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Abstract

This work is framed within the 2014 Reinforcement Learning Competition, an annual
gathering in which researchers and students in the field of Reinforcement Learning compete
in a variety of problem domains. In this report we describe the basic aspects of Reinforcement
Learning and the problems proposed by the Competition. Of those, we tackle the problem of
autonomous helicopter control, which consists of learning a controller in an environment with
unknown, non-linear dynamics and a black-box reward function without any previous knowl-
edge. We build upon the state-of-the-art, data-efficient pilco algorithm for Reinforcement
Learning and propose modifications to suit this specific problem. We were able to success-
fully learn a controller to perform different aerobatic trajectories. Our method provides an
improvement of several orders of magnitude in terms of number of agent-environment inter-
actions compared to the winners of previous Competitions. This approach drastically reduces
the experience time needed to learn a controller, while achieving a performance similar to the
most sophisticated methods available, showing once again that model-based Reinforcement
Learning is a feasible option to learn effective controllers for real-world applications.
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1 Introduction

The development of intelligent algorithms and autonomous machines has been and still is a
long-standing goal in the field of Computer Science. In this project we explore and study the
state-of-the-art of a branch of Artificial Intelligence known as Reinforcement Learning.

Reinforcement Learning is a particular approach to the development of intelligent, autonomous
agents that learn through interaction with their environment. Reinforcement Learning was ini-
tially inspired in the way humans learn, by interaction, trial-and-error and associations between
what we can see in our environment and the outcomes of the actions we take.

For instance, Reinforcement Learning has been remarkably successful in combination with game
theory. The application of Reinforcement Learning techniques to gaming has resulted in in-
telligent agents that can outperform the most talented humans [37][38][39][40]. However, con-
ventional methods require a very large amount of practice to learn (e.g. the TD-Gammon
backgammon player [38] takes several million games).

The framework of this project is set around the Reinforcement Learning Competition, an annual
gathering of experts and students of Reinforcement Learning that compete in a variety of problem
domains. The problem domains selected for the Competition usually provide an important and
challenging testbed for learning algorithms, and the Competition itself helps researchers around
the globe compare and understand in more detail how their algorithms perform in different
problems.

Of the three domains proposed by the Competition we focus on the problem of autonomous
helicopter control. This is a well-known problem in the field of Machine Learning that has
been tackled by many researchers, and that has a high number of practical applications including
rescue tasks, aerial filming, access to hazardous zones and others [36].

As mentioned above, one of the most restrictive aspects of Reinforcement Learning is the large
number of interactions between the intelligent agent and its environment that are needed to
distil a successful controller. For the cases in which no prior knowledge is assumed (e.g. no
expert advice and unknown dynamics), conventional methods learning from scratch are very slow
learners. Although they can achieve impressive performance, this limitation renders conventional
Reinforcement Learning out of many practical, real-world applications in which agent-system
interactions are scarce or expensive, like robotics or systems control.

With this problem in mind, in this work we develop a data-efficient learning method that can
provide a successful helicopter controller using a small amount of interaction with the system.

The helicopter problem has been part of the Competition for several years, and several groups
have published their results on it [25][27][28]. This gives us an opportunity to contrast our results
and know what to expect of this Competition. However, we differ in method from many of the
previous attempts to solve the helicopter problem within the Competition. We take a different
approach and choose a model-based Reinforcement Learning algorithm with the specific goal of
minimizing the experience needed by the agent to learn an effective controller.

As a result, we provide a method to train a helicopter controller to realize any aerobatic task
that achieves good performance with a drastic reduction of the number of trials needed to train
the controller. While previous attempts range between several thousand and several hundred
thousand trials [27][30], the proposed method takes on average between 5 and 8 trials, which
usually contain less that 1 minute of experience. Furthermore, we achieve better performance
and more stable flight than any previous attempt to solve the generalized helicopter control
problem without using prior knowledge.
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2 Background

Reinforcement Learning has its roots on the work of optimal control in the late 1950s, with the
appearance of dynamic programming [14]. Although different in their assumptions, the goal of
both Reinforcement Learning and optimal control is to extract the maximum reward from a
system, which is usually formulated as a Markov Decision Process (see sec. 2.1.1). This close
relation moves some authors to draw strong connections between the two fields [1].

Later in the century, around the 1980s, the modern concept of Reinforcement Learning emerged
when dynamic control was applied in combination with trial-and-error learning methods, to learn
controllers for systems for which little or no information is available. This view of Reinforcement
Learning, which has now become broadly studied, is the one in which we focus in this study.

In this section we describe the fundamentals of conventional Reinforcement Learning and the
elements that describe a Reinforcement Learning problem (sec. 2.1). Next, we apply the in-
troduced Reinforcement Learning techniques to a toy model example, the gridworld problem
(sec. 2.1.7), to illustrate one the problems of typical Reinforcement Learning methods. Finally,
we describe the aims and objectives of the 2014 Reinforcement Learning Competition, together
with the proposed problem domains (sec. 2.2) and the software support they provide to run
Reinforcement Learning experiments, RL-Glue [10] (sec. 2.3).

2.1 The problem

Reinforcement Learning (RL) is an area of Machine Learning inspired by behaviourist psychol-
ogy, in which a learning agent interacts with an environment through certain actions that may
modify the state of both the agent and the environment. The agent must be able to retrieve
some information about the state through the state signal (or observation) in each time step.
The goal of a RL agent is to perform a certain task.

For instance, consider a robot in a square grid that must travel from the start to the end of
an unknown maze. In this simple example (often referred to as the gridworld problem), the
task usually is to successfully exit the maze, the actions might be moving one step in different
directions and the state could be the position of the robot in the grid.

Two of the main differences between the RL problem [1] and other machine learning problems
are the concepts of reward and decision making. At each time step, after performing an action a
in state s, the agent will receive a scalar numerical reward r. The goal of the agent is to maximize
the reward received during the task by making the right decisions. Usually the action of the
agent at a certain time affects the states the agent finds thereafter, such that the decisions made
by the agent have a mid- or long-term effect. In this case we talk about a sequential decision
making problem. In the previous example, exiting the maze could have a large positive reward
whereas stepping into a trap could have a negative reward, and decisions made by the robot at
a crossroads might affect which is the right path to take thereafter.

The most basic schematic of an RL problem is shown in figure 1. At each time step, the agent
causes an effect on the environment by taking an action, and then it measures its new state and
the received reward. Sometimes it is more convenient to study a system in terms of state-action
pairs – that is, pairs formed by an action a and the state s in which it is taken.

In RL, unlike other kinds of machine learning, the agent is never told explicitly what to do. For
instance, in supervised learning the learning agent has a collection of labelled examples provided
by an external source of information. The supervised learning agent can then compare these
examples with its own predictions, and adjust itself in consequence. However, in RL the agent
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Figure 1: A simple diagram of the RL problem. An agent interacts with its environment by
taking actions, that may give the agent a reward and change its state. The goal of the agent is
to obtain the maximum reward possible. Extracted from [1].

has no other source of information other than its own experience and the reward as a learning
signal, and must perform a trial-and-error search to maximise the total reward obtained.

We call reward function the function that maps states or state-action pairs to rewards. As shown
in figure 1, rt+1 is the reward that follows the state-action pair (st, at). The reward function is
an indicator of the immediate desirability of a certain state (or state-action pair), what makes
the agent give it preference over other less desirable states. The relationship between the reward
function, the actions of the agent and the desirability of the states are explored in section 2.1.3.

2.1.1 The Markov property

In general all parts of the RL problem can be stochastic. The reward or the new state following
an action might have some random component, or might be influenced by another process not
observed by the agent.

In the most general case, the probability distribution for the new state-action pair (st+1, at+1)
can depend on the whole history Ht at time t of the trajectory followed by the agent, i.e.

P (st+1 = s′, at+1 = a′|Ht) = P (st+1 = s′, at+1 = a′|st, at, rt, st−1, ..., s0, a0) .

A key concept for RL is that of a Markov Decision Process (MDP). We say that a problem is
Markov if the random variables involved obey the Markov property, and, thus, the expression
above can be replaced by

P (st+1 = s′, at+1 = a′|Ht) = P (st+1 = s′, at+1 = a′|st, at) . (1)

That is, events at time t+1 only depend on events at time t. We should clarify that in reality st
can depend on other information that does not necessarily come from time step t. For example,
we would expect the dynamics of a physical system to be highly dependent on its velocity,
which usually depends on the position of the system at t and at t− 1. However, as long as this
information is contained in the state signal perceived by the agent at step t the system is still
perfectly Markovian.

In the context of the MDP we introduce the quantities Pass′ , the state transition probability, and
Rass′ , the expected reward

Pass′ = P (st+1 = s′|st = s, at = a), (2a)

Rass′ = E[rt+1 = r|st = s, at = a, st+1 = s′], (2b)

respectively. Pass′ and Rass′ contain an almost complete description of the MDP. The only
missing piece of information is the specific distribution P (rt+1 = r|st = s, at = a, st+1 = s′) —
the distribution of which Rass′ is the expected value.
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2.1.2 Continuing and episodic learning tasks

Of the many different classifications one could think of for the set of RL problems, we will first
introduce the distinction between episodic and continuing tasks.

An episodic task has a set of terminal or absorbing states, that conclude the episode. After a
terminal state the agent can be sent back to the starting state to start a new episode. Exiting
a maze or wining (or losing) a chess game are examples of terminal states.

On the other hand, a continuing task does not break naturally into episodes, but keeps going
indefinitely. For example, controlling a system with a long life span can be considered a contin-
uing task. Although there usually is the possibility of resetting the system and going back to a
starting state, they are not the goal in the normal operation of the system.

On the basis of these two kinds of problems we define the concept of expected return, or return
for short. The return at time t is the sum of all the rewards obtained from t on, weighted by a
discount rate γ, which usually satisfies 0 ≤ γ < 1. The return is defined as

Rt =

∞∑
k=0

γkrt+k+1. (3)

In order for the expected return to be finite, we need to meet certain convergence conditions.
First, the ri sequence must be bounded. If the task is episodic, we know the sum will terminate at
some point T when the agent reaches a terminal state, and thus the return1 Rt = rt+rt+1+...+rT
is just the plain sum of a finite number of rewards and is perfectly convergent. However, if the
task is continuing, the discount rate must be strictly less than one to ensure convergence.

For simplicity, we assume that in an episodic task the sum (3) is truncated at time T , or that all
the rewards rT+k following any terminal state are null. This convention will allow us to simplify
the mathematical formulation of the problem and writing the summation up to infinity in all
cases.

