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Abstract

Most logic-based AI research works at a meta-theoretical level, producing new logics and studying
their properties. Little effort is made to show how these logics can be used to formalise object-level
theories of common sense. In the spirit of Pat Hayes’s Naive Physics Manifesto, the present paper
supplies a formalisation of a non-trivial benchmark problem in common sense physical reasoning,
namely how to crack an egg. The formalisation is based on the event calculus, a well-known
formalism for reasoning about action. Along the way, a number of methodological issues are raised,
such as the question of how the symbols deployed in the formalisation might be grounded through a
robot’s interaction with the world.
 2003 Published by Elsevier B.V.
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1. Introduction

The “Naive Physics Manifesto” papers by Pat Hayes are well-known and widely
cited [10,11]. Yet few researchers in AI have taken seriously the research programme he
proposed.1 Logic-based research in AI remains dominated by meta-theory. Papers typically
present new logics, extend old ones, or study their meta-level properties. Examples that
show how the logic in question is used are usually trivial and are frequently absent
altogether. It seems to be taken for granted that, once we’ve got the right logic, using it
will be straightforward. However, the provision of a principled axiomatic description of

E-mail address: m.shanahan@imperial.ac.uk (M. Shanahan).
1 Notable exception include Davis [4,6], and the CYC project [13].
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the common sense physical world is a difficult and complex task. An instructive analogy

here is programming. Knowing that a device is capable of implementing any Turing-
computable function is no help at all when faced with the task of writing a large C++
application. A whole battery of principles, techniques, and tricks must be acquired before
a programmer can undertake a major project. Similarly, knowing that a logic has sufficient
expressive power to represent a given problem domain is no help when it comes to actually
constructing such a representation. What logic-based AI lacks is a rich enough body of
representational principles, techniques, and tricks, analogous to the programmer’s.

In this respect, the naive physics manifesto, with its emphasis on object-level
axiomatisation, is still relevant today. Moreover, the problem of endowing a computer
with a common sense understanding of the physical world is just as much of a stumbling
block now as it was in the 1980s, and approaches to this problem based on logic as
a representational formalism are still among the front-runners in the race to solve it.
However, with two decades of hindsight, it’s difficult—for the present author, at least—
to accept all the tenets implicit in Hayes’s original manifesto. First, it no longer seems
plausible that a useable body of common sense knowledge about the physical world can
be coded by hand. Second, the idea that researchers can make significant progress on the
problem from their armchairs, that is to say without the “sanity check” of having to deploy
their formalisations on a robot, looks ridiculous.

Why should it not be possible to devise useful formalisations without recourse to
robotics? Of course, it would be foolhardy to argue this was impossible in principle. But in
practise, the efforts made by logicians to represent an agent’s interactions with the physical
world tend to presuppose a set of predicate and function symbols at too high a level of
abstraction, and rashly take it for granted that meaning can somehow be assigned to these
symbols. In truth, the design of a set of bottom-level predicate and function symbols that
can be grounded or anchored through sensors and actuators is critical to the success of
the whole enterprise [3,9]. Unless formalisations are built on such foundations, they are
nothing more than castles in the air.

This paper offers a formalisation of a non-trivial benchmark problem in common sense
physical reasoning put forward by Ernie Davis, namely how to crack an egg and pour its
contents into a bowl. In the light of the critical points above, it’s natural to ask what benefit
there is to this exercise. The answer is that the aim of the project is a better understanding
of how to deploy formal logic as a medium for representing the everyday physical world,
the sort of understanding that can only be acquired through practise at writing object-level
theories. The aim is not a definitive object-level theory that will in itself be used in future
research. Instead, we’ll start to build up the sort of repertoire of principles, techniques,
and tricks mentioned above. And throughout, we’ll be concerned to address the issue
of how the symbols used might be grounded through the sensory-motor apparatus of a
robot.

Here is Davis’s characterisation of the egg cracking problem [7].2

2 This benchmark problem was originally submitted as a challenge to the participants of the Common Sense 98
workshop. The challenge was taken up by three members of the programme committee, including the present
author. (See [15,19].)
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A cook is cracking a raw egg against a glass bowl. Properly performed, the impact of

the egg against the edge of the bowl will crack the egg shell in half. Holding the egg
over the bowl, the cook with then separate the two halves of the shell with his fingers,
enlarging the crack, and the contents of the egg will fall gently into the bowl. The end
result is that the entire contents of the egg will be in the bowl, with the yolk unbroken,
and that the two halves of the shell are held in the cook’s fingers.

Egg cracking is a worthy choice of example because it involves action and continuous
change, motion, space and shape, materials, collisions and breakings apart, vessels, and
gravity. To formalise it competently we have to address representational questions whose
answers will carry over to numerous other problems. Indeed what makes this more than just
an undergraduate logic exercise is the need to tackle these large issues in a principled way.

2. What constitutes a good formalisation?

Before embarking on the formalisation itself, let’s try to set out some criteria by which it
should be judged. How, in general, should an attempt to formalise a body of common sense
knowledge to be evaluated? Consider what’s wrong with the following naive representation
of the egg cracking problem.

Initiates(CrackEgg,YolkInBowl, t)←HoldsAt(BowlUnderEgg, t)

This formalisation has (at least) the following faults.

• It doesn’t employ any knowledge that can be recycled for other problems. As already
emphasised, we should expect a solution that appeals to general principles and
techniques.
• Apart from their suggestive English names, no clue is given as to the meaning of

CrackEgg, YolkInBowl and BowlUnderEgg. It’s hard to imagine how the axiom could
be put to any useful purpose, such as to program a robot to actually crack an egg. How
could a robot recognise that the fluent BowlUnderEgg holds? How could the robot
perform a CrackEgg action? We would like a solution constructed out of fluents which
are more clearly related to the data obtainable from a robot’s sensory apparatus and
actions which are more plausibly executable by a robot.
• It doesn’t allow for variations on the problem. In other words, it lacks elaboration

tolerance, to use McCarthy’s term [17]. Davis lists a number of elaborations of the egg
cracking problem.

What happens if: The cook brings the egg to impact very quickly? Very slowly?
The cook lays the egg in the bowl and exerts steady pressure with his hand? The
cook, having cracked the egg, attempts to peel it off its contents like a hard-boiled
egg? The bowl is made of looseleaf paper? of soft clay? The bowl is smaller than
the egg? The bowl is upside down? The cook tries this procedure with a hard-boiled
egg? With a coconut? With an M & M?

We would like a solution in which elaborations such as these demand the least
possible effort to make.
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To summarise, we can judge a solution by (at least) the following three criteria: the

degree to which it employs general-purpose, re-usable representational techniques, its
usability in some (possibly imaginary) application, and its elaboration tolerance.

With the first criterion in mind, here’s a rough survey of representational issues we’ll
have to confront to do the job properly. These are the areas where we should expect to
develop reusable theories, or to be able to pick such theories off the shelf. To begin with, we
require a formalism for reasoning about action, such as the event calculus or the situation
calculus. The formalism needs to be able to handle continuous change, since we have to
deal with the continuous motion of the egg and its contents. The topic of reasoning about
action is one of the few that is already well-developed.

The act of hitting something against something else has to be formalised. A “start
motion” action is involved, which initiates a period of continuous movement, which ends
when the egg strikes the bowl. The treatment of this action should be general enough to
deal with other sorts of agent-initiated continuous movement. On a more problem-specific
level, the agent has to be holding the egg, the motion of the agent’s arm must be in the right
direction (towards the rim of the bowl), and the agent needs to strike with the right force.

