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Abstract

This paper presents a novel application of convolutional neural networks, classifying
user intent generated through motor imagery and signalled using EEG data, with the
intent of using it as input to a real-time brain-computer interface (BCI). The motiva-
tion is to design a system using which a player can control a video game character
in the Cybathlon 2016 challenge. To the best of the author’s knowledge, it is the
only paper attempting to classify more than two types of motor imagery using deep
learning techniques. The paper proposes a novel method for defining covolutional
filters along the scalp to disjoint groups of electrodes that measure activity in similar
regions of the brain. Although initial results were found to demonstrate overfitting
very late into the project, the preliminary results from a revised experimental set-
up still show significant learning and opportunities to improve the results in future
research.
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Chapter 1

Introduction

The aim of this project is to read a person’s mind and to convert user intent into ac-
tionable signals. The particular application of the system developed here is for a pilot
to control a video game character in a competition to get through a virtual obstacle
course; however, there are numerous other possible practical uses. For instance, a
wheelchair-bound individual could control the wheelchair using a brain-computer
interface if she is unable to do so by other means, or someone fitted with a robotic
limb could control it in an intuitive manner. Being able to classify brainwaves could
also possibly yield further insights into the structure of the brain and to deepen
our understanding of its functionality. The use of machine learning pattern recogni-
tion techniques applied here means that it is possible to discover features previously
missed by researchers using techniques that rely on humans to heuristically identify
relevant characteristics in the data.

A great advantage of the approach used is that it is non-invasive, fairly low-cost,
and easy to adapt to different situations. All that is required is an EEG (electroen-
cephalographic) cap for the user to wear and a computer to interpret the output.
Of course, there are other methods that can be used to collect more precise data on
brainwaves, such as implants surgically placed inside of an individual’s skull, but if it
is possible to avoid such a costly and risky procedure in favour of something one can
wear externally, the latter approach is preferable. The potential disadvantage is that
the data may be too noisy to be useful, but the system developed over the course of
this project is able to get high accuracy in classifying user intent despite the noise in
the data. Applying this approach in a practical setting thus seems to be a plausible
possibility.

From the user’s perspective, the means by which she can signal her intended
action is straightforward but takes a bit of getting used to. The user imagines one of
four actions, such as making a fist or pushing her feet into the floor, without actually
performing the action. The resulting patterns in the brainwaves recorded can then
be used to determine which action it is that the user imagined and to translate that
signal into the intended output.

Although there was found to be overfitting to the data in the initial approach very
late into the project, a revised experimental set-up still showed promising prelimi-
nary results, as well as avenues for potential improvement, which could be explored
in future research. For one subject, an accuracy of around 80% was achieved in clas-
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Chapter 1. Introduction

sifying three types of motor imagery using untransformed voltage data. This paper’s
contribution is to apply convolutional neural networks in a novel context, design-
ing the algorithm which makes it possible. Many common applications of neural
networks are to graphic images, where it is rather intuitive how one can apply a
convolutional filter. It is less obvious how one can apply such a filter to a set of
electrodes reading EEG data, but this paper develops a procedure by which to group
electrodes, so that it becomes natural to apply one or more convolutional layers in
the model.
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Chapter 2

Background

2.1 Problem Setting and Application

The intent of this project is to provide the EEG signal analysis necessary for a BCI
system to compete in ETH Zürich’s Cybathlon 2016 [1]. The challenge is described
as follows:

Pilots are equipped with brain-computer interfaces (BCIs) that enable them
to control an avatar in a racing game played on computers. Each avatar
moves forward by itself, and thus, eventually reaches the finish line of the
race even with a bad or no input signal from the pilot. However, there are
obstacles on the race track that the pilots should avoid. Sending an appro-
priate command using the BCI within the correct time frame allows pilots
to avoid these obstacles (elements) and gain a bonus (e.g. accelerate). In-
correct commands or incorrectly timed commands yield a disadvantage (e.g.
deceleration of the avatar). A maximum of three different commands can
be sent from the BCI simultaneously. One command is mandatory, and the
other two are optional, but allow the pilots to gain additional advantages.

In this competition, the primary BCI type will be the EEG and all signals for com-
mands must come from measured brain activity, i.e. no muscular or ocular move-
ments may be used. Additionally, no audio or visual queues may be used to invoke
steady state visually evoked potentials (SSVEPs) apart from the output of the race.
Teams will be ranked based on the time taken to complete the race.

The race is implemented in the BrainRunners video game. Up to four teams
will race their avatars simultaneously. The pilots will send one of three commands
JUMP, KICK, or SPEED when their in-game avatar reaches a certain coloured action
pad. Incorrectly timed or executed commands before or within action pads will cause
the avatar to stumble and lose time. Since the avatar will always move forward, the
race can be run without any inputs, but this will result in a time of 235 seconds.
If an action pad is reached, but no command is sent, the pad crossing time is 12
seconds, if the correct command is sent, the time is 2 seconds. Additionally, on a
KICK action pad, if the command is correctly executed, all other competitors on the
pad receive a 2 second penalty. Stumbling from erroneous commands results in a
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2.2. LITERATURE REVIEW Chapter 2. Background

Figure 2.1: In-game screen-shot of four competitors during the race. The coloured sec-
tions of the track demonstrate each of the three action pads: green for SPEED, magenta
for JUMP, and yellow for KICK.

2.5 second penalty. Figure 2.1 presents a screen-shot of the race in action, giving a
sense of what pilots will see and to what they will have to react.

2.2 Literature Review

The following sections provide a background in the literatures necessary to under-
stand the project. Section 2.2.1 describes recent achievements in BCI technology and
why this field of research is of such interest and importance. Section 2.2.2 discusses
what electroencephalography is, why it is selected as the basis for the BCI, and re-
cent literature that seeks to overcome its relative disadvantage compared with other
methods of analysing brain activity, its poor signal-to-noise ratio. Section 2.2.3 dis-
cusses the Deep Learning techniques that will be applied and the few recent studies
which apply them to EEG data.

2.2.1 Brain Computer Interface

A Brain Computer Interface (BCI), or Brain Machine Interface (BMI), is a system
which allows users to communicate or manipulate external devices using only their
brain signals as opposed to the standard methods for carrying out such tasks [2].
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BCIs allowing patients to accomplish tasks simply by thinking about a certain ac-
tion has many diverse applications that provide real benefits to their lives. Recent
research has shown that much is possible with this technology. BCIs have allowed
individuals to control a robotic arm to manipulate the surrounding environment [3].
They have allowed patients to move around in a wheelchair [4]. They have even
been shown to increase the neuroplasticity of recovering tetraplegic patients and
improve their quality of life [5]. BCIs which allow for three dimensional cursor mo-
tion have also been constructed [6]. This suggests there are many more potential
applications of the technology to entertainment and real-world manipulation more
broadly.

[2] provide an excellent survey of recent work in the area of BCIs as well as the
basic definitions used throughout the field. They describe a BCI as carrying out the
following four procedures. First, it must have a method for signal acquisition, a way
of measuring the neurophysiological state of the brain. This can be accomplished
by recording electrophysiological signals, via devices like the EEG or intracortical
implants discussed below. Second, it must have a process for feature extraction,
whereby the useful information gleaned from the signals, removing artifacts or noise
from the analysis. Third, it then uses a translation algorithm to convert the extracted
features into a signal of user intent. Finally, the system executes the user’s desired
output. Most research into BCIs has focused on the first three steps with the relevant
question of interest being how to cheaply, safely, and accurately translate a user’s
brain activity into real-time actions. The following section goes into more detail
about which systems for measuring the neurophysiological state of the brain are
selected and their drawbacks, as well as a brief overview of some of the techniques
that have been used to accomplish procedures two and three.

2.2.2 Electroencephalography

Electroencephalography (EEG) is a method to analyse brain activity by measuring
the electrical activity across a subject’s scalp. EEG offers many advantages for con-
struction of a BCI system, but also several disadvantages. Firstly, and most impor-
tantly, EEG is a non-invasive method for measuring brain activity. This removes the
need for costly and risky surgical procedures, such as electrophysiology, in which
intracortical devices such as needles or tubes may be inserted directly into the brain
material, or electrocorticography, in which an array of electrodes is implanted under
the skull. Both systems risk permanent and life threatening damage to a patient’s
brain and require costly surgical expertise to carry them out safely. Also useful for
designing a BCI, EEG does not require the patient to be stationary like other non-
invasive imaging systems such as functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG), both of which can only be carried out by large
scale and expensive equipment. In contrast, EEG simply requires the placement of a
set of electrodes along the scalp, which, although the exact placement is important
for valid results, can be carried out in a straightforward manner. EEG has the ability
to produce high time resolution data, which is a necessity for near real time systems.
However, EEG does possess some major drawbacks.
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Figure 2.2: An example of a person wearing an EEG cap during an experiment. [7]
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EEG’s major drawback for use in a BCI is its low signal-to-noise ratio. While
it does provide high resolution in time, it does not provide high spatial resolution.
Invasive procedures can measure the firing of specific neurons, while MEG and fMRI
can give highly accurate descriptions of which sub-regions of the brain are active at
a given time step. EEG can only give the output of the typically 32, but occasion-
ally hundreds of, electrodes, which measure the microvolts transmitted through the
skull. The EEG output is a set of noisy and non-stationary time series. The indirect
nature of the measurements makes the EEG inverse problem, determining which
brain structures are active to produce a given output, intractable. Additionally, since
it only measures activity at the scalp, it provides little to no insight as to the activity
of deep structures in the brain such as the hippocampus, or even neurons in the sulci
or fissures near the skull, as the signals they produce either do not reach the scalp or
are lost in the much stronger signals produced by structures close to the skull such
as the occipital lobe. Unfortunately, the nature of the measurement procedure also
makes EEG susceptible to numerous artifacts that are not related to underlying cere-
bral activity. For example, electrocardiographic artifacts that arise from the heart
beating, electromyographic artifacts which could be recorded if a patient moves an
arm while recording, or movement of the eyes and tongue. Even the rhythmic pulse
of the alternating current of the country’s electrical system must be accounted for
before an accurate representation of the electrical activity emanating from the pa-
tient’s brain can be produced. These problems make analysis of the underlying brain
activity, and thus any classification of user intent a BCI may wish to implement, very
difficult. However, recent research has demonstrated that clever filtering and feature
extraction with EEG signals can produce meaningful and accurate classifications of
user intent.

The main way to classify user intent in an EEG-based BCI is through motor im-
agery. Motor imagery is when a subject imagines performing a certain action such
as opening or closing the left or right hand or moving a foot. Motor imagery has
been used to achieve surprisingly accurate BCI control. For example, [8] attain 98%
accuracy for one patient using a common spatial patterns (CSP) analysis of the EEG
signals. The particular brain wave activity that can be used to identify motor imagery
was first identified by [9]. Specifically, [10] demonstrate that the µ rhythm, which
appears in the motor cortex at frequencies of 7.5 to 12.5 Hz, desynchronizes on the
hemisphere of the brain contralateral to the imagined action, and increases in the
ipsilateral hemisphere. Using data of this form, [11] use empirical mode decompo-
sition (EMD) coupled with CSP to exploit the spatial relationship of the EEG signals.
With this, the authors manage to obtain an average of 77.7% accuracy among 10
participants. [12] attempt to deal with the non-stationarity of the EEG signals by
applying Morlet wavelets along with the CSP algorithm. The resulting BCI system
achieves a maximal accuracy of 91% and can be used to control a virtual car in 3
dimensions.

More recently, [7] use a left/right hand motor imagery classifier which is based
on a combination of Morlet wavelets and CSP. The system achieves an average accu-
racy of 88% across 8 subjects. Impressively, this accuracy can be attained with only
15 trials of each type of imagery for each patient, demonstrating a marked improve-
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ment in user training speed from previous studies. This paper serves as the basis
of analysis for the current project and the data used by [7] will be used for initial
results of this study.