2.1.3 Policies and value functions

Another important element of an RL set-up is the agent’s policy. The policy is the protocol the
agent follows to select action a when measuring state s. The policy is usually denoted by the
letter π. To make the dependence on s and a explicit it is sometimes written as π(s, a). The
policy can be a deterministic rule, a look-up table, or even stochastic.

After briefly mentioning the concepts of reward, return and policy, we are in position to introduce
another fundamental concept of RL: the value function. The value function can be seen as
an extension to the reward function: Whereas the reward function determines the immediate
reward, the value function determines the long-term desirability of a certain state s. We usually
denote the value function as V (s).

Clearly, long-time desirability is a weak definition. A more robust definition would be to estimate
V (s) as the expected return of the agent when in state s (see equation (3)). However, the return
in general depends on the trajectory and the decisions made by the agent after visiting state
s, and the decision-making protocol of the agent is summarized in the policy. Thus, the value
function and the policy are closely related and provide a solid definition of the value function,

1Some authors use the term return for the γ = 1 case only, where Rt = rt + rt+1 + ...+ rT , and use the term
discounted return for the 0 < γ < 1 case.
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i.e.

V π(s) = Eπ [Rt|st = s] = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s

]
. (4)

V π(s) now represents the expected return of being in state s and following the policy π. We
call it the state-value function for policy π.

Similarly, we can be slightly more specific and define the action-value function Qπ(s, a) as the
expected return starting from s, performing action a and following π thereafter:

Qπ(s, a) = Eπ [Rt|st = s, at = a] = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a

]
. (5)

2.1.4 Optimality and the Bellman equation

So far we have introduced a significant number of new concepts that belong to the RL jargon and
have pointed out a few inter-relationships between them, but we have not drawn any conclusion
or followed any argument. In this section, we discuss more formally the mathematical structure
of the RL problem.

First we begin by exploring the definition of the value function. As mentioned above, V (s) is
the expected return of the agent starting in s. Unless s is a terminal state, the agent will follow
to s′ after performing action a in s and gaining a reward r in the process. In turn, V (s′) is the
expected return in state s′. With a quick examination we might suspect a recursive relation
between V (s) and V (s′), with a contribution from r.

More formally, the relation is described in the following equations:

V π(s) = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s

]

= Eπ

[
rt+1 +

∞∑
k=1

γkrt+k+1

∣∣∣st = s

]

=
∑
a

π(a, s)
∑
s′

Pass′

[
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2

∣∣∣st = s′

}]
,

where the sum
∑

a π(a, s) accounts for the case in which the policy is stochastic, such that
π(a, s) is the probability of selecting action a in s.

The last term in the equation above is exactly the definition of V (s′). Thus we arrive at the
so-called Bellman equation,

V π(s) =
∑
a

π(a, s)
∑
s′

Pass′
[
Rass′ + γV π(s′)

]
. (6)

This equation represents a major milestone in most methods developed to solve the RL prob-
lem. In general, the Bellman equation is central to many aspects of control theory and to the
mathematical optimisation method known as dynamic programming [14] (see section 2.1.5).

At this point, we recall that the exclusive goal of our RL agent is to maximize the reward
obtained over time, Rt, or equivalently V (s). The Bellman equation has a unique solution V
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for a determined policy π [1]. Thus, it is sensible to consider that a policy π′ is better (in all
senses) than π if V π′

(s) ≥ V π(s) ∀s 2.

Following this argument we can think of a policy that is better than or equal to all the other
policies. We call it the optimal policy and denote it by π∗. The unique solution of the Bellman
equation for the optimal policy is the optimal state-value function V ∗(s) = max

π
V π(s).

In close relation we define the optimal action-value function Q∗(s, a) as

Q∗(s, a) = E [rt+1 + γV ∗(st+1) | st = s, at = a] . (7)

The optimal state- and action-value functions satisfy the relation

V ∗(s) = max
a

Q∗(s, a). (8)

For a finite MDP one can always find V ∗, and it is independent of the policy [1]. A fundamental
property of V ∗ is that, since it already takes into account the future consequences of choosing
any possible state, any policy that chooses the action that takes the agent to the neighbouring
state with highest V ∗(s) is an optimal policy. That is, any greedy policy with respect to V ∗ is
an optimal policy. Through V ∗ the optimal expected long-term return is turned into a quantity
that is locally and immediately available for each state.

In this section, we have introduced the concept of optimality and the Bellman equation. These
are very fundamental concepts in RL, since the goal of the agent is to maximize its reward by
approaching the optimal policy through learning. It is common in several RL algorithms to use
the agent’s experience to estimate terms in the Bellman equation or apply other techniques to
solve it and calculate the optimal value function.

2.1.5 Methods to solve the RL problem

Now that we have defined the RL problem and determined our goal through the Bellman equa-
tion, we will describe the three general families of methods that are used to solve a RL task. For
this section we assume that the states and the actions are discrete and there is a finite number
of them. The case of continuous state- or action-spaces requires different methods and is briefly
described in section 2.1.6.

The most complete way to solve a RL problem is through Dynamic Programming (DP) [14].
DP is a collection of algorithms that can be used to compute optimal policies, but which have
a major drawback: a perfect model of the environment as a MDP (that is, Pass′ and Rass′) is
needed.

Provided we do know the true values of Pass′ and Rass′ , it is easy to evaluate the problem.
Following the discussion on the Bellman equation in the previous section, given a policy π we
can calculate its associated V π(s) by iterating on the Bellman equation3. This method, shown
in equation (9), is known as the policy evaluation method,

V π
k+1(s) =

∑
a

π(s, a)
∑
s′

Pass′
[
Rass′ + γV π

k (s′)
]
. (9)

2The policies are equivalent if the equality holds for all s and one is better than the other if the equality breaks
for at least one state.

3Knowing Pass′ and Ra
ss′ we have all the information needed to determine V π, but in large problems often the

amount of computational resources needed is impractical and one must resort to other kinds of methods.
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In every iteration, the policy evaluation method considers every possible one-step transition
from s to update Vk(s), and does this for all s. In other words, it backs up the value of every
state to produce the new estimator Vk+1. We say that DP methods are bootstrapping in the
sense that they compute a series of estimators based on previous estimations.

The policy evaluation method can be easily modified to achieve optimal results. As mentioned
in the previous section, a policy which is greedy with respect to V ∗ is always an optimal policy.
It is straightforward to modify equation (9) so that the policy is always greedy with respect
to the last estimator of V . This method is the value iteration method, and has guaranteed
convergence to optimal behavior,

Vk+1(s) = max
a

∑
s′

Pass′
[
Rass′ + γV π

k (s′)
]
. (10)

The next type of RL-solving methods are the Monte Carlo (MC) algorithms. MC methods
are usually more appropriate for a RL application because they assume no prior knowledge of
the environment.

In a standard MC algorithm, a certain policy π is to be evaluated. Then an episode is generated
following π and V π(s) is estimated as the sum of all the rewards obtained after the first visit
to s. This process is iterated until convergence criteria for V π(s) are satisfied. We say MC is a
non-bootstrapping method because the estimators of V π(s) are all independent and do not rely
on previous estimators.

The MC method we just described is guaranteed to converge to V π for any policy, but if our
first guess for the policy is poor, convergence can be slow and V π can be far from optimal [1]. In
order to make a more robust method, we can update the policy after each episode according to
the value estimators from previous episodes. For example, we can choose a policy that assigns
a probability of choosing action a proportional to its Boltzmann factor eβQ(s,a), where β acts as
the inverse of the temperature. This way the policy approaches the optimal policy as Q(s, a)
approaches Q∗. This method for assigning probabilities is known as the softmax method and is
depicted in algorithm 1 assuming an episodic task.

Algorithm 1: Softmax MC algorithm

Initialize Q(s, a) arbitrarily
Initialize π to a random policy
while Q(s, a) has not converged do

Generate episode following π
for each (s, a) in episode do

Update Q(s, a) with return following the first occurrence of (s, a)
end

Update policy as π(s, a) = eβQ(s,a)∑
a′ e

βQ(s,a′) for all s

end

The last main type of methods are the Temporal-Difference (TD) methods [15]. TD is a
combination between the ability of MC to learn without prior knowledge and the bootstrapping
features of DP.

If policy π chooses action a in st obtaining a reward rt+1 and leading to st+1, then the exact
solution of the Bellman equation will satisfy V π(st) = rt+1 + γV π(st+1). However, if our esti-
mator of V is not accurate there will be a non-zero error δt = rt+1 + γV π(st+1)− V π(st). Then
we can use this error to modify our estimator V π

k+1(st) = V π
k (st) + αδt.
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A very effective TD method is the sarsa algorithm [16], which uses TD back-ups to estimate
Q(s, a). As in the previous case, plain sarsa can be enhanced with any policy improvement
method. For instance, we can use an ε-greedy method, which chooses the greedy action with
probability 1−ε and a random action with probability ε. Thus, since Q is continuously updating,
π is also improving. This method is illustrated in algorithm 2, again for an episodic task.

Algorithm 2: ε-greedy sarsa algorithm

Initialize Q(s, a) arbitrarily
Initialize π to a random policy
while Q(s, a) has not converged do

Initialize s
while s is not terminal do

Evaluate greedy policy with respect to Q and select action a
Take a and observe s′, r
Choose a′ to perform in s′

Q(s, a) = Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
(s, a) = (s′, a′)

end

end

This classification in 3 main types of algorithms is not completely solid. It is easy to develop
algorithms that incorporate elements from the 3 types of algorithms and that combine different
policy improvement methods to achieve optimal behaviour as fast and effectively as possible.

2.1.6 Learning in continuous spaces

So far we have been dealing with a finite set of states (actions), which the agent can measure
(take). However, there are many applications and possible tasks that cannot be formulated in
terms of finite sets, but instead take values in a continuous state or action-space. In the previous
sections the action- and value-functions had a determined value for each state, and since the
number of states was finite these could be stored as a table containing one value of V for each
s. However, if the state signal includes real variables (or more generally, features) this is not a
possibility.

We can generalize most of our previous discussion by representing the value function V not as
a table but as a parametrized functional form with parameter vector ~θ. For example, ~θ can be
the weights of a neural network or the coefficients in a set of splines. Any change in ~θ can affect
the value estimation of many states, so the back-up process is not so trivial.

