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Abstract 
This paper presents a number of models whose aim is to 
establish a computational basis for the hypothesis that 
conscious information processing in the brain is mediated by a 
mechanism of global broadcast. A possible role for this putative 
“global neuronal workspace” in achieving cognitive integration 
is mooted in the context of modular theories of mind, and an 
argument is advanced for its likely emergence within the sort of 
small-world brain network seemingly favoured by evolution. 
The paper concludes with some speculation on the relationship 
between life and consciousness as it could be. 

Introduction 
This article interweaves three strands of thinking in 
contemporary cognitive science. First, according to Baars 
(1988; 1997; 2002), the architecture of the mammalian brain 
comprises a number of parallel specialist processes (or 
modules) that compete and/or co-operate for access to a 
global workspace, in effect a mechanism for broadcasting 
information back to the whole cohort of specialists (Dehaene, 
et al., 2006; Shanahan, 2008a). The central claim of Baars’s 
theory is that information processing which is local to the 
specialists is non-conscious and only broadcast information is 
consciously processed. 
 Second, advocates of modular theories of mind, despite the 
diversity of their views, are largely in agreement that some 
mechanism for transcending modular boundaries is a 
prerequisite for the highest levels of cognitive attainment 
(Fodor, 1983; 2002; Tooby & Cosmides, 1992; Mithen, 1996; 
Carruthers, 2002; 2006). This facilitates what Mithen (1996) 
calls cognitive fluidity, a capacity to integrate across distinct 
domains of expertise that promotes innovation and creativity 
(Wynn & Coolidge, 2004). 
 Third, it has been shown that cortical wiring in mammals 
exhibits the properties of a small-world network (Sporns & 
Zwi, 2004; Bassett & Bullmore, 2006). According to Striedter 
(2005), this is the consequence of evolutionary pressure to 
maintain communication between anatomically segregated 
regions in the face of an increasing neuron count, since this 
cannot go hand-in-hand with a proportional increase in 
connectivity 
 Drawing together these three themes, this article proposes 
that the long-range white matter connections that serve to 
keep down the average path length in large-scale cortical 

networks have been structured by evolution so as to develop 
into a global neuronal workspace (Dehaene & Naccache, 
2001; Dehaene, et al., 2006; Shanahan, 2008a), which not 
only provides the integrative facility required to promote 
cognitive fluidity but is also a candidate for the neural 
substrate underlying consciousness (Shanahan & Baars, 
2005). The argument draws on a variety of computer and 
robot models, and is capped with a short discussion of the 
relationship between consciousness as it is found in nature and 
consciousness as it could be. 

Global workspace theory 
Global workspace theory (Baars, 1988; 1997) is one of the 
most influential ideas in the burgeoning field of consciousness 
studies. Its basic tenets have been endorsed by respected 
philosophers (Dennett, 2001; Metzinger, 2003) and 
neuroscientists (Dehaene, et al. 1998; Dehaene & Naccache, 
2001), and in cognitive psychology it has entered the 
undergraduate curriculum (Eysenck & Keane, 2005). Of 
course, the field is young and global workspace theory is open 
to future amendment or refutation. But it currently enjoys 
widespread support and a growing body of favourable 
evidence (Baars, 2002). 
 Central to the high-level, functional presentation of the 
theory is a computational architecture whose origins are in the 
blackboard systems of 1980s AI research. The architecture 
comprises a number of parallel, specialist processes and a 
global workspace (Fig. 1). The parallel specialists compete 
(and sometimes co-operate) to influence the global 
workspace, whose contents are broadcast back to the whole 
cohort of specialists, influencing them in turn. In operation, 
the architecture alternates between periods of competition and 
broadcast. 
 According to global workspace theory, the human brain 
instantiates the global workspace architecture, permitting a 
distinction to be drawn between conscious and non-conscious 
neural information processing. Information processing that 
takes place in the parallel specialists is non-conscious, while 
only information that is broadcast via the global workspace is 
consciously processed. Using the experimental paradigm of 
contrastive analysis, wherein closely matched conscious and 
non-conscious conditions are compared, this hypothesis can 
be tested empirically. Evidence to date using this method has 
been broadly supportive (Baars, 2002). Crucially, for 



