
Imperial College London
Department of Computing

Model-based Apprenticeship Learning for Robotics in

High-dimensional Spaces

Yuanruo Liang

Submitted in partial fulfilment of the requirements for the MSc degree in
Computing Science of Imperial College London

September 2014

Abstract

This project shows that model-based, probabilistic inverse reinforcement learning (IRL) is achiev-

able in high-dimension state-action spaces with only a single expert demonstration. By imple-

menting the IRL max-margin algorithm with a probabilistic model-based reinforcement learning

algorithm named PILCO, we can combine the algorithms to create the IRL/PILCO algorithm,

which is capable of reproducing expert trajectories by choosing suitable features.

Using IRL/PILCO, we carry out a simulation with a cart-pole system where the goal is to invert

a stiff pendulum, and demonstrate that a policy replicating the task can be reproduced without

explicitly defining a cost function from features.

We also carry out an experiment with the Baxter robot, using both of its arms (28 DOF) to

reproduce a sweeping action by holding a brush and dustpan using velocity control. This task

involved applying PILCO to a state-action space with 42 dimensions. The task was replicated

nearly exactly with very high data efficiency and a minimal amount of interaction (7 trials, 56s).

i

ii

Acknowledgements

I would like to express gratitude my gratitude to:

• Dr. Marc Deisenroth, for his many hours of guidance

• Dr. Yiannis Demiris, for kindly allowing use of the Personal Robotics Lab

• Miguel Sarabia del Castillo, for his time and assistance with ROS and Baxter

• My family and friends

iii

iv

To those striving towards the Singularity.

v

vi

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.1.1 Accomplishments of IRL . 2

1.2 Contributions . 4

1.3 Thesis Layout . 4

2 Background Theory 6

2.1 Markov Decision Processes and Reinforcement Learning 6

2.1.1 Markov Decision Process . 7

2.2 Policy Search . 9

2.2.1 Model-based Policy Search . 9

2.3 Inverse Reinforcement Learning . 9

2.3.1 IRL being an ill-defined problem . 10

2.3.2 Rewards in Continuous State Spaces . 10

2.3.3 Policy Search In Continuous State Space . 11

2.3.4 Features Expectation . 11

vii

viii CONTENTS

2.3.5 The Max-Margin Algorithm . 12

2.4 Introduction to Gaussian Processes . 12

2.5 Introduction to PILCO . 13

2.5.1 Dynamics Model Learning . 14

2.5.2 Policy Evaluation . 14

2.5.3 Gradient-based Policy Improvement . 15

2.5.4 The PILCO Algorithm . 15

2.6 Implementing a combined IRL/PILCO algorithm . 16

3 The IRL/PILCO Algorithm 17

3.1 Generic Algorithm . 17

3.2 The IRL/PILCO Pseudocode . 17

3.3 Complexity . 17

3.4 Computing Long-Term Cost . 18

3.4.1 Feature Expectations Method . 18

3.4.2 Feature Matching Method . 18

4 Simulations with the Cart Pole 20

4.1 Cart-pole Swing Up . 20

4.2 Simulation Dynamics . 20

4.3 Implementation Details . 21

4.3.1 Obtaining the Cart-Pole State . 21

4.3.2 Optimising Weights . 21

4.3.3 Controller Application . 22

4.4 Results from Feature Matching on Every Time Step 22

CONTENTS ix

4.5 Results from Feature Expectations . 25

5 Experiments with Baxter Robot 27

5.1 Design and Implementation . 27

5.2 Implementation Details . 28

5.2.1 Obtaining the Robot State . 28

5.2.2 Computing Features Expectation . 28

5.2.3 Policy Learning . 28

5.2.4 Optimising Weights and Controller Application 29

5.2.5 Controller Application . 29

5.3 Results . 29

5.3.1 Results from Feature Expectations . 29

5.3.2 Results from Feature Matching on Every Time Step 31

6 Discussion 32

7 Conclusion 34

7.1 Key Results and Contributions . 34

7.2 Future Work . 34

Bibliography 35

A Algorithms for MDPs 39

A.0.1 Algorithms for MDPs . 39

A.0.2 Standard Algorithms and Techniques in Classical RL 40

B Results of the Baxter Experiment 43

B.1 Cost . 43

B.2 Plots . 43

B.2.1 Left Arm . 43

B.2.2 Right Arm . 43

x

List of Figures

1.1 A photo of the Baxter robot. This robot was taught to learn to sweep with a dustpan

and brush from a single demonstration, as an example of apprenticeship learning. . . 1

1.2 Screenshot of helicopter acrobatics. Taken from Abbeel et al. (2010) 3

1.3 The ball-in-cup problem. The green actions indicate direction of action. Taken from

Boularias et al. (2011) . 3

1.4 From left to right: 1. Autonomous ground vehicle Crusher, built by the Na-

tional Robotics Engineering Center(NREC). 2. Quadruped robot LittleDog, built

by Boston Dynamics. Taken from Ratliff et al. (2009b) 3

1.5 The BioRob hitting a table-tennis ball. The blue spline shows the racquet trajectory;

the yellow spline shows the ball trajectory. Taken from Englert et al. (2013a) 4

2.1 The agent-environment interface within an MDP. 6

3.1 The IRL/PILCO computational flowchart. 17

4.1 A physical pole-cart (inverted pendulum) being balanced. Taken from (Deisenroth

and Rasmussen, 2011) . 20

4.2 The idealised cart-pole dynamics system. Taken from Deisenroth (2010) 21

xi

xii LIST OF FIGURES

4.3 x-position of the cart-pole, from the 4th iteration, using the feature matching method.

Although the controller balanced the cart-pole, it did so sub-optimally because the

x-position reaches a steady state of about 0.2m away from the x = 0 position. The

predicted trajectory by the GP is well-trained and the policy remains somewhat

useful as it is still able to balance the cart-pole. The shaded area is the confidence

interval of the dynamics model. 23

4.4 Graph of θ, on the 4th iteration, using the feature matching method. As can be

observed, the cart-pole system is able to converge quickly to the θ = 0 position

without overshooting; however this comes at the drawback of not balancing at the

cart-pole at the x = 0 position. 23

4.5 x-position of the cart-pole, from the 15th iteration, using the feature matching

method. Although the controller balanced the cart-pole, it did so sub-optimally

because the x-position reaches a steady state, or about 0.2m away from the x = 0

position. The shaded area is the confidence interval of the predictive dynamics model. 24

4.6 Graph of θ, on the 15th iteration, using the feature matching method. As can be

observed, the actual trajectory matches up nearly exactly with the expert’s trajectory. 24

4.7 x-position of the cart-pole, from the 15th iteration, using the features expectation

method. The controller discovers a trajectory that gives the same feature expectation

as the expert trajectory. The shaded area is the confidence interval of the dynamics

model. With the features expectation method, the cost of following this trajectory

is the same for the expert and the actual trajectories, even though the physical state

trajectory differs wildly. 25

4.8 Graph of θ, on the 15th iteration, using the features expectation method. It is

probable that because the end-goal of inverting the cart-pole is only implied – that

is, the steady-state of the inverted cart-pole is not obvious with a shorter trajectory

– that the features expectation approach is only able to balance the cart-pole near

θ ≈ π and not precisely on θ = π. 26

5.1 The Baxter IRL/PILCO setup. 27

LIST OF FIGURES xiii

5.2 Graph of angular position of left w2, on the 13th iteration using the feature expec-

tations method. This plot of left w2 is typical of the other feature variables, where

the policy matches feature expectations by simply producing an ”average” trajectory

of the expert demonstration. Compare with Figure 5.3, where the trajectories were

much closer with the feature matching method. 30

5.3 Graph of angular position left w2, on the 15th iteration using the feature matching

method. The linear controller matches the robot trajectory to the expert trajectory

much more closely at the same joint, although the trajectory is not particularly

smooth. This is due to the nature of linear controllers, which although faster to

train, are less flexible than radial basis function networks. Compare with Figure 5.2,

which uses the feature expectations method. 31

5.4 The Baxter robot sweeping using a brush and dustpan. 31

6.1 Comparison between feature expectations (Feat. Exp.) and feature matching on

every time step (Feat. Matching) for both the cart-pole simulation and the Baxter

experiment. 32

B.1 Graph of angular position of left s0, on the 15th iteration. 43

B.2 Graph of angular position of left s1, on the 15th iteration. 44

B.3 Graph of angular position of left e0, on the 15th iteration. 44

B.4 Graph of angular position of left e1, on the 15th iteration. 45

B.5 Graph of angular position of left w0, on the 15th iteration. 45

B.6 Graph of angular position of left w1, on the 15th iteration. 46

B.7 Graph of angular position of left w2, on the 15th iteration. 46

B.8 Graph of angular position of right s0, on the 15th iteration. 47

B.9 Graph of angular position of right s1, on the 15th iteration. 47

B.10 Graph of angular position of right e0, on the 15th iteration. 48

B.11 Graph of angular position of right e1, on the 15th iteration. 48

B.12 Graph of angular position of right w0, on the 15th iteration. 49

B.13 Graph of angular position of right w1, on the 15th iteration. 49

B.14 Graph of angular position of right w2, on the 15th iteration. 50

xiv

Chapter 1

Introduction

Figure 1.1: A photo of the Baxter robot. This robot was taught to learn to sweep with a dustpan
and brush from a single demonstration, as an example of apprenticeship learning.