Fortunately, the literature on function approximation is extensive. We can overcome this prob-
lem by considering every step in the agent’s trajectory as an estimator for the value function at
that point. That is, in a discrete state space, every step we (usually) update the value of V (st)
and just replace it with a new estimator, say rt+1 +γV (st+1). In a continuous space we can take
the point (st+1, rt+1 + γV (st+1)) as a conventional training example and use it together with
any supervised learning method to learn the parameters ~θ in V π(s; ~θ).

In comparison, however, the problem posed by a continuous action-space is more serious. One of
the possible solutions is to learn the action-value function of the problem, Q(s, a). If the state-
and action- spaces have dimensions Ds and Da respectively, we can model Q as a function of
Ds + Da variables with parameters ~θQ. In each step we can use a supervised learning method

to estimate the value of ~θQ that estimates a better Q and then use an optimisation method to
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calculate the optimal a given the current estimator of Q and subject to the constraint of being
in the state s. However, this method involves an optimisation routine for every step, and is
certainly inefficient. More sophisticated methods are known [13], but are out of the scope of this
introduction.

Another approach to the continuous action-space problem is to ignore the value function and
use a direct policy search method [6]. Direct policy search methods involve evaluating a policy
by the return (or reward) it provides and updating it every episode (or step) to achieve a higher
performance.

2.1.7 An example: the gridworld problem

The gridworld problem setting we consider consists of a 2-dimensional grid whose sites can be
empty, trap, or obstructed. The state of the system is uniquely determined by the position of
the agent in the grid, which the agent knows with absolute certainty. The goal of the agent is
to move from a start position to a goal position.

Arriving to the goal state has a positive reward of 10 and finishes the episode. Moving through
a trap state has a −6 reward. The agent can move freely through the empty sites with a reward
of −1 each step, thus encouraging the agent to reach the goal state as quickly as possible. The
obstructed states end the episode without any additional reward.

The gridworld problem can be completely formulated as an MDP. The state space is discrete
and finite, with the number of states equal to the number of tiles in the grid, plus a fictitious
terminal state. The only possible actions are going up, down, left or right. At every time step,
the new state of the system only depends on the previous state and the action taken by the
agent4.

In order to compare the rest of the algorithms it will be useful to know the optimal solution
to the problem. Since the model is completely known, we can easily work out the solution
with a DP value iteration algorithm as outlined in section 2.1.5. The requirement of a model
makes DP algorithms not suitable for the RL-C, but make a perfect benchmark for a completely
determined problem like the gridworld.

The approximate (but almost exact) solution of the value function optimality equation for this
grid is shown in figure 2. The greyscale map represents the value function V ∗(s) for each site.
White represents the highest value and black the lowest. Red forms indicate the type of state
(start, goal, trap or obstructed).

It can be easily computed that the optimal policy will achieve a total return R = −4. With this
knowledge we can compare other algorithms in the same grid. For this example we evaluate the
two algorithms outlined in section 2.1.5, sarsa and MC.

Results are shown in figure 3. All the areas drawn are 95% confidence intervals for the total
reward received in each episode, averaged over 200 runs. The blue area corresponds to the ε-
greedy sarsa algorithm (described in algorithm 2) using ε = 0.1. That is, the policy is updated
each step to be greedy with respect to Q but selecting a random option with probability 0.1.

The green and red areas were computed with the same algorithm, a softmax MC method (as
shown in algorithm 1). The difference between the two is the start condition. The red area was
computed with an optimistic start — the initial values for Q were higher than the actual values
obtained by the system, encouraging the exploration of new, unvisited states. Conversely, the

4Actually, two different actions in two different states are equivalent if they lead to the same state — the same
site in the grid. This is known as an afterstate formulation, in which the state- and action-values are estimated
the same for every (s, a) pair sharing s′.
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Figure 2: Approximate solution of the Bellman optimality equation for the gridworld
considered. The red square is the start, the star is the goal, the circles are the obstructed and
the crosses are the trap states.

blue area had a pessimistic start, in which the initial value for Q was much less than the real
values, what forces the algorithm to find a way to the goal state and stick to that path thereafter,
encouraging exploitation — the use of a known strategy to obtain a reward without exploring.
However, the first choice of path in the pessimistic case is highly random, what explains the
wide confidence level.

Despite the simplicity of this example we can already see some general consequences of the
features of a RL algorithm.

• The first thing to notice is that an algorithm that overrates exploitation over exploration
is likely to get a higher result in the short term, but a poorer result in the long term. In
the case of this problem, the exploitative agent is choosing a path to the goal state which
is safe (in the sense that it is already known), but which is far from optimal because no
better paths have been discovered due to the lack of exploration.

• We can also see that in this problem softmax MC learns faster than ε-greedy sarsa,
specially due to the policy improvement method. The ε-greedy method usually selects the
greedy action and the rest of the times it has equal probability of selecting the best or the
worst action, whereas the softmax method weights all the actions and assigns probabilities
accordingly.

• Last, we note that the result obtained by sarsa is slightly lower than the result obtained
by the optimistic MC. That is because the ε in the ε-greedy remained constant, whereas the
temperature in the Boltzmann factor for the softmax method (recall section 2.1.5) slowly
decreased during learning. For an infinite temperature all the actions are equally likely,
and for low temperature the policy is always greedy. The incorporation of an annealing
schedule that lowers the temperature as time passes allowed the agent to combine an
exploratory policy at first and converge to an exploitative policy later on to obtain a
maximum return.

Note that the best considered method so far, the optimistic softmax MC, took more than 100
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Figure 3: Performance of the 3 algorithms discussed: ε-greedy sarsa in blue, pessimistic
softmax MC in green and optimistic softmax MC in red. Total return is shown in the vertical
axis. An episode starts when the agent is placed in the initial state and ends when it arrives at
the goal. The grey horizontal line at R = −4 is the optimal solution as determined by value
iteration. In each case, the shadowed area is the 95% confidence belt for expected return.

episodes to perform partially well on the simple 10x10 grid of figure 2. This illustrates the
problem of RL mentioned in section 1 — conventional RL algorithms need a high number of
agent-environment interactions to learn an effective policy. While this is not a problem in toy
models like the gridworld problem, it is very restrictive for real-world applications or in those
applications in which simulation of the system is prohibitively expensive.

In these value learning methods, the data samples obtained through agent-system interaction
are used once to update the value function, and then are discarded. To overcome this problem
one can use the same data multiple times [18], train a supervised learning predictor that can
act as a model of the environment, or do both things at the same time. Indeed, in section 3.1
we show an algorithm that incorporates these two features to extract as much information as
possible from the data, and thus achieve unprecedented results in data-efficient RL [2].

2.2 The competition

This project is framed in the context of the 2014 Reinforcement Learning Competition (RL-C)
held by the RL Community. The RL-C is aimed at RL students and researchers, and gives them
the opportunity to test their algorithms in well-defined problem settings, as well as to create
new specifically designed algorithms.

All the documentation about this and past RL-Cs can be found in the website

http://www.rl-competition.org/ .

The competition is divided into 3 problems domains. In this section, we give a brief description
of each domain and the challenges that they represent in the context of this project. Complete
documentation can be found in RL-Cs website.
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2.2.1 Helicopter

The Helicopter domain is based on the work of A. Ng’s group at Stanford University [20][21][22][23].
The goal of the agent is to control a simulated helicopter and perform a certain task without
crashing it. The task can be hovering the helicopter, flying at a constant stable speed or per-
forming other more sophisticated aerobatics like flips and rolls. The simulator is based in a
XCell Tempest helicopter, the same model used by the group at Stanford University and shown
in figure 4.

Figure 4: XCell Tempest helicopter used by the Stanford University group [20] and simulated
in the Helicopter domain in the RL-C 2014.

The observation or state space for this problem has 12 continuous variables, corresponding to
the X, Y, Z components of the helicopter’s velocity, position, angular rate and orientation. The
action space has 4 continuous variables: longitudinal and latitudinal cyclic pitch and main and
tail rotor collective pitch.

The goal of the Helicopter problem is to be able to safely control the helicopter. A large
penalty is given if the helicopter moves too far from equilibrium (crashes), which should be
avoided at all times. The task is run for 6000 steps, which simulates 10min of real flight. The
simulator provided by the Competition implements 10 different tasks of unknown content, that
are identified by a (0-9) integer.

The main challenge of the Helicopter domain is its relatively high-dimensional continuous state-
and action-space and its noisy non-linear dynamics. Although we have all the physical informa-
tion needed to characterise a 3D rigid body like the helicopter, the noise in the observation and
external effects like the wind might make this problem hard to model as a MDP.

2.2.2 Invasive species

The Invasive Species domain is a biologically inspired problem set-up in which the goal is to find
the optimal decisions to control a spatially spreading process. In this case, an invasive species
(namely the Tamarisk tree) is competing against a native species in the ecosystem of a river
network [24].

The environment has a binary tree network structure simulating a river network. Each of the
E edges (or reaches) of the network has H slots (or habitats) that can be empty, occupied by
native plants or by Tamarisk plants. That makes a total of 3EH discrete states.
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Figure 5: Schematic of the Invasive Species problem. Extracted from the Competition’s
website, accessed July 2014.

At each time step, a number of phenomena might occur. A tree might die spontaneously, and
alive trees might spread their seeds and compete to occupy an empty habitat. Propagation is
much more likely downstream than upstream.

There are four actions that can be taken in each reach: doing nothing, eradicating Tamarisk
plants, restore native plants or eradicating Tamarisk and restoring natives. That makes a 4E

discrete action space for the whole system. Each action has a deterministic cost associated with
it, but the output is always stochastic.

The goal of the problem is to reduce the spread of the Tamarisk tree while keeping the cost of
the actions carried out as low as possible.

This a continuing discounted task, so we should aim for an on-line learning algorithm. The large
size of both the state and action spaces imposes certain computational restrictions on the agents.
In the default case E = 7, H = 4, there are more than 2× 1013 states, so the computation time
might be a significant factor in developing an algorithm.

2.2.3 Polyathlon

The Polyathlon domain is designed to be the most generic RL set-up. The problem is divided in
an unknown number of unknown tasks, of which the only information available is that the tasks
are episodic, approximately Markov and stochastic. The state space has 6 unknown continuous
variables and there are 6 discrete actions available.

With such a generic description, the algorithm for a successful agent should be able to quickly
adapt to any kind of task posed. The small amount of information about this domain is certainly
the major obstacle (as well as its main feature).

2.3 The software: RL-Glue

To solve these domains we will need a robust software support. All three of the RL-C domains
are built on the RL-Glue software package [10].