Axioms for collision events will be required, and these should be as general-purpose as
possible. The consequences of collision events depend on the fragility of the two objects
involved, and the force of collision. In the case of an egg, the egg cracks but remains intact
if the force of collision is just right.

Next, the act of prizing apart the two halves of the egg needs formalising. We need to
represent the shape of the egg, the shape of the crack, and the shapes of the two halves that
result when the egg is pulled apart. We need a way of representing objects coming into
existence and ceasing to exist (i.e., the whole egg and the two halves of the egg). It will be
harder to do all this in the context of a general theory, as the behaviour of a fractured egg
while it’s being prized apart is rather peculiar.

The pouring or dropping of the egg’s contents into the bowl demands the representation
of various facts about vessels and containment. We need to represent the fact that the egg
is hollow, that its surface has no openings, and that it contains a liquid (or liquid-like
substance). The behaviour of the yolk and egg-white as the egg halves are separated needs
to be formalised. We might assume, for simplicity, that the egg’s contents are a liquid that
flows under the influence of gravity. We need to formalise the shape of the bowl, the fact
that it’s a vessel with an upward-facing aperture, and the fact that it lies below the egg. We
need to represent the fact that liquid is retained in a vessel if the vessel is upright.

What follows is a crude formulation. Many of the issues mentioned above are addressed,
but not all. Furthermore, numerous simplifying assumptions are made. Among the more
gross idealisations it embodies is the assumption that the contents of the egg behave like
water—so that it separates easily into two bodies of liquid in the two halves of the egg. It’s
also assumed that the egg breaks cleanly into two parts held upright. In reality, of course,
when we prize open an egg-shell, generally with our thumbs at the bottom, the two halves
remain touching, sometimes even joined, at the top. And because of the viscosity of the
egg’s contents, it initially remains inside the egg even though a crack has appeared through
which a less viscous material would flow. Only when the opening has become wide enough
does it all fall out.
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Table 1

The language of the event calculus

Formula Meaning

Initiates(e,f, t) Fluent f starts to hold after action e occurs at time t
Terminates(e,f, t) Fluent f ceases to hold after action e occurs at time t
Releases(e,f, t) Fluent f ceases to be subject to the common sense law of inertia after action e occurs

at time t
Trajectory(f 1, t, f 2, d) Fluent f 2 holds at time t + d if fluent f 1 starts to hold at t and continues to hold up

to t + d
InitiallyP (f ) Fluent f holds from time 0
InitiallyN(f ) Fluent f does not hold from time 0
Happens(e, t) Action or event e occurs at time t
HoldsAt(f, t) Fluent f holds at time t
Clipped(t1, f, t2) Fluent f is terminated between times t1 and t2
Declipped(t1, f, t2) Fluent f is initiated between times t1 and t2

3. The event calculus

The event calculus will be adopted as a formalism for representing actions and
their effects [24]. The egg cracking problem places considerable demands on an action
formalism, and the full representational power of the event calculus will be required, in
order to capture continuous change, actions with non-deterministic effects, and actions
with indirect effects. The event calculus is based on first-order predicate calculus, extended
with circumscription to overcome the frame problem. Table 1 presents the essentials of the
language of the calculus, which includes sorts for fluents, actions (events), and time points.
The sort of time points is assumed to be interpreted by the positive reals.

The basic event calculus axioms, including those for continuous change, are as follows.
Throughout the paper, all variables in a formula are universally quantified, with maximum
possible scope, unless stated otherwise.

HoldsAt(f, t)← InitiallyP (f )∧¬Clipped(0, f, t) (EC1)

¬HoldsAt(f, t)← InitiallyN(f )∧¬Declipped(0, f, t) (EC2)

HoldsAt(f, t2)← (EC3)
Happens(e, t1)∧ Initiates(e, f, t1)∧ t1< t2∧¬Clipped(t1, f, t2)

¬HoldsAt(f, t2)← (EC4)
Happens(e, t1)∧ Terminates(e, f, t1)∧ t1< t2∧¬Declipped(t1, f, t2)

Clipped(t1, f, t2)↔ (EC5)
∃e, t[Happens(e, t)∧ t1< t < t2∧ [Terminates(e, f, t)∨ Releases(e, f, t)]]

Declipped(t1, f, t2)↔ (EC6)
∃e, t[Happens(e, t)∧ t1< t < t2∧ [Initiates(e, f, t)∨ Releases(e, f, t)]]

HoldsAt(f 2, t2)← (EC7)
Happens(e, t1)∧ Initiates(e, f 1, t1)∧ t1< t2∧
t2= t1+ d ∧ Trajectory(f 1, t1, f 2, d)∧¬Clipped(t1, f 1, t2)
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A consequence of Axioms (EC3) and (EC5) is that a fluent, once it has been initiated

by an event, will hold over an interval which is open to the left and closed to the right.
In other words, it doesn’t start to hold until immediately after the event that initiates it,
but it still holds at the time of the event that terminates it. Likewise, a consequence of
Axioms (EC4) and (EC6) is that once a fluent has been terminated, it only starts not to
hold immediately after the terminating event, but it still does not hold at the time of the
next event that initiates it. This observation only applies to inertial fluents, that is to say
those that are initiated and terminated by events (or actions). Continuously varying fluents,
for example, are non-inertial, and fall under the control of Axiom (EC7).

To overcome the frame problem, we use circumscription to minimise the predi-
cates Happens, Initiates, Terminates, and Releases [24]. If E is a domain descrip-
tion (Initiates, Terminates, and Releases formulae) and N is a narrative description
(InitiallyP , InitiallyN,Happens and temporal ordering formulae), then we consider,

CIRC[N;Happens] ∧
CIRC[E; Initiates,Terminates,Releases] ∧CEC

where CEC is the conjunction of Axioms (EC1) to (EC7). State constraints—that is to say,
formulae constraining the combinations of fluents allowed to hold at the same time—must
be conjoined to CEC. A collection of uniqueness-of-names axioms for fluents and actions
must also be conjoined to the above formula. These will be taken for granted in what
follows, and omitted from the presentation. A detailed presentation of the event calculus,
in a more tutorial form, may be found in [25].

4. Collisions and breakings apart

We begin the more domain specific formalisation with some general axioms describing
the action of striking one thing against another. Table 2 summarises the actions and fluents
used in the axioms that follow. Each of the terms in Table 2 will be taken as primitive. This
assumption is unrealistic from a robotics perspective, as discussed below. Furthermore,
it’s less than satisfactory from a logical point-of-view. Consider the Distance fluent, for
example. Although this is possibly the simplest concept featured in Table 2, there are
still several ways to define the distance between two objects in more primitive terms [8,
Chapter 7]. Notwithstanding this, we’re forced to idealise ruthlessly in some areas in order
to make any progress at all. In what follows, time and change are given the most detailed
treatment, at the expense of space and shape.

Here are the effect axioms for the actions and fluents of Table 2. They say that an
object moving towards another object will hit it eventually, and then stop. Needless to say,
there are exceptions to this, such as when the first object passes right through the second.
These exceptions are neglected here. Furthermore, the event calculus axioms will easily
accommodate the possibility that the moving object is intercepted by a third object. But we
won’t explore this possibility here. It is assumed that a robot executing a PropelTo action
doesn’t let go of the object x , and holds on to it while the MovingTo fluent holds.