1.1 Motivation and Objectives

Programming robots to perform specific tasks can be a tedious and difficult process. Furthermore,
it is likely that the result is applicable only to specific situations and circumstances. Even where
classical reinforcement learning methods are used, many of these methods require hundreds or
thousands of trials to succeed, and not all tasks can be easily specified by a reward function a
priori. Where versatility and quick skill acquisition is required, new methods must be devised.

We attempt to circumvent some of these problems by doing probabilistic, model-based apprentice-
ship learning. Apprenticeship learning, or apprenticeship via inverse reinforcement learning (IRL),
is a concept in the field of imitation learning. It deals with Markov Decision Processes (MDPs),
where instead of a given, well-defined reward function, an expert demonstration doing the task we
wish to perform is provided instead. The goal of apprenticeship learning is to recover the behaviour
of the expert by learning the reward function.

1

2 Chapter 1. Introduction

From examining animal and human behaviour, it is clear that the parameters of the reward function
should often be considered “as an unknown to be ascertained through empirical investigation” (Ng
and Russell, 2000). For example, when driving on the road one would typically have to weigh
speed against other factors such as traffic conditions, pedestrians, weather conditions, and so on. It
would be difficult to determine the various trade-offs a priori ; however, as human beings we would
typically learn from an expert agent such as an experienced driver, and additionally through trial
and error.

Another main motivation is that classical model-based learning methods in reinforcement learn-
ing (RL) often relies on idealised assumptions and expert knowledge, in order to derive realistic
mathematical formulations for each system. This frequently leads to model bias (Atkeson and
Santamaria, 1997), and it is known that policies learnt from inaccurate models are generally not
useful. Additionally, exact state information is usually not known, but only within a range of
uncertainty. It is therefore important that rather than an engineering solution, there is a general
and principled framework for efficiently learning and modelling the dynamics of physical systems
(Deisenroth, 2010).

In this project, we aim to achieve the goal of apprenticeship learning by combining the max-margin
method of inverse reinforcement learning (IRL) (Ng and Russell, 2004) with PILCO, a highly-
efficient, probabilistic policy search algorithm (Deisenroth and Rasmussen, 2011), and show that
this will enable apprenticeship learning with high data efficiency.

According to Ng and Russell (2000) and Russell (1998), the IRL problem can be characterised
informally as follows:

Given

1. Measurements of an agent’s behaviour over time in various circumstances in its environment

2. Measurements of the sensory inputs to the agent

3. Optionally, a model of the environment

Determine

1. The reward function, and/or

2. The agent’s policy

We present some of the accomplishments of IRL in recent years.

1.1.1 Accomplishments of IRL

Helicopter Acrobatics

In 2010, Pieter Abbeel, Adam Coates and Andrew Ng successfully presented an apprenticeship
learning demonstration of flying helicopter acrobatics (Figure 1.2), despite the challenging nature
of autonomous helicopter flight in general.(Abbeel et al., 2010)

Ball-in-a-cup

The ball-in-a-cup is a children’s motor game where a ball is hanging from the bottom of the cup
via a string. The goal is to toss the ball into the cup by moving only the cup (Figure 1.3). The
actions correspond to the Cartesian accelerations of the cup, and both the state and action space
are continuous.

1.1. Motivation and Objectives 3

Figure 1.2: Screenshot of helicopter acrobatics. Taken from Abbeel et al. (2010)

Figure 1.3: The ball-in-cup problem. The green actions indicate direction of action. Taken from
Boularias et al. (2011)

Autonomous Navigation and Legged Locomotion

Figure 1.4: From left to right: 1. Autonomous ground vehicle Crusher, built by the National
Robotics Engineering Center(NREC). 2. Quadruped robot LittleDog, built by Boston Dynamics.
Taken from Ratliff et al. (2009b)

Some tasks, such as autonomous navigation, locomotion and grasping tasks have been successfully
demonstrated using a set of algorithms known collectively as LEARCH (Figure 1.4), which is able
to more efficiently non-linearise cost functions while satisfying common constraints more naturally
(Ratliff et al., 2009b), compared to other methods of non-linearisation (Ratliff et al., 2007).

Table-tennis Ball Hitting

Another approach to IRL is to find policies such that predicted trajectories directly match observed
expert trajectories. Using probability distributions of trajectories and matching them with the
Kullbeck-Leibler divergence, Englert et al. (2013a) were able to use a BioRob robot to consistently
hit a table tennis ball upwards (Figure 1.5).

4 Chapter 1. Introduction

Figure 1.5: The BioRob hitting a table-tennis ball. The blue spline shows the racquet trajectory;
the yellow spline shows the ball trajectory. Taken from Englert et al. (2013a)

Turn prediction

It was a neural-network based behavioural cloning approach that first indicated the possibility of
predicting driver steering based on road conditions (Pomerleau, 1989), by using camera images
coupled with a laser range-finder. Later on, by combining behavioural cloning with long-term
inverse reinforcement learning methods, Ratliff et al. (2009a) were able to do turn prediction for
taxi drivers.

1.2 Contributions

In this project, we incorporated the max-margin inverse reinforcement learning algorithm by Ng
and Russell (2004) within the PILCO framework(Deisenroth and Rasmussen, 2011), to produce the
IRL/PILCO algorithm. We implemented this algorithm using the Baxter robot to demonstrate its
viability. By demonstrating the task of sweeping with a brush and dustpan only once, the algorithm
was able to almost exactly reproduce the expert demonstrated trajectory with only 7 iterations
and 56s of experience time.

1.3 Thesis Layout

The rest of this thesis is organised as follows:

In Chapter 2, we explain the three key concepts that were necessary in this project. Firstly, both the
basic theory of Markov Decision Processes (MDPs) and both classical reinforcement learning (RL)
are discussed in Section 2.1. Next, we introduce policy search methods as an alternative to classical
RL, and explain why they can perform better. Subsequently, we introduce the problem of inverse
reinforcement learning (IRL) including the max-margin algorithm. Afterwards, we have a brief
introduction to Gaussian Processes (GPs) and explain how they allow for probabilistic inference
over function spaces, which is useful for model building. Finally, we will explain the policy search
method called PILCO and explain how this algorithm is able to use GPs to do policy search and
learn control.

1.3. Thesis Layout 5

In Chapter 3, we specify how the IRL max-margin algorithm is incorporated into the PILCO
framework to produce a combined IRL/PILCO algorithm that is able to use Bayesian reasoning to
learn policies to reproduce expert demonstrated behaviour.

In Chapter 4, we show how the algorithm performs on a simulated cart-pole system specified by a
set of ordinary differential equations (ODEs).

In Chapter 5, we examine in detail how the IRL/PILCO algorithm is implemented on the Baxter
robot, in order to reproduce a demonstrated task of sweeping up an object with both arms.

In Chapter 6, we discuss how the algorithm performs, comparing between the cart-pole simulation
and the Baxter robot, and also comparing between two methods of computing long-term cost, the
features expectation method and the feature matching method.

Finally, Chapter 7 concludes by summarising key results, re-stating the pros and cons of this
approach, and any future work that could be done to improve on performance.

Chapter 2

Background Theory

2.1 Markov Decision Processes and Reinforcement Learning

In classical reinforcement learning (RL), learning is accomplished within the framework of Markov
Decision Processes (MDPs), which is a model for decision-making where an agent applies controls
stipulated by a policy (Bellman, 1957). Outcomes can be partially random and partly under the
control of a control agent. The agent is able to interact with its environment, and the goal is
to obtain an optimal policy which maps states to actions for maximum reward, which is usually
specified in a reward function.

Figure 2.1: The agent-environment interface within an MDP.

The agent-environment interaction of an MDP is shown in Figure 2.1, and is as follows:

1. A reinforcement learning agent interacts with its environment in discrete time steps.

2. At each time step t, the agent receives an observation xt and the reward rt.

3. The agent then chooses an action ut from the set of actions available, which is subsequently
undertaken in the environment.

4. The environment (including the agent) then transitions to a new state xt+1 and the reward
rt+1 associated with the transition (xt, ut, xt+1) is determined.

The action to take is prescribed by a policy, usually denoted by π. The value V of a policy π is
the discounted cumulative reward r at each time step t, and is defined as

6

2.1. Markov Decision Processes and Reinforcement Learning 7

V π = E[
∑
t

γtrt|π] (2.1)

where γ ∈ [0, 1) is the discounted reward.

The goal of a reinforcement learning agent is to maximise the long-term reward V π. The agent can
choose any action based on past experience, or even by trial-and-error.