RL-Glue is a language- and platform-independent protocol for evaluating reinforcement learning
agents with environment programs. RL-Glue separates the agent and environment-development
process so that each can be written in different languages and even executed over the Internet
from different computers.
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The RL-Glue architecture is divided in the RL-Glue Core and 3 separated programs: the ex-
periment, the agent and the environment. All of them have functions which interact with the
RL-Glue Core during the execution.

Figure 6: High-level diagram of the RL-Glue architecture [11]. The experiment calls RL-Glue
Core functions, and the Core calls the functions provided by the agent and the environment.

The following lines are the most simple, yet illustrative description of the agent, environment
and experiment as used in RL-Glue. They are extracted from the RL-Glue Overview Manual
[11].

• In RL-Glue, the agent is both the learning algorithm and the decision maker. The agent
decides which action to take at every step.

• The environment is responsible for storing all the relevant details of the world, or problem
of your experiment. The environment generates the observations/states/perceptions that
are provided to the agent, and also determines the transition dynamics and rewards.

• The experiment is the intermediary which (through RL-Glue) controls all communication
between the agent and environment. This structured separation is by design, division of
the agent and environment both helps create modularized code and captures our intuitions
about how much the agent and environment should “know” about each other.

More specifically, each program must implement certain methods to enable interaction with the
Core. The necessary methods are illustrated in diagram 7.

Following this architecture, a sample RL-Glue experiment would proceed as depicted in algo-
rithms 3 and 4. We should clarify that what we call methods are indeed just abstract methods,
and do not refer to implementation details (like classes, class methods or procedures). The RL-
Glue Core is a language-independent software that interacts with different languages through
their specific codecs. The details of the codecs are not relevant for the purpose of this report.

Algorithm 3: A sample RL-Glue routine

RL init()

RL start()

i ← 0
MaxSteps ← 100
terminal ← false
while i < MaxSteps and not terminal do

terminal, reward, observation, action ← RL step()

Collect information from current step
Increment i

end
RL cleanup()
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Figure 7: Schematic diagram of the full RL-Glue architecture [11]

Algorithm 4: Schematic of RL_step() function

Function RL step():
reward, observation, terminal ← env step(action)
if terminal then

agent end(reward)
return reward, observation, terminal

else
action ← agent step(reward, observation)
return reward, observation, terminal, action

end

end

3 Solving the helicopter domain

In the rest of this report we will describe the methods used to solve the helicopter problem as
posed by the Competition, and the results and performance obtained.

To solve this problem we use a method fundamentally different from those described in section
2.1.5. To introduce it, we give a broader picture of the methods proposed to solve the RL
problem.

Value learning: These methods explore the state-action space to gather information about
the reward and estimate a value function, either V or Q. By transforming long-term
desirability into a local property that only depends on s (or on s, a pairs), these methods
can effectively ignore the dynamics of the system. All methods mentioned in section 2.1.5
fall within this category.

Direct policy search: As their name indicates, direct policy search methods do not attempt
to build any estimate of the value function. Instead, they proceed by direct testing of the
policy on the system. That is, given a class of policy functions, their performance can be
assessed based on their expected return and thus the policy can be optimized to achieve
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good performance.

Model-based learning: All model learning methods are divided in two basic steps. First,
they estimate the dynamical model of the system (often via a conventional supervised
learning method) and then use it to learn a policy (i.e. an indirect policy search). The
policy learning steps of these methods works in a similar fashion to a direct policy search,
but is usually more effective5, since more information about the original system is used in
addition to the reward.

Our proposed method falls in the category of model-based learning. To the best of our knowledge,
this is different from the common approach of previous winners of the Competition, that have
opted for other value learning or direct policy search methods [25] [27] [28].

3.1 High-level steps

The main algorithm we use in this study is an adapted version of pilco [2]. This is a model-
based learning RL algorithm that relies on a Gaussian Process (GP) for the model learning step
and on gradient-based optimization methods for the policy improvement step. The high-level
steps are summarized in algorithm 5 and detailed in sections 3.2 and 3.3.

Algorithm 5: pilco

Generate trajectories using random actions and collect dataset D = {(s, a, r, s′)}
repeat

Train GP dynamics model from current dataset D
Learn policy via policy search
Run latest policy and collect new dataset Di = {(s, a, r, s′)}
Aggregate datasets, D = D

⋃
Di

until task learned

As a model-based learning method, pilco is exposed to model errors — the policy search
algorithm assumes the dynamics model is a perfect model of the environment, which is usually
not the case. This effect is particularly noticeable when there is a limited number of samples
and multiple hypothesis are similarly likely.

To address this problem, pilco takes advantage of the probabilistic outcomes of the GP. By
considering the uncertainty in the estimations, the algorithm is less prone to model bias [32].
In the policy search step, the uncertainties are consistently propagated and taken into account
during the optimization process.

In the following we outline the mechanisms behind the two main steps in pilco, Gaussian
Process training and policy search.

3.2 Gaussian Process regression

To perform the model learning step in algorithm 5, we use a state-of-the-art, data-efficient
supervised learning algorithm based on a Gaussian Process (GP). In this section we will only
outline the features of this method, for an extensive description of GPs and their applications
we refer to [3].

As their name implies, GPs are based on the properties of Gaussian distributions. More specifi-
cally, it relies on the fact that conditionals and marginals of a multivariate Gaussian distribution

5More effective in terms of the number of agent-environment interactions needed.

16



are also Gaussian distributions. As an illustration, let x,y be two random vectors that follow a
joint Gaussian distribution, i.e.

p(x,y) = N
([

a
b

]
,

[
A C
C> B

])
, (11)

where a, A are the mean and covariance matrix of x, respectively; b, B are the mean and
covariance matrix of y, respectively; and C contains the cross-terms of the covariance.

To marginalize over a part of the variables in the Gaussian distribution, e.g. y, we perform the
integral

p(x) =

∫
p(x,y)dy = N (a, A) , (12)

which yields the desired result that x also follows a Gaussian distribution.

Similarly, using this result and Bayes’ rule one can compute the conditional probability

p(x|y) =
p(x,y)

p(y)
= N (a + CB−1(y − b), A− CB−1C>) , (13)

which again is a Gaussian distribution. For a proof of these properties, see any standard Mul-
tivariate Statistics book, e.g. [33].

Μx'

y0

+

(a) Conditioned Gaussian distribution

Μy +

(b) Marginalized Gaussian distribution

Figure 8: Schematic of conditioned and marginal distributions obtained from a
two-dimensional multinormal distribution

Once reviewed the relevant properties of the Gaussian distribution, we proceed back to the
description of the Gaussian Process. The formal definition of a GP [3] is as follows:

A Gaussian Process is a collection of infinitely many variables, any finite number of which have
(consistent) Gaussian distributions.

Thus, a GP is the extension of a multivariate normal distribution to the infinite-dimensional
case. To this we can add the idea that a function can be thought of as a vector with an infinite
number of components. This way we can build the concept of the GP as a “distribution of
functions”, i.e. a probability distribution from which we can sample functions. For instance, in
the one-dimensional (f : R→ R) case, we could say that

f(x) ∼ GP(m(x), k(x, x′)) . (14)
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As the common multivariate normal distributions, a GP is completely specified by a mean and
a variance, or in this case, a mean function m(x) and a covariance function k(x, x′). In the
multidimensional case, where f : Rn → R, the covariance function k is a function that maps two
vectors of the n-dimensional space to a scalar, k : Rn × Rn → R.

Thus, having a covariance function k and two sets of vectors {xi}, {x′i} we can build the matrix
K, in which the element Kij = k(xi, x

′
j). If k is applied within one set of vectors, K is the Gram

matrix of the set in the vector space with inner product k(·, ·). In this sense, k plays the role
of a kernel [7] in the construction of the GP. The fundamental role of a kernel is to provide a
notion of distance within the input-space (see introduction to section 4). For a discussion on
kernels for Gaussian Processes and their performance see [8] and references therein.

So far we have described the GP as a mathematical tool, a generalization of the multinormal
distribution, but we have not described how it can be used for supervised learning. At this point
we recall the fundamental definition of the supervised learning problem: Given a set of labelled
examples {X,y} and a new input x∗, our goal is to estimate the probability distribution of its
associated output y∗, i.e. p(y∗|x∗, X,y).

The good news is this prediction comes naturally from the structure of the GP. First, we must
set a GP prior, for which we need a mean and a covariance function. For simplicity, we take
mprior = 0, and leave k(x,x′) unspecified. Then our prior is simply

f(x) ∼ GP(0, k(x,x′)) . (15)

To incorporate our knowledge about the function (i.e. the data) we take every data point as a
parameter in the GP, and assume each measured point f to be drawn from a normal distribution
N (f, σ2

noise). With this information, we can calculate the GP posterior as

f(x)|X,y ∼ GP
(
mpost(x) = k(x, X)[K + σ2

noiseI]−1y,

kpost(x,x
′) = k(x,x′)− k(x, X)[K + σ2

noiseI]−1k(X,x′)
)
, (16)

where k(x, X) is a vector whose i-th component is k(x, Xi·) (and similarly for k(X,x′)) and K is
the Gram matrix of the set of input vectors X. This posterior encapsulates all the information
we can obtain from the data. Being a GP, now we could sample a function f(x) from the
distribution inferred from the data, that we could then evaluate at any desired point x∗.

However, this näıve procedure is unreliable, since we are just taking one random sample of the
predicted distribution, and we would lose information of the variance of this estimate. Instead,
given a new input x∗ whose function y∗ we want to predict, the optimal approach to estimate
the probability distribution over y∗ is to calculate the Gaussian predictive distribution

p(y∗|x∗, X,y) = N
(
k(x∗, X)[K + σnoiseI]−1y ,

k(x∗,x∗) + σ2
noise − k(x∗, X)>[K + σnoiseI]−1k(X,x∗)

)
. (17)

Thus, by manipulating the GP posterior and the new input x∗ we can estimate the mean and
variance of the predicted distribution for y∗. Recall that to compute this posterior one needs to
fully specify k(x, x′). The problem of selecting k or adjusting its parameters is what we refer to
as training the GP.

To train the GP we need to find the kernel k that best describes the data. We consider a family
of kernels k(x,x′;ω), with ω being the hyperparameters of the covariance function. To find
the optimal hyperparameter vector ω we use a standard maximum marginal likelihood method
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— given a dataset, we find the kernel k(x,x′;ω) that has the maximum probability of having
generated the data, assuming the data actually follows a GP.