Initiates(PropelTo(x, y, v),MovingTo(x, y, v), t) (E1.1)
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Table 2

Collisions and continuous movements

Term Sort Meaning

PropelTo(x, y, v) Action Object or part x is propelled towards object or part y at velocity v
MovingTo(x, y, v) Fluent Object or part x is moving towards object or part y at velocity v
Stop(x) Action Stop moving object or part x
Distance(x, y, z) Fluent The distance between object or part x and object or part y is z
CollidesWith(x, y, v) Action Object or part x collides with object or part y at velocity v
Fractured(x) Fluent Object x is fractured

Releases(PropelTo(x, y, v),Distance(x, y, z), t) (E1.2)

Terminates(Stop(x),MovingTo(x, y, v), t) (E1.3)

Initiates(Stop(x),Distance(x, y, z), t)←HoldsAt(Distance(x, y, z), t) (E1.4)

Trajectory(MovingTo(x, y, v), t,Distance(x, y, z2), d)← (E1.5)
HoldsAt(Distance(x, y, z1), t)∧ z2= z1− v · d
[HoldsAt(Distance(x, y, z1), t)∧ (E1.6)

HoldsAt(Distance(z, y, z2), t)]→ z1= z2
Happens(CollidesWith(x, y, v), t)← (N1.1)

HoldsAt(MovingTo(x, y, v), t)∧HoldsAt(Distance(x, y,0), t)

This group of axioms exemplifies the style in which continuous change is formalised
using the event calculus. Of particular note is the presence of the Releases axiom (E1.2).
This axiom ensures that, at the time of a PropelTo action, Distance changes from an inertial
fluent, under the influence of Axioms (EC1) to (EC4), to a non-inertial fluent which is no
longer subject to the common sense law of inertia. While this fluent is non-inertial, its
value is determined by Axiom (EC7) and the relevant domain-specific Trajectory formula,
in this case (E1.5)3. Moreover, for every continuously varying non-inertial fluent, there is
a corresponding inertial “second-order” fluent governing it. In this case, the second-order
fluent that governs Distance is MovingTo. A PropelTo action not only makes Distance non-
inertial, but also initiates MovingTo (E1.1). The period of continuous variation in Distance
lasts while MovingTo holds, and is ended by a Stop action (E1.3). At the end of this period,
Distance reverts to an inertial fluent, its value being set according to Axiom (E1.4).

The idea behind this particular group of axioms is that the robot will execute a PropelTo
action followed by a Stop action at the time of the collision. But let’s pause here to assess
the plausibility of this choice of symbols. What exactly are PropelTo(x, y, v) and Stop(x)
supposed to denote? The implicit assumption is that they denote actions that are, in some
sense, primitive. That is to say, these actions don’t require further breaking down into sub-
actions, but might be issued as a direct command to a robot arm. Even if we set aside the

3 Axiom (E1.5) assumes that the motion of the egg has a constant velocity. In reality, of course, it will unergo
a short period of acceleration, and even after this its velocity is unlikely to be absolutely constant. But all that
really counts here are the more qualitative properties of the trajectory that ensure the egg reaches its target. These
could be captured using qualitative reasoning techniques, such as those axiomatised in [5].
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whole issue of how the egg is to be grasped in the first place—an extremely complex matter

in itself—the idea that PropelTo and Stop could be primitive actions seems flawed.

To see this, consider that perception and action must operate in a tight feedback loop to
ensure that the grasped object meets its target and that the force behind the strike ceases
at the very moment of impact. This requires a solution to the problem of visual object
recognition of a generality that far exceeds the current state-of-the-art in machine vision,
because the point of impact on the target object has to be visually identified regardless
of the target’s shape, when lighting conditions are poor, where shadows, highlights, and
surface patterns abound, and when other objects clutter the scene. None of this would
matter in the context of the present exercise in knowledge representation were it not for the
fact that robust perception almost certainly depends on expectation, which in turn relies on
a common sense understanding of the physical world [27].

Am I, then, suggesting that we’ve put the cart before the horse, that we should be
tackling the topic of perception before that of common sense reasoning? Not at all. What
we’re talking about here are not horses and carts but—if you’ll forgive the pun—chickens
and eggs. To the question of which comes first, perception or common sense reasoning,
the answer is neither. The recommendation is rather that we should be cautious about
working on either topic in isolation. Moreover, as the champions of active perception have
argued persuasively, perception itself is best studied in the context of action [1,2]. These
arguments, taken in addition to those just advanced, entail that perception, action, and
cognition form a trinity of subjects that shouldn’t be separated.

In spite of this, there’s much still to be learned if we proceed under the pretence that
the PropelTo and Stop actions are a reasonable choice of primitive actions. The catalogue
of issues that arises is both instructive and representative. The next clutch of formulae
captures the effects of the CollidesWith action. It would be desirable to have a generic
formalisation of the consequences of collisions, one in which the appearance of cracks
was a special case. But for now we’ll go for the easy option, which is to write specialised
axioms for eggs and bowls. Table 3 describes the language features employed.

Here’s the main axiom, which says that the collision of the egg shell with the bowl’s
rim brings about a fracture in the egg along its circumference if the velocity of the collision
is just right. The formula IsA(x, y) represents that object x is an instance of type y . The
formula Material(x, y)means that the whole of object x , including all its parts, is made of
material y .

Table 3
Eggs and bowls

Formula/term Sort Meaning

Shell(x) Object part The shell of egg x
Rim(x) Object part The rim of bowl x
Middle(x) Object part The contents of egg x, including the egg-white and the yolk
Egg Type of object Eggs
Bowl Type of object Bowls
Hard(x) Object or part x is hard
Material(x, y) All of object or part x is made of material y
JREC(v) Velocity v is “Just Right for Egg Cracking”, in other words not so small that

the egg remains intact nor so great that the egg smashes to pieces
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Initiates(CollidesWith(Shell(x), y, v),Fractured(Shell(x)), t)← (E1.7)

IsA(x,Egg)∧Hard(y)∧ JREC(v)

The following group of axioms deals (very superficially) with materials, and with some
problem-specific aspects of parts and wholes. The issue of parts and wholes is treated more
fully shortly.

Hard(x)←Material(x,Glass) (B1.1)

Material(x, y)← PartOf (x, z)∧Material(z, y) (B1.2)

PartOf (Rim(x), x)← IsA(x,Bowl) (B1.3)

PartOf (Shell(x), x)← IsA(x,Egg) (B1.4)

Again, if we take a step back and ask how these symbols might be grounded in the
sensory-motor activity of a robot, we expose serious shortcomings in the representation.
Especially glaring is the absence of a proper treatment of shape and space in the context of
which the terms Shell(x) and Rim(x) would have a more precise sense. A more thorough
axiomatisation would flesh these concepts out in terms of spatial occupancy and shape.
In [12], for example, we find an attempt to formally characterise the concept of a container
in terms of enclosures and portals. Although Hayes’s choice of ontological primitives,
being at a lower level, is more apt than the present choice, they both share a major
shortcoming. What we really want is a formal theory that will tie in to a vision system
capable of recognising vessels. If tackled in full, this issue alone would fill several Ph.D
theses. So once again, we’ll content ourselves with a compromise in order to make a decent
attempt at a total formalisation.

The next axiom describes the effect of splitting the cracked egg into two. Table 4 sets out
the meanings of the language elements used. Some of these are general purpose language
features for containment, and parts and wholes. The two shapes and the SplitEgg action are
problem-specific.