2.2.3 Deep Learning

The main difficulty faced thus far in building an effective BCI using EEG data re-
mains effectively separating the signal from the noise and then interpreting that
signal in a meaningful way. Identifying which features of the EEG output are most
reliable as well as selecting the most appropriate EEG spectral components is crucial
to understanding the subject’s intentions. In previous EEG-based BCI studies, iden-
tification strategies have been based on the input of human experts to identify and
mark particular features of the EEG signal. Deep learning methods have the poten-
tial for automatic feature detection from a wider range of the data which may have
been previously overlooked from focusing solely on the output of a few electrodes
or frequencies. For this reason, while the overall classification accuracy is the main
goal of this study, the learned features which a trained network may utilise may be
of equal significance to future research.

Some studies have in fact applied recent advances in Deep Learning techniques
to EEG data. [13] implement a Time-Delay Neural Network (TDNN) to predict the
propagation of epileptic seizures through the brains of two patients who suffer from
the disease. They enhance the analysis by using Independent Component Analysis
(ICA) to filter the data fed into the TDNN. The authors use this process to predict
1200 observations, or three seconds worth, of EEG data from the previous 800 time
steps with very low cross-validation mean square error for one of the patients. In
subsequent research, the authors apply a CNN to predict patients’ epileptic seizures
by classifying brain activity into inter-ictal and pre-ictal states [14]. The authors con-
sider EEG recording samples of five seconds for six electrode channels. Concerned
that the literature as stands relies on unnecessary reductions in the number of ex-
tracted features and overly simplistic classification methods, four different ways of
bivariate feature extraction are tested: maximal cross-correlation, non-linear inter-
dependence, difference of short-term Lyapunov exponents, and a wavelet analysis
based measure of synchrony. These features are then used to classify the brain states
of 21 patients from the Freiburg EEG database using logistic regressions, CNNs, and
SVMs. The structure of the CNNs is based on the structure found in [15]. The
CNNs produce impressive results. For 20 out of 21 patients, they manage to achieve
zero false alarm seizure predictions, up to 99 minutes before the onset of a seizure.
These results clearly demonstrate the sensitivity and specificity a model using EEG
data can attain when using CNNs. However, both these studies are concerned with
seizure detection not with classifying motor imagery, and both use intracranial EEG
(iEEG), also known as ECoG, which requires an invasive medical procedure to place
electrodes under the skull.

[16] apply a Deep Belief Network (DBN) to the scalp EEG data produced by
four male students imagining left or right hand movement. The network shows the
ability to correctly classify the signals on average 83% of the time. The authors use

8



Chapter 2. Background 2.3. CONVOLUTIONAL NEURAL NETWORK BASICS

a window of seven seconds for each trial, during which the subjects are shown a
blank screen for two seconds, followed by an instruction for one second, and four
seconds for the motor imagery. They note that classification accuracy is much higher
during the first two seconds of motor imagery than the subsequent two seconds,
hypothesising that the concentration of the subjects falls off rapidly. The authors do
not consider classifying more than two states, leaving it to future research. They
also do not consider the application of CNNs, and the method for feature extraction
is very rudimentary, looking only at weak classifiers trained on single channel series.

This study seeks to expand the existing literature by applying CNNs to EEG data
of motor imagery that is not binary. It also seeks to improve on existing results
by incorporating some of the more successful methods of feature extraction from
previous studies, while ensuring these pre-processing stages still allow the BCI to
run in real-time.

2.3 Convolutional Neural Network Basics

This section intends to give the necessary background in convolutional neural net-
works used to generate the results of this paper. The explanations presented here
lean heavily on the following resources: [17] [18] [19] [20] [21] [22]. A number
of other good explanations of these topics can also be found online.

Convolutional neural networks are a type of feed-forward neural network origi-
nally proposed by [15]. Feed-forward networks pass an input through one or more
layers of neurons or nodes, where each neuron represents a linear combination of
its input. These linear combinations are then passed through a, typically non-linear,
activation function, and passed to the next layer, culminating in an output layer. De-
pending on the structure of these networks, they are able to learn highly non-linear
functions and have been applied with great effect, recently learning to identify scle-
rotic bone lesions [23] and to conduct pedestrian detection to aid drivers [24], as
well as other interesting applications.

2.3.1 Fully Connected Networks

The most basic feed-forward neural network is a fully connected network in which
each neuron is connected with all of the previous layer’s neurons.[21] [20] An exam-
ple with three layers is presented in Figure 2.3. Each edge in the diagram represents
a weight connecting a node to a node in the previous layer. A three layer fully con-
nected neural network can be summarized as a function f : RN → RM , where N is
the dimension of the input and M is the dimension of the outputs [25]:

f(x) = s(W 2(s(W 1x + b1)) + b2) (2.1)

where f(x) is the output of the network. W l ∈ RNl×Nl−1 is the weight matrix
between layer l and layer l − 1. wlji ∈ W l is the weight that connects the node j in
layer l with node i in layer l − 1; these are the edges in the diagram. bl ∈ RNl is the
bias vector of layer l where each bli ∈ bl is the bias associated with node i of layer l,

9
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x1

x2

x3

x4

x5

a11

a12

a13

a21

a22

Figure 2.3: Example of a fully connected neural network with five inputs, xi, comprising
layer 0, three hidden units in layer 1, and two output units in layer 2.

which serves to shift the linear combination of inputs and weights. Each s(·) is an
activation function, applied element-wise, described in more detail below, which can
be used to produce a non-linear shift in the data. Thus, the output, or activations,
al+1 of a given layer l+1 of a fully connected network can be generally described as:

zl+1 = W l+1al + bl+1 (2.2)

al+1 = s
(
zl+1

)
(2.3)

The goal of the learning task is then to learn the set of all weight matrices and
bias vectors Θ = {W,b} in the network by minimising some loss function. In a
supervised learning task, there exists a set of labelled examples D = {X,y}, where
xi ∈ X is an example and the corresponding yi is its label. Loss functions can thus
be designed that compare the predicted value of the network for a given input with
the actual label of that input. To see how a neural network can produce a prediction
for labelled data see Section 2.3.3. Several potential loss functions exist, but this
paper will focus on the categorical cross entropy:

L(Θ) = − 1

m

m∑
i=1

∑
j

p(yi = j) log
(
hjΘ(xi)

)
(2.4)

where {xi, yi} is the ith labelled example and m is the number of labelled examples.
p(yi = j) is the true probability distribution, for certain labels this means that p(yi =
j) = 1 if yi = j and p(yi = j) = 0 otherwise. hjΘ(xi) is the hypothesis of the neural
network when parametrized by Θ that the ith example belongs to the jth class, i.e.
it is the probability that the neural network assigns to the event that xi belongs to
the jth class. The closer the model is to correctly predicting the example’s label, the
lower the cross entropy score. If there are only two classes, this loss function can be
represented as binary cross entropy [22]:

L(θ) =
1

m

m∑
i=1

(
−y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i)))
)

(2.5)

The L(Θ) can be modified by adding additional terms to put constraints on the
parameters. These include the commonly used L1 and L2 regularizations, as well

10
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as other methods [22], with the intent to reduce over-fitting, a problem to which
neural networks are particularly prone.

The learning task is therefore:

Θ? = arg min
Θ

L(Θ) (2.6)

2.3.2 Gradient Descent

There are many ways to solve the minimisation problem in equation 2.6, but the
standard method for solving it is gradient descent. In mini-batch gradient descent,
the gradient is computed over a subset of size m of the training examples, referred
to as the batch or the mini-batch. Once all training examples have been used to
compute the gradient, i.e. when all mini-batches have been processed, this signifies
the end of a training epoch, one full pass through the data.

Stochastic gradient descent [19] is controlled by another hyperparameter to con-
sider, the learning rate η. η determines how large of a step is taken when the param-
eters are updated. Large values for η mean that convergence may occur quicker, but,
depending on the topology of the cost function, may cause the algorithm to miss the
global minimum or oscillate. Thus, selection of the proper η is essential to optimal
learning, as illustrated in Figure 2.4.

The algorithm is prone to becoming stuck at local minima, and so other algo-
rithms and modifications have been proposed to resolve some of these issues. This
paper focuses solely on using stochastic gradient descent to solve the learning task,
but some problems discussed in the results section indicate future research should

Figure 2.4: Example of stochastic gradient descent, taken from [26].
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investigate more sophisticated algorithms.

2.3.3 Activation Functions

Activations are a major choice point when designing neural networks. [18] They
determine how the inputs are transformed throughout the network, which is essen-
tial for the network’s ability to learn complex functions. A purely linear activation
function could be chosen at each layer, but then the outputs would be simply lin-
ear transformations of the inputs, thus ruling out the ability to learn more complex
functional forms. Thus, non-linear activations are preferred for their increased ex-
pressibility.

Traditionally, researchers have used the sigmoidal function [20]:

σ(z) =
1

1 + e−z
(2.7)

and the hyperbolic tangent [20]:

tanh(z) =
ez − e−z
ez + e−z

(2.8)

These functions have the advantage that they are non-linear, differentiable every-
where, and have easily computable derivatives, which is useful for efficient compu-
tation of gradient descent:

δσ(z)

δz
=

(
1

1 + e−z

)( −e−z
1 + e−z

)
= σ(z) (1− σ(z)) (2.9)

δ tanh(z)

δz
= 1− tanh2(z) (2.10)

Note that the advantage of each of these activations during gradient descent is that
the derivative of each is a function of the original function. Since σ(z) and tanh(z)
are calculated during the feed-forward phase, they need not be recomputed during
the back-propagation phase.

Another widely used activation function is the Rectified Linear Unit or ReLU.
[17]

ReLU(z) = max(0, z) (2.11)

This has several documented advantages over the previous functions. Since the
output is either 0 or the input, it can be quickly computed relative to the other
presented functions. Networks using the ReLU also suffer less from the vanishing
gradient problem and impose sparsity on the activations. The activation of the final
layer is typically reserved for the softmax(·) function. [19] This function has several
nice properties that make it very useful for classification and prediction:

P (Y = j|z) = softmaxj(z) =
ezj∑
i e
zi

(2.12)
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Figure 2.5: Plot of regularly used activation functions tanh(z) = ez−e−z
ez+e−z , σ(z) = 1

1+e−z ,
and ReLU(z) = max(0, z) for −2 ≤ z ≤ 2.

Equation 2.12 presents the softmax for an arbitrary class j in the classification prob-
lem. Diagrammatically, the number of classes is represented as the number of output
nodes, for example, Figure 2.3 could be interpreted as having two classes. Thus, in
the output layer z = W lal−1 + b is the linear combination of weights and inputs from
the previous layer, with zi the linear combination associated with class i in the out-
put layer. The softmax(·) is calculated by dividing by the sum of the exponentiation
of the linear combination associated with each possible class, and so has the nice
interpretation of being a probability distribution over the classes. This leads to a
simple classification rule where the hypothesis or prediction of the neural network
parametrised by Θ = {W,b} for a given input x is given by:

hΘ(x) = ŷ = arg max
j

P (Y = j|x,Θ) (2.13)

For simplicity, this paper uses tanh(·) activations for intermediate layers and uses
a softmax(·) layer for classification in the final layer. However, future research would
experiment with alternative activation functions such as the ReLU(·) for intermediate
layers.