More specifically, we maximize the marginal likelihood, since the distribution over the function
is marginalized over the latent function to obtain an expression for the marginal likelihood
that depends only on the measured data points. As usual, for convenience we maximize the
log-marginal-likelihood,

log p(y|X,ω) = −1

2
y>K−1y − 1

2
log |K| − n

2
log 2π , (18)

that conveniently counts with an analytical expression for its gradient,

d

dωj
log p(y|X,ω) =

1

2
y>K−1 dK

dωj
K−1y − 1

2
tr

(
K−1 dK

dωj

)
. (19)

One of the advantages of the GP is that given the simple form of its probability density, both the
log-likelihood and its gradient are analytically computable, what makes gradient-based methods
a convenient and effective approach.

3.3 Policy learning

Once the GP regressor has been trained, it can be used to learn a policy to minimize some cost
function c(s). The cost function maps every state s to a scalar that represents its immediate
loss or non-desirability6.

Nonetheless, as described in section 2, the goal of the agent is not to minimize the immediate
loss, but to minimize the total loss in a whole episode of the task. To take this consideration
into account, the policy is trained to optimize the expected total cost (or loss)7

Jπ(θ) =
T∑
t=0

Est [c(st)] , (20)

where T is the length or time horizon of the episodic task we are considering, and Est represents
an expected value over the distribution of states encountered at time t after following the policy
π from the start of the episode. Note the analogy between the total cost Jπ defined this way
and the return R defined in equation (3) setting γ = 1. Since the goal of the problem is to
control the helicopter for 6000 time steps, the task is effectively episodic, so given that the cost
function is bounded then Jπ is also bounded.

To perform the indirect policy search we restrict to a class of policy functions Π, that contains
policies parametrized by a parameter vector θ, i.e. π(s;θ). By using the policy, given a state
distribution at a certain time p(st) we can calculate the mean and covariance of the joint dis-
tribution p(st,at). Then, by approximating this joint distribution by a multivariate Gaussian
with the correct mean and covariance we can use the trained GP to predict the distribution of
the next state, i.e.

p(st+1|st,at) = N (µt+1,Σt+1) . (21)

That is, the trained GP is in charge of estimating µt+1,Σt+1, the mean and covariance of the
next state given the current state and action.

6For practical purposes, a negative reward.
7Jπ is also named the cost-to-go of policy π.

19



We cascade T steps of this one-step prediction procedure, such that we can obtain estimates
of p(st) for t = 1, 2, ..., T provided we can also estimate the initial state distribution N (s0,Σ0).
Then, having an estimator of p(st) we can estimate the expected value of the cost at each time
step Est [c(st)] and thus calculate the expected total cost of a given policy Jπ.

Note that to generate one single estimate of Jπ we have required T applications of the GP
regressor, what makes this an expensive operation. Without further information minimizing
this cost would be a very expensive task.

The key is that, provided that the cost function has an analytical expression for its gradient, it
is possible to compute analytic gradients of the total expected cost. The way these are calculated
is by repeated application of the chain rule on the expression of Jπ. Let Et = Est [c(st)], then we
can write

dJπ

dθj
=

T∑
t=0

dEt
dθj

=
T∑
t=0

[
∂Et
∂µt

dµt
dθj

+
∂Et
∂Σt

dΣt

dθj

]
, (22)

and by successive application of the chain-rule and basic properties of Gaussian distributions
we can calculate dµt

dθj
, dΣt
dθj

and obtain an analytic expression for ~∇θJ
π. Having this gradient it is

convenient to use a gradient-based optimizer, as we did with the training of the GP. Nonetheless,
this is a non-convex function, and as such we must use a non-convex optimization method, like
CG or BFGS [35].

The details of the gradient derivations and the optimization algorithm are complex and out of
the scope of this report. For a rigorous derivation we refer to [2], [5] and [4].

3.4 Visualization

When diagnosing problems in the learning algorithm it is of crucial importance to observe the
behaviour of the system. However, for a relatively high-dimensional system like the helicopter
raw data can be difficult to interpret. We recall that the helicopter state is described by 12
variables,

1. Linear velocity {vx, vy, vz} ,

2. Position relative to origin {x, y, z} ,

3. Angular velocity {ωx, ωy, ωz}, and

4. Orientation, expressed as a quaternion {qx, qy, qz} ;

and has 4 continuous action variables that represent the controls of the pilot,

1. Longitudinal cyclic pitch a1,

2. Latitudinal cyclic pitch a2,

3. Main rotor collective pitch a3, and

4. Tail rotor collective pitch a4.

To make the interpretation of the data more intuitive we developed a visualization tool to
represent the state of the helicopter, the control variables and the immediate cost. Figure 9
shows a snapshot of the visualization tool.

The helicopter representation is built with a superposition of a few simple geometric figures. This
simple representation, beyond its delightful artistic content, allows a quick visual recognition of
the orientation state of the helicopter. Additionally, a set of {X, Y, Z} coloured axes is drawn
inside the helicopter to identify the helicopter body-fixed frame, in which all variables in the
problem are expressed.
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Figure 9: Visualization tool used to display the state of the helicopter, the control variables
and the immediate loss. See text for details.

The three black lines shown intersect at the origin, and the black arrow indicates the direction
and magnitude of the velocity of the helicopter. The four angular gauges depicted represent the
state of the control variables. The rightmost element of the panel shows the immediate cost,
calculated following the considerations in section 4.1.

4 Experimental results

As described above, GPs can be used to learn scalar functions f : Rn → R. Otherwise, if
we wanted to learn a vector field f : Rn → Rm we would need a vector mean and covariance
functions, which would be more difficult to handle. Instead of extending the proposed GP to
estimate the m-dimensional output distribution, we take the simpler approach of using one
different GP to predict each of the 12 state variables in the helicopter domain.

As mentioned in section 3.2, to train a Gaussian Process regressor we must specify a hyperparameter-
dependent covariance function. In this study we use the squared exponential kernel,

k(x,x′) = α2 exp

(
−1

2
(x− x′)>M(x− x′)

)
+ σ2

nI , (23)

where M = diag(`)−2 is a matrix whose diagonal contains the inverse square of the 16 charac-
teristic length-scales ` (12 state variables, 4 actions) of the Gaussian Process, α2 is the signal
variance and σ2

n is the noise variance.

The length-scale ` of a certain input is a measure of the distance we have to move along a certain
dimension in the input space to see an important effect of the variable on the output. In this
sense, the kernel introduces a notion of distance in the state-space through the length-scales.
For instance, if the length-scale is much larger than the standard deviation of the input, we can
infer that that variable does not play a significant role in the prediction. This provides a fast,
simple way to estimate which variables are more informative in the prediction.
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To specify the dynamics GP prior we also need a mean function m(x). While m(x) = 0 is a
simple and often effective prior, we can obtain higher performance by considering a more suitable
function. Specifically, being a physical system we expect the state of the helicopter to undergo
small changes at each step. Therefore, we use the prior m(x) = x that is simple and makes the
GP more effective.

Additionally, we have to provide a differentiable cost function that represents the reward returned
by the RL-Glue environment. To do this, we define a function that transforms rewards into costs
and train a GP to predict costs based on the state of the helicopter.

For the policy search step we consider the class of linear policies, π̃(x;A,b) = Ax+b. However,
these policies are not bounded. To make sure that the action variables are bounded in the range
[−1, 1], we introduce a squashing function σ(x) to map the policy outputs to the desired range.
In this case, the squashing function is the third order Fourier approximation of a trapezoidal
wave, i.e.

σ(x) =
9 sin(x) + sin(3x)

8
, (24)

and its effect is illustrated in figure 10. Then, the final policy class we optimize in the policy
search is π(x;A,b) = σ(Ax + b).
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Figure 10: Action of the squashing function σ(x) on the policy. Actions outside the [−1, 1]
range are capped, while actions inside the range are left undisturbed.

Adding up, the dynamical model GP has 18 free parameters for each of the 12 predicted dimen-
sions, plus the 14 free parameters of the reward GP. At the same time, the class of linear policies
has 52 free parameters. In short, we are facing a difficult RL problem with complex dynamics
in a R12 state space and a R4 action space, and a proposed model with 282 free parameters.

Throughout this section we measure the performance of pilco and the proposed modifications
on the helicopter simulator provided by the Competition. The simulator implements 10 different
MDPs, which correspond to 10 different learning tasks. The content of the tasks is unknown,
and they are identified by a (0-9) integer.

4.1 Learning the reward function

As mentioned in section 3.3, pilco’s policy learning algorithm is based on the minimization
of the cost function c(s). However, the Competition’s simulator provides reward instead of
cost. Therefore, we must introduce a function C̃(r) that transforms the reward returned by the
simulator to a cost we can feed into pilco’s policy learning.

There are certain requirements that C̃(r) must meet:
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• Its image should be bounded.

• It should not create new maxima or minima.

• Its first derivative should be negative, such that by minimizing the cost pilco will effec-
tively maximize the reward.

Remember that we assume no prior knowledge of any parts of the problem, so we must use
C̃(r) to ensure that the cost has the desired bounds independently of the bounds of the reward
function. The only information we use is that we know the reward is upper-bounded by 0 and
it depends solely on the state of the helicopter, and not on the actions. This information can
be found in the Competition’s helicopter problem specifications [12].

After the previous considerations, the proposed transformation is

C̃(r) = 1− exp(−r/r0) , (25)

where r0 is a reward scaling parameter. If the value of r0 is small, the algorithm will be able
to better discriminate between two good states with similar rewards, and opt for the best one.
However, if r0 is small and the algorithm is faced with two bad states it will not be able to tell
which is worse. Similarly, the optimizer will face the opposite problems if r0 is too large.
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Figure 11: Reward-cost transformation function with different reward scaling parameters r0.
A larger scaling parameter allows the function to handle very bad states, but has less
resolution in the r → 0− limit than a smaller scaling parameter.

Given any dataset of trajectories, C̃(r) is applied to the rewards along the trajectory and the
resulting cost is used as input for a GP. With this step we ensure that we can interpolate the
cost between unobserved states and that we can compute the gradients of the cost required by
pilco (see section 3.3). Then this GP is used as the cost function in the policy search step.

After trying more sophisticated options like a variable reward scaling or the use of several scales
simultaneously, the simplest option proved to be the most effective. Pilco is relatively robust
against the specific value of r0, so a fixed, moderate value of the scaling parameter is able to
lead to a successful policy. Other forms of C̃(r) were tried, but the amount of hand-tuning was
such that the algorithm was not easily generalizable could not be applied to other tasks.