contrastive analysis to be possible, both conscious and non-
conscious processing must be capable of influencing 
behaviour. In the human case, introspective verbal report is 
typically taken as an index of conscious processing, while 
priming effects that occur in visual masking experiments are a 
good example of the influence of non-conscious processing 
(Breitmeyer & Öğmen, 2006). 
 Further support for global workspace theory can be 
garnered from its potential to bolster so-called modular 
theories of mind (Fodor, 1983; 2002; Tooby & Cosmides, 
1992; Mithen, 1996; Carruthers, 2002; 2006). Modular 
theories of mind are challenged by the need for a mechanism 
that transcends modular boundaries, in order to implement 
what Fodor (2000) calls informationally unencapsulated 
cognitive processes, such as analogical reasoning, and to 
realise what Mithen (1996) calls cognitive fluidity. According 
to (Shanahan & Baars, 2005), the global workspace 
architecture incorporates just such a mechanism. Each parallel 
specialist process corresponds to a distinct module, and 
modular boundaries are transcended within the global 
workspace because the serial procession of states that unfolds 
there integrates the contributions of many of these parallel, 
specialists. Moreover, because the responsibility for 
determining the relevance of a potential contribution is not 
centralised but distributed among the specialists themselves, 
the resulting system is not vulnerable to the computational 
infeasibility arguments made by Fodor (1983; 2000). 
 One of the most pressing questions left open when global 
workspace theory is presented in functional terms is how the 
architecture maps onto the biological brain, and in particular 
what, in the brain, corresponds to the global workspace itself. 
A naive reading of the theory might attempt to associate the 
global workspace with a specific brain region, something 
reminiscent of the discredited notion of a Cartesian Theatre – 
“a place in the brain where it all comes together and 
consciousness happens” (Dennett, 1991). A more 
sophisticated understanding views the global workspace as an 
access-controlled, bandwidth-limited communications 
infrastructure that allows information to be distributed pan-
cortically by means of global brain states. According to 
Dehaene and his colleagues, a global neuronal workspace of 
this sort is realised by the long-range cortico-cortical 

pathways of the cerebral white matter (Dehaene, et al., 1998; 
Dehaene & Naccache, 2001). 

Modeling the global neuronal workspace 
In order to realise a pan-cortical communications 
infrastructure and facilitate cognitive integration in 
accordance with the hypothesis of (Shanahan & Baars, 2005), 
the hypothesised global neuronal workspace should conform 
to the following four desiderata (Dehaene & Naccache, 2001; 
Shanahan, 2008a). 1) It should sustain reverberating patterns 
of activation over several tens of milliseconds. 2) It should 
disseminate (broadcast) patterns of activation throughout 
cortex, preserving the information inherent in their 
spatiotemporal structure. 3) It should be sensitive to new 
patterns of activation, and when overtaken by one only a trace 
should remain of any previous pattern. 4) Cortical populations 
should win the right to influence the pattern of activation in 
the workspace through competitive interaction. 
 One way to test the neurological plausibility of a global 
neuronal workspace conforming to these desiderata is to use 
the methods of computational neuroscience to build models of 
possible instantiations of the idea. In (Dehaene, et al., 2003) 
and (Dehaene & Changeux, 2005), a computer model is 
presented that simulates competitive access to a global 
neuronal workspace, emulating two well-known experimental 
phenomena, namely the attentional blink and inattentional 
blindness. But Dehaene’s model does not simulate neuronal 
activity within the global workspace itself. In (Shanahan, 
2008a), a complementary computer model is presented that 
simulates the (putative) global neuronal workspace itself in 
addition to a small number of cortical populations that 
compete to influence it (Fig. 2, left). 
 A schematic of the latter model is shown in Fig. 2 (right). 
Each box in the diagram represents a heterogenous population 
of over 1000 spiking neurons with conduction delays, 
implemented (in Matlab) using Izhikevich’s (2003) equations. 
The global workspace comprises the five workspace nodes 
labeled W1 to W5, which serve to connect widely distributed 
regions of cortex. To keep the simulation manageable, only 
two such regions are included. Area W1 gives cortical 

Fig. 1: The global workspace architecture. A set of parallel processes (shown as circles) compete for access to 
the global workspace (left). The winner (shown with hatched lines) influences the state of the global 
workspace, which is then broadcast back out to the whole cohort of processes (right). The resulting series of 
workspace states is the product of the repeated alternation between episodes of competition and broadcast. 