2.3.4 Sparsely Connected Networks

The first step towards converting a fully connected neural network to a convolutional
neural network is by changing the receptive field of the neurons. The receptive field
of a neuron refers to the number of nodes in the previous layer to which the neuron
is connected. [22] For example, in Figure 2.3, the neurons in the second and third
layers have receptive fields which cover all the nodes of the previous layer, hence
the fully connected nature of the network. The network presented in Figure 2.6 has
a second layer whose neurons have a receptive field including only three nodes in
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Figure 2.6: Example of a sparsely connected network, where the receptive field of the
neurons in the second layer is three as opposed to five in the example network in Figure
2.3. The output layer is fully connected to the second layer.
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(a) Stride = 1
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(b) Stride = 2

Figure 2.7: Example of a sparsely connected layer with a receptive field of three and
strides = 1 or 2.

the input layer. Since neurons at each layer are not connected to every neuron in
the previous layer, this network can be referred to as a sparsely connected network.
Reducing the receptive field of the neurons has the advantage of reducing the num-
ber of weights the model needs to learn, from 21 in the fully connected network to
15 in the sparsely connected network, which can reduce the chances of over-fitting
and improve computation time. While this may reduce the expressibility of the net-
work, with valid assumptions on the receptive field, this may not negatively impact
accuracy and may actually improve convergence during learning.

Another way to reduce the number of connections in the network is to introduce
the concept of stride. Stride refers to the spacing of the receptive fields in the pre-
vious layer. Focusing on the sparsely connected layer, Figure 2.7 presents a second
layer with a stride of one and receptive field of three (2.7(a)) and one with a stride
of two and receptive field of three (2.7(b)). This once again reduces the number
parameters needed.
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Figure 2.8: Example of a convolutional neural network. Edges of the same colour signify
shared weights, thus giving the network its name.

2.3.5 Convolutional Neural Networks

The number of parameters can be further reduced by imposing shared weights
among the receptive fields of each neuron in the layer. [22] This means that be-
tween receptive fields weights in the same position are constrained to be the same.
Figure 2.8 illustrates a sparsely connected layer with shared weights. Since the same
weights are applied in the same configuration across the input nodes, a sparsely con-
nected layer can therefore be thought of as a convolution of a filter of a certain shape
across the layer’s inputs, hence the name, convolutional layer. The convolutional
layer imposes further assumptions on the structure of the input data, thus reducing
the expressibility of the network, however, it can massively reduce the number of
parameters the model needs to learn, reducing the chances of over-fitting and im-
proving convergence and computation time. In the toy example in Figure 2.8, the
model need only estimate 9 weights compared with 21 for the fully connected net-
work. Each layer can also be designed to learn multiple filters, thus improving the
expressibility.

A nice property of the convolutional layer is that the filters can be viewed as be-
ing applied to data in the input that is next to each other. [17] Indeed, in its original
application the convolutional neural network was first applied to 28 × 28 images of
hand written digits in the MNIST data set [15]. The convolutional filters learned
in the first layer were essentially edge detectors, which succinctly parse the spatial
information in the image and can be combined in later layers to form more complex
features. The convolutions can also be applied by the same principle to other data
such as time series that display similar properties. In this paper, convolutions will
be defined across the time dimension of EEG signals and the spatial dimension of
electrodes which are physically close to each other. Both of these will be explored
in more detail in Chapter 3. Figure 2.9 demonstrates an example of applying two
dimensional filters to two dimensional input data. Note that the output data is also
commonly referred to as the feature maps.

The convolutional layer is typically paired with a sub-sampling or pooling layer.
Typical options for this layer are either average-pooling or max-pooling. [20] In
an average-pooling layer, the elements of the input within a certain window are
averaged together to form the output. In a max-pooling layer, the maximal element
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(a) Example of a learned 3 × 3 convolutional filter passing over a 4 × 4
input with stride = 1 to produce a 2× 2 output.
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(b) The same input with zero padding of thickness 1 on each side. Now passing the learned 3 × 3
filter over the input with stride one produces a 4× 4 output. Zero padding is sometimes applied to
the input data if the researcher wishes to have direct control over the size of the feature map.

Figure 2.9: Examples of two dimensional convolutional filters applied to a two dimen-
sional input.
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Figure 2.10: Example of 2× 2 max-pooling with stride = 2 on a 4× 4 input.

within each window of the input data is used as the output, an example of which
is presented in Figure 2.10. This paper uses max-pooling layers as they can further
reduce the scale of the input, which can greatly reduce the number of parameters the
model needs to compute. It has another nice property in that it makes subsequent
layers indifferent to slight translations in the input data. [22] For example, if the
learning task is to identify an increase in neural activity within a given window, it
matters less that it occurs at the fifth time slice or the sixth times slice, than whether
it occurred at all. In this way, the max-pooling layer can also aid in convergence.
However, max-pooling is a blunt tool which drops potentially meaningful data from
consideration. Too much max-pooling, i.e. windows that are too large in one or more
of the dimensions, may lose too much data for the network to distinguish between
classes, thus reducing accuracy.

Convolutional neural networks can also be trained using stochastic gradient de-
scent with only slight modifications to take into account shared weights and max-
pooling, and this is the process through which learning will be achieved in this paper.
The exact structure of the convolutional neural network used is presented in Section
3.6.

2.4 Hardware and Software

A major concern with deep neural networks is the amount of time it takes for the
learning to converge. Deep neural networks with thousands of nodes in each layer,
along with large amounts of training examples, mean that training a neural network
can take hours, days, if not weeks, even on a high quality CPU. For this reason, most
modern attempts at training deep learning models are carried out using parallel
processes on GPUs. Most of these programs are written using CUDA [27], which was
created by NVIDIA for use on their GPUs. All experiments done for this study are
carried out on one of NVIDIA’s most powerful GPUs, the Tesla K40c, [28]. This GPU
was graciously provided by NVIDIA for use with this study. This GPU has 2880 CUDA
cores, 12 GB of RAM, and is capable of 1.43 Tflops on double precision floating point
numbers. The Tesla k40c has been shown to improve throughput by about 15 times
over a CPU for a baseline problem. In an exploratory phase of this paper, even
bigger improvements were recorded with the same logistic regression running for
580 minutes on a CPU taking only 15 minutes when run on the Tesla. This speed
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up is of course very useful when searching for valid hyperparameters such as the
learning rate, depth of the network, and number of nodes in each layer.

To take advantage of the GPU, the deep learning algorithms must be programmed
in CUDA, which utilises C++. However, there are many possible libraries that can
be used which implement the CUDA functionality with additional capabilities specif-
ically designed for machine learning. This study uses Theano for the implementation
of the machine learning algorithms. The code used to create the neural networks is
based on Theano implementations provided by [25]

18



Chapter 3

Contribution

3.1 Data

The data are produced from motor imagery experiments carried out by [7] and [29].

3.1.1 Left and Right Hand Motor Imagery Data

The data provided by [7] is comprised of eight male subjects, aged between 23 and
29 and without maladies. Each subject was asked to perform 30 motor imagery trials
during which they imagined opening and closing either the left or the right hand, 15
trials were performed for each hand for each subject. Each trial is defined as a ten
second period, starting with a sound to draw the subject’s attention to the screen,
after one second a cross appeared in the center of the screen, and at two seconds an
arrow indicating left or right appeared on the screen for the subject to imagine the
corresponding action for the following eight seconds. The description of the rest of
the experimental set up from [7] is reproduced below:

The participants were seated in a comfortable chair approximately
70 cm away from a digital computer screen. Conventional headphones
were used to present the auditory stimuli, which were played at a safe
volume level according to the guidelines given by The National Insti-
tute for Occupational Safety and Health (NIOSH). The computer screen
was surrounded by white plastic panels in order to reduce undesired vi-
sual information from the environment and subjects predisposition to
briefly look away from the screen once fatigued, causing ocular artefacts.
EEG signals were acquired with 32 Ag-AgCl referential active electrodes
placed on a Easy Cap recording cap (EASYCAP GmbH, Herrsching, Ger-
many), and arranged according to the international 10-20 system and
then amplified by BrainVision actiChamp (Brain Products GmbH. Gilch-
ing, Germany) and recorded with PyCorder software (Brain Vision LLC,
Morrisville, USA). The latter also offers a graphical user interface to ad-
just the impedance between subjects scalp and electrodes: before each
recording, the impedance was adjusted via common procedure to be be-
low 15 k for every electrode. The channel placed in the right mastoid
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Figure 3.1: International 10-20 system layout of the 31 electrode channels used in the
left and right hand motor imagery data provided by [7]. TP10 on the right mastoid
would be the 32nd electrode, but has been removed as it is used as the reference elec-
trode.

(TP10) was chosen as reference. A notch filter at 50 Hz was also ap-
plied by the actiChamp in order to remove noise from the standard AC
electrical line current.

The electrode layout used is displayed in Figure 3.1. As described above the the
channel placed at the right mastoid (TP10) was used as a reference, meaning the
data for each trial consists of 31 electrode channels recording electric activity in µV
at 500Hz. Thus, each trial r ∈ R31×5000.

3.1.2 Cybathlon Motor Imagery Data

The second dataset is provided by [29] and seeks to mimic the format of the Cy-
balthon racing video game described in Section 2.1. The experimental set up is very
similar to that of [7], but instead of trials with an arrow indicating left or right,
the subjects are now presented a random video of game-play in which the in-game
avatar runs across one of the four possible patches, green, yellow, or purple pads,
and the grey non-pad areas. The subjects are then asked to imagine one of four ac-
tions at the start of the respective area: opening and closing the left hand (purple),
opening and closing the right hand (green), pushing down with both feet (yellow),
and squeezing the abdominal muscles (grey). The experimental setting again uses
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Figure 3.2: International 10-20 system layout of the 31 electrode channels used in the
grey, green, yellow, and purple motor imagery data provided by [29]. TP10 on the right
mastoid would be the 32nd electrode, but has been removed as it is used as the reference
electrode.

the right mastoid channel (TP10) as the reference channel, but uses a slightly dif-
ferent electrode layout presented in Figure 3.2. In addition, electrodes were placed
on the left and right legs, left and right arms, and the stomach, as well as recording
an EOG sensor for verifying the individuals are not actually performing the actions
and to aid in the rejection of muscular-skeletal artefacts. This leaves 31 electrode
channels on the scalp recording electrical activity in µV at 200Hz.

3.1.3 Data Preprocessing and Artefact Rejection

For both datasets, artefacts were rejected by z-transforming each channel and ap-
plying a threshold of 25 to the cumulative z-score. Any trials that exceeded this
were discarded, as in [7]. For a given trial and a given channel, the z-score is the
following:

zt =
xt − µ
σ

(3.1)

Here, µ is the mean of the observations across time and σ is similarly the standard
deviation of those observations. These z-scores were then summed across channels
(still for a given trial) and those trials in which these cumulative z-scores were found
to be too high were discarded. The number of trials kept and discarded for each
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Table 3.1: Number of trials for each subject, left-right imagery

Subject Trials kept Trials rejected
L R L R

MM 4 4 11 11
KP 15 13 0 2
AS 14 15 1 0
BM 13 14 2 1
AM 13 15 2 0
MX 13 13 2 2
GZ 22 19 3 6
AF 26 25 4 5

Table 3.2: Number of trials for each subject, 4-class imagery

Subject Trials kept Trials rejected
Grey Green Yellow Purple Grey Green Yellow Purple

EG 30 28 21 18 4 3 3 1
LG 89 93 77 66 21 5 5 4

subject can be found in Tables 3.1 and 3.2. Subsequently, the raw channel data had
linear trends removed and a 6th order Butterworth bandpass filter between 1 Hz and
30 Hz was applied.

3.1.4 Voltage and Transforms

Even after this preprocessing, the voltage data remains very noisy, as presented in
Figure 3.3. Deciphering any underlying structure in these plots is of course a well
documented problem in the literature and the main thrust of this project. Although
extracting meaningful structure directly from the raw voltage data may be preferable
for computation time, during the real time runs of the BCI and for the generality of
the solutions learned, it may be difficult for machine learning algorithms to handle
such data. For this reason, it may be necessary to transform the data into a form in
which structure can be more readily identified.