The proposed algorithm was tested with this reward-cost transform on the Competition’s heli-
copter simulator. Figure 12 shows the results of two sample runs of the algorithm using a fixed
reward scaling parameter r0 = 10 on two randomly selected tasks. The performance of a policy
is judged by the mean and standard deviation of the flight time it achieves.
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Figure 12: Performance of the policy trained by pilco in each iteration after certain
experience time, using a reward scaling parameter r0 = 10. At the black arrow performance of
the policy jumps to 600s and the problem is solved.

The first thing we note is that the algorithm has successfully learnt a controller policy that can
survive the 10-minute limit set by the Competition, and it does this in a very small number
of trials. Using around 1 minute of experience and 5–10 trials the algorithm is able to learn
a controller that can perform several aerobatic trajectories. Note that the number of trials is
a very important measure of the performance of the algorithm — it represents the number of
spare helicopters we had to “crash” before learning the task, and thus poses a crucial restriction
for practical applications.

However, the method proposed above is not completely successful, and does not learn a successful
controller more than 50% of the times. There is a high probability that the optimizer finds a
local minimum with very poor performance, with catastrophic consequences. This kind of events
is illustrated in figure 13.
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Figure 13: Sample unsuccessful run of the algorithm. Despite achieving a non-trivial 17s
flight time, the algorithm fails and its performance drops.

In other words, this method is highly unstable. The fundamental question we have to address
is: Why does the algorithm fall to such a poor minimum, even though it has started to move in
the right direction?

The dynamics model GP is good enough to make predictions that support a 20s-long flight, and
the policy search predicts low cost estimates. Thus, the only possibility is that the instability is
in the reward model GP.
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We can test this hypothesis by plotting the estimated cost predicted by the reward model GP.
This is a multidimensional c : R12 → R function, so for simplicity we plot the results along one
axis, namely the linear forward velocity vx. The estimated cost, the true cost and the measured
data density are displayed in figure 14.
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Figure 14: Learned and true cost function along the vx axis. Measured data points are
represented with a shaded green line. Predictions far from the region with high data density
approach the GP prior mean, in this case mprior(s) = 0.

With this information, we can infer the origin of the problem. In unvisited regions of the state-
space, where the GP has no information, the predictions tend to approach the GP prior mean,
which in this case is 0. If the time horizon T , the number of steps predicted by the GP in the
policy search (introduced in equation (20)) is large enough, the optimizer might be misled to
think that it can achieve a lower cost in other regions of the state-space, resulting in a tragic
end for the helicopter.

To address this problem we robustify our method by using a pessimistic and, therefore, more
conservative agent. In that direction, we change our reward-cost transformation function and
use

C̃(r) = − exp(r/r0) (26)

instead. Note that this function is bounded in the range [−1, 0), instead of the conventional
[0, 1]. This choice has a specific goal, which is to address the exploration/exploitation trade-off,
which was previously mentioned in section 2.1.7.

By choosing this reward-cost transformation in combination with a zero-mean GP prior we are
effectively building a pessimistic agent, that will assign the maximum loss to unvisited regions
of the state-space. In this way we discourage the agent from exploring new regions of the space,
so reducing the risk of uncontrolled exploration and unstable policy searches. Note that we can
safely adopt this pessimistic cost function because we are guaranteed that the helicopter always
starts at the origin, which is the state with maximum reward, therefore ensuring that the region
close to the optimal reward is explored.

In figure 15 we show two sample runs of the algorithm with the new cost function C̃(r) =
− exp(r/r0). Again, the performance of a policy is judged by the mean and standard deviation
of the flight time it achieves.

With this modification the algorithm is more stable, and it even reduces the amount of training
data required for the optimizer to find the global minimum. However, the algorithm is not
completely reliable yet — while it succeeds around 70% of the time, it might fail in practice due
to the very long computation time it takes to learn.
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Figure 15: Performance of the policy trained by pilco in each iteration, using a reward
scaling parameter r0 = 10 and a pessimistic cost function. At the black arrow performance of
the policy jumps to 600s and the problem is solved.

Given the high demand of computational resources by the GP, if pilco does not succeed before
a large amount of data is collected, the computations will become impractical8. We address this
and other problems in section 4.3 to add robustness to our modification of the original pilco
algorithm.

4.2 Incorporating prior knowledge

To contrast our results we can make use of the information about the helicopter simulator
released by the Competition in previous years. Using some knowledge about the simulator can
help us understand and evaluate our learning algorithm.

The simulator computes an approximation of the helicopter dynamics differential equation sys-
tem described in [20] using the Euler numerical method for differential equations [34]. The
experiment is terminated (i.e. the helicopter “crashes”) if any of the state variables goes out of
a pre-defined range, and a very large negative reward is returned.

The different tasks correspond to different aerobatic manoeuvres, implemented as a time-dependent
velocity bias added to the helicopter’s angular and linear velocities. In this way, each task ef-
fectively represents a different MDP.

At the same time, we know that the reward function implemented in the simulator is

r(s) =
12∑
i=1

−s2
i = −‖s‖2 . (27)

In combination, this velocity bias and this reward function give us a picture of how the different
tasks are achieved by the helicopter. By adding controlled velocity offsets, the helicopter is
forced to move along a pre-determined trajectory, while the origin moves with it. That is,
by the Galilean relativity principle, the velocity offsets added to the helicopter can be seen
as a displacement of the reference frame, such that the helicopter is effectively performing an
aerobatic manoeuvre following a moving origin.

Since the goal of the helicopter is to remain close to the origin, we can merge the known reward
function with the proposed reward-cost transformation function to substitute our reward GP by

8At least impractical on a personal laptop, where these experiments were implemented.
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the true cost function

c(s) = 1− exp

(
− 1

2σ2
c

‖s‖2
)
, (28)

where σc represents the width of the global cost minimum centred around the origin. Note that
in this case c(s) is bounded in the standard range [0, 1). In fact, this is the original cost function
suggested by the authors of pilco [2].

Knowing what function we were trying to learn, we can now run the original version of pilco
with the cost function (28). Two sample runs are shown in figure 16. Again, the performance
of a policy is judged by the mean and standard deviation of the flight time it achieves.
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Figure 16: Performance of the policy trained by pilco in each iteration, using a cost width
σc = 1 and the true cost function.

Using the true cost function provides more stability to the algorithm and increases its chances of
success. However, it does not give a substantial improvement in neither training trials required
nor total reward obtained by the policy. For more details about these problems and how to
address them see sections 4.3 and 4.4.

As an aside, we mention a feature of the helicopter control problem as formulated in the Com-
petition. Since in all tasks the goal is to keep the helicopter close to the origin, we can expect
that policies could be generalizable — that is, a policy trained in one task could be used to
control the helicopter in another task and succeed.

Experiments show that 80% of the trained policies perform well (i.e. do not crash) in more than
80% of the tasks. This is a good result, given the low complexity of the considered policy class
(linear policies), and in comparison with other participants in the Competition (see section 4.5).

4.3 Improving performance

In this subsection we introduce further modifications to the original pilco algorithm that over-
come some of the problems observed in the previous sections. Our goal is to make the algorithm
more reliable and reduce its chances of failure.

The main limitation of pilco is the high computational complexity of the algorithms involved.
Training the GP scales as O(N3), which is dominated by the inverse matrix calculations in
equations (18) and (19). Prediction scales as O(N2), which is dominated by the matrix-vector
product in equation (17). Furthermore, policy learning relies on the GP predicting function so
it also scales as O(N2). Therefore, we must be selective when manipulating the dataset, since
small additions can quickly boost the computation time.
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With the goal of speeding up the algorithm and making it more reliable, in this section we
describe and justify three modifications to the original algorithm that

• Speed up the GP training by training each component separately;

• Avoid spending unnecessary time in policy search if the model is inaccurate; and

• Make the algorithm more robust against fluctuations in performance by controlling the
data aggregation.

4.3.1 Speeding up GP training

In this problem the initial state of the task is always fixed – the origin. Furthermore, as discussed
in section 4.2, the goal of the helicopter is to remain close to the origin during the whole task.
The result is that this region of the state-space is heavily explored and the density of data points
is much higher than in the rest of the space, sometimes resulting in an excessive, unnecessary
amount of information that has to be processed by the dynamics GP.

This is specially relevant for the position and orientation variables (i.e. {x, y, z, qx, qy, qz}). Since
the helicopter is a physical system, the action of the controls or the wind imparts a force9 to
the helicopter that modifies its linear and angular velocities. However, since the simulator is
built as a discrete-time one-step approximation we can expect that position only depends on the
position and velocity in the previous time step. In other words, since position and orientation
variables are related to the controls and the wind by a second derivative, it will take two time
steps to see the effect. Since both the previous position and velocity are known with complete
certainty, this means we can make essentially zero-error predictions.

While this would not be a problem with other supervised learning methods, it is something we
should avoid when using a GP. The GP training algorithm implemented in pilco can run into
numerical problems if the signal-to-noise ratio (SNR) is too high, which is usually the case with
the variables mentioned above. The SNR can be calculated using the hyperparameters in the
definition of the kernel in equation (23), as

SNR =
α

σn
. (29)

Note that since both α and σn are hyperparameters of the model we must train the GP to know
whether numerical problems might be playing a role.

The simple approach to reduce the SNR is to artificially introduce zero-mean white Gaussian
noise to the data, in order to increase σn. After adding noise, the GP is trained again, and
if the SNR is still high this procedure is repeated until the SNR is below a certain threshold.
However, this process can be highly demanding, since in each iteration the whole batch of GPs
(in this case, 12) for all the predicted dimensions is re-trained.

To speed up this process, we modify the GP training algorithm used by pilco. Instead of
training the GP for all the predicted dimensions in the target at once, we sequentially train a
separate GP for each of the dimensions and finally merge the 12 of them into the full GP.

This procedure reduces the overhead of having to re-train parts of the GP that were already
valid, and in this way we achieve a faster training that conserves the numerical guarantees of
our previous approach. The results of this improvement are illustrated in figure 17.

However, the specific training times depend heavily on the dataset. We can attain a better
intuition by computing the ratio between the training times, shown in figure 18.

9More specifically, an acceleration, given that we are working within a classical-mechanical context.
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Figure 17: Computation time of GP training with (blue) and without (red) separate training
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Figure 18: Ratio of the computation time of GP training with and without separate training.
A ratio greater than 1 indicates that separate training is faster.

