus of the project, this library will
be written in C, a low-level language that gives us the ability to control every aspect of the process
with much flexibility. The Nvidia CUDA [4] C interface will be used to access GPU functionalities.
The library will also incorporate other optimized libraries such as the BLAS (Basic Linear Algebra
Subprograms) library [5], LAPACK (Linear Algebra PACKage) [6] and MAGMA (Matrix Algebra on
GPU and Multicore Architectures) [7].

2.2 Testing Framework

The testing framework will provide an environment in which testing and analysis of our implementation
can take place. For fair comparisons of the results, both CPU and GPU implementations will use the
same datasets and parameters. Our datasets will include both synthetically-generated data and real-
world data. The use of synthetic data enables us to test our implementations over a large number
of different dimensions and dataset sizes in a controlled environment, allowing us to demonstrate the
performance implications of using GPUs over CPUs (or vice-versa). Data from real world problems
would put into perspective the potential practical benefits of using our implementations in reality.
The main benchmark for evaluating our implementation’s performance will be computational time,
subject to a given threshold for numerical accuracy.

2.3 MATLAB Toolkit, API and Documentation

While C is a powerful and efficient language, it may not provide a friendly environment for scientific
computation as compared to other platforms such as MATLAB, which offer syntactical convenience
and intuitive data types for mathematical analysis. For our library to be useful, it has to be portable
to at least one of these environments. We aim to create a MATLAB toolkit. The choice of MATLAB
is due to the existence of the GPML (Gaussian Processes for Machine Learning) toolkit for MATLAB
[8], a comprehensive and well-documented package, which we will use as a benchmark for setting the
scope and standard of our own implementation. Along with the MATLAB toolkit, we will provide an
API and documentation for our library to allow other users to use our library in any other platform
of their choice.

5
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3 Design

3.1 Libraries Used

3.1.1 Basic Linear Algebra Subprograms (BLAS)

The BLAS library consists of a set of low-level subroutines that perform common linear algebra
operations such as copying, inner products, matrix-vector/matrix-matrix multiplications. Although
it originated as a set of FORTRAN subroutines, the BLAS interface has become the standard API
for linear algebra computation across many other libraries and is a mainstay in high performance
computing. Using BLAS gives our library portability since many implementations of BLAS exist
(OpenBLAS and Intel’s proprietary Math Kernel Library are two implementations that are known for
superior performance), and the user is free to substitute this with any implementation optimised for
the hardware he or she is using our library on.

3.1.2 Linear Algebra PACKage (LAPACK)

Built on the BLAS interface, LAPACK is a library consisting of linear algebra routines to solve
systems of linear equations, least-squares equations, eigenvalue problems and singular value problems.
Like BLAS, the LAPACK interface has become the standard for linear algebra routines in numerical
computing. Including LAPACK in our library allows us to bring the same benefits to users as those
mentioned above (BLAS section).

3.1.3 CUDA BLAS (cuBLAS)

cuBLAS is an implementation of the BLAS interface in the CUDA programming environment for
Nvidia devices. In addition to being a well optimized library by the makers of the hardware themselves,
the use of this library provides us with a natural translation for parts of our code from the CPU (BLAS)
to the GPU (cuBLAS).

3.1.4 CUDA Linear Algebra (CULA)

CULA to cuBLAS is what BLAS is to LAPACK. CULA adopts the LAPACK interface for linear
algebra routines for execution on the GPU. Like cuBLAS, it is developed by Nvidia and well optimized.
It has been shown to have superior performance over CPU implementations of LAPACK.

3.1.5 Limited Memory Broyden-Fletcher-Goldfarb-Shanno (libLBFGS)

The BFGS algorithm is one of the many Quasi-Newton methods of doing numerical optimisation
[9]. We have chosen to incorporate the libLBFGS which is an implementation of the limited memory
BFGS algorithm [10] in our project as an example of how our library can be combined with a numerical
optimiser. The libLBFGS library is written in C and allows us easily with the rest of the library which
is also written in C. The user is not bound by this choice, and having compiled/wrapped the library
into another programming environment (e.g, MATLAB/Python) can use any optimiser available in
that environment.

6
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3.2 Negative Log Marginal Likelihood and Derivative Marginal Log Likelihood
Execution Path

Figure 1: Execution path of negative log marginal likelihood and derivative marginal log likelihood
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3.3 Kernel Matrix Execution Path

Figure 2: Execution path of the kernel matrix

8
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3.4 Layer Design Model

Our software package works with a layered design architecture as shown in Figure 1. It is similar
to the Open Systems Interconnection (OSI) model [11], where each layer has specific responsibilities
and knows nothing about the operation of the other layers. For instance, users interact with the
top layer (MATLAB), where they call our library package within MATLAB, passing in the necessary
parameters. These parameters are then handled by the MEX layer, which deals with the checking of
inputs to ensure that the correct parameters are given. Within MEX, the C code is called, similarly
passing the necessary parameters, and finally, the CUDA layer manages the GPU implementation.
Eventually, the information is then passed back up the layers back to MATLAB to be returned to the
user.

The advantage of having such a layered design architecture is that it breaks down our problem into
different and smaller parts to be worked on by different groups, which reduces complexity. Moreover,
members working on the MATLAB and MEX layer can work independently from those working on
the lower level GPU implementation. Changes to code can also be made within each layer without
breaking code of other layer provided that the interface is adhered to, and this facilities modular
engineering.