In practise, a human egg-cracker usually prizes the fractured shell apart in such a way as
to allow the whole contents to fall out as soon as the resulting fissure is wide enough. But
we’ll assume a more peculiar way of doing the job, which results in the contents of the egg
being divided into two parts distributed between the two egg-shell halves. This will force
us to confront the interesting issue of parts-and-wholes. In unreified shorthand, the effect

Table 4
Containment, parts and shapes

Formula/term Sort Meaning

Contains(x, y) Fluent Vessel x contains object y
Shape(x, y) Object x has shape y
WholeShell Shape The shape of an intact egg shell
HalfShell Shape The shape of half an egg shell
Comprises(x, y1, y2) Object x can be split into objects y1 and y2
PartOf (x, y) Object x is a proper part of object y
Half 1(x)/Half 2(x) Object part The first/second half-shell of egg x
SplitShell(x) Action The shell of egg x is broken into two halves
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we expect from a SplitShell action is this. Assuming the egg-shell is fractured in the right

way, before splitting the egg we will have Contains(Shell(x),Middle(x)). After splitting
the egg, we want, for some x1, x2, y1, and y2,

Contains(x1, y1)∧Contains(x2, y2)∧
Shape(x1,HalfShell)∧ Shape(x2,HalfShell)∧

Comprises(Shell(x), x1, x2)∧Comprises(Middle(x), y1, y2)

The following axiom does the job.

∃y1, y2[Initiates(SplitShell(x),Contains(Half 1(x), y1), t)∧ (E1.8)
Initiates(SplitShell(x),Contains(Half 2(x), y2), t)∧

Comprises(Middle(x), y1, y2)]←
IsA(x,Egg)∧HoldsAt(Contains(Shell(x),Middle(x)), t)∧

HoldsAt(Fractured(Shell(x)), t)

The purpose of the Half 1 and Half 2 functions is to permit the two halves resulting from
a SplitShell action to be named. Logically speaking, they are acting as Skolem functions
that substitute for existentially quantified variables in (E1.8). Strictly, these functions
should include a time argument, as distinct SplitShell actions could result in different
divisions of the same egg-shell. However, as we can safely assume that an egg-shell will
never suffer more than one splitting in its lifetime, this parameter is omitted here. The
following pair of axioms specify the shapes of the two egg-shell halves. Note that there’s
no need to specify the shape exactly.

Shape(Shell(x),WholeShell)← IsA(x,Egg) (B1.5)

Shape(Half1(x),HalfShell)← IsA(x,Egg) (B1.6)

Shape(Half 2(x),HalfShell)← IsA(x,Egg) (B1.7)

The predicate Comprises is defined as follows.

Comprises(x, y1, y2)↔ (B1.8)
¬∃y3[PartOf (y3, x)∧ ∀y4[PartOf (y4, y3)→
[¬PartOf (y4, y1)∧¬PartOf (y4, y2)]]] ∧
¬∃y3[PartOf (y3, y1)∧ PartOf (y3, y2)]

In other words, x comprises y1 and y2 if there is no part of x that is entirely outside of
both y1 and y2, and if y1 and y2 don’t overlap. In particular, an egg-shell is comprised of
its two halves.

Comprises(Shell(x),Half 1(x),Half2(x))← IsA(x,Egg) (B1.9)
HoldsAt(Fractured(Shell(x)), t)

The next axiom is required because, as a consequence of an egg’s destruction by the
SplitShell action, it can no longer be said to contain anything.

Terminates(SplitShell(x, x1, x2),Contains(Shell(x), y), t)← (E1.9)
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Some remarks about existence and non-existence are in order here. Nowhere has the fact

been represented that the original egg shell ceases to exist when the two halves are pulled
apart. Instead, the consequences for the Contains fluent have been emphasised—a non-
existent egg can’t contain anything. Indeed, more generally, no physical fluent can hold for
a non-existent object, and we could set down an axiom to this effect. A more principled
approach to physical existence and non-existence is taken by Davis in his treatment of the
effects of cutting an object in two [6], and also in [22], where an object is considered to
exist if and only if it occupies some region of space.

Now we need an axiom relating parts and containment. The following axiom seems
adequate on first examination.

HoldsAt(Contains(x, y), t)↔
∀z[PartOf (z, y)→HoldsAt(Contains(x, z), t)]

But it turns out that a more useful axiom can be formulated.

HoldsAt(Contains(x, y), t)↔ (B1.10)
¬∃z1[PartOf (z1, y)∧ ∀z2[PartOf (z2, z1)→
¬HoldsAt(Contains(x, z2), t)]]

This axiom insists that no part of an object can be wholly outside a vessel that contains it.
In this form, the axiom interacts more straightforwardly with the definition of Comprises.
Given the right formalisation of the part-whole relation, the second of these axioms will
follow from the first. But no attempt will be made here to present and justify a fully-fledged
theory of parts-and-wholes. (A detailed formal investigation of this subject can be found
in [21]). Instead, we’ll adopt just three axioms. The first two state that the PartOf relation
is irreflexive and transitive.

¬PartOf (x, x) (B1.11)

PartOf (x, y)∧ PartOf (y, z)→ PartOf (x, z) (B1.12)

The third axiom we require insists that all parts have sub-parts, reflecting an assumption
that space is infinitely divisible. (Metaphysically, this rules out atomic objects, although
it still allows for an object that cannot physically be split.) Without this axiom, an object
with a part with no sub-parts would be possible, and such an object would be contained by
everything according to Axiom (B1.10).)

PartOf (x, y)→∃zPartOf (z, x) (B1.13)

Getting back to the specifics of the benchmark problem, the egg-cracker needs to be able
to move the egg over the bowl. Let’s cheat a little here, and provide an action that does the
job directly and instantaneously, ignoring the continuous motion involved (Table 5).

Table 5
Moving things above things

Term Sort Meaning

MoveAbove(x, y) Action Object x is moved above object y
Beneath(x, y) Fluent Object y is above object x
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Initiates(MoveAbove(x, y),Beneath(y, x), t) (E1.10)
Now we have two state constraints to ensure that the Beneath fluent respects common
sense intuitions about parts and wholes and containment. All of an object’s parts are above
everything the object itself is above, and an object is above everything its container is
above.

HoldsAt(Beneath(x, y), t)← PartOf (y, z)∧HoldsAt(Beneath(x, z), t) (B1.14)

HoldsAt(Beneath(x, y), t)← (B1.15)
HoldsAt(Contains(z, x), t)∧HoldsAt(Beneath(z, y), t)

Two further axioms, with the arguments in different orders, are required but not shown.

5. Liquids and vessels

The final group of axioms describes the behaviour of liquids and vessels. Table 6
introduces some of the new language features required.

First we’ll augment the effects of the SplitShell action to reflect the assumption that it
is performed in such a way as to ensure that the resulting egg halves are held upright. (If
carried out by a human, this means that the egg-cracker’s thumbs are on top of the egg
while it is pulled apart.)

Terminates(SplitShell(x),Angle(Half 1(x),0), t) (E2.1)

Terminates(SplitShell(x),Angle(Half 2(x),0), t) (E2.2)

Now, we can move from the problem-specific terms of Axioms (E1.4) to (E2.2) back
into the generic realm with the following pair of background axioms.

IsA(x,OpenVessel)← Shape(x,HalfShell) (B2.1)

IsA(x,ClosedVessel)← Shape(x,WholeShell) (B2.2)

Of course, we also have the following.

IsA(x,OpenVessel)← IsA(x,Bowl) (B2.3)

A vessel isn’t open if it’s closed.