2.1.1 Markov Decision Process

Markov Decision Processes provide a framework for modelling decision-making, even where out-
comes are probabilistic. We define mathematically the notation used as follows:

Mathematical Definition

A finite MDP is a tuple M = (X,U, P, γ,R) where

1. X is a finite set of N states.

2. U = u1, ..., uk is a set of k actions.

3. P (x, u, x′) are the state transition probabilities upon taking action u in state x leading to
state x′,
i.e. P (x, u, x′) = P (x′|x, u).

4. γ ∈ [0, 1) is the discount factor.

5. R : X 7→ R is the reward function with absolute value bound Rmax.

A policy is defined as any map π : X 7→ U . For a given policy π, the value function at a state x1

is given by

V π(x1) = E[R(x1) + γR(x2) + γ2R(x3) + ...|π], (2.2)

which is simply the cumulative expected reward from state x1 onwards given a policy π, without
having chosen any action.

The Q-function is defined as

Qπ(x, u) = R(x, u, x′) + γE[V π(x′)|P (x, u, x′)] (2.3)

which is essentially the value at a state x after choosing action u, given policy π.

Basic Properties

Let an MDP M = {X,U, P, γ,R} and a policy π : X 7→ U be given. Then, two of the classical
results concerning finite-state MDPs are Bertsekas and Tsitsiklis (1995) and Sutton and Barto
(1998) –

8 Chapter 2. Background Theory

1. Bellman Equations
V π(x) = max

u
Qπ(x, u) (2.4)

Qπ(x, u) = R(x, u, x′) + γ
∑
x′

P (x, u, x′)[V π(x′)] (2.5)

which are essentially Equations (2.2) and (2.3) for finite-state MDPs.

2. Bellman Optimality

For an MDP, a policy π : X 7→ U is optimal if and only if for all x ∈ X,

π(x) ∈ arg max
u∈U

Qπ(x, u) (2.6)

Then, for an optimal policy denoted π∗ (where * indicates optimality),

V ∗(x) = max
u∈U

Q∗(x, u) (2.7)

Q∗(x, u) = R(x) + γ
∑
x′

P (x, u, x′)V ∗(x′) (2.8)

Algorithms for Solving Discrete MDPs

Equations (2.7)–(2.8) form the basis for algorithms using the MDP framework. These algorithms
include

• Q-learning (Watkins and Dayan, 1992)

• Value Iteration (Sutton and Barto, 1998)

• Temporal Difference Learning (Sutton, 1988)

• SARSA (Rummery and Niranjan, 1994)

• Least-Squares Policy Iteration (Lagoudakis and Parr, 2003)

• Dynamic Programming Methods (Bellman and Kalaba, 1965)

Although important in their own right, these approaches are not directly used in this project
because many are useful only in discrete state-action spaces. However, because they constitute the
background for MDPs, the first three algorithms are included and explained in Appendix A.

Discrete algorithms are generally not useful in cases where the state space is large or continuous.
such as in robotics and other physical systems. Modelling a continuous system using discrete
spaces will make a problem computationally intractable. Furthermore, model-free methods such
as value-iteration would require substantial experimental time and can significantly degrade the
physical system at hand. Additionally, the value and Q-functions can be complicated and difficult
to solve, even though there may be simple and compactly representable policies that can perform
very well(Ng and Jordan, 2000). This has led to interest to direct policy search methods.

From Deisenroth et al. (2013), we know that policy search methods can work quite well in a robotics
context, compared to classical methods.

2.2. Policy Search 9

2.2 Policy Search

Classical RL suffers from being data-inefficient, where too many trials are needed to learn a task.
Direct policy search is faster than RL, and have successfully been applied to many robotics problems
such as Ng and Jordan (2000), Peters et al. (2010) and Deisenroth and Rasmussen (2011). Policy
search can be classified as model-free or model-based.

In model-free methods, policies are applied directly to the robot to generate sampling trajectories,
which is then directly used to update the policy.

In contrast, model-based methods use sampled trajectories to first learn a model of the physical
system, which is then used to generate predictive trajectories for policy improvement.

In this project, Gaussian Processes are used to model the dynamics of the system in order to
perform direct policy search.

2.2.1 Model-based Policy Search

Between the choice of model-based and model-free policy search, it has been shown that model-
based methods are generally faster and more effective (Bagnell and Schneider, 2001).

However, model-based function approximation methods are not without its drawbacks.

Firstly, it can lead to model bias - imagine attempting linear regression through a data plot that
is clearly exponential. Additionally, long-term predictions of any system are essentially arbitrary,
and yet function approximators do not give any uncertainty estimates.

Additionally, policy search assumes that the reward function is available. However, in many tasks
it is not easy to write down a reward function; instead it is easier to demonstrate desired behaviour.

These drawbacks leads us to two solutions:

• Use Gaussian Processes as probabilistic function approximators to build a model for policy
search, which gives uncertainty estimates, from PILCO (Deisenroth and Rasmussen, 2011).

• Use the inverse reinforcement learning max-margin algorithm by Ng and Russell (2004) to
replace the reward function with expert demonstration instead.

2.3 Inverse Reinforcement Learning

In contrast to reinforcement learning, apprenticeship learning or apprenticeship via inverse rein-
forcement learning (IRL) is defined by the missing reward function. Instead,observed behaviour
as demonstrated by an expert, usually assumed to be acting optimally, is given. (Ng and Russell,
2000). Rather than learn the values associated with each state, the goal of IRL is to first learn
the parameters of the reward function, before extracting the optimal policy π∗ which is able to
reproduce the expert trajectory.

Inverse RL suffers from similar problems with classical RL, such as the need for function approx-
imation in continuous reward space. We will first touch on the discrete state-action and reward
case, before delving into the continuous case.

10 Chapter 2. Background Theory

2.3.1 IRL being an ill-defined problem

It has been shown that for R to make the policy π(x) ≡ u1 optimal in the discrete case, the
condition

(Pu1 − Pu)(I − γPu1)−1R � 0 (2.9)

must hold for discrete state x, where Pu = P (x, x′|u) is the state transition probability matrix.

The equivalent condition

Ex′∼Pxu1
[V π(x′)] ≥ Ex′∼Pxu [V π(x′)] (2.10)

must hold for continuous states x (Ng and Russell, 2000).

These conditions pose a few problems, which are

1. Trivial solutions

From Equation (2.9), it is obvious that R = 0 (or any other constant vector) is always a
solution, because if the reward is the same regardless of action, then any policy, including
π(x) ≡ u1 will be optimal. Furthermore, there are likely many choices of R that will meet
the criteria.

Without excessive detail, Ng and Russell (2000) showed that the full approach to resolve this
is to use a linear programming formulation of the problem as such:

maximize
N∑
i=1

min
u∈{u2,...,uk}

{(Pu1(i)− Pu(i))(I − γPu1)−1R} − λ||R||1 (2.11)

such that (Pu1 − Pu)(I − γPu+1)−1R � 0 for all u ∈ U
u1, and |Ri| ≤ Rmax, i = 1, ..., N

where Pu(i) denotes the i-th row of Pu and λ is an adjustable penalty coefficient such that R
is bounded away from 0 for some constant λ < λ0.

2. Infinite constraint size

For large state spaces, there may be infinitely many constraints in the form of Equation (2.9),
which makes it impractical to check them all.; however this can be avoided algorithmically
by sampling a large but finite subset of states u0 ∈ U .

2.3.2 Rewards in Continuous State Spaces

In real-world applications of MDPs, states and actions are not discrete, but are continuously-valued.
Thus there appears to be an infinite set of states that one may be in, and an infinite set of actions
to choose from.

For instance, the state of a simple straight, stiff robotic arm with a hinge may be described by the
angle variables θ and θ̇. To ameliorate the problem of intractibility, Ng and Russell (2000) suggest
defining the reward function linearly in the manner

R(x) = w1φ1(x) + w2φ2(x) + ...+ wdφd(x) (2.12)

2.3. Inverse Reinforcement Learning 11

where the w terms are the parameters to “fit” and φis are fixed, known basis functions mapping
X 7→ R.

The value function following Equation (2.12) is then given as

V π =
d∑
i=0

wiV
π
i (2.13)

where V π
i is the expected cumulative reward contributed by wiφi(s) computed under policy π.

2.3.3 Policy Search In Continuous State Space

In continuous-valued state and action spaces, function approximation is required in order to not
run into problems with excessive experimentation and model bias. Methods such as Monte-Carlo
value sampling is excessive and could take thousands of robot interactions in order to build up a
useful value function of the sort given by Equation 2.2.

Other approaches, such as that proposed by Ziebart et al. (2008) use the principle of maximum
entropy to probabilistically define a globally normalised distribution over decision sequences.

Another approach by Boularias et al. (2011) uses a model-free IRL algorithm, where the relative
entropy between the empirical distribution of state-action trajectories under a baseline policy and
their distribution under a learned policy is minimised by stochastic gradient descent.

In our approach, we will use Gaussian processes via the PILCO framework (Deisenroth and Ras-
mussen, 2011) in order to effectively solve this problem. Gaussian processes are used as a prob-
abilistic dynamics model in continuous state/action space and discrete time intervals, in order to
predict future evolution of the state space. PILCO is able to solve this with minimum experience
using indirect policy search.