Figure 3: Layering design architecture of our software

3.5 Switching between CPU and GPU Computation

In order to achieve general-purpose computing on graphics processing units (GPGPU), it was decided
to use the Complete Unified Device Architecture (CUDA) from Nvidia Corporation as a parallel
computing platform. The reasons were twofold:

• Our allocated lab machine graphic01 comes a GeForce GTX 570 CUDA-enabled graphics card
and CUDA library installed.

• It is known that CUDA could be integrated and compiled with both C and MATLAB. Using
CUDA C programming, memory manipulation would be in the programmer’s control, enabling
the writing of memory-efficient code. This is a significant advantage when writing code for
memory-intensive applications working with large data sets.

3.6 Compute Capability

The compute capability of a GPU is defined by a major revision number and minor revision number.
These represents the core architecture of the GPU. For instance, the GeForce GTX 570 used in
conjunction with our project is of compute capability 2.0, which indicates it is of the Fermi architecture
[12].

The architecture of the GPU is significant because different architectures and revision numbers indicate
different capabilities and features. Therefore, the success of kernel launches are ultimately tied with
the hardware architecture, i.e., one cannot assume hardware abstraction when writing GPU code.

9
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As the GPU architecture evolves, the design changes can affect backwards compatibility — code
written for a specific architecture of GPUs may not work on computers with an older GPU architecture.
For instance, the maximum number of threads per block is limited to 512 on a 1.x architecture device,
whereas it is 1024 on a 2.x architecture device. Or, more radically, double-precision floating point
numbers are not supported for devices with compute capability 1.2 and below.

In order to guarantee 2.x compatibility, we used the compilation flag -arch=sm 20 with the nvcc

compiler. A simplified explanation is that this allows the compiler to generate PTX code (pseudo-
assembly bytecode) and utilise just-in-time compilation at program runtime, in order to select the
most appropriate binary code to load and execute.

The CUDA code written for this project guarantees compatibility for the Fermi architecture v2.0 and
upwards.

3.7 Column-Major Order Storage

MATLAB uses column-major storage for matrices, as part of their mxArray data structure. This
means that a two dimensional matrix is stored column-by-column in a one dimensional array in
memory, and it is accessed with only one index. We use the same convention as MATLAB for accessing
matrices within our program. Following the convention of MATLAB is advantageous because we avoid
the conversion between row-major and column-major and save unnecessary computation.

In column-major storage, the row i and column j indices of a matrix are related to the array index
via the formula:

index = i+N × j (1)

where N is the stride of the matrix.

3.8 Symmetric Matrices

The computation of symmetric matrices implies that only half of the matrix need be computed. In
our program, we can set a flag SYMM to indicate to the program that it needs only to compute half the
matrix and copy its result to its symmetric counterpart element.

For a symmetric matrix, the identity

X[i+N × j] ≡ X[j +N × i] (2)

is used to access the corresponding symmetric element for the array X.

10
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4 Methodology

4.1 Development Strategy and Division of Work

Our group adopted the Agile framework, specifically the Scrum model [13], for our development
strategy. As a group, we came to a consensus to operate on a centralized and flexible model. Jun Wei
acted as the Scrum master/group coordinator, who facilitated our weekly updates and meetings and
also challenged the team to improve.

The overall task was divided into three self-contained mini projects, where we gathered requirements,
as well as implemented design, programming and testing. In summary, there were the self-contained
teams within our project. They are namely, the core library, testing framework and the front end
API. which are discussed under Section 6.

4.2 Implementing Scrum as our Software Development Technique

We adopted the scrum model for our software development technique, because scrum is an iterative
model, which can enable our team to be flexible to changing requirements and challenges that cannot
be easily addressed in a planned manner. For instance, we anticipated working close with our customer
Dr. Marc Deisenroth, where we are constantly prepared for feedback and changes as we ship the final
product.

Also, due to the fact that our group is relative small with six members, it is easy to manage using
the Scrum model. The Scrum model has been tried and tested, and have been put to use by many
successful organizations such as Google, Microsoft, Facebook, Adobe and Bank of America [14]. We
feel that we will work well with the flexibility provided by this model. Also, this model will provide
us with good practice and experience for software engineering in the real world.

One of the key practices of the Scrum model is to have short iterations called Sprints. We met
up on a weekly basis every Tuesday afternoon for sprint meetings with our supervisor, Dr. Marc
Deisenroth, which lasted approximately an hour. In the meetings, we had the opportunity to update
one another on our progress, clarify doubts, discuss the possibilities of changing requirements, or
request for assistance. We also met up as a group after our meeting with Dr. Marc Deisenroth, where
we checked our progress against our timeline just to ensure that we are on track. The timeline is as
follows:

Figure 4: Gantt chart of the project

11
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We also demonstrated our software at the end of each iteration to Dr. Marc Deisenroth, who also
doubled up as the customer in a real software engineering project to ensure that our project is suitably
adapted to the client’s expectations. On top of this, we also met up for daily scrum meetings in between
our common classes, where we briefly updated one another on issues that have surfaced. We also kept
a product backlog which list the functionalities or use cases desired in the product. This backlog was
shared via Dropbox, and easily updated by members.