Signal processing has been used to great effect in classifying EEG signals. The
two main algorithms are the Fourier Transform and the Morlet Wavelet. However,
since these are simple linear transforms applied to each channel, it is reasonable to
assume that a convolutional layer may be able to learn a useful approximation of
each. Thus, it may not be necessary to apply these transformations, with the prefer-
able property of being able to rely on the voltage data. Therefore, the results include
the application of the neural networks to both transformed and not transformed
voltage data.
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Figure 3.3: Electrical activity in µV for the 31 electrodes used in the left and right hand
motor imagery experiment. These data come from the first trial of the left hand motor
imagery task for the subject AF in the study by [7]. Each electrode channel has been
preprocessed by linear detrending and application of a 6th order Butterworth bandpass
filter between 1 Hz and 30 Hz. Each subplot has a range of -20 to 20 µV .

3.2 Approximating Real-time Analysis

As the intention of the neural network is to be used to classify user intent in a
real-time BCI, the labelled examples they are trained on must be constructed to re-
flect this fact. For a given subject, after preprocessing, there exists a data matrix
V ∈ Rn×C×T , where n is the number of trials, C is the number of electrode channels,
and T is the number of voltage readings. T is not necessarily the full 10 seconds of
EEG measurements for each trial, but only those selected for analysis. It is possible
that individuals tire rapidly during the motor imagery task, as has been documented
in some cases such as [16], as their minds begin to wander after the initial stimulus
and focus. If this is the case, then observations towards the end of the trial may not
accurately represent a motor imagery task, introducing another degree of freedom
which may impact the accuracy of the model. Indeed, how much of the trial data
in the time dimension is used becomes important for achieving meaningful learning
discussed in the results. A potential counter argument to cutting off the data before

23



3.2. APPROXIMATING REAL-TIME ANALYSIS Chapter 3. Contribution

the 10 second mark is that data that is towards the end of the trial could still rep-
resent legitimate motor imagery by the subject, and so data is being thrown away,
which may lead to poor out of sample performance. However, even if the subject is
still imagining the motor task at the end of the 10 second trial, the signal may be a
lot weaker, and so the label for the individual’s intent may be implicitly thought of
as imagining motor task m at 8 seconds after stimulus. Given the problem setting in
which a correct command must be sent as the avatar reaches a pad in the Cybathlon
race, correctly predicting a motor imagery task 8 seconds after stimulus is also not
needed nor desirable.

There will be a trade off between how accurate a classification can be and how
fast the classification can be obtained. Feeding more data into the classifiers should
allow them to pick up on more distinguishing characteristics, but larger input exam-
ples will increase computation time online, and may reduce sensitivity to changing
user intent. For this reason, the choice of the time dimension of the training exam-
ples may distinguish an excellent BCI classifier from a poor one. 50 and 100 time
slices were chosen as a good starting point for this analysis, as at 500 Hz this repre-
sents 0.10 or 0.20 seconds of data, respectively, and at 200 Hz, this represents about
0.25 or 0.50 seconds of incoming data, respectively.

3.2.1 Voltage Data

Extracting the labelled training examples is slightly different for the Morlet trans-
formed data and the voltage. For the voltage data, to extract the maximal amount
of training examples from the experimental data, the examples were constructed
by taking each 100 time observations with maximal overlap. For example, the first
training example would include the time observations 0, . . . , 99, the second would
include the time observations 1, . . . , 100, etc. By reshaping in this manner, the sub-
ject data matrix V becomes X ∈ RN×C×τ , where N is the number of examples, given
by N = n(T − τ + 1), and τ is the length of the time window used. For the voltage
data, X is now the matrix of examples to be used in the training.

To generate the labels for the examples, the first examples from a trial are given
the label 0 for no thought, the first example to be labelled as a motor imagery exam-
ple is the first example that includes a time slice after the motor imagery task begins.
This is the first example to include a time slice after the two second mark for each
trial. This and all subsequent examples are labelled as the motor imagery task m of
the given trial. The no thought examples may be dropped depending on the desired
comparisons. This results in a vector of labels y ∈ RN . This process is illustrated in
Figure 3.4.

3.2.2 Morlet Wavelet Data

Applying a Morlet wavelet transform allows for some preprocessing of the voltage
data to extract relevant time and frequency information. It helps to pick out activity
in the voltage data signal at and around the wavelet’s central frequency. The appli-
cation of the Morlet wavelet transformation is different, but can also approximate
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a real-time setting. Since the Morlet wavelet can be calculated before the run-time,
using a support of four seconds, it can be convolved with the incoming data rapidly.
This means that the system would have to wait for 4 seconds before beginning to
classify incoming data with a fully supported transformation when the system is first
turned on, but this is not a limiting factor for the problem setting.

The Morlet function Ψ(t, f0) is defined as:

Ψ(t, f0) =
1√
σt
√
π
e
− t2

σ2t ej2πf0t (3.2)

For each trial r and for each channel c in V, the Morlet wavelet is applied as
follows:

W r,c(a, t) =
1√
a

∫ ∞
−∞

Vr,c(t)Ψ
(τ − t

a
, f0

)
dτ (3.3)

From past research, we know that the rhythm of interest for motor imagery tasks,
the µ-rhythm, ranges from 7-12 Hz. [30] [31] Following [7], the central frequency
of the wavelet, f0, is then defined to be 10 Hz to pick up on features in the relevant
frequency range. Similarly following [7] and [32], m is set to 14, where m = f0

σf

and σf = 1
2πσt

. Doing so sets the time and frequency resolutions, which depend on
σt and σf , respectively. Once we compute W r,c, we transform it element-wise to
get the power, which is the square of the amplitude. For an element w in W r,c, the
transformation is |w|2. The power is what is used from here on out when referring
to the Morlet-transformed data.

Only those sections of the data which have enough voltage observations to span
the wavelet convolution are used. This leaves the transformed data matrix W ∈
Rn×C×TW for each subject, where TW = T − 4Fs + 1, where 4Fs is the length of the
Morlet wavelet with -2 to 2 second support with sampling frequency Fs. W is then
reshaped to form the training examples as with the voltage data above, to produce a
matrix of examples of a given time slice length of Morlet wavelet transformed voltage
data. Again, maximal overlap of the time slices is used to obtain the greatest possible
number of training examples. This produces the matrix of examplesXW ∈ RNW×C×τ ,
where τ is the length of the time slice andNW = TW−τ+1 is the number of examples.

If the label for each example is defined as above, with the first example to be
labelled as the trial’s motor imagery task to be the first which includes data after the
stimulus, then the first example in XW has label m for the motor imagery task in
the trial for which the example is derived. Unfortunately, this means that there are
no no thought labelled examples in XW as there are not enough observations at the
beginning of the trials to apply the Morlet wavelet to solely no thought data. Thus,
the label for each example is simply m, the motor imagery task for the trial from
which the example is derived. The labels are stored in yw ∈ RNW . This process is
illustrated in Figure 3.5.

3.3 Defining Convolutions in Electrode Space

A major question for applying convolutional neural networks to the scalp EEG data
is how to define the convolutional filters to extract information from both the time

25



3.3. DEFINING CONVOLUTIONS IN ELECTRODE SPACE Chapter 3. Contribution

X
,
m
a
trix

o
f
ex
a
m
p
les

R
a
w

T
ria

l
D
a
ta

S
tim

u
lu
s

N
o
T
h
o
u
gh

t,
2
s.

U
sed

M
otor

Im
agery,

6s.
U
n
u
sed

M
otor

Im
agery,

2s.

Figu
re

3.4:
Exam

ple
ofhow

the
trialdata

is
converted

into
a

m
atrix

oflabelled
exam

ples,
X

,w
hen

using
voltages.

In
this

exam
ple,the

last
tw

o
seconds

of
EEG

readings
are

dropped,signified
by

the
grey

area.
The

overlapping
red

and
yellow

fram
es

dem
onstrate

how
the

trialis
chunked

using
tim

e
slice

length
τ.

N
ote

that
the

first
exam

ple
to

be
labelled

as
the

m
otor

im
agery

task
is

the
first

26



Chapter 3. Contribution 3.3. DEFINING CONVOLUTIONS IN ELECTRODE SPACE

M
o
rl
e
t
T
ra

n
s.

X
W
,
m
at
ri
x
of

ex
am

p
le
s

R
a
w

T
ri
a
l
D
a
ta

S
ti
m
u
lu
s

N
o
T
h
ou

gh
t,
2s
.

U
se
d
M
ot
o
r
Im

ag
er
y,

6s
.

U
n
u
se
d
M
o
to
r
Im

ag
er
y,

2s
.

Fi
gu

re
3.

5:
Ex

am
pl

e
of

ho
w

th
e

tr
ia

ld
at

a
is

co
nv

er
te

d
in

to
a

m
at

ri
x

of
la

be
lle

d
ex

am
pl

es
,X

W
,w

he
n

fir
st

tr
an

sf
or

m
in

g
th

e
da

ta
w

it
h

a
M

or
le

t
w

av
el

et
w

it
h

4s
su

pp
or

t.
In

th
is

ex
am

pl
e,

th
e

la
st

tw
o

se
co

nd
s

of
EE

G
re

ad
in

gs
ar

e
dr

op
pe

d,
si

gn
ifi

ed
by

th
e

gr
ey

ar
ea

.
Th

e
ov

er
la

pp
in

g
re

d
an

d
ye

llo
w

4s
fr

am
es

on
th

e
ra

w
tr

ia
ld

at
a

de
m

on
st

ra
te

ho
w

th
e

M
or

le
t

w
av

el
et

tr
an

sf
or

m
s

4s
of

vo
lt

ag
e

tr
ia

ld
at

a
in

to
a

si
ng

le
M

or
le

t
tr

an
sf

or
m

ed
ob

se
rv

at
io

n,
th

e
lig

ht
gr

ey
se

gm
en

ts
.

Th
e

ov
er

la
pp

in
g

gr
ee

n
an

d
pu

rp
le

fr
am

es
on

th
e

tr
an

sf
or

m
ed

da
ta

de
m

on
st

ra
te

ho
w

th
e

tr
an

sf
or

m
ed

da
ta

is
ch

un
ke

d
us

in
g

ti
m

e
sl

ic
e

le
ng

th
τ
.

N
ot

e
th

at
al

l
ex

am
pl

es
in

X
W

ar
e

la
be

lle
d

as
th

e
m

ot
or

im
ag

er
y

ta
sk

.

27



3.3. DEFINING CONVOLUTIONS IN ELECTRODE SPACE Chapter 3. Contribution

and spatial dimensions. In its original application, the convolutional neural network
was applied to classifying handwritten images, with the implicit assumption that ad-
jacent pixels in the image represent regions of the real life object which are a similar
distance apart. One can think of each example for the matrixX as a C×τ image, with
an electrode channel axis of size C and a time axis of size τ . Convolutional filters that
have an electrode channel dimension greater than one will convolve the neighbour-
ing electrodes, thus incorporating the spatial information between the electrodes.
It seems intuitive that the spatial information may be of great use as an individual
electrode may miss the activity of an underlying brain structure that a convolution of
electrodes in the same vicinity on the scalp — and thus covering similar underlying
brain structures — may identify.

The problem is how to represent the neighbouring electrodes so that the convo-
lutions can be applied in a way that hews to the anatomical reality. One could think
of treating each electrode as a pixel placed in relation to the other electrodes along
the scalp. A convolution could be achieved by padding the the pixels between the
electrodes with zeros. However, it is not clear how much to pad the space between
the electrodes to achieve an approximation of equidistance. Padding with zeros be-
tween electrodes on the scalp would also imply that these constructed electrodes
were reading no electrical activity, a false assumption given the biological reality.
Instead, one could think of interpolating the voltages or transformed voltages in the
areas between the electrodes and using the interpolated image of the electrical ac-
tivity across the scalp to convolve over. An example of this approach can be seen in
Figure 3.6 below.

However, this again has the undesirable quality of essentially assuming the valid
construction of interpolated electrodes, as well as the difficulty of achieving the cor-

Figure 3.6: A possible example of how one might apply a spatial convolution to the
electrodes after interpolating brain activity between them. This approach was not used.