This will be further elaborated upon in Section 2.5 on PILCO.

2.3.4 Features Expectation

The feature expectations µ(π) is defined as

µ(π) = E[

∞∑
t=0

γtφ(xt)|π] (2.14)

and this is essentially the discounted sum of features over trajectory space for a given policy. Then,
for a linear reward function, the expected value of a state can be written as

E[V π(x0)] = w · µ(π) (2.15)

and as the reward function is linear, such as that in Equation 2.12, the features expectation for a
given policy π can completely specify the expected sum of discounted rewards for acting on that
policy.

12 Chapter 2. Background Theory

2.3.5 The Max-Margin Algorithm

The IRL problem is where we are trying to find the weights w to a reward function R = (w(i))>φ
in order to extract a policy π∗ similar or close to demonstrations drawn from an expert policy piE .

An algorithm published by Ng and Russell (2004), known as the max-margin algorithm is shown
here in Algorithm 1:

Algorithm 1 Max-Margin IRL

1: Init: Randomly pick a policy π(0) and compute µ(0) = µ(π(0)), and set i← 1
2: while True do
3: IRL: Compute t(i) = maxw minj w

>(µE − µ(j)), where ‖w‖2 ≤ 1 and 0 ≤ j ≤ (i − 1). Let
w(i) be the value of w that attains this maximum on the current iteration.

4: if t(i) ≤ ε then
5: return π(i)

6: RL: Compute the optimal policy π(i) for the MDP with the reward function R = (w(i))>φ
using any suitable RL algorithm.

7: Compute µ(i) ← µ(π(i))
8: Set i← i+ 1

The step in Step 3 can be viewed as an inverse reinforcement learning step where the algorithm is
trying to find the weights w to a reward function R = (w(i))>φ such that

E[V πE (x0)] ≥ E[V π(i)
(x0)] + t (2.16)

i.e. a reward on which the expert does better by a margin of t, than any of the previous i policies
already found, from some initial state x0 ∼ X0. A full explanation can be found in Ng and Russell
(2004, Section 3).

As part of model-based apprenticeship learning, Step 3 will be implemented in the IRL/PILCO
algorithm later in Chapter 3.

Model-based policy search with PILCO uses Gaussian processes (GPs) as the dynamics model. We
elaborate further on GPs in the next section.

2.4 Introduction to Gaussian Processes

A Gaussian Process (GP) is a stochastic process, with random variables associated with a range of
time (or space), such that each random variable is normally distributed. In this manner, it can be
thought of as an extension of Gaussian distributions over function space (Rasmussen and Williams,
2006).

Given a data set {X, y}, consisting of input vectors xi and corresponding observations yi, we would
like to model the underlying function h(x) such that

yi = h(xi) + ε (2.17)

where ε is a noise term such that ε ∼ N(0, σ2
ε). The goal is to infer a model of the unknown function

h(x) that has generated the data.

Now, let X = [x1, x2, . . . , xn] be the matrix of training input vectors, and y = [y1, . . . , yn] be the
corresponding observations. Then, the inference of h(x) is described by the posterior

2.5. Introduction to PILCO 13

p(h|X, y) =
p(y|h,X)p(h)

p(y|X)
(2.18)

Just as a (multivariate) Gaussian distribution can be fully described by a mean vector and covari-
ance matrix, a GP can be specified by a mean function m(x) and a covariance function k(x, x′). In
this way, a GP can be thought of as a distribution over functions. Thus we may write h ∼ GP (m, k).

For a GP model of the underlying function h, we are interested in predicting the function values
h(x∗) = h∗ for any arbitrary input x∗. The predictive marginal distribution of h∗ for input x∗ is
Gaussian distributed with a mean and variance given by

E[h∗] = k(x∗, X)(K + σ2
ε I)−1y (2.19)

var(h∗) = k(x∗, x∗)− k(x∗, X)(K + σ2
ε I)−1k(X,x∗) (2.20)

where K ∈ IRn×n is the kernel matrix, defined by the kernel function k such that every element in
the covariance matrix is given by Kij = k(xi, xj).

A common covariance function k is the squared exponential (SE) kernel with automatic relevance
determination.

k(x, x′) = α2 exp(−1

2
(x− x′)>Λ−1(x− x′)) (2.21)

where α2 is considered the variance of the latent function f and Λ = diag(l21, . . . , l
2
n) is a diagonal

matrix which adjusts for the characteristic length scales li for each state feature. The parameters
of the covariance function {σε, α,Λ} ∈ θ are optimised by evidence maximisation in order to train
the GP.

The optimal hyperparameters θ are obtained by maximising the log marginal likelihood, given by

log(p(y|X, θ)) = log

∫
p(y|h(X), X, θ)p(h(X)|X, θ)dh (2.22)

= −1

2
y>(Kθ + σ2

ε I)−1y − 1

2
log |Kθ + σ2

ε I| −
nx
2

log(2π) (2.23)

2.5 Introduction to PILCO

PILCO (Probabilistic Inference for Learning COntrol) is a practical, data-efficient model-based
policy search method. It is both a framework and a software package, and it is able to reduce
model bias and conduct policy search using state-of-the-art approximate inference in a principled
manner, with very high data efficiency. (Deisenroth and Rasmussen, 2011)

In PILCO, dynamic systems are considered in the form

xt = f(xt−1, ut−1) (2.24)

with continuous-valued states x ∈ IRD and actions u ∈ IRF , with unknown transition dynamics
(probabilities) f .

14 Chapter 2. Background Theory

The objective of PILCO is to find a deterministic policy π : x 7→ π(x) = u such that it minimises
the expected cost, which is computed as

Jπ(θ) =

T∑
t=0

E[c(xt)], (2.25)

x0 ∼ N(µ0,Σ0) (2.26)

and therefore Jπ is the cumulative cost of following π for T steps, where c(xt) is the cost (negative
reward) of being in state x at time t.

2.5.1 Dynamics Model Learning

In order to predict xt+1 from a prior state xt, the probabilistic dynamics model is implemented as
a Gaussian process, where the training inputs are tuples of (xt−1, ut−1) ∈ IRD+F and the target
predictions are state differences ∆t = xt − xt−1 + ε, such that ∆t ∈ IRD and ε ∼ N(0,Σε),Σε =
diag([σ2

ε1 , ..., σ
2
εD

]).

The Gaussian Process generates predictions for every time step along the trajectory horizon

p(xt|xt−1, ut−1) = N(xt|µt.Σt), (2.27)

µt = xt−1 + Ef [∆t], (2.28)

Σt = varf [∆t] (2.29)

The prior mean function is set at m ≡ 0 and the kernel is the squared exponential (SE) kernel
with automatic relevance determination as per Equation (2.21). Input training points are defined
as x̃ = [x>u>]>, such that

k(x̃, x̃′) = α2 exp(−1

2
(x̃− x̃′)>Λ−1(x̃− x̃′)) (2.30)

and the posterior GP hyper-parameters are learned by evidence maximisation, where the log
marginal likelihood from Equation (2.22) is maximised:

θ∗ ← arg max
θ

log p(∆|x̃, θ) (2.31)

2.5.2 Policy Evaluation

The optimal policy π∗ is found by minimising Jπ in Equation (2.25), which requires long-term pre-
dictions of the evolution of the state distributions p(x1), ..., p(xT). This is accomplished in PILCO
by cascading uncertain test inputs through the Gaussian process dynamics model (Deisenroth and
Rasmussen, 2011). The test inputs are assumed to be Gaussian distributed; the test outputs are
assumed independent and do not covary with each other.

The mean prediction µ∆for target dimensions a = 1, . . . , D can be computed following the law of
iterated expectations

2.5. Introduction to PILCO 15

µa∆ = Ex̃t−1 [Ef [f(x̃t−1)|x̃t−1]] (2.32)

= Ex̃t−1 [mf (x̃t−1)] (2.33)

=

∫
mf ((̃x)t−1)N(x̃t−1|µ̃t−1, Σ̃t−1)dx̃t−1 (2.34)

(2.35)

which has a closed form solution. A similar method is employed for the predicted covariance matrix
Σ∆ ∈ IRD×D (Deisenroth and Rasmussen, 2011, Section 2.2).

2.5.3 Gradient-based Policy Improvement

Policy search is accomplished by computing the gradient dJ/dθ analytically and using gradient
descent methods. This is firstly done by differentiating J with respect to the policy parameters θ
from Equation (2.25), such that

dJ

dθ
=

d

dθ

∑
t

Ext [c(xt)] (2.36)

=
∑
t

d

dθ
Ext [c(xt)] (2.37)

Using the shorthand Et = Ext [c(xt)], and without excessive detail, the derivative at every time step
is computed with the chain rule

dEt
dθ

=
dEt

dp(xt)

dp(xt)

dθ
(2.38)

=
∂Et
∂µt

dµt
dθ

+
∂Et
∂Σt

dΣt

dθ
(2.39)

where p(xt) = N(µt,Σt). The full derivation for computing dE/dθ can be found in Deisenroth and
Rasmussen (2011, Section 2.2).