4.3 Version Control

A technical problem faced was the need to work on similar code at the same time, and to manage
the repository such that we have one working product available at any point in time. To solve this
problem, we had to choose a form of Version Control, one that the group members were familiar
with. Clearly between the choices of Git and Mercurial, we chose the former. The choice of Git was a
natural one — its branching and merging functionalities allowed us to appropriately develop working
prototypes and recombine further work on different parts as progress was made. Furthermore, the
projects repository was hosted on the Imperial College Department of Computing’s GitLab server, and
all members were familiar with it. Also, only Jun Wei, our coordinator, had full access to the main
master branch which contained a working product. Changes by members were pushed to separate
branches, which are tested for errors and scrutinized by Jun Wei before changes were merged into the
master branch.

4.4 Problems Faced

4.4.1 Linking of Libraries with MATLAB

A major problem we had was the linking of existing libraries using available libraries such as FOR-
TRAN, Linear Algebra Package (LAPACK), Basic Linear Algebra Subprograms (BLAS), cuBLAS
(Nvidia CUDA Basic Linear Algebra Subprograms), Broyden-Feltcher-Goldfarb-Shanno (BFGS) and
MAGMA with MATLAB. This was because MATLAB came with its own preinstalled libraries, and
we had to find ways to compile our C code into a MATLAB executable using our own version of these
libraries.

4.4.2 Threads, Blocks, Memory and Race Conditions

When launching a kernel to do parallel computation, we had to ensure the following:

• The number of threads launched must be sufficient to justify the overhead of copying data and
program instructions to the GPU device. Launching insufficient threads than the problem size
leads to incomplete computation, while launching too many leads to insufficient occupancy.

• The number of threads within each block must be monitored. This is important because the
GPU issues 32 instructions at a time (called warps) and any unused threads are wasted.

• Synchronisation and atomicity must be used across threads. These are necessary when utilising
shared memory in order to avoid garbage reads.

4.4.3 Memory Management

1. GPU Memory Capacity and Limitations

For a large data set, the kernel matrix K will exceed GPU memory. For instance, the GTX
570 GPU has 1279MBytes of global memory, which allows approximately 31975000 32-bit float
type elements or 159875000 64-bit double type elements. Furthermore, the input matrices to
compute K (we shall term these X1 and X2) must also be accommodated on the device memory.

To circumvent the problem, we derived a framework to compute the kernel matrix section by
section, one square submatrix at a time. This approach allows us to safely and effectively
compute the kernel matrix whilst computing with the GPU at maximum efficiency.

12
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Figure 5 presents the computation sequence of the kernel matrix. As a symmetric matrix, the
elements located in the top-right triangle and corresponding elements located in the bottom-left
triangle, excluding the diagonal, will have the same values, so the required part of the matrix
to hold full information is either triangle plus the diagonal elements. In this situation, we select
the bottom-left triangle to compute for ease of programming. The order of computation is to
compute top to down, left to right, so if the result matrix is split into 9 parts from K11 to K33,
where the first digit shows vertical coordinate, and the second digit shows horizontal coordinate,
the parts being computed are: K11, K21, K22, K31, K32, K33, in stated order.

Figure 5: Computing the kernel matrix, one square submatrix(Kij) at a time

2. Computing Submatrices

In order to determine the size of the kernel submatrix that may be allocated on GPU memory,
we may query the GPU for its available memory M . When input matrices X1 and X2 are both
too large, the optimal computation speed can be obtained when the input submatrices are of
the same length, thus each computation produces a squared part of the result matrix, which is
the maximum entries being calculated with the same memory size. M is related to the GPU
memory limitation of

M ≥ r × c× 2 + r2 (3)

where c and r correspond to input matrix’s dimension and stride (the number of rows of the
matrix) respectively. Also considering that one of the input matrices might be too small that it
will not reach the input limit, the other input matrix will have a looser limit of:

M = rX1 × c+ rX2 × c+ rX1 × rX2 (4)

where rX1 and rX2 correspond to the stride of the input matrix X1 and X2 respectively. By
dividing the computation into blocks, it might be possible that the last few rows (and/or columns)
of the result matrix are smaller than the calculated limit. In this case they are computed in
the same way of the other submatrices but with a smaller stride parameter (less rows of input
matrix).

As a result of dividing the computation of the resultant matrix K into submatrices, the originally
symmetric result matrix will only have symmetric submatrices where they reside along the
diagonal, but will be asymmetric otherwise. Where possible, the submatrix computation will
ignore upper-triangular elements encountered when computing each square submatrix along the
diagonal.
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After the GPU computes the lower triangular result matrix, the elements are simply copied to
their symmetric counterpart in order to obtain the full matrix K.

The algorithm we implemented will utilise the GPU to compute the lower triangular result matrix
K, so that half the computation time can be stored; then the option of FILL and PACKED, which
are mutually exclusive, will result in three ways of copying the submatrix back to the result
matrix: (a) copy only the computed values back to their corresponding positions; or (b) copy
the computed values back to their corresponding positions as well as the symmetric counterpart.
This is done via flag checking after the computations.

The basic structure of the algorithm is as follows:

1 Query available memory from GPU

2 Compute size limit for input matrices according to available memory

3 Decide whether data set size (length) of input X1 is too large

4 If input X1 does not exceed size limit

5 Compute size limit for input X2 according to total size of input X1

6 Else

7 If input X2 does not exceed size limit

8 Recompute size limit for input X1 according to size of input X2

9 Split inputs X1 and X2 according to their size limit into submatrices

10 Loop when there exists submatrices not computed

12 If the sub matrix at the bottom-left triangle of the kernel

13 Compute results of the sub matrix

14 Combine submatrix into the kernel matrix

15 Else

16 Skip the computation of this submatrix

17 Else

18 Compute results of the sub matrix

19 Combine submatrix into the kernel matrix

3. Determining Parameters for Kernel Launch

The compulsory parameters required when launching a GPU kernel computation are the number
of threads N THRDS and the number of blocks N BLKS, from which a third value, the number of
threads per block, can be determined THRDS PER BLK, where

THRDS PER BLK = N THRDS / N BLKS

On a GPU, a warp of 32 threads are launched and handled by each multiprocessor — which
means that in order to optimise for occupancy (number of active threads), the number of threads
per block should be a multiple of 32, and yet not exceed the device limit (1024 in the case of
the graphics01 lab machine).