¬IsA(x,OpenVessel)← IsA(x,ClosedVessel) (B2.4)

Table 6
Pouring liquid from a vessel

Term Sort Meaning

OpenVessel Type of object Vessels with an opening
ClosedVessel Type of object Sealed vessels
Tilt(x) Action Vessel x starts to tilt
Tilting(x) Fluent Vessel x is tilting
Angle(x,h) Fluent Vessel x is tilted at angle h from horizontal
Upturned(x) Fluent The contents of vessel x can fall out
Spill(x, y) Action The contents x of vessel y start to fall out
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If you tilt an open vessel, eventually its contents start to fall out. This effect is captured

through the Angle(x,h) fluent, whereby the angle h increases continuously while the
second-order fluent Tilting holds. When h reaches a critical point in its trajectory, the
Upturned fluent starts to hold, and a Spill event is triggered. We’ll assume the sort of
“angles” only permits values between 0 and 2π radians, and that functions returning an
angle are taken modulus 2π .

∃h1[h1> 0∧ [HoldsAt(Upturned(x), t)↔ (E2.3)
HoldsAt(Angle(x,h2), t)∧ h2 � h1]]

Initiates(Tilt(x),Tilting(x), t)←¬HoldsAt(Upturned(x), t) (E2.4)

Releases(Tilt(x),Angle(x,h), t) (E2.5)

Terminates(Stop(x),Tilting(x), t) (E2.6)

Initiates(Stop(x),Angle(x,h), t)←HoldsAt(Angle(x,h), t) (E2.7)

∃w[Trajectory(Tilting(x), t,Angle(x,h2), d)← (E2.8)
HoldsAt(Angle(x,h1), t)∧ h2= h1+w · d]
[HoldsAt(Angle(x,h1), t)∧HoldsAt(Angle(z,h2), t)]→ h1= h2 (E2.9)

Happens(Spill(x, y), t)← (N2.1)
HoldsAt(Upturned(y), t)∧HoldsAt(Tilting(y), t)∧HoldsAt(Contains(y, x), t)

Terminates(Spill(x, y),Contains(y, x), t) (E2.10)

Table 7 presents the remaining language features introduced in this section. A Spill event
initiates an interval over which the fluent Falling holds. During this interval, the fluent
Distance(x, y, z) undergoes continuous variation, where z is the distance between falling
object x and an object y underneath it. The constantG denotes the rate of acceleration due
to gravity.

Initiates(Spill(x, y),Falling(x, z), t)←HoldsAt(Beneath(z, y), t) (E2.11)

Releases(Spill(x, y),Distance(x, z,w), t)←HoldsAt(Beneath(z, y), t) (E2.12)

Terminates(Fill(x, y),Falling(y, x), t) (E2.13)

Table 7
Liquids and vessels

Term Sort Meaning

Falling(x, y) Fluent The contents x of vessel y is falling out
Fill(x, y) Action Vessel x starts to fill with object y
Filling(x, y) Fluent Vessel x is filling with object y
Capacity(x) The capacity of vessel x
Volume(x) The volume of object x
Opening(x) Region The region of empty space that comprises the opening of vessel x
PContains(x, y, k) Fluent Vessel x contains a portion of object y, corresponding to k times its volume,

where k ranges from 0 to 1
Overflows(x) Action Vessel x overflows
GotAll(x, y) Action Vessel x contains all of object y
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Initiates(Fill(x, y),Distance(x, y,0), t) (E2.14)
Trajectory(Falling(x, y), t,Distance(x, y, z2), d)← (E2.15)
HoldsAt(Distance(x, y, z1), t)∧ z2= z1− 0.5 ·G · d2

If a falling body encounters the opening of a vessel, it starts to fill that vessel. This effect
is captured by the triggering of a Fill event when the distance between the falling body and
the opening becomes zero. A Fill(x, y) event initiates a period of continuous change during
which the proportion of object y contained by vessel x gradually increases, as represented
by the PContains fluent.

Happens(Fill(x, y), t)← (N2.2)
HoldsAt(Distance(y, x,0), t)∧HoldsAt(Falling(y,Opening(x)), t)∧

IsA(x,OpenVessel)∧¬HoldsAt(Upturned(x), t)

Initiates(Fill(x, y),Filling(x, y), t) (E2.16)

Releases(Fill(x, y),PContains(x, y, k), t) (E2.17)

Releases(Fill(x, y),Contains(x, y), t) (E2.18)

∃r[Trajectory(Filling(x, y), t,PContains(x, y, k), d)← k = r · d] (E2.19)

[HoldsAt(PContains(x, y, k1), t)∧ (E2.20)
HoldsAt(PContains(z, y, k2), t)]→ k1= k2

If the vessel continues to fill, eventually either an Overflows event or a GotAll event
occurs. An Overflows(x) event occurs if the combined volume of the proportions of the
two objects that have fallen into vessel x exceeds the capacity of x . Ideally, the conditions
that trigger an Overflows(x) event would take account of arbitrarily many sources of flow
into x , whereas Axiom (N2.3) below assumes that exactly two objects are falling into x .
A more comprehensive treatment of this issue can be found in [18].

Happens(Overflows(x), t)← (N2.3)
HoldsAt(PContains(x, y1, k1), t)∧

HoldsAt(PContains(x, y2, k2), t)∧
¬∃y3[PartOf (y3, y1)∧ PartOf (y3, y2)] ∧

Capacity(x)= k1 · Volume(y1)+ k2 · Volume(y2)

Initiates(Overflows(x),PContains(x, y, k), t)← (E2.21)
HoldsAt(PContains(x, y, k), t)

Terminates(Overflows(x),Filling(x, y), t) (E2.22)

For Axiom (N2.3) to work properly when the two parts of an egg are recombined in a bowl,
volume must be additive.

Comprises(x, y, z)→ Volume(x)= Volume(y)+ Volume(z) (B2.5)

A GotAll(x, y) event occurs if the whole of object y ends up in vessel x . Note that, if the
capacity of a vessel is equal to the volume of the object(s) falling into it, a GotAll even and
an Overflows event will occur simultaneously.
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Happens(GotAll(x, y), t)← (N2.4)

HoldsAt(PContains(x, y,1), t)∧HoldsAt(Filling(x, y), t)

Initiates(GotAll(x, y),Contains(x, y), t) (E2.23)

Terminates(GotAll(x, y),Filling(x, y), t) (E2.24)

The axioms of this section are intended to capture some aspects of the common sense
physics of spilling, falling, filling, and overflowing.4 Their adequacy for the benchmark
problem at hand is demonstrated in the next section.

6. A cracking narrative

The aim of this section is to show that, taken together, the axioms of Sections 3–5 are
sufficient to represent the narrative of events set out in Davis’s description of the egg-
cracking benchmark. To begin with, we have an egg and a glass bowl.

IsA(Egg0,Egg) (B3.1)

IsA(Bowl0,Bowl) (B3.2)

Material(Bowl0,Glass) (B3.3)

Capacity(Bowl0)� Volume(Middle(Egg0)) (B3.4)

InitiallyN(Upturned(Bowl0)) (B3.5)

InitiallyP (Distance(Shell(Egg0),Rim(Bowl0),Z)) (B3.6)

Z > 0 (B3.7)

InitiallyP (Contains(Shell(Egg0),Middle(Egg0))) (B3.8)

First, the egg is hit against the rim of the bowl. The robot propels the side of the egg
towards the rim of the bowl, and stops as soon as the collision occurs.