population C1 access to the workspace, while area W2 gives 
populations C2 and C3 access to the workspace. C2 and C3 
are in a competitive relationship, mediated by local inhibitory 
connections as shown. All of the excitatory connections 
shown are focal and topographically organised, ensuring that 
the spatial structure of an activation pattern is preserved as it 
spreads out from a cortical population and into the workspace. 
The inhibitory connections between C2 and C3, on the other 
hand, are diffuse. 
 Not shown, but present in the model, are further diffuse 
inhibitory connections among the workspace nodes. Given the 
extensive recurrent connections between workspace nodes and 
the potential for feedback these provide, a suitable balance of 
excitation and inhibition is required to promote reverberation 

without preventing new paterns of activation from invading 
the workspace (Wang, 2001). Transitions from one workspace 
state to another are achieved thanks to the cortical populations 
C1 to C3. Each of these is trained, using a form of spike-
timing dependent plasticity (STDP), to respond to the 
appearance of a certain pattern Q in the workspace by taking 
on an associated pattern R, which may then invade the 
workspace in turn. Suppose pattern Q is presently in the 
workspace. If C2 associates Q with R and C3 associates Q 
with S then a competition will ensue. If C2 wins the 
competition, the next workspace state will be R. This in turn 
may stimulate another cortical area to respond (C1 perhaps). 
Overall, the system alternates periods of broadcast with bursts 
of competition, and the workspace exhibits a procession of 

  
Fig. 3: Raster plots of neuron firings in two representative trials of the model of (Shanahan, 2008a). Both trials 
use the same network with identical synaptic weights. The difference is due to the competition between 
cortical popoulations C2 (influencing neurons 129–192) and C3 (influencing neurons 193–256), both of 
which respond equally strongly to activation in neurons 65 to 128, but with different associations. In the left-
hand plot, C2 is the winner of the competition, shutting out its opponent by means of lateral inhibition, while 
in the right-hand plot the winner is C3. 

Fig. 2: The global neuronal workspace (left) and its model (right). The brains of cognitively sophisticated 
animals can be thought of as instantiating the architecture of Fig. 1, with the long-range fibres of the cerebral 
white matter constituting a global neuronal workspace (left, adapted from Dehaene, et al. (2006)). The 
schematic on the right depicts the computer simulation described in (Shanahan, 2008a). 



broadcast states. Each of the components of the schematic in 
Fig. 2 (right) requires further internal structure to realise this 
behaviour. For full details the reader is referred to (Shanahan, 
2008a) and (Shanahan, 2008b). 
 Fig. 3 shows raster plots of two representative trials of the 
simulation. For presentational purposes, the initial stimulus 
and the responses offered by C1 to C3 each activate a distinct 
set of contiguously numbered neurons. Firings in the 
excitatory neurons in workspace area W1 are shown. The 
other four workspace areas exhibit similar patterns, as we 
should expect if the workspace is operating effectively as a 
broadcast mechanism. In each trial, an initial stimulus is 
injected into the workspace at 20ms, which institutes a pattern 
of reverberating firing. C1 has an association with this 
particular pattern, and the pattern of firing it responds with 
begins to invade the workspace at around 80ms. This causes a 
surge of inhibition in the workspace thanks to which the 
original stimulus fades. By around 175ms almost no trace is 
left of it in either run. 
 At this point the two trials diverge. Areas C2 and C3 both 
have associations with the pattern of activation in the 
workspace, and a competition between them ensues. In the 
left-hand run C2 wins the competition, causing its response to 
take over the workspace, while in the right-hand run C3 is the 
victor. Note that in each case there is an outright winner, 
which prevents its rival from exercising any influence at all on 
the workspace. These trials were generated using the same 
network, with identical synaptic weights resulting from the 
same training run. The only source of difference between 
them is a small noise term added to the base current of each 
neuron. So taken together the two trials show that small 
differences at the level of individual neuron firings can result 
in qualitatively different sequences of workspace states at the 
macroscopic level (cf. Izhikevich & Edelman (2008)). A more 
complete description of the range of behaviours that can arise 
over multiple trials with differently trained networks can be 
found in Shanahan’s papers (2008a; 2008b). 