The following equations are used to determine kernel launch parameters for an arbitrary prob-
lem of size N and dimensionality of 1 (i.e. vectors and column-major upper triangular matrices):

THRDS PER BLK = 1024

NUM THRDS = N

NUM BLKS = N / 1024 + 1

Using CUDA’s built-in indexing code, the unique ID for each thread can be determined with

int i = threadIdx.x + blockIdx.x * blockDim.x;

int j = threadIdx.y + blockIdx.y * blockDim.y

14
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For problems of size M ∗N and dimensionality of 2:

THRDS PER BLK = (32,32)

NUM THRDS = (M,N)

NUM BLKS = (M/32 + 1, N/32 + 1)

Using CUDA’s built-in indexing code, the unique ID for each thread can be determined with

int i = threadIdx.x + blockIdx.x * blockDim;

4. Improving parameter estimation with CUDA occupancy calculator

The CUDA Occupancy Calculator is a tool provided by Nvidia to [15] estimate and improve
the kernel launchtime parameters. Using the -ptxas compiler flag in NVCC, we can obtain the
following information about the kernel launch as shown in Figure 6.

Figure 6: Information obtained from the NVCC compiler can be used to improve GPU occupancy

The information from Figure 6 (number of registers, shared memory) can be used as input to
the CUDA Occupancy Calculator, as shown in Figure 7. The results are in Figures 8 and 9.

From Figures 8 and 9, we see that our program maximises GPU occupancy without causing
register spillage. This indicates that our kernel launches are at near-maximum efficiency.
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Figure 7: The CUDA Occupancy Calculator
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Figure 8: Estimated occupancy as a function of threads per block

Figure 9: Estimated occupancy as a function of registers per thread
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4.4.4 Performance Optimisation Strategies

1. Maximising Utilisation

The application should be structured in a manner such that iterative and repetitive computations
are parallelised as much as possible, and that hardware bottlenecks are minimised.

At the device level, the GPU should maximise parallel computation between multiprocessors of
a device. We are currently looking into improving this by using more advanced techniques such
as asynchronous concurrent execution, which is a technique to enable kernel computation and
memory transfers concurrently.

2. Maximising Memory Throughput

Maximising memory throughput means to reduce small bandwidth transfers between the GPU
and the CPU. By maximising memory throughput, we can reduce the overhead on each call to
the operating system.

Where possible, we use paged (pinned) memory for device computation. This would mean
that the GPU would be able to bypass the host when retrieving data (DMA access), so that
read/writes by the GPU would be faster because there would be no need for the CPU to copy
the output to buffer. This results in an effective bandwidth increase of ×2.

3. Maximising Instruction Throughput

Instruction throughput is defined as the number of instructions that can be executed in a unit
of time. Maximising instruction throughput can be accomplished by having few divergent paths
of execution in the kernel execution (usually only an if() statement guarding out-of-bounds
array access). This is because different execution paths can cause threads of the same warp (job
batch) to diverge. The different paths would have to be serialised, increasing the number of
executions needed.

Instruction throughput is also maximised by trading precision for speed (i.e., using float instead
of double where possible). By using float format instead of double, the size of a matrix copied
into the GPU memory can be 4 times (twice the size of each dimension of the result matrix)
because the float data requires half of memory compared to double. For this reason, the number
of threads being launched each time can be 4 times larger, hence reducing the computation time
for the same size matrix to be 1/4 of the double precision.

However, being a scientific computation project, precision is left to the user of the library to
decide via the macro FLOAT which is determined at install time by the user. Using double instead
of float in GPU device code on a Fermi architecture GPU results in at least ×2 and as much
as ×8 slower performance, due to increased computational cost and an underlying hardware
implementation bias towards single-precision floating point numbers.

Atomic addition of double precision numbers is not supported natively in CUDA and must be
externally implemented by the programmer, which will further compound the time taken.

4.5 Testing Methodology

Testing is an important aspect of software development, as enures that the code written is doing what
is expected, and seeks to identify errors and bugs in a program. The subject of testing will be the
GPU Gaussian Processes toolbox for MATLAB.
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Features to be tested: We test our program against 5 main features, which are partly drawn from the
characteristics under the ISO 9126 Standard “Software Product Evaluation – Quality Characteristics
and Guidelines” [16]. These are:

1. Functionality: Do valid inputs result in valid outputs? Are invalid inputs caught and error
messages thrown?

2. Accuracy: Are the outputs correct?

3. Efficiency: How fast does the program run? How much resources does it take? Where are the
bottlenecks?

4. Usability: Is the program user friendly?

5. Portability: Can the program be ported to various platforms easily? Is it easily installable?

For the most part, we take a largely scripted testing approach. Our program, being of a scientific
nature, has well-defined behaviour and limited variability in use cases, which lends itself to such a
testing approach where test cases are designed a priori.