28



Chapter 3. Contribution 3.3. DEFINING CONVOLUTIONS IN ELECTRODE SPACE

rect interpolation of the points on the scalp, a non-trivial task even with the assump-
tion of a hemispherical skull.

Instead, a more elegant solution, the one used in this paper, is to find the dis-
joint nearest neighbours for each electrode and to organise the channel dimension
of X by the groupings. Disjoint nearest neighbours means that from the set of elec-
trodes, groups of n electrodes are found such that no electrode is in more than one
group and the sum of the distances between electrodes in a group is minimised. In
this way, a convolutional layer may be defined that incorporates spatial informa-
tion from electrodes on the scalp above similar regions of the brain and reduces the
dimensionality of the input data in the spatial direction. (An example of groups
formed in such a manner can be seen in Figures 3.9 and 3.10.) In other words, we
find groups g1, g2, ..., gk, where gi = {nodei1, ..., nodein}, such that g1∩(g2∪ ...∪gk) = ∅
and g2∩(g1∪g3∪ ...∪gk) = ∅ and so on for each group. Within each group — indeed,
it is the basis on which groups are selected — the total distance between every pair
of electrodes is minimized:

min
∑
j

∑
k>j

dist(nodej, nodek) (3.4)

This is explained more rigorously in Algorithm 1.
In order to separate electrodes into such groups, we must define some measure of

the distance between the electrodes. An obvious candidate is the Euclidean distances
between electrodes along the scalp. These distances vary between individuals, but,
the international 10–20 system is designed so that the relative area covered by the
electrode array is consistent between individuals. The Easy Cap recording cap [33]
thus comes with a layout of relative distances between the electrodes projected onto
two dimensional space. The problem with defining Euclidean distances between the
electrodes in the two dimensional space is that when electrodes near the base of the
skull, such as those on the mastoids TP9 and TP10 (see Figures 3.1 and 3.2), are
projected onto the two dimensions, they appear much closer to the other electrodes
than along the scalp distance would suggest, thus erroneously implying that they
cover similar regions of the brain. Thus, along the scalp Euclidean distances would
be more indicative of electrodes covering similar regions.

To quickly compute the along-the-scalp distances, the skull is assumed to be a
hemisphere. The 2D schematic of electrode placements is assumed to be a vertical
projection of the surface of the hemisphere onto the plane at the bottom of the
hemisphere. From this assumption, the surface coordinates are reconstructed. The
spherical projection of the electrode locations is then given by:

z =
√
r2 − x2 − y2 (3.5)

from the equation for a sphere centered on the origin, with radius r and the relative
locations x and y of the electrodes provided by the Easy Cap using an international
10–20 layout. Figures 3.7 and 3.8 present how the electrode layouts from each of
the motor imagery experiments appear when projected onto a hemispherical skull.

The Euclidean distance along the scalp between any two electrodes is then sim-
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(a) Spherical projection viewed from
above, front of head at top.

(b) Spherical projection viewed from
side, front of head at left.

Figure 3.7: Spherical projection of electrodes used in left and right hand motor imagery
experiment, from 2D layout in Figure 3.1.

(a) Spherical projection viewed from
above, front of head at top.

(b) Spherical projection viewed from
side, front of head at left.

Figure 3.8: Spherical projection of electrodes used in grey, green, yellow, and purple
motor imagery experiment, from 2D layout in Figure 3.2.

ply the arc length between the two, given by:

s = r arccos

(
v1

T · v2

‖v1‖‖v2‖

)
(3.6)

where v is the vector of Cartesian coordinates of an electrode, and ‖v‖ is the mag-
nitude of the vector. Given a matrix of three dimensional Cartesian coordinates of
electrode locations L ∈ RC×3, a distance matrix D ∈ RC×C containing the distance
along the scalp between each electrode can be computed as:

D = r arccos

(
1

r2
LLT

)
∈ RC×C (3.7)

where arccos is applied element-wise. Since all electrode locations fall on the surface
of the hemisphere centered at the origin, it holds that ∀v ∈ L, ‖v‖ = r.
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A K-Disjoint grouping of N electrodes is defined as:

GK =

{
g0,g1, . . . ,gbNKc−1 | ∀gi, |gi| = K;∩b

N
K c−1

i=0 gi = ∅
}

(3.8)

i.e. it is a set of
⌊
N
K

⌋
groups, gi, of electrodes each of which contains K electrodes,

and no electrode falls in more than one gi. Let GK be the collection of all possible
K-Disjoint groupings for a set of N electrodes. With a distance matrix D, one can
then find the K-Disjoint Nearest Neighbours grouping, defined as:

GK = arg min
GK∈GK

∑
gi∈GK

d(gi) (3.9)

where d(·) is a function that uses D to calculate the sum of the distances between
each electrode pair in a group of electrodes. This function is presented in Algorithm
2. Thus, the K-Disjoint Nearest Neighbours grouping GK is the K-Disjoint grouping
for which the sum of the total distance within the electrode groups is minimised.

Algorithm 1 K Disjoint Nearest Neighbours

1: Let C = the set of possible combinations
(
N
K

)
from N possible electrodes

2: procedure GETDISJOINTNEARESTNEIGHBOURS(K, D, C)
3: if |{ci|ci ∈ c, c ∈ C}| < K then
4: Return ∅, 0 . If not enough electrodes to form group, exit algorithm
5: end if
6: mD =∞ . Initialize total min distance
7: G = ∅ . Initialize set of disjoint groups
8: for each combination c ∈ C do
9: C̃ = C/{x|x ∈ C and x ∩ c 6= ∅} . Remove groups overlapping with c

10: minDist =∞ . Initialize min distance for subset
11: grouping = ∅ . Initialize set of groups for subset
12: for each c̃ ∈ C̃ do . Optimize recursively over the remaining set
13: groups, distance = GETDISJOINTNEARESTNEIGHBOURS (K, D, C̃)
14: if distance < minDist then
15: minDist = distance
16: grouping = groups
17: end if
18: end for
19: if minDist+ groupDist(c) < mD then . Check new total dist < abs min
20: G = grouping ∪ c . Add c to set of disjoint groups
21: mD = minDist+ groupDist(c) . Update total min dist
22: end if
23: end for
24: Return G, mD . Return disjoint groups, total min dist
25: end procedure

The main algorithm for finding these K-Disjoint Nearest Neighbour groupings is
Algorithm 1. It is defined recursively, using the distance matrix D, the size of each
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Algorithm 2 Group Distance

1: procedure GROUPDIST(c, D)
2: groupDistance = 0 . Initialize total dist in group
3: if |c| = 0 then . If c is empty, exit algorithm
4: Return groupDistance
5: end if
6: for i ∈ {0, 1, . . . , |c| − 1} do . Sum up dist between all pairs of electrodes
7: for j ∈ {i+ 1, i+ 2, . . . , |c|} do
8: groupDistance = groupDistance+ Di,j

9: end for
10: end for
11: Return groupDistance . Return total dist in group
12: end procedure

group K, and the set of all possible K-sized combinations of electrodes C as inputs.
K can in principle be whatever size the user chooses, smaller or equal to the total
number of electrodes N , of course. For this project, time constraints meant that K
was only chosen once, although in future work it would be good to consider how the
choice of K affects the accuracy in estimating the full model. K was chosen to be
3 for two reasons. First, it seemed inadvisable to group together electrodes which
may be reading activity in entirely different parts of the brain, which may happen
if groups size is too large. Second, using groups of 3 in the first convolutional layer
makes for a natural progression to the second convolutional layer, which would then
convolve over pairs of groups. Additionally, since N = 31, using groups of 2 or 4
would result in dropping some data in either the first or second convolutional layer.

The algorithm works by trying to group different combinations of electrodes and
keeping track of the set of groups and the total minimum distance achieved with
a particular combination. The total minimum distance is the sum of pairwise dis-
tances between electrodes in each group, with the resulting distances in each group
summed together across groups. For each possible K-sized electrode combination,
the algorithm separates the group from the remaining electrodes and recursively
reruns the algorithm on the now smaller set. As improvements are made on the
minimum total distance measure, the groups are added to the set of disjoint groups,
which is outputted once the algorithm finishes running together with the measure
of total minimum distance achieved. Algorithm 2 is a supporting function called by
Algorithm 1. It finds the pairwise distances between each distinct pair of electrodes
in a group and sums these distances together to return the so-called group distance.

Unfortunately, the method for calculating GK requires a massive search space,
which scales very poorly with the number of electrodes – on the order of O(nn).
To avoid this difficulty, the electrodes are initially separated into three general bins:
front of head electrodes, top of head electrodes, and the rest. These bins are pre-
sented in Table 3.3. A modified version of Algorithm 1, which improves efficiency
by keeping track of the absolute minimum distance and the distance for a given
grouping so far, is then applied to each bin and the results appended to form GK.

The resulting G3, the 3-Disjoint Nearest Neighbours grouping, for the left and
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(a) Initial general bins for left and right hand motor imagery experiment lay-
out.

Grouping Electrodes
Front Fp1, Fp2, F7, F3, Fz, F4, F8, FC1, FC2
Top C3, CP5, CP1, Pz, P3, P7, P4, P8, CP6, CP2, Cz, C4
Rest FC5, FC6, FT10, FT9, O1, O2, ,Oz, T7, T8, TP9

(b) Initial general bins for grey, green, yellow, and purple motor imagery experi-
ment layout

Grouping Electrodes
Front Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, Cz
Top T7, C3, C4, T8, CP5, CP1, CP2, CP6, Pz
Rest O1, O2, Oz, P3, P4, P7, P8, PO10, PO9, TP9

Table 3.3: General initial groupings of electrodes to find the K-Disjoint Nearest Neigh-
bours grouping.

right hand motor imagery experiment is presented in Figure 3.9(a) and the resulting
G3 for the grey, green, yellow, and purple motor imagery experiment is presented in
Figure 3.10(a). Note that for each layout, TP9, the electrode on the left mastoid, is
left without a group. For simplicity, the TP9 channel is dropped from all subsequent
analysis. These are the electrode groupings that are used for all subsequent analysis,
though future work could analyse the robustness of the results to choosing different
K values.

3.4 Verification of Groups Using Correlations

Since the intention of the K-Disjoint Nearest Neighbours grouping using Euclidean
distances along the scalp is to group electrodes which contain similar statistical in-
formation from being above similar brain structures, an easy way to verify that this
grouping is accomplishing this is to check the correlations between the electrodes.
In each experiment, each subject has the preprocessed data matrix V ∈ Rn×C×T ,
where n is the number of trails, C is the number of electrode channels, and T is the
number of voltage readings. For a given experiment, subject, trial r, and channel c,
ec = Vr,c ∈ R1×T , is a time series of voltage recordings for the electrode channel c.
The correlation between two electrode channels in a given trial is thus:

ρi,j =
cov(ei, ej)

σeiσej
=

T∑
k=1

(ei
k − ēi)(ej

k − ēj)

T 2σeiσej
(3.10)

where ēj is the mean and σej is the standard deviation of ej. For subject s and trial
r, the correlation matrix is:

ρs,r = [ρi,j] ∈ RC×C , i, j ∈ {1, 2, . . . , C} (3.11)
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(a) Disjoint groups produced by Euclidean dis-
tance along scalp assuming a hemispherical skull.

(b) Disjoint groups produced by correlation dis-
tance, calculated as the average correlation be-
tween electrodes over all trials and subjects.

Figure 3.9: Disjoint nearest neighbour groups identified for the left and right hand mo-
tor imagery experiment, using both euclidean distance along the scalp and correlations.

For each experiment, calculate the average correlation matrix across all subjects and
trials:

ρ̄ =
1

n+ |S|
∑
s∈S

n∑
r=1

ρs,r (3.12)
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(a) Disjoint groups produced by Euclidean dis-
tance along scalp assuming a hemispherical skull.