Separate GP training effectively reduces the total training time of the GP. While the speed-up
is relatively small (∼25%) for small amounts of data, it proves to be an important improvement
for larger datasets, in which the improvement can be of up to 250%. This modification has a
large effect on the computation time of pilco, specially in the advanced stages of the algorithm.

4.3.2 Limitations to learning

Having a multi-step algorithm like pilco, in which there are parts relatively well separated
from each other, we can ask which part is the most constraining in the algorithm. The natural
approach is to explore and test which part of the algorithm is the limiting factor that slows
down the learning process, and act in consequence.

In this case, we found that the major limitation to learning in the early iterations of the algorithm
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is the limitation in the predictive range of the dynamics GP.

The GP is very effective at estimating the dynamics of a certain region of the state-space with few
data points, since it is a model-free algorithm that can learn the non-linear, asymmetric dynamics
of the helicopter. But as all other supervised learning algorithms, it does not extrapolate well to
unseen regions of the state-space. More specifically, if the distance along dimension i between
the boundary of the dataset and the new input is large compared to `i the GP will always predict
the prior mean, m(x) = x in this case.

To test the hypothesis that the GP is the limiting factor in the early stages of the learning
process we measure the width of the multivariate normal distribution predicted by a GP along
the trajectory of the helicopter. That is, given a certain trajectory {st,at} for t = 1, ..., T , we
use equation (17) to calculate the predictive variance estimated by the dynamics GP. At each
time step t we quantify the width of the distribution by calculating the quantity |Σt|, for the Σt

in expression p(st|st−1,at−1) = N (µt,Σt).

In figure 19 we show these plots computed before and after the algorithm has succeeded in the
task.
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(b) After learning a successful controller

Figure 19: Width of the predictive Gaussian distribution (measured as the determinant of
the covariance matrix, |Σ|) at each point along the helicopter’s trajectory, before and after
learning.

The most salient difference between these plots is that when the algorithm is in the early stages
of learning the width of the predicted distributions increases significantly, whereas once it has
found a successful policy the width remains relatively constant.

The observed increase in uncertainty means that the helicopter is leaving the zone where the
previous datasets were taken, and the GP responds by having more uncertainty in its predictions.
Given this observation we see that to build a good dynamical model of the helicopter with a GP
we do not need just more data, we need different data. We need to explore different regions of
the state-space, and that is done by using different policies.

We can reinforce this hypothesis by ruling out the policy search as the limiting step. To do this,
we compute the expected immediate cost along the trajectory predicted by the GP. Results are
shown in figure 20.

In both situations the policy learning algorithm estimates a low cost along the predicted trajec-
tory. However, since one of the policies fails, the predictions must necessarily be wrong. This
shows that the policy search algorithm effectively finds a good policy with the available dynam-
ical model, so it is the dynamical model that limits the policy search, and not the opposite.

At this point we recall that to train the policy we must specify a value for T , the number of
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Figure 20: Expected immediate cost predicted by pilco’s policy search algorithm, computed
during the learning process and after learning a successful controller.

time steps the GP predicts to compute Jπ. Intuitively, a larger T leads to a better policy, since
the predictions look further ahead in time and result in more solid policies. However, since we
know the model is not very good in the early stages it is not convenient to set a high T , because
it will increase the computation time without leading to a meaningful improvement.

Instead, we start learning with a small value of T and increase it in each iteration. This way we
make sure that little effort is invested in training when the model is still bad. As more data is
collected, the GP becomes more reliable and T increases, so that the trained policy makes more
anticipating cost predictions.

The results of incorporating this modification and the one proposed in 4.3.3 are shown in figure
15 and are detailed below.

4.3.3 Adding robustness

Given the high computational complexity of the algorithms involved, we must be very careful
when adding new points to the dataset and training the GP. We want our new data to be
informative, and we want to avoid unnecessary iterations of the algorithm.

In this direction, we can face two problems during the execution of pilco:

Adding too many data points: The problem arises when a learned policy is good enough
to survive for a long time, but not good enough to survive the 6000-step interval set by the
Competition. If this happens, plain dataset aggregation will result in a very large dataset,
that will take very long (and unnecessary) time to train. This is the most common cause
of the unsuccessful attempts mentioned in section 4.1.

To make our algorithm robust against this problem, we modify slightly the dataset ag-
gregation step. Instead of merging the whole dataset, we set an upper limit ∆Nu to the
maximum number of data points added to the dataset. If the generated trajectory is
longer than ∆Nu time steps, we take the first ∆Nu data points and ignore the rest of the
trajectory.

Adding too few data points: Similarly, it could be the case that due to statistical fluctu-
ations the noisy environment we are dealing with could knock the helicopter down very
soon, resulting in a very small new dataset to aggregate. If this is the case, in the next
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iteration the algorithm would train the GP and the policy again, with only a small amount
information more than the last iteration, and will probably produce a similar policy after
wasting valuable computation time.

To make our algorithm robust against this problem, we modify the policy application step.
Instead of running the policy once and proceeding to the GP training again, we set a lower
limit ∆Nl to the length of the recorded trajectory, such that if the trajectory is shorter
than ∆Nl the policy is run again until the limit is surpassed. If this does not happen
in several trials, we ignore the ∆Nl limit, aggregate the small new dataset anyway and
continue with the algorithm.

With this modification, our algorithm becomes more robust against unusually poor policies (that
would make it train an unnecessary iteration) and against unusually good policies (that would
make it train with an unnecessarily large amount of data).

The result of applying these changes, the ones above and those in section 4.3.2 are the sample
learning curves depicted in figure 21 computed for four randomly selected tasks.
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Figure 21: Performance of the policy trained by pilco in each iteration, using a reward
scaling parameter r0 = 10, modified data aggregation and increasing prediction horizon. At
the black arrow performance of the policy jumps to 600s and the problem is solved.

The result is that learning now requires more iterations, but the procedure is faster and more
reliable. Now the algorithm succeeds close to 100% of the trials. In other words, with the
previous modifications we have traded a small worsening in the number of trials needed to
obtain a more reliable and fast algorithm.
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4.4 Scoring higher rewards

The only performance criterion in the Competition is guided by the reward achieved by the
agent. Thus, it makes sense to measure and evaluate the techniques we have used based on the
rewards they obtain. We measure the performance of a policy by the total reward (or return) it
obtains using the true reward function as shown in section 4.2, i.e.

R =
T∑
i=1

ri = −
T∑
i=1

‖si‖ . (30)

We recall that in the algorithms used above the learning process is finished when the controller
can successfully execute a 10min flight. Thus, in each run learning is stopped at a different
point. One could expect that the more data points collected by that time, the more accurate
the models will be, and thus the better the policy will perform as a result.

To understand this relation we plot the average and standard deviation of the reward obtained
by each trained policy as a function of the experience time required to train it. The result is
depicted in figure 22.
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Figure 22: Return obtained by policies trained in each task versus the experience time they
required to train. Learning is interrupted as soon as the policy completes a 10min flight.
Points in blue correspond to policies trained with a reward model GP and points in red to
policies trained with the true cost function.

We note the absence of correlation between the experience time (i.e. number of data points)
inverted in the training of a policy and its final performance. This reinforces the idea that, when
training a GP, it is crucially important to maintain data-efficiency by intelligently sampling the
state-space.

This represents a new obstacle in the work of improving the algorithm — given that more data
(and more computing time) will not necessarily improve the results, we must devise some more
intelligent way to improve performance.

To look for potential improvements we must inspect the three elements of the algorithm sepa-
rately: the reward model GP, the dynamics GP and the policy search.

The main function of the reward model GP is to guide the policy search algorithm to the
global reward maximum at the origin. While pilco is robust against the details of the cost
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function (such as the reward scaling parameter mentioned in section 4.1), one would expect it
to be of crucial importance that the location of the maximum is correctly estimated.

In fact, the learned reward model GPs often fail to place the maximum reward at exactly the
origin, missing by a distance that ranges from 0.1 to 10 units in the 12-dimensional state space.
However, this might still not be the limiting problem. To test this hypothesis we evaluate the
average performance of the policies trained using a reward model GP or the true cost function
(28), as shown in figure 22. Results are shown in table 1.

Table 1: Average return of policies trained with the true cost function and with the reward
model GP. See figure 22 for more information.

Mean Std. deviation

Reward model GP -2299 3363
True cost function -3353 3781

This shows that although the reward model GP is not perfect, it is not the most restrictive
element, since it can achieve the same performance as the policies trained used the true cost
function from the beginning.

The next part of the algorithm we can test is the dynamics model GP. To test its performance,
we can use the GP to predict the cost using equation (28) along the helicopter’s trajectory, and
compare it with the real cost obtained. This result is shown in figure 23.
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Figure 23: Predicted and real cost along the helicopter’s trajectory, after learning a
successful controller. Real cost at each step is calculated as the median of 200 runs and error
bars represent the 95% confidence interval.

As observed, the dynamics GP is not completely reliable yet and the real cost is significantly
(with 95% confidence) higher than the predicted cost. This indicates that we might be able to
obtain a better performance by improving the GP.

As seen in section 4.3.1, GPs are computationally expensive to train, and their training time
scales as O(N3), with N the number of data points used. Since the flights are 6000-time-step
long, it is impractical to add the whole trajectory to the dataset. Then we face the problem of
selecting the most useful data points in a certain trajectory to increase the predictive power of the
GP. By useful we mean that the new data point should provide information about new regions of
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the state-space, so selecting points from regions that have already been heavily explored should
be strongly avoided.

To estimate the quality of the GP at each point we compute the Negative-Log-Predictive-Density
(NLPD), which as its name implies is the negative log of the probability density of an n-
dimensional Gaussian distribution, i.e.

NLPD(x;µ,Σ) =
1

2
log |Σ|+ 1

2
(x− µ)>Σ−1(x− µ) +

n

2
log 2π . (31)

The NLPD combines information about the distance between x and µ with the total width of
the distribution, which makes it a suitable quantity to evaluate probabilistic models. However,
it is difficult to interpret and we need a baseline we can use for comparison.

If the GP model is correct, the state st follows a N (µt,Σt) Gaussian distribution, where the role
of the GP is to estimate µt,Σt based on st−1,at−1. Therefore, we can interpret the observed state
xt in the trajectory as a sample from the N (µt,Σt) distribution. This interpretation provides a
simple way to understand NLPD values.