These gradients are then used within a standard optimiser (e.g., conjugate gradients or BFGS
(Broyden, 1965), (Fletcher and Powell, 1963), (Shanno, 1970)) to improve the policy.

2.5.4 The PILCO Algorithm

The high-level algorithm is as shown in Algorithm 2.

In Line 6, the long-term cost Jπ is computed with Equation (2.25). We aim to reduce this by
gradient-descent methods, so we calculate the derivative dJ

dθ in Line 7 using Equations (??)–(??).
The minimised policy parameters θ∗ are then used to update and improve the policy controller in
line 10.

16 Chapter 2. Background Theory

Algorithm 2 PILCO

1: init: Apply random policy θ ∼ N(0, I) and record a single state trajectory
2: repeat
3: Learn GP dynamics model using all state trajectories
4: Model-based policy search:
5: repeat
6: Approximate inference for policy evaluation, compute Jπ(θ)
7: Gradient-based policy improvement, compute dJπ/dθ
8: Optimise policy parameters θ(with CG/L-BFGS)
9: until convergence, return θ∗

10: Set π∗ ← π(θ∗)
11: Apply π∗ to system and record single trajectory
12: until task learned

2.6 Implementing a combined IRL/PILCO algorithm

By combining PILCO with the max-margin IRL algorithm, we aim to create a high-efficiency
apprenticeship learning method within the PILCO framework.

In the next chaper, we explain how the IRL max-margin algorithm is incorporated into the PILCO
algorithm.

Chapter 3

The IRL/PILCO Algorithm

3.1 Generic Algorithm

Figure 3.1: The IRL/PILCO computational flowchart.

The simple computational steps involved in the IRL/PILCO algorithm is shown in Figure 3.1.
Firstly, the demonstration by an expert is recorded. Next, initialisation takes place where a random
policy is applied. The resulting trajectory is used to train the GP during the model learning stage,
which in turn is the basis for predicting trajectories in the policy learning step. The optimal policy
is then computed by using the GP model to minimise the long-term trajectory cost. Once the
weights of the cost function are minimised, the policy is applied to the system. The algorithm
returns to model learning, until the task is learnt.

3.2 The IRL/PILCO Pseudocode

The high-level algorithm for IRL/PILCO is as shown in Algorithm 3. The new IRL additions to
PILCO are highlighted in yellow.

3.3 Complexity

Training a GP using gradient-based evidence maximisation is an O(n3) operation due to matrix
inversion of the kernel matrix K in Equations (2.19)–(2.20), for an n-sized data set. For E states,
this gives a complexity of O(En3).

17

18 Chapter 3. The IRL/PILCO Algorithm

Algorithm 3 IRL/PILCO

1: expert: Record expert demonstration(s) xE . Set µE ← µ(xE)

2: init: Create random policy θ ∼ N(0, I) and record a single trajectory
3: Model-based policy search:
4: repeat
5: Apply policy and record a single state trajectory
6: Learn GP dynamics model using all state trajectories.
7: repeat
8: Approximate inference for policy evaluation, compute Jπ(w, θ).
9: Gradient-based policy improvement, compute dJπ/dθ

10: Optimise policy parameters θ(using CG/L-BFGS).
11: until convergence, return θ∗

12: Set π∗ ← π(θ∗)

13: max-margin: Find w ← arg minw w
>(µE − µx) s.t. ‖w‖2 = 1 (using non-linear/QP solver)

14: Apply π∗ to system and record single trajectory x.
15: Set µx ← µ(x)
16: until task learned

The IRL/PILCO algorithm bottlenecks on PILCO policy search, which has a complexity ofO(E2n2D),
where D is the dimensionality of the training inputs. The full derivation is convoluted; interested
readers are invited to see Deisenroth (2010).

3.4 Computing Long-Term Cost

We implemented two ways of computing long-term cost, termed the feature expectations method
from Ng and Russell (2004) and also the feature matching method.

3.4.1 Feature Expectations Method

In the feature expectations method, we simply sum the discounted features in the manner

µ = E[
∑
t

γtφ(t)] (3.1)

where φ(t) is the feature vector at time step t and γ is the discount factor. The cost for the
trajectory is given by

J = αw>‖µ− µE‖22 (3.2)

where α is a constant for numerical reasons and w is the weight vector between the different feature
expectations. The subscript on µE denotes the expert. In this method, for a linear cost function,
the cost over the trajectory will be the same as the expert if, on average, the same features are
visited (even if they are visited in a different order).

3.4.2 Feature Matching Method

The feature matching method uses the trajectory feature vector on every time step to penalise for
deviation from the expert trajectory.

3.4. Computing Long-Term Cost 19

The features expectation µ at each time step t of the trajectory is simply

µ(t) = E[φ(t)] (3.3)

where φ(t) is the feature vector at time step t. The cost function is then

J =
∑
t

γtc(t) (3.4)

c(t) = αw>‖µ(t) − µ(t)
E ‖

2
2 (3.5)

(3.6)

where α = 1000 is a constant set for numerical reasons, and γ is the discount factor. The subscript
on µE denotes the expert. This cost function allows us to penalise for every feature that deviates
from the expert trajectory.

Chapter 4

Simulations with the Cart Pole

4.1 Cart-pole Swing Up

The cart-pole swing up problem is a physical system where a cart, moving in one dimension, has
a stiff pendulum pole attached. The goal is to balance the pendulum above the cart by applying a
force to the cart. The system can be specified by four parameters {x1, ẋ1, θ2, θ̇2} which denote the
positions and velocities of the cart and the pendulum, respectively.

Figure 4.1: A physical pole-cart (inverted pendulum) being balanced. Taken from (Deisenroth and
Rasmussen, 2011)

Classical reinforcement learning with PILCO was able to balance the cart-pole using only 7 trials
with a total interaction time of 17.5s. (Deisenroth and Rasmussen, 2011)

4.2 Simulation Dynamics

The cart-pole system is a simulated system in which a cart of mass m1 starting at the x = 0
position, has an attached pendulum of mass m2 which is able to swing freely in the plane with
angular position θ2. The cart is able to move horizontally in the x-direction with an external
applied force u.

Solving the Lagrangian for the system gives the equations of motion

20

4.3. Implementation Details 21

Figure 4.2: The idealised cart-pole dynamics system. Taken from Deisenroth (2010)

(m1 +m2)ẍ1 +
1

2
m2lθ̈2 cos θ2 −

1

2
m2lθ̇

2
2 sin θ2 = u− bẋ1 (4.1)

2lθ̈2 + 3ẍ1 cos θ2 + 3g sin θ2 = 0 (4.2)

which is solved numerically and simulated as coupled differential equations in MATLAB.

4.3 Implementation Details

4.3.1 Obtaining the Cart-Pole State

The state of the Cart-Pole system at each time step t is represented with the position variables

x(t) = E[x sin θ cos θ]> (4.3)

and the control signal (action) is simply the force u which is able to pull/push the cart on every
time step. sin θ and cos θ are used instead of the angular position θ so that we can take advantage
of angular wrap-around over the period 2π. The state-action tuple is then defined as

x̃(t) = [x>u>]> (4.4)

which gives x̃ ∈ IR5. x̃ is the predictive input for the GP dynamics model for the output x(t+1).

4.3.2 Optimising Weights

The weights w were obtained by using the MATLAB nonlinear optimiser fmincon on the equation

w = arg min
w
t(i)(w) (4.5)

where

t(i)(w) = w>(µE − µ(i)), (4.6)

on the constraints ‖w‖2 = 1, t(i) ≤ t(i−1), where i is the current iteration of the IRL/PILCO
algorithm.

22 Chapter 4. Simulations with the Cart Pole

4.3.3 Controller Application

The cart-pole controller is a Radial Basis Function (RBF) network and is given by

u =

n∑
i=1

wi exp(−(x−mi)
>W (x−mi)/2) (4.7)

where mi and wi are the centres and weights of each radial basis function respectively, W is a
diagonal matrix which controls the spread of the basis functions along the axes, n is the total
number of RBFs.

The controller output u is subsequently mapped through to a squashing function

ucontrol ← umax · (9 sin(u) + sin(3u))/8 (4.8)

which limits the control signal such that the applied signal |ucontrol| ≤ umax.

4.4 Results from Feature Matching on Every Time Step

The features expectation µ at each time step t of the state trajectory is simply

µ(t) = x(t) (4.9)

and the cost function is

J =
∑
t

γtc(t) (4.10)

c(t) = α‖µ(t) − µ(t)
E ‖

2
2 (4.11)

(4.12)

where α = 1000 is a constant set for numerical reasons, and γ = 1 is the discount factor. This
cost function allows us to penalise for every feature that deviates from the expert trajectory. The
expert feature expectations µE was obtained by using PILCO to do classical RL.

Using this cost function, a policy that could balance the cart-pole was learnt on only the 4th
iteration of IRL/PILCO (Figures 4.3–4.4). The best results were from the 15th iteration where a
policy that could almost exactly recover the expert trajectory was learnt (Figures 4.5–4.6).