A workspace with stochastic wiring 
The model of (Shanahan, 2008a) conforms to the desiderata 
set out earlier. But its neurological plausibility is 
compromised by the overly regular character of the workspace 
wiring. To address this shortcoming, work is ongoing to build 
and study global workspace models in which the long-range 
recurrent connections that promote reverberation and 
broadcast are established with a stochastic method that better 
reflects the statistical character of the evolutionary and 
developmental processes by which the brain’s white matter 
pathways are formed. 
 In the new model, the 1280 excitatory workspace neurons, 
rather than being partitioned into five distinct sets as in the 
previous simulation, are arranged in a ring, which 
immediately induces a distance measure between any two 
neurons (Fig. 4, left). The workspace is then wired up by 
repeatedly forming circuits of connections. Each neuron in a 
circuit is selected randomly, subject to the constraint that no 
two neurons in the same circuit are allowed to be too close to 
each other, and the circuits are of variable length. Because 
each neuron is self-exciting via a circular route of 
connections, reverberating activation is promoted. But 
because recurrent connections cannot stimulate nearby 
neurons, the spatial organisation of a pattern of activation is 
preserved rather than smeared as it spreads throughout the 
workspace. 
 As with the previous model, excitatory influences in the 
workspace must be balanced with inhibitory connections, to 
ensure that reverberation is not so strong that it prevents new 
patterns from forming. In the stochastically-wired workspace, 
this is achieved using a second ring of 320 inhibitory neurons, 
concentric to the first. Each of these inhibitory neurons is 
excited locally, enabling it to detect patches of high firing, but 
has a widespread inhibitory effect on the workspace. The idea 
is to allow strong patterns of activation to damp rival 
workspace activity. 

Fig. 4: A workspace with stochastic wiring. The workspace itself is a ring of neurons. Patterns of activation 
are broadcast (reverberate) around the ring via circuits of excitatory connections like the example shown on 
the left. Each circuit is wired up stochastically, but no two neurons in the same circuit are permitted to be close 
to eachother in the ring. Inhibitory neurons are locally excited but have diffuse influence (centre). The 
representative raster plot on the right shows that the workspace conforms to the desiderata. 



 Fig. 4 (right) shows a raster plot of a representative run in 
which a succession of four stimuli is delivered directly to the 
workspace. (The present model consists of the workspace 
only, and so far lacks the cortical populations of the previous 
model.) Each point in the plot represents that at least one 
neuron in the relevant circuit has fired. As the figure shows, 
the workspace maintains reverberation over several tens of 
milliseconds, and is susceptible to new patterns of activation 
which tend to push out their predecessors. In other words, the 
workspace conforms to three of the four desiderata proposed 
earlier, the fourth being inapplicable in the absence of cortical 
competition. Ongoing work aims systematically to map the 
range of model parameters and the space of possible network 
topologies that yield qualitatively equivalent behavioural 
characteristics. 

Embodiment and cognitive architecture 
The distinction between conscious and non-conscious 
processing that is the target of global workspace theory is only 
amenable to empirical investigation insofar as it impacts on 
outward behaviour. But the two computer models presented 
above are disembodied, closed systems. They must be 
embedded in a complete cognitive architecture if they are to 
stand as useful investigative tools. In (Shanahan, 2006), a 
cognitive architecture is presented that shows how a global 
workspace can be used in combination with an internally 
closed sensorimotor loop to realise a form of cognitively 
mediated action selection for a robot. 
 The central idea is that the internally closed sensorimotor 
loop permits the robot to rehearse trajectories through its 
sensorimotor space prior to enacting them (Hesslow, 2002). 
Rehearsed trajectories are evaluated, and the relative salience 
of the set of currently executable actions is modulated as a 