Happens(PropelTo(Shell(Egg0),Rim(Bowl0),V ), T 0) (N3.1)

JREC(V ) (N3.2)

Happens(Stop(Shell(Egg0)), t1)∧ t1< T 1← (N3.3)
T 0< t1∧HoldsAt(Distance(Shell(Egg0),Rim(Bowl0),0), t1)∧
¬∃t2[HoldsAt(Distance(Shell(Egg0),Rim(Bowl0),0), t2)∧
T 0< t2< t1]

Next the robot moves the fractured egg above the bowl.

Happens(MoveAbove(Egg0,Opening(Bowl0)), T 1) (N3.4)

T 0< T 1 (N3.5)

Now the robot prizes apart the two halves of the egg.

4 A comparison with Hayes’s approach to liquids and vessels would be valuable [12].
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Happens(SplitShell(Egg0), T 2) (N3.6)
T 1< T 2 (N3.7)

Finally, the robot tilts the two egg halves until their contents spill out.

Happens(Tilt(Half 1(Egg0)), T 3) (N3.8)

Happens(Tilt(Half 2(Egg0)), T 3) (N3.9)

T 2< T 3 (N3.10)

Happens(Stop(Half 1(Egg0)), t1)← (N3.11)
T 3< t1∧HoldsAt(Upturned(Half 1(Egg0)), t1)∧
¬∃t2[HoldsAt(Upturned(Half 1(Egg0)), t2)∧ T 3< t2< t1]

Happens(Stop(Half 2(Egg0)), t1)← (N3.12)
T 3< t1∧HoldsAt(Upturned(Half 2(Egg0)), t1)∧
¬∃t2[HoldsAt(Upturned(Half 2(Egg0)), t2)∧ T 3< t2< t1]

Proposition 6.1. Let N be the conjunction of all the above axioms numbered (N . . .), let E
be the conjunction of all the above axioms numbered (E . . .), and let B be the conjunction
of all the above axioms numbered (B . . .). Finally let U be the conjunction of a set of
uniqueness-of-names axioms for actions and fluents. Then we have,

CIRC[N;Happens] ∧
CIRC[E; Initiates,Terminates,Releases] ∧CEC ∧B∧U|=
∃t[t > T 3∧HoldsAt(Contains(Bowl0,Middle(Egg0)), t)]

In other words, if an agent carries out the actions in the above narrative, the contents of
the egg will end up in the bowl.

Proof. The proof is contained in Appendix A. ✷
7. Elaborations and limitations

Let’s return to the elaborations suggested by Davis and listed in Section 2. Some of
these can be straightforwardly accommodated by the above formalisation, and some of
them are tricky. What happens if the cook brings the egg to impact very quickly? Or very
slowly? Very little extra machinery is required to deal with a slow impact. With the current
axioms, if the impact is not “just right”, the egg will be unaffected. Instead of (N3.2), we
have the following, where TSEC(v) means velocity v is “Too Slow for Egg Cracking” and
TFEC(v) means v is “Too Fast for Egg Cracking”.

TSEC(V )

The following axioms guarantee that the different velocity ranges are mutually exclusive.

v1> v2← TSEC(v1)∧ JREC(v2)

v1> v2← JREC(v1)∧ TFEC(v2)
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Some extra effect axioms partially take care of the case where the impact is too fast. In

addition to (E1.7) we can include the following.

Initiates(CollidesWith(Shell(x), y, v),Shattered(y), t)←
IsA(x,Egg)∧Hard(y)∧ TFEC(v)

Terminates(e,Contains(x, y), t)← Initiates(e,Shattered(x), t)

However, this elaboration draws further attention to one of the formalisation’s major
limitations: there is no explicit notion of spatial occupancy or location. The chief
consequence of shattering the egg, namely that the shell is no longer capable of holding
onto its contents, should be a common sense consequence of the shapes of the egg
fragments that result from the impact, and a suitable collection of axioms relating shape
and containment. Instead, this fact has been written down as a special case.

The point here is that the medium through which the egg is moving on its way to the
rim of the bowl and through which the yolk later falls is the same as that through which
the shape of the bowl curves enabling it to retain liquid, namely space. The relationship
between the bowl and the egg at the moment of impact is one of extreme spatial proximity.
The effect of prizing apart the halves of the egg-shell is one of increasing spatial separation.
Yet nowhere in the formalisation is there any indication of the common spatial foundation
to the terms CollidesWith, MovingTo, Contains, Falling, Filling, OpenVessel, ClosedVessel,
and so on. Axiomatising a foundational common sense theory of space, however, is
extremely difficult. (See [20] for one attempt.)

Let’s move on to some of Davis’s other elaborations. What happens if the bowl is made
of soft clay? Then, instead of Axiom (B3.3), we have the following.

Material(Bowl0,Clay)

¬Hard(x)←Material(x,Clay)

Now the impact of the egg against the bowl will have no effect. Further axioms would
be required to capture the distorting effect of the impact on the shape of the bowl in this
case.

What if the bowl is smaller than the egg? To begin with, we have the following axiom
instead of (B3.4).

Volume(Middle(Egg0)) > Capacity(Bowl0)

From Axiom (N2.3), this leads to an Overflows(Bowl0) event, which terminates the
Filling fluents for both halves of the egg’s contents. This prevents a GotAll event from
occurring for the contents of at least one of the egg-halves. More precisely, there will be
three classes of models with respect to the time T of the Overflows event. Let Y1 and
Y2 denote the contents of Half 1(Egg0) and Half 2(Egg0), respectively. In the first class
of model, PContains(Bowl0, Y1,1) holds at time T because a GotAll(Bowl0, Y1) event
occurs before T , while PContains(Bowl0, Y2, k) holds at T for some k < 1. In the second
class of model, PContains(Bowl0, Y2,1) holds at time T because a GotAll(Bowl0, Y2)
event occurs before T , while PContains(Bowl0, Y1, k) holds at T for some k < 1. In the
third class of model, no GotAll events occur, PContains(Bowl0, Y1, k1) holds at time T
for some k1 < 1, and PContains(Bowl0, Y2, k2) holds at T for some k2 < 1. In none of
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these classes of model can two GotAll events occur. Therefore the inference that the bowl

eventually contains the whole of the egg’s contents is blocked.

The current set of axioms neglects to tell us exactly what happens instead. However, the
following axiom can be introduced to complement Axioms (E2.21) and (E2.22).5

Initiates(Overflows(x),Overflowing(x, y), t)←HoldsAt(Filling(x, y), t)

Further axioms in the same style as those already written down can be used to describe
how the situation evolves while the Overflowing(x, y) fluent holds. Specifically, they would
describe the body of liquid y flowing down the side of the vessel x until a surface is
reached, and then spreading outwards. To capture the resulting mess in logic might seem
a challenge. But thanks to the versatility of the existential quantifier, the challenge can no
doubt be met.

Finally, let’s briefly consider a class of elaborations not in Davis’s list. The formalisation
of this paper is quite tolerant to the introduction of interfering events. For example, the
cook could drop the egg before it strikes the bowl, or while the contents are pouring out.
Similarly, another cook with an irritating sense of humour might remove the bowl at any
time. The techniques used here for representing continuous change ensure that knowledge
of such extra events can be easily absorbed.