4.5.1 Functionality and Accuracy

In terms of functionality and accuracy, a partition testing approach is used. This means that the
universe of possible inputs to our program are partitioned into equivalence classes, and a test case is
created for each equivalence class using a representative input. For some equivalence classes, we also
add test cases for boundary values between classes (See Appendix B.1).

The choice of equivalence classes is best described as white-box. For one, from the perspective of an
end-user, there should be no class difference between a very large (e.g, 50×50000 training inputs) and
a small (e.g, 2 × 100 training inputs) real-numbered training dataset. A black-box approach would
hence only require one test case for the domain of such valid datasets. On the other hand, we have
decided to adopt a ‘white-box’ testing approach precisely because we know that the size of the dataset
has practical implications on the algorithm used (e.g, matrix subpartitioning). In addition to the size
of the input, the numerical algorithm is sensitive to several other input types as well. As a result, we
divide the input space more finely for more robust testing.

4.5.2 Efficiency

Efficiency is of a slightly different nature compared to functionality and accuracy. Here, we are more
interested in profiling the program — finding out the bottlenecks in the algorithm in order to optimize
it. This is particularly important to the project since it is directly related to our thesis, which is
to find out at which point the performance of a GPU implementation might exceed that of a CPU
implementation of the Gaussian process methodology. To do this, we benchmark our program against
a CPU implementation for various sizes of data. We will run the benchmark tests based on the same
conditions, so as to produce a control range of results that can be compared against.

4.5.3 Usability and Portability

In terms of usability and portability, we classify them as a different type of testing, where the users
are largely involved. These are ‘tested’ by consultation with the client. We performed user testing,
where we conducted sessions and involve participants to perform a certain task, such as passing in a
set of training inputs and outputs and performed an inference test to obtain the negative log marginal
likelihood and the partial derivatives with respect to the hyperparameters. We also provide the user
with a set of documentation and instructions for him/her to perform the task. Subsequently, we
noted any feedback from the user, in terms of ease of use, as well as points for improvement, and
implemented them towards the shipping of the final product.
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4.6 Continuous Integration and System Level Testing

In terms of our testing philosophy, we modeled our tests using a form of continuous integration. The
test cases for functionality, accuracy and efficiency together have been consolidated into an automated
test suite that checks the output of each test case against its expected output. We adopted a regression
testing approach in that the developers may only submit their code (merge request) if and only if their
updated program passes all the tests that have previously been passed. This ensures that changes do
not break previously-functioning code. By identifying integration bugs at an early stage, we save time
and effort on debugging over the lifespan of the project. This also ensures that we have an almost
100% availability of a most-updated build at any point in time for demonstration purposes.

Thus far, the testing described falls into the unit testing category. However, on a more ‘meta’ level,
although the scientific nature of our program implies that there is little in the way of different use cases,
we do our best to make sure that our program is as robust as possible on the system level. As such, we
also performed system testing. This requires a list of objectives for the project, which we will compare
against when testing the system. Through these series of tests, we aim to find any misalignment
between our objectives and specifications of the system. System-level robustness is also rigorously
tested using software fault injection, to make sure that our program handles environmentally-induced
situations such as CPU memory overloading, Matlab errors etc. in a predictable manner, terminating
gracefully if appropriate.

4.6.1 Evaluation Criteria

With respect to functionality and accuracy, the invalid cases should have an informative error message
printed, while the valid cases should return results that are numerically similar to those of the GPML
toolbox within an appropriate error bound. That is, given the same set of inputs, the outputs generated
by the GPML toolbox and those from our implementation should not differ by more than a given
percentage (0.1%). A test log will be generated for each test run, which will contain an entry for
every test case, indicating whether it has passed or failed, with a digest of the output/error messages
recorded.

While there is no distinct pass/fail criteria to efficiency, we should expect our GPU implementation
to at least be more efficient than the CPU implementation for some range of inputs. We currently
expect that the CPU implementation would be superior to the GPU implementation for small data
sets and past a certain level, the GPU would overtake the performance of the CPU. For usability and
portability, this would once again be subject to the client’s comments, which will be documented.

We aim to achieve 100% statements and branch coverage using our automated code coverage tool
gcov/lcov.
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5 Group Work

We divided the project into three closely-related ‘mini projects’. This consisted of the Core Library,
the Testing Framework and the API. Each member’s focus was then spread across these mini projects,
as seen in the table below.

Core Library Testing Framework API

Jun Wei Edward Terence
Yuan Ruo Lixiaonan
Deng Ying

The Core Library team led by Jun Wei worked on the implementation of the Gaussian Process library.
A great deal of the implementation was modularized into GPU functions (kernels), which were the
domain of Yuanruo and Deng Ying. The upshot of this modularization was that there was some tricky
interleaving of CPU and GPU code. As such, Jun Wei oversaw the overall integration of the various
components of the algorithm.

The Testing Framework was led by Edward, who also served as the lead tester of the team. Following
a test-driven development style, following an initial brainstorming of project requirements by the full
group, the Testing Framework team then translated those requirements into a test suite, and began
an iterative process of expanding the suite to cover incremental paths resulting from changes in the
Core Library and API implementations. Lixiaonan was in charge of preparing the datasets used in
testing, both by organizing real-life datasets and synthesizing them in a Monte Carlo fashion.