result – those initiating a trajectory whose outcome is 
associated with reward become more salient while those 
whose outcome is associated with aversion become less 
salient. Using a winner-takes-all strategy, the most promising 
action is selected and executed. 
 In the architecture of (Shanahan, 2006), the circuitry that 
makes up the inner sensorimotor loop takes in the global 
workspace itself (Fig. 5, left), and the series of rehearsed 
sensorimotor states unfolds within it. Hence these states are 
made available to the whole cohort of specialist networks that 
are attached to the workspace, enabling the trajectory of 
rehearsal to be determined by competition among those 
networks. Fig. 5 (right) presents the high-level schematic for a 
rationalised and extended version of the architecture. Internal 
sensorimotor activity, corresponding to that generated by the 
internally closed loop in Fig. 5 (left), results from mutual 
stimulation among motor and sensory areas, mediated by the 
global workspace. External sensory input causes activity in 
the sensory areas, which gives rise to activation in the 
workspace, from where it propagates to motor circuits. This 
stimulates a competition among motor areas to respond. 
During rehearsal, the resulting motor activity does not issue in 
overt behaviour, but instead gives rise to further, internally 
mediated stimulation of the sensory regions, completing the 
inner sensorimotor loop. 
 To date, the emphasis of our modeling work has been 
competition. Competitive access to the global workspace 
facilitates search through the sensorimotor space of a robot or 
animal because, as Fig. 3 shows, in cases where a 
sensorimotor state has multiple associations its successor in 
the workspace is non-deterministic. So revisiting a state can 
precipitate the rehearsal of an unexplored trajectory. But the 
hypothesis of the present paper is that the potential for co-
operation among different networks might be equally 

Fig. 5: Combining a global workspace with an inner sensorimotor loop (left), and a proposed rationalisation and 
extension of the architecture (right, cf. Fig. 1 of (Friston, 2003)). In both diagrams, information fans out from the 
global workspace into many distributed, parallel networks (broadcast) and funnelling back into it from those 
networks (competition). In the new architecture (right), five broad categories of functionally distinct networks are 
shown, each having a hierarchical structure. Co-operation, co-ordination, and competition among these networks is 
mediated by the global workspace, which best thought of as an access-controlled, bandwidth-limited 
communications infrastructure, rather than a functional component in its own right. 



important. This is because co-operation may permit the 
adaptation and combination of elements from different parts 
of a learned repertoire of sensorimotor patterns, possibly 
enabling rehearsal even in a novel situation, such as that faced 
by an animal in the classic trap-tube test of causal 
understanding (Povinelli, 2000). To pass this test, an animal 
has to select the end from which to push a food item out of a 
transparent tube. The wrong choice results in the reward 
falling into a hole in its path which is visible to the animal. 
Some non-human animals, including chimpanzees and crows, 
are able to pass variants of this test, although there is no 
consensus among animal cognition researchers about how 
they do it (Seed, et al., 2006; Penn & Povinelli, 2007). A 
normal human adult, of course, is not unduly taxed this 
problem. Indeed, such capacity to innovate in the presence of 
novelty is often taken as a hallmark of human-level 
intelligence (Wynn & Coolidge, 2004). 
 According to the present hypothesis, the integrative facility 
of the global workspace supports the level of cognitive 
sophistication required to solve problems such as the trap-tube 
test. Networks encoding incompatible learned sensorimotor 
patterns are obliged to compete to influence the trajectory of 
rehearsal as it unfolds in the workspace. But where different 
networks encode compatible spatiotemporal patterns, they 
may be able to co-operate, allowing their respective 
influences to be blended together. Each specialist process may 
be thought of as encapsulating expertise in a particular micro-
domain, such as dropping-things-in-holes or pushing-things-
with-sticks. In effect, the global workspace promotes 
cognitive fluidity, permitting expertise in one micro-domain 
to be combined with expertise in another micro-domain 
(Shanahan & Baars, 2005). Our future work aims to explore 
this hypothesis with the aid of a large-scale spiking neuron 
implementation of the architecture of Fig. 5 (right), deployed 
to control a dextrous humanoid robot. 

The emergence of a (small) world 
Recent studies of neural connectivity lend further support to 
the hypothesis that cognitively proficient brains conform to 
the global workspace architecture. In particular, there is 
compelling evidence that human cortex constitutes a small-
world network (Watts & Strogatz, 1998), which is a sparsely 
connected graph with a small mean path length and a large 
clustering coefficient. Consider a graph G comprising a set of 
nodes and edges. The path length between any pair of nodes 
in G is the number of edges in the shortest path between those 
nodes, and G’s mean path length is the path length averaged 
over every pair of nodes in G. The clustering coefficient of a 
node P in G is the fraction of the set of all possible edges 
between immediate neighbours of P that are actual edges, and 
the clustering coefficient of the whole graph G is the 
clustering coefficient averaged over the set of all nodes in G. 
Many naturally occurring networks have been shown to have 
small-world properties, but our concern is only with those that 
are found in the brain. 
 A typical small-world network comprises numerous 
densely interconnected local clusters that are connected to 
each other via a small number of so-called hub nodes but are 
otherwise isolated. If the hub nodes have many edges 
compared to the cluster nodes then such a network may also 