At any time t, given a (st,at) pair, we use the GP process to estimate µt+1,Σt+1. Then we
draw random samples from this multivariate Gaussian distribution and calculate their NLPD
values. The average of these sample NLPDs is what we call the optimal NLPD — the expected
value of the NLPD at any point in the trajectory if the dynamics model were perfect. We can
compare the optimal and measured NLPDs to understand how far from the real distribution
our predictions are.

Figure 24 shows an excerpt of the real and the optimal NLPD computed along the trajectory of
the helicopter. The shaded area is the 2σ interval of the optimal NLPD. Following the previous
argument, if the GP model were perfect, NLPD would be within the shaded area 95% of the
trajectory. We see that even though the model is good enough to train a successful controller,
there are still points with very high NLPD, indicating that the model is far from perfect, and
we might be able to improve the controller by having a better GP.
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Figure 24: Negative-Log-Predictive-Density (NLPD) along the helicopter’s trajectory. Red
line represents the optimal NLPD and shaded area is its 95% confidence interval. If the GP
model were perfect, NLPD would be within the shaded area 95% of the time.

Using NLPD we can devise a simple method for data selection. After performing a successful
flight, we calculate the NLPD along the trajectory and add to the dataset the ∆N points with
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highest NLPD. This guarantees that we are adding the points where the model is either too
uncertain (large Σ) or too wrong (large (x− µ)).

Last, to increase the return obtained by the agent we can also use a more complicated, non-linear
policy. In this case we use a Radial Basis Function (RBF) controller with Gaussian basis, which
is parametrized as the mean of a GP.

The analytic expression for the RBF controller is

π̃(s) =

Nc∑
i=1

wi exp

(
−1

2
(s− ci)

>W(s− ci)

)
, (32)

where W is a weight matrix that plays the same role as the length-scales in equation (23) and
the ci are the Nc centres of the Gaussian basis functions that act as the inputs for the GP. Since
this policy also has an analytic gradient, we can use the same methods described in section 3.3
to learn the parameters ci,W.

Finally, we proceed to evaluate these extensions (data selection for the dynamics GP and a
non-linear policy) with the aim of achieving the highest return possible. According to table 1,
linear policies achieve an average return of -2826. RBF policies achieve an average return of
-747, outperforming the simpler linear policies.

Furthermore, we can extend the learning period using data selection to achieve even higher
return. Figure 25 shows a sample run of the algorithm using a non-linear policy and NLDP-
based data selection.
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Figure 25: Total return achieved by a non-linear policy after the first successful flight. Error
bars represent the standard deviation of the return computed in 20 10min flights.

Preliminary results indicate that these extensions can indeed achieve a higher reward in the heli-
copter task, although they also seem to be more unstable. Data selection does not always succeed
in increasing the return. The thorough exploration of these methods and other alternatives to
increase returns is an important part of the future work following this study.

4.5 Comparison with previous Competition winners

To understand how these results compare to the state-of-the-art in Reinforcement Learning we
compare our results with those of the participants in previous Competitions. We have been able
to track three teams from the top scores of the 2008, 2009 and 2013 Competitions.
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J.A. Mart́ın and J. de Lope [28] developed an online evolutionary RL method based on
value learning on an artificial neural network, and obtained the second place in the 2008
Competition. In their paper they describe their method, but no results are presented and
no code is available. Thus, comparison is not possible.

A. Asbah et al. [27] used a method based on Kernel-Based Stochastic Factorization (KBSF)
that gave them the second place in the 2013 Competition. A. Asbah et al. have an
approach similar to ours, in the sense that they keep the amount of prior knowledge to the
minimum, and use the same algorithm to tackle all the tasks. They use a value learning
TD approach, and as such, it takes a high number of interactions to train, of the order of
105 (equivalent to 3 hours of experience). Furthermore, after 17 hours of experience their
agent was not able to survive the 6000-time-step limit set by the Competition in 2/10
tasks, and in their own words “the algorithm was unable to consistently fly the helicopter
for more than 1000 steps”. They provide no results in terms of rewards.

R. Koppejan and S. Whiteson [25][26] won the second place in the 2009 Competition and
won the 2008 and 2013 competitions, and provide the most in-depth discussion of the
generalized helicopter control problem available, to the best of our knowledge. Their
discussion is broad and they provide multiple results, so we devote most of this section to
the comparison between Koppejan and Whiteson’s work in the 2008, 2009 Competitions
[26] and after [25].

Koppejan and Whiteson (KW) provide three main results — using direct policy search, using
dynamics model learning and using dynamics and wind model learning. In both model learning
cases previous knowledge of the differential equations and wind patterns was used.

In all of the cases they use a highly engineered, expert-designed Multi-Layer Perceptron (MLP)
topology, that outperformed the state-of-the-art topology-optimizing evolutionary methods [42].
Furthermore, for the Competition KW initialize the network with different specialized policies,
that vary according to the task under consideration (that is guessed by the agent in the first
few runs).

In short, KW use a high amount of previous knowledge in their approach. For the case where
they use the smallest amount of previous knowledge (direct policy search (DPI) with specialized
baseline policy initialization) they need several tens of thousands of 6000-step episodes to achieve
their best result.

Their result is indeed impressive, achieving a total return of around R = −130 during a 6000-
step episode. This is equivalent to remaining on average 0.1 units of distance away from the
origin in the 12-dimensional state-space.

In table 2 we provide a short comparison between KW’s result and our proposed method, in
terms of maximum return (i.e. total reward during the 10min flight), number of training trials
and prior knowledge. The maximum return is compared with the single best policy found by
each method. Average performance is not reported in KW’s paper and thus no comparison is
possible. Additionally, KW do not provide the total number of data points used in training (i.e.
experience time), so direct comparison is also impossible. However, given that they start from a
moderately good baseline policy, we could expect the experience time to be close to 10min per
trial, in each of the ∼104 trials of the experiment.

As shown in the table, pilco achieves a comparable, but lower performance in terms of maxi-
mum return, but drastically outperforms the KW method in the number of training trials (i.e.
experience time needed), and additionally it does not use prior knowledge of any kind.

The results of the KW team in table 2 correspond to the performance of their human-designed
MLP. They also report the performance of policies trained on a simpler, Single-Layer Perceptron
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Table 2: Summary of the comparison between the record-holder Koppejan-Whiteson MLP
method [25][26] and the proposed algorithm.

KW (DPI) KW (dynamics model) KW (wind model) Mod. pilco

Max. return -132.6 -142.25 -126.6 -328.0
Training trials ∼4× 104 ∼6× 103 ∼6× 103 ≤10

Problem-specific
prior knowledge

Baseline
policy

Baseline policy and dy-
namics ODE structure

Baseline policy, dy-
namics and wind
ODE structure

None

(SLP), that obtains a maximum return of -496.2 on the policy it was trained and an average
return of −2.508× 106 on the rest of the tasks. Our maximum-scoring policy achieves a return
of -328.0 on the task it was trained and −1.471× 104 on the rest of the task, giving a better
performance than the SLP in both cases.

We can also compare the performance of our modified version of pilco with the KSBF algorithm
of [27], that, unlike KW’s method, does not use any prior knowledge. With this comparison,
summarized in table 3, we can understand where pilco stands among the zero-prior-knowledge
helicopter controllers.

Table 3: Summary of the comparison between the runner-up Asbah et al. [27] and the
proposed algorithm. Success rate is measured on the Competition’s 10 training tasks, and the
number of training trials is only compared for the tasks that KBSF succeeded.

KBSF Modified pilco

Success rate 8/10 10/10
Training trials ∼105 ≤10

To the best of our knowledge, no other algorithm has been known to solve more efficiently the
generalized helicopter control problem with no prior knowledge10. In this sense, this work marks
a breakthrough in the learning of generalized helicopter controllers.

5 Conclusions and future work

Contributions. In this work we have successfully solved the generalized helicopter control
problem, by training a controller able to perform 10 different aerobatic tasks without using any
problem-specific prior knowledge. Our approach brings an improvement of several orders of mag-
nitude in the number of training iterations compared to all the winners of the RL Competition in
previous years [25][26][27][28]. In terms of maximum obtained return, our method achieves com-
parable, but nonetheless lesser performance than other methods that incorporate large amounts
of prior knowledge and agent-system interaction. In comparison, zero-prior-knowledge meth-
ods so far have not managed to successfully solve the problem — this is the first time in the
Competition that an algorithm has been able to succeed in the 10 tasks without using expert
demonstration, baseline policies or knowledge of the helicopter dynamics.

The algorithm can find a successful policy, capable of surviving the 10 minute flight required by
the Competition in less than 10 trials, which in most of the cases is below 1 minute of agent-
environment interaction. To obtain this result we have modified the base pilco algorithm to

10Assuming that, if there were any, the authors would have entered the Competition or would have been cited
by the organizers or any of the participants (e.g. A. Asbah et al. claim their results to be the best available by
the end of 2013).
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relax the requirement of a fixed target state, by incorporating a new Gaussian Process that
learns an unknown reward (or cost) function. Additionally, we have modified pilco to be more
robust against fluctuations in the performance of the trained policies and to be slightly faster
than the original version.

Future work. One of the major drawbacks of the method is that the algorithm is computa-
tionally demanding. A typical run can take several hours11 to learn a successful policy, and in
the worst case scenario the algorithm can take up to 12 hours. A possible simple improvement
in this direction would be to trade some predictive power of the dynamics model for a faster per-
formance, for instance ignoring the input dimensions in those cases in which the characteristic
length-scale is much larger than the standard deviation of the input variable. Another possibility
would be to implement faster methods of sparse GP that can perform well even in conditions of
high signal-to-noise ratios. A sparse GP method [19] could also eliminate the problem of data
selection by allowing us to efficiently use more data to learn the dynamics model, and therefore
build a better policy that can achieve a larger reward.

As pointed out in section 4.3.2, the bottleneck in the learning process is the quality of the
dynamical model of the helicopter. In this work we adopted a fairly simplistic position – advance
quickly to collect more data until the model is good enough. A possible modification would be
to incorporate some knowledge about the system in the form of a GP prior that accounts
for the fact that the helicopter is a physical system by incorporating basic information like
mprior = xt−1 + vt−1∆t. Note that this is not prior knowledge about the specific dynamics of
the helicopter, but is a general statement applicable to any physical system.

11The simulations were tested on a HP EliteBook 2540p running Ubuntu 14.04.
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A Code

The full code for the project is released under a GPL licence and hosted at the author’s
helicopterRL repository at Github,

https://github.com/pmediano/helicopterRL .
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