8. Concluding remarks

In Section 1, it was claimed that the exercise of formalising a non-trivial benchmark in
common sense reasoning would help to build up a repertoire of knowledge representation
principles, techniques, and tricks for later deployment, possibly in a robotics context.
To what extent have we succeeded? What principles have been uncovered, and what
techniques and tricks have been devised? The topic given the most thorough treatment
in the paper is reasoning about action, and this has highlighted the advanced state of
development in this area. In particular, the formalisation demonstrates that sophisticated
kinds of common sense reasoning about continuous change, including motion, can be
captured with the event calculus. Moreover, the set of axioms presented here conforms
to a pattern that can be used to represent continuous motion in other domains, such as
mobile robotics [23].

This claim is reinforced by the fact that continuous motion has been formulated in a
way that can accommodate concurrent actions (such as two simultaneous Tilt events),
and triggered events (such as a collision or an overflow). In addition, the formalisation
is robust in the presence of certain kinds of incompleteness. Under the right circumstances,
precise knowledge of an object’s trajectory is not required to license the conclusion that
it will collide with another object. This has been achieved through the use of existential
quantification in both Trajectory formulae, such as (E2.19), and in formulae characterising
fluents that are dependent on Trajectory formulae, such as (E2.3). These formulae are
written in a style that can be mapped onto other domains. Furthermore, proofs that invoke

5 Ideally, this axiom should have further conditions to block the initiation of the Overflowing fluent if a
simultaneous GotAll event occurs.
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these formulae, such as that in Appendix A, exhibit patterns that will recur in reasoning

about continuous change in other domains.

In contrast to reasoning about action, the more complex area of common sense
reasoning about space and shape is less mature. A proper theory of spatial occupancy
would dramatically improve the present formalisation, and this is the subject of ongoing
work. Especially striking is the fact that there is no formal link in the present theory
between the intuitively connected concepts of motion, parts-and-wholes, and containment.
However, the careful incorporation of predicates such as Distance, Contains, and PartOf
has provided a potential interface to a future deep theory of spatial occupancy. And
although the theory of parts and containment deployed here is far from fully worked out, it
is sufficient to suggest that a full theory could be glued onto an event calculus formulation
of continuous change without much difficulty.

The formalisation given in this paper exhibits a good degree of elaboration tolerance,
and therefore meets one of the main design criteria set out in Section 2. Many of Davis’s
suggested elaborations, as well as others, can be accommodated with minimal revision to
the axioms. This elaboration tolerance is partly inherited from the ability of the underlying
event calculus formalism to absorb extra effect axioms and extra event occurrences, and is
partly due to the high level of physical detail in the formalisation.

The egg-cracking benchmark scenario has also been tackled by Lifschitz [15] and
Morgenstern [19], so a few words of comparison are in order. For reasoning about action,
Lifschitz uses a causal logic based on the work of McCain and Turner [16]. Lifschitz’s
paper convincingly demonstrates the applicability of this logic to a complex scenario like
egg-cracking, but doesn’t attempt a deep formalisation of shape, space, or continuous
change. These issues are tackled more fully in Morgenstern’s work, which merits a
closer comparison with the present paper. The comparison is facilitated by the fact that
Morgenstern’s formalisation, like the present paper, uses the event calculus to represent and
reason about action and continuous change, and deploys exactly the same set of predicates
and axioms as presented here in Section 3.

Morgenstern’s formalisation addresses the representation of shape, and in particular
of containment, in a more principled way than the present work. An object’s shape is
considered as a region of space, and the concepts of a closed and open container are defined
in these terms. In addition to straightforward non-porous containers, Morgenstern’s paper
tackles the concept of a leaking container, a class of object not considered in this paper. On
the other hand, the present formalisation can handle simultaneous pourings, which, though
not a realistic feature of the egg-cracking scenario, do present an interesting challenge.
Moreover, the present paper offers a treatment of parts-and-wholes, which allows an object
(such as the egg’s contents) to be broken up and to come back together again.6 Both papers
address the issue of continuous change, although Morgenstern’s attention is confined to
falling and pouring, while the present work also deals with the continuous motion involved
in propelling the egg towards the bowl and with the continuous rotation involved in tilting
the broken egg.

6 This is a prerequisite for representing what Morgenstern calls the “Humpty Dumpty theorem”, namely that
an egg-shell, once broken, cannot be put back together again.
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Fig. 1. LUDWIG the humanoid robot.

Finally, this exercise has highlighted certain important methodological issues. In
particular, the question arises of the appropriateness of an ontology that has been devised
without the requirement that its lowest-level predicate and function symbols are grounded
through interaction with the world. The obvious way to deflect this sort of objection is to
marry the project of formalising common sense to robotics [23,26]. This is the approach
being taken by ongoing work in cognitive robotics at Imperial College, where an upper-
torso humanoid robot has been constructed for fundamental research on perception and
spatial reasoning (Fig. 1). At present, the main thrust of this work is in the area of vision,
and a logic-based theory has been developed that casts visual perception as a form of
abduction [27]. Perhaps, in the not too distant future, cognitive robotics research in this
style will lead to the sort of deep understanding of common sense reasoning that is surely
required to fulfill the long-term ambitions of the field of AI.
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Appendix A. Proof of Proposition 6.1

Let S = Shell(Egg0) and R = Rim(Bowl0). From Proposition 2 in [14], it follows that,
since all the Happens formulae in N are in Horn clause form, the circumscription of N
entails the predicate completion of Happens. From this, we derive,

Happens(PropelTo(S,R,v), t)↔ t = T 0∧ v = V (A.1)
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Similarly, from the circumscription of E, we obtain the predicate completions of

Terminates and Releases. (In fact, some formulae in E, such as (E1.8), aren’t in Horn clause
form. But this can be fixed by replacing the existential quantifiers with Skolem functions.)
These completions entail the following.

¬∃e[Terminates(e,Distance(S,R, z), t)] (A.2)

Releases(e,Distance(S,R, z), t)→∃v[e = PropelTo(S,R,v)] (A.3)

From (B3.6), (A.1)–(A.3), and (EC1), we get,

HoldsAt(Distance(S,R,Z), t)← 0 � t � T 0 (A.4)

In other words, the distance from the side of the egg to the rim of the bowl is Z up to and
including the time of the PropelTo action.

Now, from (EC7), (N3.1), (E1.1), (E1.5) and (A.4), it follows that,

HoldsAt(Distance(S,R, z), T 0+ d)← (A.5)
d > 0∧ z=Z− V · d ∧¬Clipped(T 0,MovingTo(S,R,V ),T 0+ d)

In other words, after the PropelTo action, the distance from the side of the egg to the rim
of the bowl is a linear function of the elapsed time since the PropelTo action, until the
first event that clips the MovingTo fluent. The next step is to establish the time of that first
clipping event.

From the predicate completion of Happens we have,

Happens(Stop(S), t1)↔ (A.6)
T 0< t1< T 1∧HoldsAt(Distance(S,R,0), t1)∧
¬∃t2[HoldsAt(Distance(S,R,0), t2)∧ t2< t1]

Similarly, from the predicate completions of Terminates and Releases, we have the
following.