be scale-free, meaning that the probability of a random node 
having k edges conforms to a power law – it is proportional to 
k-λ for some λ. However, as we shall use the term, a node 
does not require a large number of edges to be designated a 
hub. A hub node may, for example, be the only node in cluster 
A that is connected to a node in cluster B, thus helping to 
confer the small-world property on the overall graph. (In 
graph-theoretic terms, such nodes have low degree but high 
betweenness centrality.) 

Even without formal analysis, it is easy to see that the 
topology of the model in (Shanahan, 2008) (Fig. 2, right) 
leads to small-world connectivity. First, thanks to the 
connections to, from, and between workspace neurons (the 
hub nodes), the maximum shortest path length between any 
two cortical neurons is just 6, even with the addition of further 
cortical areas (2 hops to get to a workspace area, 2 more to 
traverse the workspace, plus 2 to get out of the workspace). 
Second, the dense connectivity within cortical areas entails a 
high clustering coefficient. Finally, although the network is 
not especially sparse with only C1 to C3 attached to the 
workspace, its sparseness increases rapidly with the addition 
of further cortical areas. Similar considerations apply with the 
stochastically wired workspace. 
 Using neuroanatomically established connectivity matrices, 
it has been shown that the cortices of cats and macaques enjoy 
small-world network properties (Hilgetag, et al., 2000; Sporns 
& Zwi, 2004). Moreover, several recent in vivo studies 
purport to establish similar results for human cortex. Using 
fMRI, Eguíluz, et al. (2005) revealed a network of functional 
brain connections that conform to the power law characteristic 
of a scale-free, small-world network. Also using fMRI, 
Achard, et al. (2006) confirmed this result and built a 
connectivity map of the cortical hub nodes underlying it. At 
the structural level, He, et al. (2007) supply a similar map by 
correlating measures of cortical thickness in different brain 
regions obtained by MRI. 
 The question of why evolution should favour neural 
networks with small-world properties naturally arises. A 
number of answers have been suggested (Bassett & Bullmore, 
2006). Wiring cost is likely to be one major factor (Striedter, 
2005; Wen & Chklovskii, 2006). If connectivity is maintained 
as brains increase in neuron count, then the quantity of wiring 
must increase too. Wiring is costly “due to metabolic energy 
required for maintenance and conduction, guidance 
mechanisms in development, conduction time delays and 
attenuation, and wiring volume” (Wen & Chklovskii, 2006, 
p.0617). But pressure to minimise wiring can lead to a 
network that is segregated into clusters (or modules). A small-
world network compensates for this by allowing effective 
communication to be maintained between distant regions 
(Striedter, 2005). At the same time, pressure to minimise 
conduction delays may also lead to small-world properties, as 
well as the division of the brain into grey and white matter 
(Wen & Chklovskii, 2006). 
 In addition to their favourable wiring cost, small-world 
networks have been shown to possess information processing 
characteristics that make them especially well-suited to 
realising a global neuronal workspace. Specifically, Sporns, et 
al (2000) argue that small-world networks support high 
dynamical “complexity”, according to a formal measure that 
assesses the co-existence in a network of functional 