(b) Disjoint groups produced by correlation dis-
tance, calculated as the average correlation be-
tween electrodes over all trials and subjects.

Figure 3.10: Disjoint nearest neighbour groups identified for the grey, green, yellow,
and purple motor imagery experiment, using both euclidean distance along the scalp
and correlations.

The average correlation matrix gives an indication of how related is the information
from each electrode channel, and one would expect the correlation between elec-
trodes above the same regions of the brain to have high positive correlation, while
those above different regions may have low or negative correlation.

Tables 3.4 and 3.5 present the top five most correlated electrode channels for
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Electrode Top 5 Highest Correlation
Fp1 Fp2 F3 Fz F7 F4
Fz FC1 FC2 F4 F3 Cz
F3 Fz FC1 FC5 Fp1 FC2
F7 FT9 FC5 Fp1 F3 Fz
FT9 F7 T7 FC5 TP9 CP5
FC5 F3 C3 FC1 F7 CP5
FC1 Fz FC2 Cz F3 C3
C3 CP1 FC1 Cz CP5 F3
T7 FT9 CP5 FC5 F7 C3
TP9 FT9 CP5 T7 P7 FC5
CP5 P3 C3 CP1 FC5 T7
CP1 Cz C3 Pz CP2 P3
Pz CP2 CP1 P3 P4 Cz
P3 Pz CP1 CP5 C3 CP2
P7 O1 P3 TP9 CP5 Oz
O1 Oz P3 O2 Pz P7
Oz O1 O2 P3 Pz P4
O2 Oz P4 O1 P8 Pz
P4 Pz CP2 CP6 O2 C4
P8 O2 P4 Oz CP6 Pz
CP6 P4 C4 CP2 Pz Cz
CP2 Pz Cz C4 CP1 P4
Cz FC2 FC1 CP1 CP2 C4
C4 CP2 FC2 Cz CP6 F4
T8 FC6 CP6 C4 F8 FT10
FT10 F8 FC6 Fp2 F4 T8
FC6 F4 F8 C4 FC2 Fz
FC2 Fz FC1 Cz F4 C4
F4 Fz FC2 FC1 FC6 F3
F8 FC6 Fp2 FT10 F4 Fz
Fp2 Fp1 F4 Fz F8 F3

Table 3.4: Electrodes used in the left and right hand motor imagery experiments by [7]
with the five electrodes with the highest average correlation coefficient across all trials
and subjects, ordered from left to right in descending correlation. For each electrode,
the highlighted electrodes are the group members determined by the disjoint groups of
three algorithm using euclidean distance between electrodes across the scalp.

each electrode channel in the left and right hand motor imagery and the grey, green,
yellow, and purple motor imagery experiments, respectively. The top five for each
electrode are found from ρ̄. The entries highlighted in blue are those electrodes the
electrode is grouped with by the 3-Disjoint Nearest Neighbours algorithm using eu-
clidean distance along the scalp as described in Section 3.3. From visual inspection,
it is possible to see that the algorithm has done well at grouping electrodes which
are highly correlated, with nearly all electrodes paired with two electrodes in the
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Electrode Top 5 Highest Correlation
Fp1 Fp2 F3 F7 Fz F4
Fp2 Fp1 F4 Fz F8 F3
F7 FC5 F3 Fp1 C3 FC1
F3 Fz FC1 Fp1 FC5 F7
Fz FC2 F3 F4 FC1 Fp2
F4 Fz FC2 Fp2 FC6 F8
F8 FC6 Fp2 F4 Fp1 Fz
FC5 F7 C3 F3 FC1 CP5
FC1 Cz F3 Fz C3 FC2
FC2 Fz F4 Cz FC1 C4
FC6 F4 C4 F8 FC2 Fp2
T7 CP5 P7 TP9 PO9 C3
C3 CP1 CP5 FC5 FC1 Cz
Cz FC1 CP1 CP2 FC2 C3
C4 CP2 FC2 FC6 CP6 Cz
T8 CP6 P8 P4 CP2 FC2
TP9 PO9 P7 CP5 O1 F7
CP5 C3 P3 CP1 P7 FC5
CP1 Pz Cz C3 CP2 P3
CP2 Cz CP1 Pz P4 C4
CP6 P4 C4 CP2 P8 Cz
P7 PO9 CP5 P3 O1 Oz
P3 CP1 Pz CP5 O1 Oz
Pz CP1 CP2 P3 P4 Oz
P4 CP2 CP6 Pz O2 P8
P8 P4 CP6 O2 PO10 CP2
PO9 O1 P7 Oz PO10 P3
O1 Oz PO9 P3 O2 P7
Oz O1 O2 P3 PO9 Pz
O2 Oz O1 PO10 P4 Pz
PO10 O2 Oz PO9 O1 P8

Table 3.5: Electrodes used in the grey, green, yellow, and purple motor imagery exper-
iments by [29] with the five electrodes with the highest average correlation coefficient
across all trials and subjects, ordered from left to right in descending correlation. For
each electrode, the highlighted electrodes are the group members determined by the
disjoint groups of three algorithm using euclidean distance between electrodes across
the scalp.

top five. Note that TP9 is the only electrode which does not appear in the top five of
at least two other electrodes, lending more confidence to the algorithm leaving it as
the odd one out.

As one final test, the 3-Disjoint Nearest Neighbours algorithm was rerun on the
electrode layouts for each experiment using the respective 1− ρ̄ as the distance ma-
trix. The resulting groupings are presented in Figures 3.9(b) and 3.10(b) above. In
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the left and right hand motor imagery experiment, the grouping is almost identi-
cal to the scalp distance layout, with only C4 and P4 flipping between groups. The
groupings are identical for the grey, green, yellow, and purple motor imagery exper-
iment. This gives more confidence that the groupings using the scalp distances are
indeed grouping electrodes which correspond to similar regions of the brain. For
the rest of the presented analysis, the 3-Disjoint Nearest Neighbours grouping using
euclidean distance along the scalp is used.

3.5 Second Layer Convolutions

A second convolutional layer may be desirable to identify higher-level features than a
single layer can extract. For this reason, the data are also arranged for the possibility
of a second convolutional layer. This is done in the same manner as in Section
3.3. First, take the grouping found by the 3-Disjoint Nearest Neighbours algorithm.
Then, find the centroid of each group on the scalp, where (x̄, ȳ, z̄) are the average
coordinates of each electrode’s coordinates in the group, defined as:

xc = r cos
(

(arctan
( ȳ
x̄

))
sin

(
arccos

(
z̄√

x̄2 + ȳ2 + z̄2

))
(3.13)

yc = r sin
(

(arctan
( ȳ
x̄

))
sin

(
arccos

(
z̄√

x̄2 + ȳ2 + z̄2

))
(3.14)

zc = r cos

(
arccos

(
z̄√

x̄2 + ȳ2 + z̄2

))
(3.15)

These are the coordinates found by taking the average of the group members and
projecting the mean vector onto the surface of the sphere. For each centroid, use
(xc, yc, zc) to find the along scalp distances between the centroids. Finally, use Al-
gorithm 1 to find the 2 Disjoint Nearest Neighbours grouping of the centroids. The
centroid groupings are presented in Figure 3.11.

Finally, the matrix of examples X ∈ RN×C×τ has the electrode channel axis
reordered by centroid group, by group, and by electrode by relative position from
the back to the front of the head. This produces a final ordering of the channel axis
for the left and right hand motor imagery layout of:

O1, O2, Oz, CP5, P3, P7, C4, CP2, Pz, CP6, P4, P8, FT9, FC5, T7, Fp1,
F7, F3, C3, Cz, CP1, Fz, FC2, FC1, FT10, FC6, T8, Fp2, F8, F4

and a final ordering for the grey, green, yellow, and purple motor imagery layout of:

P3, P7, PO9, O1, O2, Oz, P4, P8, PO10, T8, C4, CP6, CP2, CP1, Pz, FC2,
FC1, Cz, T7, C3, CP5, F7, F3, FC5, Fp2, Fp1, Fz, F8, F4, FC6

Since both drop the TP9 channel, each layout reduces the electrode channel dimen-
sion by one. This is then the final example matrix X ∈ RN×30×τ , which is used to
generate the results.
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(a) Left and Right Hand Motor Imagery Experi-
ment.

(b) Grey, Green, Yellow, and Purple Motor Im-
agery Experiment.

Figure 3.11: Disjoint centroid groups produced by Euclidean distance along scalp as-
suming a hemispherical skull.

3.6 Convolutional Neural Network Structure

In most of the results discussed in Chapter 4, the model of choice is the convolutional
neural network. Specifically, a similar structure is used for each test: one convolu-
tional layer, followed by two fully interconnected layers and a logistic regression for
classification. As described in Section 2.3, the convolutional layer is defined to have
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20 3 × 5 filters. This means it applies the filters across three electrodes and five
EEG observations for each. The convolutions are not padded. This is followed by a
max-pooling with a vector of 2 across the time axis. No max-pooling occurs across
electrodes. For example, using a time slice τ = 100, an input example is x ∈ R30×100.
A given filter in the convolutional layer, therefore, reshapes x to x ∈ R28×48, where
the time dimension is given by (100−5+1)/2 = 48 and the spatial dimension is given
by 30 − 3 + 1 = 28. An illustration of how the input passes through a single filter
of the convolutional layer can be found in Figure 3.12. Note that this causes some
members of the output to be linear combinations of electrodes in different groups,
as defined above, which is not desirable, but is used because of time constraints. A
better solution is to implement a stride of three as well for the convolutions, but this
significantly increases the computation time of the Theano implementation used and
so is dropped in the results. Using a stride of three is also preferable as it reduces
the spatial dimension to 10.

The convolutional layer is followed by a fully connected layer of 500 nodes,
which is followed by a fully connected layer of 50 nodes. Finally, the 50 output units
from the second fully connected layer are used in a logistic regression to classify the
example. The number of output nodes depends on the classification task, ranging
from two to four classes. Each layer uses tanh(·) activation functions:

tanh(z) =
ez − e−z
ez + e−z

(3.16)

The loss function used for all the results is defined as the standard cross entropy
loss function as discussed in Section 2.3.1. The structure of the convolutional neural
network is depicted in Figure 3.13.
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Layer 0: input.
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Figure 3.12: Example of how input with τ = 50 moves through one filter of the convo-
lutional layer.
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Chapter 4

Experimental Results

The results discussed in this chapter are produced by application of a convolutional
neural network, the structure of which is presented in Section 3.6. In each experi-
ment, the set of labelled examples is split into training, validation, and testing sets,
which respectively account for 60%, 20%, and 20% of the labelled examples. At the
beginning of each experiment, these sets are formed by randomly selecting the ex-
amples for membership into the groups without replacement within each label type.
This ensures that there are about an equal proportion of each type of motor imagery
task in each of the sets. Figure 4.1 shows how the data set is broken down for the

Grey Examples

Green Examples

Yellow Examples

Purple Examples

60% 20% 20%
Training Set, 60% of total examples

Validation Set, 20% of total examples

Test Set, 20% of total examples

Figure 4.1: Training schedule for the Grey, Green, Yellow, and Purple motor imagery
models: every run of the model, a random 60% of each imagery task’s examples is
taken, these are appended to form the training set. Of the remaining 40% of examples,
a random 50% of each imagery task’s examples is taken, these are appended to form
the validation set. The remaining 20% forms the test set. This process ensures an equal
proportion of classes among the three sets.
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Table 4.1: Number of obs. for each subject — L/R Morlet-transformed data

τ = 50 τ = 100
Subject Total Left Right Total Left Right
MM 15616 7808 7808 15216 7608 7608
KP 54656 29280 25376 53256 28530 24726
AS 56608 27328 29280 55158 26628 28530
BM 52704 25376 27328 51354 24726 26628
AM 54656 25376 29280 53256 24726 28530
MX 50752 25376 25376 49452 24726 24726
GZ 80032 42944 37088 77982 41844 36138
AF 99552 50752 48800 97002 49452 47550

four colour motor imagery task. All experiments are carried out for a single subject
at a time. The results are mostly generated with an input of τ = 50, though some
results use τ = 100 or τ = 200. Time constraints meant that each experiment could
only be carried out once.