4.4. Results from Feature Matching on Every Time Step 23

Figure 4.3: x-position of the cart-pole, from the 4th iteration, using the feature matching method.
Although the controller balanced the cart-pole, it did so sub-optimally because the x-position
reaches a steady state of about 0.2m away from the x = 0 position. The predicted trajectory by
the GP is well-trained and the policy remains somewhat useful as it is still able to balance the
cart-pole. The shaded area is the confidence interval of the dynamics model.

Figure 4.4: Graph of θ, on the 4th iteration, using the feature matching method. As can be observed,
the cart-pole system is able to converge quickly to the θ = 0 position without overshooting; however
this comes at the drawback of not balancing at the cart-pole at the x = 0 position.

24 Chapter 4. Simulations with the Cart Pole

Figure 4.5: x-position of the cart-pole, from the 15th iteration, using the feature matching method.
Although the controller balanced the cart-pole, it did so sub-optimally because the x-position
reaches a steady state, or about 0.2m away from the x = 0 position. The shaded area is the
confidence interval of the predictive dynamics model.

Figure 4.6: Graph of θ, on the 15th iteration, using the feature matching method. As can be
observed, the actual trajectory matches up nearly exactly with the expert’s trajectory.

4.5. Results from Feature Expectations 25

4.5 Results from Feature Expectations

In feature expectations matching for the cart-pole system, we simply sum the discounted features
in the manner

µ =
∑
t

γtx(t) (4.13)

and the cost for the trajectory is given by

J = α‖µ− µE‖22 (4.14)

Using this approach, we were able to obtain a policy that could somewhat balance the inverted
pendulum on the 15th iteration(Figures 4.7–4.8).

Figure 4.7: x-position of the cart-pole, from the 15th iteration, using the features expectation
method. The controller discovers a trajectory that gives the same feature expectation as the expert
trajectory. The shaded area is the confidence interval of the dynamics model. With the features
expectation method, the cost of following this trajectory is the same for the expert and the actual
trajectories, even though the physical state trajectory differs wildly.

26 Chapter 4. Simulations with the Cart Pole

Figure 4.8: Graph of θ, on the 15th iteration, using the features expectation method. It is probable
that because the end-goal of inverting the cart-pole is only implied – that is, the steady-state of the
inverted cart-pole is not obvious with a shorter trajectory – that the features expectation approach
is only able to balance the cart-pole near θ ≈ π and not precisely on θ = π.

Chapter 5

Experiments with Baxter Robot

In this project, I taught the Baxter robot (Figure 1) to sweep a surface using a one-handed dustpan
and brush, using solely the Baxter motor encoders and velocity control of the joints. This is a non-
trivial task due to the large state-action space from using 2 arms and 14 joints.

5.1 Design and Implementation

Figure 5.1: The Baxter IRL/PILCO setup.

The specific implementation of the IRL/PILCO algorithm within the Baxter setup is shown in
Figure 5.1. This is simply a more detailed and implementation-specific flowchart of Figure 3.1.

The Baxter program for implementing the policy controller and recording the expert trajectory
were written in Python on ROS Hydro(Quigley et al., 2009) on a virtual Linux Precise platform,
using the baxter interface library from RethinkRobotics. The MATLAB scripts were written
and run natively on OSX.

A mutex was also written using a shared file to allow control execution to pass between the MAT-
LAB learning script and Python Baxter controller. This is simply to bridge the gap between MAT-
LAB and the robot, which were executing on different platforms, and is strictly an implementation-
specific step. Alternatives include using TCP/IP to communicate between the Linux-based Python
controller and the rest of the MATLAB learning algorithm.

27

28 Chapter 5. Experiments with Baxter Robot

5.2 Implementation Details

5.2.1 Obtaining the Robot State

The state of the Baxter robot at each time step t is represented with the vector

x(t) = E[θ>l θ̇
>
l θ
>
r θ̇
>
r]> (5.1)

and the control signals (action) u of the robot is the vector

u(t) = E[u>l u
>
r]> (5.2)

where θ is the angular position of the arm joint in radians, θ̇ = dθ/dt is the angular velocity, and
the subscripts l and r indicate the left and right arms of the Baxter respectively at a specific time
step.

Each arm of the robot has 7 joints, whose state can be fully specified by the angular position and
velocity of these joints. This gives a dimensionality of x ∈ IR28. The control actions are the setting
of joint velocities; with 14 joints in total giving u ∈ IR14. The state-action tuple is then defined as

x̃(t) = [x>u>]> (5.3)

which gives x̃ ∈ IR42. x̃ is the predictive input for the GP dynamics model for the output x(t+1). A
sampling frequency of 2 Hz was used.

5.2.2 Computing Features Expectation

The features expectation µ at each time step t of the state trajectory is simply the angular position
vectors

µ(t) = [θ>l θ
>
r]> (5.4)

and using Equation (5.4) we can compute the features expectation of the expert µ
(t)
E at every time

step for µ ∈ IR14. The angle θ is directly used rather than sin(θ), cos(θ) because the robot joints
cannot rotate more than 2π and the angles do not wrap around.

5.2.3 Policy Learning

To do policy learning, the trajectory cost Jπ and its derivative w.r.t. the policy parameters Jπ/dθ
must be computed. These are used to obtain the optimal policy π∗ via gradient descent methods.

The cost at every time step in calculated as

c(t)(µ) = γα‖µ(t) − µ(t)
E ‖

2
2 (5.5)

where γ is the discount factor and α is a scaling factor constant (usually set to 103) for numerical
purposes. This formulation with the 2-norm ensures that the cost is always positive. The derivative
with respect to the feature expectation is then

5.3. Results 29

dc(t)

dµ
= 2γα(µ(t) − µ(t)

E) (5.6)

The long-term cost for the entire trajectory is Jπ =
∑

t c
(t) as per Equation (2.25) and the derivative

dJπ/dθ is computed from Equations (2.36)–(2.38), after which gradient descent methods are used
by the PILCO algorithm to conduct policy search.

5.2.4 Optimising Weights and Controller Application

As is the case with the cart-pole simulation, the weight vector of the cost function is given by
Equations (4.5)–(4.6)

5.2.5 Controller Application

The controller implemented is linear, of the form

u = wx+ b (5.7)

where w is a weight matrix, b is the bias vector, x is the state and {w, b} ∈ θ.

This is then mapped through to the squashing function as shown in Equation (4.8) in order to
obtain the applied control signal ucontrol.

5.3 Results

5.3.1 Results from Feature Expectations

The results from feature expectations were unsuccessful, which was not unexpected. A sample
outcome is shown here in Figure 5.2.

As can be observed, one of the hallmarks of the feature expectations approach is that the time-
order of features need not match – because in the case of a linear cost function, the total cost is
the same when the discounted sum of features is the same. Ultimately, it does not matter to the
algorithm which order the features are visited in, as long as the feature expectations matches that
of the expert trajectory.

The result is that the algorithm produces a policy in which the same costs are occurred as the expert
demonstration, but the resulting state trajectory can be much more varied than the expert’s state
trajectory.

30 Chapter 5. Experiments with Baxter Robot

Figure 5.2: Graph of angular position of left w2, on the 13th iteration using the feature ex-
pectations method. This plot of left w2 is typical of the other feature variables, where the policy
matches feature expectations by simply producing an ”average” trajectory of the expert demonstra-
tion. Compare with Figure 5.3, where the trajectories were much closer with the feature matching
method.

5.3. Results 31

5.3.2 Results from Feature Matching on Every Time Step

Figure 5.3: Graph of angular position left w2, on the 15th iteration using the feature matching
method. The linear controller matches the robot trajectory to the expert trajectory much more
closely at the same joint, although the trajectory is not particularly smooth. This is due to the
nature of linear controllers, which although faster to train, are less flexible than radial basis function
networks. Compare with Figure 5.2, which uses the feature expectations method.

Video Footage of Results

Figure 5.4: The Baxter robot sweeping using a brush and dustpan.

Screen captures of the Baxter sweeping can be seen at Figure 5.4. A video demonstration of the
Baxter experiment is available at http://www.doc.ic.ac.uk/~yl7813/irlpilco_baxter.

http://www.doc.ic.ac.uk/~yl7813/irlpilco_baxter

Chapter 6

Discussion

Even though there is a lack of standard performance metrics (Argall et al., 2009), we can com-
pare the performance of our algorithm across different implementations by using a mean-squared
difference method inspired by Wu and Demiris (2010). The mean-squared error ε is given by

ε =
1

DT

T∑
t=0

‖φ(t)
E − φ

(t)‖22 (6.1)

where D is the number of features, φ(t) is the vector of features at time step t. By normalising over
the number of features and the number of time steps, we can compare the results more objectively
between the cart-pole simulation and the Baxter experiment. Note that in the case of feature
matching, φ(t) = µ(t). We compare results from the feature expectations method (Section 3.4.1)
against the feature matching method (Section 3.4.2) in Figure 6.1.