Terminates(e,MovingTo(x, y, v), t)→ e= Stop(x) (A.7)

¬∃e[Releases(e,MovingTo(x, y, v), t)] (A.8)

Let D = Z/V . We need to show that the distance between the egg and the bowl reaches
zero at time T 0+D. First, we prove that no Stop(S) event occurs before T 0+D, in other
words that,

¬∃t[Happens(Stop(S), t)∧ t < T 0+D] (A.9)

To see that (A.9) is true, assume the first Stop(S) event occurs at some time t1 before
T 0+D, where t1= T 0+ d for some d <D. Given (A.6), it follows from this assumption
that the distance between the egg and the bowl at time t1 is zero. Now, from (A.4), we
know this distance is Z up to and including time T 0. Since Z > 0, t1 must therefore be
after T 0. So, from (A.2), we know that the distance between the egg and the bowl at time t1
is Z − V · d . (The fluent MovingTo(S,R,V ) is not clipped before t1 by assumption.) We
know d < D, and therefore d < Z/V . If d < Z/V , then Z − V · d > 0. In other words,
the distance from the egg to the bowl at t1 is greater than zero, which is a contradiction.
Therefore no Stop(S) event can occur before time T 0+D.
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Now, from (A.7)–(A.9) and (EC5), we obtain,
¬Clipped(T 0,MovingTo(S,R,V ),T 0+D) (A.10)

From this plus (A.5), we get,

HoldsAt(Distance(S,R, z), T 0+ d)← 0< d � T 0+D ∧ z=Z− V · d (A.11)

and, more specifically,

HoldsAt(Distance(S,R,0), T 0+D) (A.12)

From (EC3), (N3.1), (E1.1) and (A.10), we also have,

HoldsAt(MovingTo(S,R,V ),T 0+D) (A.13)

From (N3.3) and (A.11), we get,

Happens(Stop(S), T 0+D).
From (A.12), (A.13) and (N1.1), we get,

Happens(CollidesWith(S,R,V ),T 0+D)
A similar argument to that for (A.9) above shows that no CollidesWith event occurs before
T 0 + D. In the rest of the proof, analogous non-occurrences will be assumed without
argument.

Now, given the material properties of the egg and the bowl ((B1.1) to (B1.4) and
(B3.1) to (B3.3)), it can be seen from Axioms (E1.7) and (N3.2) that the CollidesWith
event at T 0+D initiates the fluent Fractured(S). From the event calculus axioms and the
circumscriptions of N and E, it can be shown that this fluent then persists indefinitely. In
other words,

HoldsAt(Fractured(S), t)← t > T 0+D (A.14)

The next event to occur is the robot’s MoveAbove action at time T 1 (N3.4). From (E1.10),
this event initiates the fluent Beneath(Opening(Bowl0),Egg0). From the event calculus
axioms and the circumscriptions of N and E, it can be shown that this fluent then persists
indefinitely. In other words,

HoldsAt(Beneath(Opening(Bowl0),Egg0), t)← t > T 1 (A.15)

After the MoveAbove action, the next event to occur is the robot’s SplitShell action at
time T 2. From (A.14), we know that the egg-shell is fractured at T 2. It can also be proved,
from (B3.8), that Shell(Egg0) contains Middle(Egg0) at T 2. Therefore, from (E1.8), this
SplitShell action will initiate an interval during which the contents of the egg is distributed
between the two resulting half-shells. Since no event occurs between T 2 and the two
simultaneous Tilt events at time T 3, we know this interval lasts at least until T 3. More
precisely, we have,

∃y1, y2[HoldsAt(Contains(Half 1(Egg0), y1), t)∧ (A.16)
HoldsAt(Contains(Half 2(Egg0), y2), t)∧

Comprises(Middle(Egg0), y1, y2)← T 2< t � T 3]
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Let Y1 and Y2 be the contents of Half 1(Egg0) and Half 2(Egg0), respectively, as

characterised in (A.16). Now let’s consider the aftermath of the two Tilt actions that occur
at T 3. From (E2.1) to (E2.3), it can be shown that,

¬HoldsAt(Upturned(Half 1(Egg0)), T 3)

¬HoldsAt(Upturned(Half 2(Egg0)), T 3)

Therefore the two Tilt actions initiate Tilting(Half 1(Egg0)) and Tilting(Half 2(Egg0)),
respectively. Now, the combination of (E2.8) and (E2.3) guarantees the existence of a
smallest delay D1 and an angle H such that,

Trajectory(Tilting(Half 1(Egg0)), T 3,Angle(Half 1(Egg0),H),D1) (A.17)

where

HoldsAt(Upturned(Half 1(Egg0)), t)←HoldsAt(Angle(Half 1(Egg0),H), t)

(A.18)

Using the same method as for the proof of (A.9), it can be shown that no event affecting
Half 1(Egg0) occurs between T 3 and T 3+D1. Hence we have,

¬Clipped(T 3,Tilting(Half 1(Egg0)), T 3+D1)

and thus, from (EC7), (A.17) and (A.18),

HoldsAt(Upturned(Half 1(Egg0)), T 3+D1)

Similarly, we obtain, for some delay D2,

HoldsAt(Upturned(Half 2(Egg0)), T 3+D2)

From (N2.1), this entails two Spill events, at times T 3+D1 and T 3+D2, respectively.
Let’s focus on just one.

Happens(Spill(Y1,Half 1(Egg0)), T 3+D1)

Since, from (A.15), we have Beneath(Opening(Bowl0),Egg0) at time T 3+D1, this event
initiates Falling(Y1,Opening(Bowl0)), given (E2.11), (B1.14) and (B1.15). It can now be
shown from (E2.15) and (EC7), using the same method as for the proofs of previous event
occurrences, that there exists a time T 4> T 3+D1 such that,

HoldsAt(Distance(Y1,Opening(Bowl0),0), T 4)

Therefore, from (N2.2), we have,

Happens(Fill(Bowl0, Y1), T 4)

This initiates Filling(Bowl0, Y1), from (E2.16). Given (B3.4) and (B2.5), it can be
proved that no Overflows event can occur to terminate the filling via (N2.3). Therefore,
from (E2.19), (EC7) and (N2.4), it can be shown that,

Happens(GotAll(Bowl0, Y1), T 5)



164 M. Shanahan / Artificial Intelligence 153 (2004) 141–165

for some time T 5 > T 4. From (E2.23), this initiates an interval during which Bowl0

contains Y1. Since there are no further events that could terminate this interval, we obtain,

HoldsAt(Contains(Bowl0, Y1), t)← t > T 5 (A.19)

Concurrently with the story of Y1, the remainder of the egg’s contents, Y2, falls from
Half 2(Egg0) into Bowl0, yielding,

HoldsAt(Contains(Bowl0, Y2), t)← t > T 6 (A.20)

for some T 6> T 3+D2.
Now, from (A.16), we know that Middle(Egg0) comprises Y1 and Y2, and from (A.19)

and (A.20) we know that both Y1 and Y2 are contained in the bowl at any time after
both T 5 and T 6. With these three lemmas, we can show that Middle(Egg0) is contained in
the bowl at such a time.

First, note that, since Middle(Egg0) comprises Y1 and Y2, there can be no part of
Middle(Egg0) that is wholly separate from Y1 and wholly separate from Y2, from (B1.8).
In other words, every part of Middle(Egg0) overlaps with either Y1 or Y2. Now suppose
there exists a part P of Middle(Egg0) that is not contained by Bowl0. From (B1.10), this
entails the existence of some part Q of P that is wholly outside the container. By the
transitivity of PartOf, Q must also be a part of Middle(Egg0). But if Q is wholly outside
the container, then it cannot overlap with either Y1 or Y2, both of which are contained by
the bowl, so it cannot be a part of Middle(Egg0), which is a contradiction. Therefore every
part of Middle(Egg0) is contained by Bowl0. From (B1.10), this entails that Middle(Egg0)
itself is contained by Bowl0. In other words, we have,

HoldsAt(Contains(Bowl0,Middle(Egg0)), t)← t > T 5∧ t > T 6

from which the main theorem follows directly. ✷
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