specialisation and integration (Tononi, et al., 1998; Seth, et 
al., 2006). According to this measure, the complexity of a 
system X comprising n variables xi is approximated by the 
function C(X), given by 
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high, while if the system has a low degree of specialisation the 
value of H(X) will be low. Using an evolutionary algorithm, 
Sporns, et al. searched a space of possible network topologies, 
selecting for networks with high C(X). A typical network 
obtained after 2000 generations with this method had a mean 
path length comparable to that of an equivalent random graph, 
but a significantly higher clustering coefficient. 
 Intuitively, this result makes perfect sense. At a local level, 
the densely interconnected clusters of a small-world network 
are functionally segregated, while at a global level the 
connections between hub nodes ensure that the network’s 
overall activity has widespread local influence. Moreover, it 
should be clear that a capacity to support high dynamical 
complexity in the sense quantified by C(X) is a prerequisite 
for any neural network instantiation of the global workspace 
architecture, and that a network with small-world properties 
supplies the means to fulfil this prerequisite. The local 
specialists of the global workspace architecture can be 
realised by the highly interconnected, functionally segregated 
clusters of a small-world network, ensuring a high value for 
H(X), while the global workspace itself is realisable by a web 
of hub-node-to-hub-node connections, promoting low values 
for     
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 Additional organisation over and above small-world 
topology is required for a network to conform to the 
desiderata set out earlier and realise the function of a global 
neuronal workspace. But only a relatively conservative set of 
modifications to the hub node connections of a sufficiently 
large small-world network may be needed for their integrative 
potential to be recruited to this role. Of course, once these 
modifications have been selected for, their cognitive 
advantages will ensure their perpetuation. But it is an 
intriguing thought that consciousness might initially have 
arisen only as a side-effect of the evolutionary pressure to 
keep wiring cost down, a constraint that applies across the 
phylogenetic scale from C.elegans upwards, but which 
ensures that the necessary infrastructure to support the 
distinction between conscious and non-conscious processing 
is already in place as neuron count goes up. 

Consciousness as it could be 
Artificial life, according to one of the field’s founders, “can 
contribute to theoretical biology by locating life-as-we-know-
it within the larger picture of life-as-it-could-be” (Langton, 
1989, p.1). In a similar vein, the use of computer and robot 
models might aspire to contribute to cognitive science by 
situating consciousness as we know it within the larger picture 
of consciousness as it could be. No less interesting is the 
challenge of situating consciousness as it could be in relation 
to life as it could be. Indeed several authors argue for the deep 
continuity of life and mind: “life and mind share a set of basic 

organizational properties, and the organizational properties 
distinctive of mind are an enriched version of those 
fundamental to life” (Thompson, 2007, p. 128). 
 The argument for this position is roughly as follows. An 
organism perpetually constitutes its own identity through 
metabolic exchange of matter and energy with the 
environment so as to maintain the boundary between self and 
non-self. At the same time this “autopoietic” process brings 
forth a domain of concern, wherein features of the 
environment acquire significance according to their relevance 
to that organism’s wellbeing and perpetuation. Moreover, an 
organism’s need constantly to change in order simply to 
maintain its identity opens up what phenomenologists call a 
temporal and spatial “horizon” for that organism. For 
phenomenologists, such a “horizon of transcendence” is also a 
necessary feature of lived experience, motivating the 
conclusion that “certain existential structures of human life 
are an enriched version of those constitutive of all life” 
(Thompson, 2007, p.157). 
 Let’s review the principles of organisation claimed in this 
paper to be fundamental to consciousness, and consider the 
extent to which they resonate with the thesis of deep 
continuity of life and mind. The global workspace architecture 
harnesses the power of massively parallel computation. The 
global workspace itself exhibits a serial procession of states, 
yet each state-to-state transition is the result of filtering and 
integrating the contributions of huge numbers of parallel 
computations. In essence, the architecture thereby distils unity 
out of multiplicity. This unity is achieved within the global 
workspace itself, which is both the source and sink of 
information in the fan and funnel model (Fig. 5, left). But it is 
also a locus of control, and the informatic singularity of the 
global workspace is inherently bound to the spatially localised 
body whose control is in question, the point of convergence of 
perception and action (Legrand, 2006). The remit of all the 
processes that are brought into unity by the global workspace 
is duly inherited from the body to which it is bound  
(Shanahan, 2005). Everything they do pertains to, or is 
indexical to, that body and its point of view. 
 In the natural world this remit in large part subserves 
metabolism, and is plausibly cast in terms of autopoiesis. But 
in the realm of the possible, of consciousness as it could be, 
metabolism is not a prerequisite for being a centre of concern, 
for possessing self-related purpose within a spatial and 
temporal “horizon of transcendence”. In a properly embodied 
instantiation of the global workspace architecture, the identity 
of the conscious subject is underwritten by the common remit 
of a set of processes that pertain to the past, present, and 
future of the spatially localised body to which they are all 
indexically oriented (Fig. 5, right). In conclusion, however 
formidable the practical obstacles might be to creating a 
conscious artefact, the absence of metabolism presents no 
obvious theoretical obstacle. Perhaps the appeal of the deep 
continuity thesis is attenuated by this caveat. 
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