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Cost comparison

Iterations

C
os

t

Baxter Feat. Exp.
Baxter Feat. Matching
CartPole Feat. Exp.
CartPole Feat. Matching

Figure 6.1: Comparison between feature expectations (Feat. Exp.) and feature matching on every
time step (Feat. Matching) for both the cart-pole simulation and the Baxter experiment.

From Figure 6.1, it is clear that the feature matching approach results in a closer matching tra-
jectory to the expert trajectory than the feature expectations approach. This is not unexpected,
because the feature expectations method does not penalise when features are visited outside of

32

33

their time order, unlike feature matching, which penalises any difference in features on every time
step.

In addition, the Baxter feature expectations approach appears to be diverging, which may possibly
be due to noise - the algorithm may converge if run for further iterations, but it is expensive to do
so due to the large state-action space of IR42 as used with the Baxter.

Our approach in using the angular state positions of the Baxter joints in this project has a few
drawbacks. Because of the task at hand (sweeping), the position and orientation of the Baxter’s
end-effector is more useful than the joint angles alone.

Two main problems arise, the first being that joints higher up in the robot arm (e.g. shoulder
joints) can cause error amplification: a small angular movement at the shoulder joint would cause
the end-effector to move a much larger distance than an equivalent angular movement at an elbow
joint. The second problem is that the choice of features ought to capture the task at hand. In the
case of balancing the cart-pole, the task can be fully specified using only position variables x and
the angle θ. However, in the case of the Baxter’s sweeping action, the task of sweeping would be
much harder without some form of external input measurement on the state of the environment,
such as camera feedback on the position of objects within its vicinity.

Chapter 7

Conclusion

7.1 Key Results and Contributions

In this project, we extended a model-based policy search reinforcement learning method to appren-
ticeship learning, where the underlying reward function is unknown. However, expert demonstra-
tions are given from which the reward function can be inferred.

We considered a real-robot application of apprenticeship learning where a Baxter robot with 14
degrees of freedom (2 arms with 7 joints each) was supposed to imitate a demonstrated sweeping
movement. In the context of robot learning, it is essential to keep the number of interactions with
the robot low, since interactions are time-consuming and wear the hardware out. Therefore, we
generalised a state-of-the-art reinforcement learning algorithm (Deisenroth and Rasmussen, 2011)
to the apprenticeship learning set-up.

We have demonstrated the success of our proposed IRL/PILCO algorithm in the context of ap-
prenticeship learning. Additionally, due to its exceptional data efficiency, motor babbling for model
learning is unnecessary, reducing interaction time to only 7 trials and 56 seconds with the Baxter
robot.

We have successfully applied our proposed algorithm to learning a sweeping task with a Baxter
robot, where we learned low-level controllers for both arms, such that the demonstrated behaviour
was closely imitated.

With the IRL/PILCO algorithm, an excessive number of robot interactions is unnecessary, and only
a single expert demonstration is required for successful learning. Our method is thus potentially
useful for one-shot learning.

Finally, to the best of our knowledge we were the first to apply PILCO (or any other RL/IRL
method) to such a high-dimensional state-action space (x̃ ∈ IR42), thus demonstrating that PILCO
is a viable approach for learning low-level robot controllers in high-dimensional spaces.

7.2 Future Work

One could considering using non-linear reward functions, which can better capture task require-
ments (Levine et al., 2011). Additionally, if the form of the reward function is difficult or com-
plicated to specify, feature extraction methods such as those by Guyon et al. (2006) can be used,
although more expert demonstrations may be needed.

34

7.2. Future Work 35

Next, one could incorporate a variance penalty to the model to discourage uncertainty. For instance,
Englert et al. (2013b) used Kullback-Leibler (KL) divergence between the predicted trajectory
distribution and the distribution over expert trajectories for imitation learning.

Additionally, one could improve on the dynamics model to predict features from state variables. In
doing the sweeping motion with the Baxter, it is fairly obvious that the position and orientation
of the arm end-effector is a more succinct representation of features for the task at hand, rather
than the angular positions of each joint. However, this would require implementing a principled
framework to convert the probability distributions of state information µx,Σx to features µφ,Σφ

which will require substantive work.

The time complexity of PILCO could also be improved on. The current implementation of IRL/PILCO
on the Baxter robot with 28 degrees of freedom requires ∼15 hours of runtime with the features
expectation method, and ∼30 hours with the feature matching method on a Haswell i7 proces-
sor. Improvements could be made by implementing key parts such as matrix inversion and kernel
computations using GPUs or multi-threading in order to boost performance.

Finally, one could leverage on the Baxter cameras, by using image recognition to allow the Baxter
to properly interact fully with its environment.

Bibliography

Abbeel, P., A. Coates, and A. Y. Ng
2010. Autonomous helicopter aerobatics through apprenticeship learning. International Journal
of Robotics Research.

Argall, B. D., S. Chernova, M. Veloso, and B. Browning
2009. A survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483.

Atkeson, C. G. and J. C. Santamaria
1997. A comparison of direct and model-based reinforcement learning. In International Confer-
ence on Robotics and Automation, Pp. 3557–3564. IEEE Press.

Bagnell, J. A. and J. G. Schneider
2001. Autonomous helicopter control using reinforcement learning policy search methods. In
International Conference on Robotics and Automation, volume 2, Pp. 1615–1620. IEEE.

Bellman, R.
1957. A markovian decision process. Indiana Univ. Math. J., 6:679–684.

Bellman, R. and R. E. Kalaba
1965. Dynamic programming and modern control theory. Academic Press New York.

Bertsekas, D. P. and J. Tsitsiklis
1995. Neuro-dynamic programming: an overview. In Proceedings of the 34th IEEE Conference
on Decision & Control, volume 1, Pp. 560–564. IEEE.

Boularias, A., J. Kober, and J. Peters
2011. Relative entropy inverse reinforcement learning. International Conference on Artificial
Intelligence and Statistics, Pp. 182–189.

Broyden, C. G.
1965. A class of methods for solving nonlinear simultaneous equations. Mathematics of compu-
tation, Pp. 577–593.

Deisenroth, M. P.
2010. Efficient Reinforcement Learning using Gaussian Processes, volume 9. KIT Scientific
Publishing.

Deisenroth, M. P., G. Neumann, and J. Peters
2013. A survey on policy search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142.

Deisenroth, M. P. and C. E. Rasmussen
2011. PILCO: A model-based and data-efficient approach to policy search. In Proceedings of the
28th International Conference on Machine Learning, Pp. 465–472.

Englert, P., A. Paraschos, J. Peters, and M. P. Deisenroth
2013a. Model-based imitation learning by probabilistic trajectory matching. In International
Conference on Robotics and Automation, Pp. 1922–1927. IEEE.

36

BIBLIOGRAPHY 37

Englert, P., A. Paraschos, J. Peters, and M. P. Deisenroth
2013b. Probabilistic model-based imitation learning. Adaptive Behavior, 21(5):388–403.

Fletcher, R. and M. J. Powell
1963. A rapidly convergent descent method for minimization. The Computer Journal, 6(2):163–
168.

Guyon, I., S. Gunn, M. Nikravesh, and L. Zadeh
2006. Feature extraction. Foundations and applications.

Lagoudakis, M. G. and R. Parr
2003. Least-squares policy iteration. The Journal of Machine Learning Research, 4:1107–1149.

Levine, S., Z. Popovic, and V. Koltun
2011. Nonlinear inverse reinforcement learning with gaussian processes. Advances in Neural
Information Processing Systems, Pp. 19–27.

Ng, A. Y. and M. Jordan
2000. Pegasus: A policy search method for large mdps and pomdps. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, Pp. 406–415. Morgan Kaufmann
Publishers Inc.

Ng, A. Y. and S. Russell
2000. Algorithms for inverse reinforcement learning. In International Conference on Machine
Learning, Pp. 663–670.

Ng, A. Y. and S. Russell
2004. Apprenticeship learning via inverse reinforcement learning. In International Conference
on Machine Learning, Pp. 1–8.

Peters, J., K. Mülling, and Y. Altun
2010. Relative entropy policy search. In AAAI.

Pomerleau, D. A.
1989. Alvinn: An autonomous land vehicle in a neural network. Technical report, DTIC Docu-
ment.

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng
2009. ROS: An open-source robot operating system. In ICRA workshop on open source software,
volume 3, P. 5.

Rasmussen, C. E. and C. K. I. Williams
2006. Gaussian Processes for Machine Learning. MIT Press.

Ratliff, N., D. Bradley, J. A. Bagnell, and J. Chestnutt
2007. Boosting structured prediction for imitation learning. Robotics Institute, P. 54.

Ratliff, N., B. Ziebart, K. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa
2009a. Inverse optimal heuristic control for imitation learning. In International Conference on
Artificial Intelligence and Statistics.

Ratliff, N. D., D. Silver, and J. A. Bagnell
2009b. Learning to search: Functional gradient techniques for imitation learning. Autonomous
Robots, 27(1):25–53.

Rummery, G. A. and M. Niranjan
1994. On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR
166, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2
1PZ, UK.