4.1 Left and Right Hand Motor Imagery

The first set of experiments were carried out on the data provided by [7]. This
included eight subjects each of whom completed a set of motor imagery tasks in
which they imagined opening and closing either the right or left hand. For each
experiment, a batch size of 500 and a learning rate of η = 0.01 is used.

4.1.1 Morlet Wavelet Transformed

The first results generated use the Morlet Wavelet transformed voltage data as de-
scribed in the previous chapter. They are generated based on the two-class learning
task, with the subject imagining either left or right, as previously described. The
number of examples for each subject can be seen in Table 4.1. Table 4.2 presents the
results, which were generated using time slices τ = 50, τ = 100, and τ = 200 with
8 seconds for each trial. The first column presents the subject (a total of eight indi-
viduals). The second column shows the number of epochs through which the model
has gone by the time it reaches its minimum. The third and fourth columns show the
accuracy in the validation and test sets, respectively, measured in percentage terms.
This is the number predicted correctly out of the total in the set. As can be seen in
the table, the error is under 1% for all entries.

Due to time constraints, it was not possible to carry out all of the experiments
one would like to see. Thus the results using τ = 100 and τ = 200 were generated
only for some of the subjects. These results are in the bottom part of the table.
Once again, we see the error rate is very low. The model is able to quite accurately
decipher whether each subject was indicating right or left and to predict this within
the test set.
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Table 4.2: Accuracy rate in converged model

Subject Epoch Validation Test
τ = 50
AF 5000 99.303 99.292
AM 3883 100.000 100.000
AS 1865 99.360 99.991
BM 1571 99.990 99.990
GZ 1403 100.000 100.000
KP 2668 100.000 99.981
MM 1883 100.000 99.967
MX 1415 99.980 99.990
τ = 100
AF 4269 100.000 99.984
AS 1691 99.991 99.982
GZ 981 99.961 99.994
KP 1916 99.990 99.981
τ = 200
AM 1836 99.980 99.990
AS 1050 100.000 99.980

Increasing the time slice size brings down the number of epochs necessary to
reach the minimum, additionally improving accuracy. There is a trade-off, however,
if we think of using the model in real time, as larger time slices require more compu-
tations and are slower at responding to user intent. With a smaller time slice, there is
less of a delay, since it is more sensitive to fluctuations in user motor imagery. At 500
Hz, the length of the time slice is either 0.10 seconds for 50 observations or 0.20
seconds for 100 observations. At 200 Hz, this translates to 0.25 or 0.50 seconds,
respectively.

These results are also presented in Figures 4.2 through 4.9. The axes are all
kept at the same scale for ease of comparison across subjects. These figures show
the model’s behavior as it learns. The initial guess has around 50% error, as one
would expect with 2-class imagery, and gradually the error decreases towards 0 in
both the test and validation sets for each subject. These figures show more clearly
that feeding more data to the model through larger time slices (τ = 100 or τ = 200
as compared to τ = 50) leads to quicker, more accurate convergence.

4.1.2 Voltage

Table 4.3 and Figure 4.10 show the results for fitting the model to left and right hand
imagery voltage data. Recall that in this case, there are three classes: no thought,
left, or right. The number of examples for each subject is presented in Table 4.4. As
before, we see that the model learns and classifies user intent with very low error
for subjects AM and AS, but it struggles to converge for subject BM.
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Figure 4.2: Validation and test set error for subject AF, for τ = 50 and τ = 100. The test
errors are the red and black lines, respectively. The test error is only calculated when a
new minimum of the validation error is reached.
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Figure 4.3: Validation and test set error for subject AM, for τ = 50 and τ = 200. The
test errors are the red and cyan lines, respectively. The test error is only calculated when
a new minimum of the validation error is reached.
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Figure 4.4: Validation and test set error for subject AS, for τ = 50, τ = 100, and
τ = 200. The test errors are the red, black, and cyan lines, respectively. The test error is
only calculated when a new minimum of the validation error is reached.
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Figure 4.5: Validation and test set error for subject BM, for τ = 50. The test error is the
red line. The test error is only calculated when a new minimum of the validation error
is reached.
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Figure 4.6: Validation and test set error for subject GZ, for τ = 50 and τ = 100. The test
errors are the red and black lines, respectively. The test error is only calculated when a
new minimum of the validation error is reached.
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Figure 4.7: Validation and test set error for subject MM, for τ = 50. The test error is the
red line. The test error is only calculated when a new minimum of the validation error
is reached.
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Figure 4.8: Validation and test set error for subject MX, for τ = 50. The test error is the
red line. The test error is only calculated when a new minimum of the validation error
is reached.
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Figure 4.9: Validation and test set error for subject KP, for τ = 50 and τ = 100. The test
errors are the red and black lines, respectively. The test error is only calculated when a
new minimum of the validation error is reached.
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Table 4.3: Accuracy rate at minimum validation error, L/R imagery, raw
data

Subject Epoch Validation Test
AM 4994 99.096 99.023
AS 4266 99.027 98.987
BM 2214 45.400 52.361

The table shows the epoch and accuracy rates in the validation and test
sets for each subject at the point where the validation set accuracy is max-
imized. The model is given a maximum of 5000 training epochs with
τ = 50.

Table 4.4: Number of examples for each subject — L/R voltage data

τ = 50 τ = 100
Subject Total No Thought Left Right Total No Thought Left Right
MM 31608 7608 12000 12000 31208 7208 12000 12000
KP 110628 26628 45000 39000 109228 25228 45000 39000
AS 114579 27579 42000 45000 113129 26129 42000 45000
BM 106677 25677 39000 42000 105327 24327 39000 42000
AM 110628 26628 39000 45000 109228 25228 39000 45000
MX 102726 24726 39000 39000 101426 23426 39000 39000
GZ 161991 38991 66000 57000 159941 36941 66000 57000
AF 201501 48501 78000 75000 198951 45951 78000 75000
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Figure 4.10: Validation and test set error for three subjects for τ = 50. The test set
errors are the solid lines and the validation set errors are the dot-dashed lines. The test
error is only calculated when a new minimum of the validation error is reached.

These results and those in the previous section seem intuitive. Increasing the
time slice increases the amount of information available to the model, thus improv-
ing convergence time and accuracy. Similarly, it is easier for the model to fit the
Morlet transformed data than it is to do so with the noisier voltage data.

4.2 Grey, Green, Yellow, and Purple Motor Imagery

The second set of experiments were carried out on the data provided by [29]. This
included two subjects each of whom completed a set of motor imagery tasks in
which they imagined opening and closing either the right or left hand, contracting
the abdominal muscles, or pushing down with both feet. For each experiment, a
batch size of 500 and a learning rate η = 0.001 is used with 6 seconds of data per
trial.

Table 4.5: Number of examples for each subject — 4-class raw data

τ = 50
Subject Total No Thought Grey Green Yellow Purple
EG 150447 34047 36000 33600 25200 21600
LG 504075 114075 106800 111600 92400 79200

τ = 100
EG 145597 29197 36000 33600 25200 21600
LG 487825 97825 106800 111600 92400 79200
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Table 4.6: Number of examples for each subject — 4-class Morlet-transformed data

τ = 50
Subject Total Grey Green Yellow Purple
EG 72944 22560 21056 15792 13536
LG 244400 66928 69936 57904 49632

τ = 100
EG 68094 21060 19656 14742 12636
LG 228150 62478 65286 54054 46332

Table 4.7: Accuracy rate in minimal model

Subject Epoch Validation Test
τ = 50
EG 5000 65.750 64.467
LG 5000 42.236 42.518
τ = 100
EG 600 100.000 99.867
LG 1691 100.000 99.939

4.2.1 Morlet Wavelet Transformed

Data is available on two subjects for the experiment with four different classes of
imagery. The number of examples for each individual is presented in Table 4.6.
Experiments were conducted both with time slice size τ = 50 and τ = 100, and are
presented in Table 4.7. In the first case, the model was set to run for 5000 epochs,
but as can be seen in the table, it appears that was not enough to reach convergence
for either subject. Running the model with τ = 100 produces better results — the
model is able to converge much quicker, again attaining a similar level of accuracy
as previously observed in subjects with two types of imagery.

The results are again presented additionally as figures, Figures 4.11 and 4.12.
These make it easier to see the behavior of the model as it learns. With τ = 50
one can see that there is some learning as the error rate diminishes in both the test
and validation set for each subject, but 5000 epochs prove insufficient to achieve
convergence. Meanwhile, the error rate goes to zero much quicker when the model
is given a larger time slice (τ = 100), and the model achieves nearly perfect accuracy.

4.3 Revised Results

Clearly, the previous results would be unprecedented in the literature and form a
very strong basis for an EEG-based BCI. Unfortunately, although the results in the
previous section were very impressive, further tests of their robustness revealed that
there may be a significant amount of over-fitting with the previous methods. The
original intent was to test the ability of the learned models to classify user intent from
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Figure 4.11: Validation and test set error for subject EG (4-class imagery), for τ = 50
and τ = 100. The test errors are the red and black lines, respectively. The test error is
only calculated when a new minimum of the validation error is reached.
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Figure 4.12: Validation and test set error for subject LG (4-class imagery), for τ = 50
and τ = 100. The test errors are the red and black lines, respectively. The test error is
only calculated when a new minimum of the validation error is reached.
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Left and Right Hand
Subject Hold Out Test Set Accuracy Accuracy on Hold Out Trial Examples
AF 100.00 52.83
AM 99.96 53.51
AS 99.48 49.23
BM 99.85 51.89
GZ 100.00 50.82
KP 100.00 52.87
MM 100.00 46.36
MX 99.95 51.92

Four Type Motor Imagery
Subject Hold Out Test Set Accuracy Accuracy on Hold Out Trial Examples
LG 99.95 27.11
EG 99.83 20.37

Table 4.8: Results for the hold one trial out test for each individual in each experiment.
Presented results are only for the Morlet transformed data, meaning the experiments
represent the two and four class classifications respectively, all only use τ = 100.

EEG signals during a real-time experiment with a subject playing the BrainRunners
video game. Time constraints meant that this was not possible. However, a different
test was devised that could approximate turning off the BCI and turning it back on,
and checking that the model could still accurately predict user intent.

This test was performed by holding out an entire trial and training the model for
each individual as in the previous manner, with the remaining trials chunked by the
time slice τ = 100 and divided into the training, validation, and test sets. Only the
Morlet transformed data were used. The held out trial was then chunked in the same
manner and the trained model was used to predict the held out trial’s examples. In
both the left and right and in the four-class motor imagery data this produced less
than stellar results with no trained model for any individual performing significantly
better than a model that randomly guessed the class. Note that in each case there is
only one class the model needs to guess. The results are presented in Table 4.8.