Finally, the API was led by Terence. This required the integration of the C-based core library with
the MATLAB front-end, using the MEX framework. The need to make our Gaussian Process toolbox
portable across operating systems added a dimension of complexity to this task. Terence also had to
work very closely with both other teams, since the task of marshalling user input from the MATLAB
front-end into the core library and handling relevant exceptions required understanding of both user
cases as well as the implementation of the core library.

Refer to Appendix D for detailed work breakdown, and priority of tasks.
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6 Final Product

6.1 Product Description

Our final product consists of a software package that consists of a core library, a testing framework
and a documented API, interfaced with MATLAB. The use of our software package is similar to the
GPML toolbox as mentioned earlier.

Users may load their training inputs, test inputs into MATLAB using a 2-dimensional array respec-
tively, together with the mean, covariance, and likelihood parameters as a struct, and call our library
using GP().

Users may choose to use between two covarience methods, namely the Isotropic Distance Measure
or the Automatic Relevance Determination. Users may also choose to use between three prior mean
methods, namely Zero Mean, One Mean or Linear Mean.

A wiki page is also available for users as a platform to learn how to use our library, as well as to
learn more about our project. Users who are familiar in the field may also share and contribute their
knowledge. Refer to 6.3 for full details.

6.2 Using our Software in MATLAB

Our software requires some configuration to be set, and this can be easily done with a simple script
as shown in Figure 10.

6.2.1 Setting up the Configuration Files

Figure 10: Setting up the configuration files
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6.2.2 A MATLAB Demo

After the configurations have been set using our script, the user may use our software package natively
in MATLAB. Shown in Figures 11 and 12 is a demo for the likelihood function using zero mean and
square exponential kernel, isotrophic distance measure.

Figure 11: Executing a simple MATLAB demo using our software package

Figure 12: Results from the MATLAB demo

Refer to Appendix A for full documentation on the use of our GP library in MATLAB.

23



M.Sc. Group Project Final Report 16th May, 2014

6.3 Wiki Page

The wiki page is hosted on wikispaces[17], and it can be accessed via the URL:
https://gp-on-gpu.wikispaces.com/. A sample page of the wiki can be seen in Figure 13.

Figure 13: A sample page of the wiki

It requires the user to have an account in order to view and contribute content on our wiki page. A
guest account has been created for convenience with the following credentials:

Username: guest_gpgpu

Password: gpgpu

6.4 Product Evaluation

6.4.1 Benchmarking

Figure 14 shows that for the marginal likelihood function, the CPU implementation runs faster for
smaller input sizes (N ≤ 2000), after which the GPU implementation fares significantly better. This
is expected because while the GPU implementation incurs some overhead, the computation has effec-
tively been distributed across the multiple parallel cores of the GPU, making the time required grow
less quickly than the CPU implementation while spreading the overhead over a larger input size.

Figure 15 shows that for the prediction function, the CPU implementation has an advantage over the
GPU implementation. This is because as compared to the marginal likelihood function, the prediction
function is more memory intensive and requires more host-to-device copying.
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Figure 14: Running time of the likelihood function

Figure 15: Running timeof the prediction function
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6.4.2 Testing and Results

Figure 16: Accuracy of results

The numerical outputs of both the CPU and GPU versions of the likelihood and predict functions
were compared. The absolute value of the differences were summed and displayed. There is no
significant discrepancy between the two implementations, which is not surprising since the exact
numerical routines were used. In addition, using double precision floating point numbers allows for
approximately 15 decimal digits of numerical accuracy, which is a large enough safety of margin for
computations involving noisy data.

6.5 Features for Future Developments

Our project is very scalable, and there are rooms for future developments. Here are some possible
extensions:

• Porting onto other operating system platforms such as Microsoft Windows

• Wrapping it with other programming modules such as Python or R

• Taking advantage of multiple-GPU machines, where the script can detect the available GPUs
on a given machine to exploit them accordingly

• Implementing different Kernel, Mean, Covariance, Likelihood functions and Inference methods.

We attempted to implement the above-mentioned features, but due to a lack of time and also the
nature of the complexity of the task, we were unable to do so. Nevertheless, we have documented our
project on our wiki, which will enable crowd-sourcing, where interested developers can contribute to
building the library.
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A Using the Matlab toolbox

Using the Matlab package is simple. There is only one function to call: GP. It does posterior inference,
learns hyperparameters, computes the marginal likelihood and makes predictions. The number of input
and output arguments given to the function call determines the type of computation performed.

A.1 Computing the Negative Marginal Log Likelihood and its Derivatives

[nll, dnll] = GP(hyp, inf, mean, cov, lik, x, y, option)

The GP function takes in the following arguments:

Input Parameters

hyp hyperparameter struct, which contains the column vectors
of hyperparameters (for the mean, kernel (covariance) and
likelihood functions)

inf an inference method
mean a mean function
cov a covariance function
lik a likelihood function
x column vector of training inputs
y column vector of training outputs
option option for CPU or GPU computation

The GP function returns the following outputs:

Output Parameters

nll the negative log marginal likelihood
dnll total derivatives of the negative log marginal likelihood with

respect to the hyperparameters

27



M.Sc. Group Project Final Report 16th May, 2014

A.2 Prediction

[ymu, ys2] = GP(hyp, inf, mean, cov, lik, x, y, xs, option)

The GP function takes in the following arguments.

Input Parameters

hyp hyperparameter struct, which contains the column vectors
of hyperparameters (for the mean, kernel (covariance) and
likelihood functions)

inf an inference method
mean a mean function
cov a covariance function
lik a likelihood function
x column vector of training inputs
y column vector of training outputs
xs column vector of test set inputs
option option for CPU or GPU computation

The GP function will then compute the test set predictive probabilities, and return the following
outputs.