38 BIBLIOGRAPHY

Russell, S.
1998. Learning agents for uncertain environments. In Proceedings of the Eleventh Annual Con-
ference on Computational Learning Theory, Pp. 101–103. ACM.

Shanno, D. F.
1970. Conditioning of quasi-newton methods for function minimization. Mathematics of compu-
tation, 24(111):647–656.

Sutton, R. S.
1988. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44.

Sutton, R. S. and A. G. Barto
1998. Introduction to Reinforcement Learning. MIT Press.

Watkins, C. J. and P. Dayan
1992. Q-learning. Machine learning, 8(3-4):279–292.

Wu, Y. and Y. Demiris
2010. Towards one shot learning by imitation for humanoid robots. In International Conference
on Robotics and Automation (ICRA), Pp. 2889–2894. IEEE.

Ziebart, B. D., A. Maas, J. A. Bagnell, and A. K. Dey
2008. Maximum entropy inverse reinforcement learning. AAAI, Pp. 1433–1438.

Appendix A

Algorithms for MDPs

A.0.1 Algorithms for MDPs

Value Iteration

Here, we assume that an an MDP M = {X,U, P (x, u, x′)}, γ, R be given. The goal is to find the
optimal values at every state.

The algorithm used is value iteration:

1. Let V0(x) = 0 for all x ∈ X

2. Update via dynamic programming:

Vk+1 ← max
u

E[R(x, u, x′) + γVk(x
′)] (A.1)

The value iteration algorithm always converges from terminal nodes.

Policy Extraction

If, given an MDP, then the best action at every state may be computed using

π(x)← arg max
u

E[R(x, u, x′) + γV ∗(x′)] (A.2)

if the optimal values V* are known, or

π(x)← arg max
u

Q∗(x, u) (A.3)

if the optimal Q-values Q∗ are known.

Policy Evaluation

Under a fixed policy, the actions taken are dictated by the policy π, so the value of states can be
computed as

39

40 Appendix A. Algorithms for MDPs

V π(x) = E[R(x, π(x), x′) + γV π(x′)] (A.4)

Using Equation (A.4), we can write the iterative algorithm to evaluate policies for each state x ∈ X:

1. Let V0(x) = 0 for all x ∈ X

2. Update via dynamic programming:

V π
k+1(x)← max

π(x)
E[R(x, π(x), x′) + γV π

k (x′)] (A.5)

Policy Iteration

For policy iteration, we assume we have on hand a policy π that is non-optimal, and we wish to
improve it. We can combine policy evaluation and policy extraction to improve our policy. This is
known as policy iteration:

1. Calculate (non-optimal) utilities for some fixed policy

V πk(x) = E[R(x, πk(x), x′) + γV πk(x′)] (A.6)

2. Update policy using policy extraction with converged utility values

πk+1(x)← arg max
u

E[R(x, u, x′) + γV πk(x′)] (A.7)

Incorporating GPs into IRL via PILCO

Using Gaussian process regression, it is possible to learn the behavior of a probabilistic model given
sufficient measurements of state trajectories and actions.

We will use GP prediction as a method of function approximation, in order to determine the
transitive probabilities, which will then be incorporated into IRL and solved for the reward function.

The implementation for this can be easily provided for using PILCO, a practical, data-efficient
model-based policy search method. PILCO is able to cope with very little data and can learn with
very few trials via approximate inference. Deisenroth and Rasmussen (2011)

A.0.2 Standard Algorithms and Techniques in Classical RL

In reinforcement learning, the learning is still done using an MDP, except that the transition
probabilities Pxu(x′) and the reward/reinforcement function R(x, u, x′) unknown. Therefore, in
order to discover the transition probabilities and the reward function, it is necessary to interact
with the system.

41

Temporal-Difference Learning

Temporal-difference learning is a model-free method, because R and P are not considered. In
temporal-difference learning, a fixed policy π is decided upon. Then, the algorithm is to update a
vector of values V (x) each time we experience a sample represented by a tuple (x, u, x′, r):

1. sample = R(x, π(x), x′) + γV π(x′)

2. V π(x)← (1− α)V π(x) + α · sample

where α is a learning rate constant. A decreasing learning rate over iterations can give converging
averages.

Q-Value Iteration

In temporal-difference learning, the values of the states could be learnt, but it would not be helpful
in extracting a new policy without the Q-values. Hence, Q-value iteration:

1. Set Q0(x, u) = 0 for all x ∈ X, u ∈ U

2. Then, do the iterative update

Qi+1(x, u)←
∑
x′

Pxu(x′)[R(x, u, x′) + γmax
u′

Qi(x
′, u′)] (A.8)

Q-Learning

In Q-learning, the q-values are directly learnt from the samples by iterative updates, similar to
temporal-difference learning:

1. sample = R(x, u, x′) + γmax
α′

Q(x′, u′)

2. Q(x, u)← (1− α)Q(x, u) + α[sample]

where as before, α is a learning rate constant. A decreasing learning rate over iterations can give
converging averages.

Feature-based Representations

In realistic situations, it is often impractical to visit every state, because

1. There are too many states to visit them all in training, or

2. Too many states to hold the q-tables in memory, or

3. The state space is continuous

42 Appendix A. Algorithms for MDPs

Thus, we would prefer to generalise and learn about only a small number of training states. This
is accomplished by using a vector of features to describe the state, rather than the state variables
itself. Hence, values and q-values can be represented simply by a weighted set of features:

V (x) = w1f1(x) + w2f2(x) + ...+ wdfd(s) (A.9)

Q(x, u) = w1f1(x, u) + w2f2(x, u) + ...+ wdfd(x, u) (A.10)

With this approach, the experience can be summed up by only a few numbers, which will signif-
icantly reduce the state space. However, the disadvantage is that states may share features, but
actually have very different values.

Appendix B

Results of the Baxter Experiment

B.1 Cost

These results were obtained by feature matching at every time step.

B.2 Plots

B.2.1 Left Arm

Figure B.1: Graph of angular position of left s0, on the 15th iteration.

B.2.2 Right Arm

43

44 Appendix B. Results of the Baxter Experiment

Figure B.2: Graph of angular position of left s1, on the 15th iteration.

Figure B.3: Graph of angular position of left e0, on the 15th iteration.

B.2. Plots 45

Figure B.4: Graph of angular position of left e1, on the 15th iteration.

Figure B.5: Graph of angular position of left w0, on the 15th iteration.

46 Appendix B. Results of the Baxter Experiment

Figure B.6: Graph of angular position of left w1, on the 15th iteration.

Figure B.7: Graph of angular position of left w2, on the 15th iteration.

B.2. Plots 47

Figure B.8: Graph of angular position of right s0, on the 15th iteration.

Figure B.9: Graph of angular position of right s1, on the 15th iteration.

48 Appendix B. Results of the Baxter Experiment

Figure B.10: Graph of angular position of right e0, on the 15th iteration.

Figure B.11: Graph of angular position of right e1, on the 15th iteration.

B.2. Plots 49

Figure B.12: Graph of angular position of right w0, on the 15th iteration.

Figure B.13: Graph of angular position of right w1, on the 15th iteration.

50 Appendix B. Results of the Baxter Experiment

Figure B.14: Graph of angular position of right w2, on the 15th iteration.

	Abstract
	Acknowledgements
	Introduction
	Motivation and Objectives
	Accomplishments of IRL

	Contributions
	Thesis Layout

	Background Theory
	Markov Decision Processes and Reinforcement Learning
	Markov Decision Process

	Policy Search
	Model-based Policy Search

	Inverse Reinforcement Learning
	IRL being an ill-defined problem
	Rewards in Continuous State Spaces
	Policy Search In Continuous State Space
	Features Expectation
	The Max-Margin Algorithm

	Introduction to Gaussian Processes
	Introduction to PILCO
	Dynamics Model Learning
	Policy Evaluation
	Gradient-based Policy Improvement
	The PILCO Algorithm

	Implementing a combined IRL/PILCO algorithm

	The IRL/PILCO Algorithm
	Generic Algorithm
	The IRL/PILCO Pseudocode
	Complexity
	Computing Long-Term Cost
	Feature Expectations Method
	Feature Matching Method

	Simulations with the Cart Pole
	Cart-pole Swing Up
	Simulation Dynamics
	Implementation Details
	Obtaining the Cart-Pole State
	Optimising Weights
	Controller Application

	Results from Feature Matching on Every Time Step
	Results from Feature Expectations

	Experiments with Baxter Robot
	Design and Implementation
	Implementation Details
	Obtaining the Robot State
	Computing Features Expectation
	Policy Learning
	Optimising Weights and Controller Application
	Controller Application

	Results
	Results from Feature Expectations
	Results from Feature Matching on Every Time Step

	Discussion
	Conclusion
	Key Results and Contributions
	Future Work

	Bibliography
	Algorithms for MDPs
	Algorithms for MDPs
	Standard Algorithms and Techniques in Classical RL

	Results of the Baxter Experiment
	Cost
	Plots
	Left Arm
	Right Arm