These results are very disappointing and a strong indication of over-fitting being
a major problem in the process described in previous sections. On second consider-
ation, the culprit is most likely the implicit assumption that the states of the brain
will be independent after a given amount of time has passed. In this way, examples
drawn from the same trial would not contain sufficiently similar information apart
from the motor imagery signal, which would allow them to be put into the training,
test, and validations sets without concerns. At first glance, this may not be all that
unreasonable of an assumption, since EEG signals are notoriously noisy and non-
stationary, making prediction of the next time slice of EEG readings very difficult.
Unfortunately, it seems that there do exist some identifying features which allow the
convolutional networks to distinguish which trial an example comes from and then
to predict the label of the trial instead of learning any generalisable features of the
motor imagery task.
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To reduce the potential for over-fitting, it is necessary to redesign the way the
test, validation, and training sets are generated. Figure 4.13 presents the redesigned
paradigm for the grey, green, yellow, and purple motor imagery data. In the new
system, at the start of each training session, a random 60% of each type of trial is
selected. These are then appended to form the training set. 50% of the remaining
trials of each type are then selected and appended to form the validation set. The
remaining trials of each type are then appended to form the test set. The trials are
then chunked in the manner described in Chapter 3 for the desired τ and filter type
to form the examples. This system has the desirable trait of keeping the training,
validation, and test sets relatively balanced between each class type. It also ensures
that no two sets have examples from the same trial, thus eliminating the ability of
the network to over-fit to a given trial. For the left and right hand motor imagery
experiment, this means that subject MM must be dropped as they only have four
valid trials for each of the two tasks.

Grey TRIALS

Green TRIALS

Yellow TRIALS

Purple TRIALS

60% 20% 20%
Training Set, 60% of total TRIALS

Validation Set, 20% of total TRIALS

Test Set, 20% of total TRIALS

Figure 4.13: Revised training schedule for the Grey, Green, Yellow, and Purple motor
imagery models: every run of the model, a random 60% of each imagery task’s TRIALS
is taken, these are appended to form the training set. Of the remaining 40% of TRIALS,
a random 50% of each imagery task’s examples is taken, these are appended to form
the validation set. The remaining 20% forms the test set. This process ensures an equal
proportion of classes among the three sets. Within each set, the trials are then chunked
to form the examples as discussed in Chapter 3.

The revised training sessions in the following sections all use this method for
creating the training, validation, and test sets. Each experiment is carried out only
once because of time constraints, but given the problems with over-fitting based on
trials, it may be the case that this could bias the results. It is possible that entire
trials are significantly different from trials even of the same type, so which set trials
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Table 4.9: Accuracy rate at minimum validation error, L/R imagery,
Morlet-transformed data

Subject Epoch Validation Test
AF 27 49.889 49.889
AM 497 69.040 74.289
AS 165 60.760 53.622
BM 230 60.220 49.229
GZ 500 71.900 56.117
KP 483 82.340 71.200
MX 267 79.360 69.400

The table shows the epoch and accuracy rates in the validation and test
sets for each subject at the point where the validation set accuracy is
maximized. The model is given a maximum of 500 training epochs with
τ = 100.

are placed into could determine whether the network can accurately classify its ex-
amples or not. Therefore, the following results should be viewed as preliminary, but
nevertheless indicative of the potential for the application of convolutional neural
networks to EEG data for classification of motor imagery tasks.

4.4 Revised Left and Right Hand Motor Imagery Re-
sults

All results in this section use the left and right hand motor imagery data from [7]
and a convolutional neural network of the structure described in Section 3.6. Addi-
tionally, a batch size of 500 and a learning rate η = 0.01 are used with 6 seconds of
data per trial.

4.4.1 Morlet Wavelet Transformed

The following results are generated by application of the Morlet wavelet and then
chunked with τ = 100. The results are presented in Table 4.9 as well as Figures
4.14 through 4.20. The results are not as resounding as before, but there are several
aspects which are positive. All subjects, except for AF, do exhibit significant learning.
Additionally, several subjects do attain test set accuracies significantly higher than
the 50% one would expect from classifier that makes random choices, with AM,
KP, and MX all around 70% accurate. These results are encouraging since they
are produced from the application of a filter that can be computed before run-time
and only uses 100 slices of this transformed data. This means, at 500 Hz sampling
frequency, the BCI could still be very responsive to the user’s wishes. Additionally,
there are many simple tweaks that could be made to improve the accuracy of these
models, which is discussed further in Chapter 5.
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Figure 4.14: Validation and test set error for subject AF using the new methodology, for
τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.15: Validation and test set error for subject AM using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.16: Validation and test set error for subject AS using the new methodology, for
τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.17: Validation and test set error for subject BM using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.18: Validation and test set error for subject GZ using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.19: Validation and test set error for subject KP using the new methodology, for
τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.20: Validation and test set error for subject MX using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.

4.4.2 Voltage Data

The results for voltage data are presented for three subjects in Table 4.10 as well
as Figure 4.21. Once again, this is a three-class classification: no thought, left, and
right. While one can see that the BM and GZ results are disappointing, perhaps due
to poor initialization, the results for KP are encouraging. The model manages to
achieve about 80% accuracy on the test set. This is particularly encouraging because
the input is the noisier, untransformed data and there are three classes, meaning a
random guess would have around 33% accuracy. These results are further discussed
in Chapter 5.

Table 4.10: Accuracy rate at minimum validation error, L/R imagery, volt-
age data

Subject Epoch Validation Test
BM 1408 57.600 50.700
GZ 1 49.665 42.207
KP 1469 76.626 80.082

The table shows the epoch and accuracy rates in the validation and test
sets for each subject at the point where the validation set accuracy is max-
imized. The model is given a maximum of 4000 training epochs with
τ = 100.
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Figure 4.21: Validation and test set error for subjects BM, GZ, and KP using the new
methodology, for τ = 100. The test errors are the solid lines. The test error is only
calculated when a new minimum of the validation error is reached.

4.5 Revised Grey, Green, Yellow, and Purple Motor Im-
agery Results

All results in this section use the 4-class motor imagery data from [29] and a con-
volutional neural network of the structure described in Section 3.6. Additionally, a
batch size of 500 and a learning rate η = 0.001 are used with 6 seconds of data per
trial.

4.5.1 Morlet Wavelet Transformed

The results can be seen in Figures 4.22 and 4.23. The model does not manage to
learn much in either case and the error remains high. This is perhaps due to poor
initialization and requires further research, as discussed in Chapter 5. Of course, this
is also a more complex learning task, as the model must learn four classes with less
fine-grained data (200 Hz) and fewer data points.
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Figure 4.22: Validation and test set error for subject EG using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Figure 4.23: Validation and test set error for subject LG using the new methodology,
for τ = 100. The test error is the red line. The test error is only calculated when a new
minimum of the validation error is reached.
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Chapter 5

Conclusion and Future Research

This paper proposes a novel application of convolutional neural networks to classify
user intent generated by motor imagery via EEG data for use in a real-time BCI.
To the best of the author’s knowledge, there do not exist any such applications in
the literature. Convolutional neural networks have been applied to EEG data for
the prediction of epileptic seizures, but for motor imagery classification very few re-
searchers have attempted to apply deep learning algorithms. It is the only paper to
attempt to classify more than two types of motor imagery using deep learning tech-
niques. Additionally, this paper proposes a novel method for defining convolutional
filters along the scalp to disjoint groups of electrodes that cover similar regions of the
brain. Although the initial results were discovered to demonstrate significant over-
fitting very late into the project, the preliminary results from a revised experimental
set-up are still significant and offer many opportunities to be easily improved.

The highest accuracy achieved in the revised results is 80.08% for subject KP
in the left and right hand imagery experiments, a significant improvement over a
random model, which would be expected to have a 50% accuracy. Additionally,
higher accuracies may be easily attainable by a more thorough search for valid hy-
perparameters for the model. It must be emphasized that this 80.08% accuracy is
achieved when using τ = 100 using untransformed voltages. This is a three class
classification task distinguishing itself from the research which has focused solely on
the binary distinction between two motor imagery tasks. This raises the potential of
a very responsive BCI, since the voltage readings need not be passed through time
consuming preprocessing. τ = 100 means that only 100 EEG observations need to
be fed to the convolutional network for classification. At a sampling frequency of
500 Hz, this would mean that, at worst, a user would need to wait only 0.2 seconds
for a correct interpretation of their intent. This makes the prospect of a BCI which
can easily handle the BrainRunner challenge in the Cybathlon, and perhaps more
tangible applications, tantalisingly close.

The research presented includes many choice points at each of which an edu-
cated, though by no means definitive given the complexities of the fields involved,
decision was made. Thus, any future research should begin with tweaking the hy-
perparameters such as the learning rate and the time slice τ to attempt to improve
on the reported results. However, these are not the only potential simple variations
future research could test. Other potential questions include: are three electrodes
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in the disjoint groups the optimal choice? Should different activation functions be
used at each layer? Should the depth of the network be changed? Should a second
convolutional layer be added? Are 3× 5 convolutional filters the optimal choice for
extracting meaningful features? How many units should be in each layer? Should
the cost function be significantly modified to aid in convergence and discourage over-
fitting? Et cetera. The list of minor modifications and tweaks to the model which
could significantly increase its accuracy goes on. However, given the behaviour of
the network in the revised data, there are three major steps that should be taken
before other considerations.

First, stochastic gradient descent is a relatively simple algorithm for learning
the parameters relative to more recent research. Other algorithms exist, which may
significantly improve learning, such as BADMM [34]. Momentum could also be im-
plemented to aid in the convergence by modifying the stochastic gradient descent
algorithm. Second, the networks suffer from poor initialization, simply randomis-
ing the weights is not sufficient for convergence. A simple solution to this problem
would be to allow for more training epochs, but there is no way to know when it
may converge. A better solution is to look into more advance deep learning tech-
niques that can be pre-trained, such as deep belief networks. Another proposal for
future research is to implement a stacked convolutional auto-encoder, such as one
implemented by [35], which could learn high-level features to feed into a classifier.
Recurrent neural networks could also offer some potential advantages when dealing
with the time dimension of the data.

Third, and perhaps most fundamentally, future research should focus on what
distinguishes the trials and how to improve out of sample performance. As ob-
served, there are traits which can clearly distinguish the trials the model is trained
on, which leads to the over-fitting problem demonstrated in the results, but even
under the new system of creating the test, validation, and training sets, some trials
demonstrate behaviour that indicates examples even with the same label may be sig-
nificantly different, so much so that training produces widely divergent behaviour
on the validation and test sets from minor changes to the parameters. This suggests
that perhaps only using the Morlet wavelet or voltages as currently defined is insuf-
ficient for fully distinguishing motor imagery tasks. This opens up many interesting
future extensions to the project, such as increasing the number of input channels to
the neural network. Input channels typically refers to the intensity of red, green,
and blue in pixels when convolutional neural networks are applied to colour images.
Here, multiple input channels could mean feeding the neural network both the volt-
age data and the Morlet transformed value for a given time period, but could also
include a moving average of the voltage data, or deviations from it. This could help
focus the learning process on changes in the state of the brain, perhaps improving
its ability to identify motor imagery.

More data collection could be necessary for two reasons. First, it may not be
possible to train deep learning algorithms on only around 20 labelled trials in a
way that generalizes well. However, subject LG in the data provided by [29] has
around 360 labelled trials, and while more data is always useful, improving the
results of this paper rests more on the extensions explained above before subjecting
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individuals to longer data collection trials. Still, there is one potential pitfall of
taking models trained on the given data and applying it to an real-time BCI: how
the trials deal with transitions between motor imagery tasks. As defined, every
trial is the transition from no thought to a motor imagery task. At no point have
subjects been asked to switch from, for example, imagining opening and closing
the right hand to opening and closing the left hand. Even in the BrainRunners
video game participants will be asked to perform such transitions. Switching from
one imagery task to another, with no training examples, will likely lead to slower
response from the BCI, as a correct classification may only occur once the entire
input time slice is entirely within a period of specific motor imagery and has the
potential for numerous misclassifications during the transition and after. Future data
collection could include such transitions to ensure the robustness of the BCI in real
time. Training an automatic artefact rejecter which could remove muscular-skeletal
movements and signals would further improve the robustness of the real-time BCI.

Finally, this project has focused solely on estimating separate models on differ-
ent individuals, but future research could attempt to learn features from EEG data
which are common among all individuals. Any success would be interesting for hav-
ing found generalisable features from scalp EEG, but would also have the practical
application of reducing training times for new users, as the model would only need
to be honed to the specific characteristics of the new user.
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