Output Parameters

ymu column vector of predictive output means
ys2 column vector of predictive output variances

A.3 Parameters

A.3.1 Hyperparameter Struct

The hyperparameter struct contains three fields: mean, cov, lik (some of which may be empty). When
specifying hyperparameters, it is important that the number of elements in each of these struct fields,
precisely match the number of parameters expected by the mean function, the covariance function and
the likelihood functions respectively (otherwise an error will result). Hyperparameters whose natural
domain is positive are represented by their logarithms.

Pass in the struct into the GP function, where hyp is taken as an argument.

For example, you may create the hyp struct in the following manner in Matlab:

hyp.mean = []

hyp.cov = log([0.5 2])

hyp.lik = log(sqrt(var(ys))

A.3.2 Inference Methods

The only inference method available is the exact inference method. Pass in the respective string values
into the GP function, where inf is taken as an argument.

Inference Methods Inputs

’exact’ Exact Inference Method
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A.3.3 Mean Functions

You may choose to use the zero, one, or linear functions for the mean functions. Pass in the respective
string values into the GP function, where mean is taken as an argument.

Mean Functions Inputs

’zero’ Zero Mean
’one’ One Mean

A.3.4 Covariance Functions

Currently the only choice of kernel function is the Squared Exponential function with an isotropic
distance measure Pass in the respective string values into the GP function, where cov is taken as an
argument.

Mean Functions Inputs

’seISO’ Squared Exponential Kernel with Isotropic Distance Mea-
sure

A.3.5 Likelihood Functions

The only likelihood function available is the Gaussian likelihood function. Pass in the respective string
values into the GP function, where lik is taken as an argument.

Likelihood Functions Inputs

’gauss’ Gaussian Likelihood Function

A.3.6 Options

You may choose to use the CPU or GPU computation. Pass in the respective string values into the
GP function, where option is taken as an argument.

Option Inputs

’cpu’ CPU Implementation
’gpu’ GPU Implementation
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B Testing

B.1 Testing Matrix

The table below lists the various permutations of inputs to the program and the expected output that
should be obtained.
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B.2 Coverage Report

This is the code coverage report generated by lcov
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C Logbook

Week 1, 06 Jan 2014

1. Introduction to GP and key difficulties

2. Introduction to CUDA and explain how it works/communicates with the CPU - GPU structure,
memory allocation, value copy etc.

3. Discuss criteria of testing: memory and computational throughput

4. Discuss structure of report:

• Software development approach

• Scope of project: basic, bonus, testing framework and wrapping into MATLAB

• Core: mathematical breakdown and GPU implementation, find inverse or matrices, imple-
ment parallel programming, combine all the parallel outcomes

• Testing/benchmarking: test cases, data, formulating of the questions, driver functions,
CPU implementation

• Wrapping into MATLAB

5. Job allocation:

Core Testing Wrapping Styling&Drafting

CPU GPU Test Cases Driver functions CPU

Jun Wei X
Yuanruo X X

Deng Ying X
Edward X X X
Xiaonan X
Terence X

Week 2, 13 Jan 2014

1. Discuss library dependencies, find all the dependencies and document them

2. Grasp a common understanding of regression

3. Develop idea for the platform, measure statistics for testing, discuss possible datasets

4. Different parts co-working together: create a software package could be difficult, agreed on
interfaces

5. Complete demo scripts in C and MATLAB

Week 3, 20 Jan 2014

1. CUDA library memory management: http://developer.download.nvidia.com/compute/cuda/
4_1/rel/toolkit/docs/online/group__CUDART__MEMORY.html

2. Dealing with memory management in cases where datasets are too large for the GPU to process
as a whole. In the case of both extreme sizes and dimensions, one key concern in this memory
management is that data copying from CPU to GPU will take up an excessive amount of time
and slow down the execution to a great extent. One possible solution would be to copy resed
data into GPU multiple times to form different combinations of data sets. Based on this re-
copying situation, it might be better to implement the computation with a Z-shaped structure,
which would mean maintaining half of the data unchanged and replacing the other half each
loop, and complete the computation for a whole of the part column/row of the kernel matrix
before moving to other parts of columns/rows. The basic structure of the solution graphically
will be as:
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Figure 17: Sub-matrix computation by part

• Check input data according to size limitation

• Decide whether data set size (length) is too large

• Decide whether data dimension is too large

3. Draft coding style guideline:

• Naming conventions

• Comments

• Formatting

4. Compile CUDA code and wrap that into MATLAB.

5. Review documentation for GPML MATLAB Code version 3.4:
http://www.gaussianprocess.org/gpml/code/MATLAB/doc/

Week 4, 27 Jan 2014
Note: 31 Jan (Fri), Submission of Report 1

1. Discuss the development approach part, according to
http://www3.imperial.ac.uk/computing/internal/students/noticeboards/msc/grp-proj,
requires:

• Development strategy chosen by your group

• How we’re using it in our context

• Division of work

2. Update the current draft to include references and the changes Dr. Marc suggested.

3. Update the gantt chart (extend research and learning, create a distinction between current
progress and rest of time line), add more references.

Week 5, 03 Feb 2014

1. Set up Gitlab repository:

• Linear folder is complete (i.e. it has everything needed to compile into a library and the
scripts needed to compile for MATLAB) and we’ll use this as a reference for the Gaussian
processes version

• In the main repository directory:
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– src directory (contains the code we have so far for the core library) for Yuanruo and
Ying. This will be where we will be adding stuff to (probably will create a GPU
subdirectory)

– testing directory (not created yet) for Edward and Lixiaonan

– mex directory (not created yet, but similar to the mex directory in the Linear example)
for Terence. GPML toolbox will give a good idea of what the end product should look
like

Week 6, 10 Feb 2014

1. Clarify about derivatives, and showed Dr. Marc the CPU implementations in C

2. Linking of libraries was a little tricky

3. Report graphics machine resources issue, constantly in used by others

4. Discuss performance, GPU is 20% faster than CPU, due to overheads in MATLAB

5. Find a way to optimse based on different GPU/available memory

Week 7, 17 Feb 2014

1. Look at the Broyden Fletcher Goldfarb Shanno library although it is quite old

2. Add kernel mean functions, and implement GPU part

3. Suggest possible training datasets: www.gaussianprocess.org/gpml/data/

4. Use two kinds of data for testing: Real World Data and Syntactic generated data. Suggested
data sets: www.esrl.noaa.gov/gmd/ccgg/trends/

5. Set up a Wikipage/website for documentation.

Week 8, 24 Feb 2014
Note: Exam week

Week 9, 03 Mar 2014

1. Draft report 2:

• Discuss project progress and overall testing strategy

• Use coverage measurement tool and report the statement and branch coverage achieved in
code, summary of coverage results

Week 10, 10 Mar 2014
Note: 14 Mar (Fri), Submission of Report 2

Week 11, 17 Mar 2014

1. Discuss BFGS library, except that linking with MATLAB might still be a problem.

2. For symmetric matrix, packed storage, which increases the limits of problem size by 2x.

3. Working on Kernel matrix, currently still buggy.

Week 12, 24 Mar 2014
Note: Exam week

Week 13, 31 Mar 2014
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1. Use graphic01: add the following to .cshrc to setup nvcc automatically graphic01 is logged on
if ( ’hostname’ == "graphic01.doc.ic.ac.uk" ) then

source <PATH>/setup.csh
endif

where PATH is wherever you store setup.csh (get the modified version from our dropbox/common

for this to work)

Week 14, 07 Apr 2014

1. Draft final report:

• Section 4: Methodology. Combine the parts about the software engineering approach and
methodology from the previous two reports (Terence)

• Section 5: Group Work. (Lixiaonan and Edward)

• Section 6: Final Product. Generate some graphs describing the performance issues of
Gaussian processes (Junwei)

• GPU performance. A section describing the issues relating to the GPU implementation
(Yuanruo and Ying)

Figure 18: Pinned host m emory

Week 15, 14 Apr

1. Consider how to optimize data transfers in CUDA C/C++:
http://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

2. Testing for 2000 datasets

3. Compute sub-matrix, store the full matrix in CPU
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4. Discuss Parallel computing and storing

5. Test functionality: training and predicting, MATLAB interface

6. Future software plan: public available, 4 pages abstract + documentation + well tested code
(for machine learning journal), can be done after the project.

7. Review second report feedback: details to show the portability, block diagram to visualise the
process.

Week 16, 21 Apr 2014
Note: Exam week

Week 17, 28 Apr 2014
Note: Exam week
Setting Wikipage: https://gp-on-gpu.wikispaces.com/

Week 18, 05 May 2014
Note: Exam week

Week 19, 12 May 2014
Note: 16 May (Fri), Submission of Report 3

1. Review reference about MAGMA: http://icl.cs.utk.edu/magma/

2. Show testing results:

• Exhibit A:

Figure 19: Likelihood function for kernel

Shows how the GPU kernel does really well compared to the CPU kernel. This is only run
to 10000, we will run to 20000 later
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• Exhibit B:

Figure 20: Full computation results likelihood function

Try switching out MAGMA for just LAPACK, or hand-coding the linear algebra

3. Profiling of the likelihood and prediction functions:

Figure 21: Profiling likelihood and prediction functions

4. Implement a full CPU profile using gprof.

Week 20, 19 May 2014
Note: 20 May (Tue), Group Project Presentation, Session Three
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D Detailed Work Breakdown

Task Priority Primary Member Secondary Member

Implement MATLAB Interface A Terence Jun Wei

Meeting Minutes A Xiao Nan Terence

Documentation for MATLAB interface A Terence Jun Wei

Linking of libraries and code layers A Jun Wei Terence

GPU for Big Datasets ( gpu_by_part() ) A Deng Ying Yuan Ruo

Linking different libraries and compilers A Jun Wei Edward

Write Testing Suite A Edward Xiao Nan

Write Benchmarking Suite A Edward Xiao Nan

Complexity Analysis A Edward Xiao Nan

Report B All members

Wiki Page B Terence Xiao Nan

Using CUDA pinned memory (cudaHostAlloc) B Yuan Ruo Deng Ying

Speedup in Symmetric Computation B Yuan Ruo, Deng Ying Jun Wei

Speedup by keeping allocated GPU memory in submatrix computation B Jun Wei

Implement Python Interface C

Implement on Windows C

Taking advantage of multiple-GPU machines C

Implement packed data format for kernel matrix C

Figure 22: Designed Work Breakdown with Priority

Priority A takes highest precedence in our task list, and Priority C takes lowest precedence, which
will be implemented should time allow.
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