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Abstract-It has been proposed that groups of neurons firing 
synchronously provide a mechanism that underlies many cognitive 
functions such as attention, associative learning, and working 

memory, as well as opening up communication channels between 
neuron groups. A mathematical abstraction that is gaining 
increasing acceptance for modeling neural information processing 

is the Kuramoto oscillator model, which can be used as an 

elementary unit to represent populations of oscillatory neurons. 
Whilst the Kuramoto model is widely used to capture fundamental 
properties of the collective dynamics of interacting communities of 
oscillatory neurons, the question arises as to how well it performs 

this role. This paper aims to address that question experimentally by 

using neural models to replicate the most fundamental of 
Kuramoto's findings, in which he showed that for any number of 
oscillators there is a critical coupling value Kc below which the 

oscillators are fully unsynchronized and another critical coupling 

value KL � Kc above which all oscillators become fully 
synchronized. In this study, we replace Kuramoto oscillators with 
oscillating populations both of quadratic integrate-and-fire neurons 
and of Hodgkin-Huxley neurons to establish whether Kuramoto's 

findings still hold in a more biologically realistic setup. The 

individual oscillators use a pyramidal inter-neuronal gamma 
architecture designed using a novel evolutionary technique. 

Keywords-synchronization; complexity; Kuramoto oscillators; 
spiking neurons. 

I. INTRODUCTION 

Studies of spiking activity suggest that local field potentials 
(LFP) arise from the combined activity of large numbers of 
neurons distributed over a region of the cortex. Recent studies 
have pointed to the potentially strong correlation between the 
blood-oxygen-Ievel dependence signal (BOLD) and gamma 
LFP. [1]. Functional magnetic resonance imaging (tMRI) based 
upon BOLD has shown significant correlations between 
distinct anatomical regions [2]. It has been proposed that such 
disparate groups of neurons firing synchronously together 
provide a mechanism that underlies many cognitive functions 
such as attention [3], associative learning [4], working memory 
[5], and the formation of episodic memory [6, 7]. Recently, a 
role for synchronization has been proposed in opening up 
communication channels between neuron groups [8]. Further to 
this, it has been suggested that transient periods of 
synchronization and desynchronization provide mechanism for 
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dynamically forming coalitions of functionally related neural 
areas [9]. 

An increasingly common level of abstraction for modeling 
neural information processing is one in which phase oscillators 
are used as elementary units representing populations of 
oscillatory neurons [10, 11]. A popular phase oscillator model 
used to capture the collective dynamics of such interacting 
communities is the Kuramoto model [10, 12, 13]. For example, 
Cabral et at [14] use a Kuramoto model simulation to explore 
the relationship between the slow modulation of gamma-band 
activity in the functional connectivity of a resting state network 
as seen in tMRI results and its relationship to anatomical 
connectivity. Investigating metastable chimera states in small
world topologies akin to those that appear in the brain, 
Shanahan [9] built a community-structured network of 
Kuramoto oscillators and identified, as did Cabral et at [14], 
the rich dynamics that results from the interplay between long
range connectivity of a large-scale network and interactions at a 
local level. In order to engage neuroscience with insights into 
the situated and embodied nature of cognitive dynamics Santos 
et at [15] explored metastable dynamical regimes in a network 
of Kuramoto oscillators that was embodied in an agents 
sensorimotor loop. 

Although the Kuramoto model is widely used to capture 
fundamental properties of the collective dynamics of 
interacting communities of oscillatory neurons, the question 
arises as to how well or accurately it performs this role. This 
paper aims to address that question by using neural models to 
replicate the most fundamental of Kuramoto's fmdings. In a 
much cited monograph, Kuramoto [12] showed that for an 
infinite number of oscillators with different intrinsic 
frequencies that are all uniformly connected with one another, 
there is a critical coupling value Kc below which the oscillators 
are fully unsynchronized. Further to this there is another critical 
coupling value KL � Kc above which all oscillators become 
fully synchronized. [16] In this paper we emulate this result, 
but using populations of oscillating neurons in place of the 
simpler Kuramoto oscillators. The classic experiment is 
performed first using quadratic integrate-and-fire (QIF) 
neurons [17] and then using the Hodgkin-Huxley [18] neuron 
model (HH). The two models capture the properties of Type I 
and Type II neurons respectively. 
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Figure I. Raster plot of neuron firings for evolved 20hz QIF PING node. 

The paper is organized as follows: In section II we describe 
both the pyramidal inter-neuronal gamma (PING) architecture 
used to generate oscillations in an individual neural cluster and 
the evolutionary technique we have used to generate a 
collection of oscillatory nodes of different frequencies to be 
drawn from and used in the fmal experiment. In section III we 
describe the set up for the final Kuramoto experiments. 
Following this section IV details the results. Section V presents 
a discussion, and section VI describes the materials and 
methods used in our experiments. 

II. ARCHITECTURE OF NEURAL OSCILLATORY NODES 

A. Pyramidal inter-neuronal gamma 

Although studies have shown that groups of neurons firing 
together rhythmically can occur because of intrinsic firing 
patterns of excitatory principal cells or common input from a 
pacemaker, it is more common both in the cortex and the 
hippocampus that rhythmic firing happens as an emergent 
property of interactions between excitatory principal cells and 
inhibitory interneurons. Variations of this mechanism, known 
as pyramidal inter-neuronal gamma (PING), can give rise to 
both faster gamma (30-100 hz) and slower theta (4-8 hz) 
oscillations in the cortex and the hippocampus [7]. 

Excitatory neurons drive the entire local network, including 
inhibitory interneurons. The most strongly driven inhibitory 
neurons will fire first and provide inhibition to numerous other 
inhibitory neurons. The inhibitory effect on all these neurons 
will disappear at approximately the same time. Affected 
inhibitory neurons will then fire roughly together, causing large 
numbers of inhibitory neurons to be entrained to a rhythm 
within just a few oscillatory cycles [19]. This rhythmically 
synchronized inhibition also affects the network's excitatory 
neurons with a fast and strong synaptic input [20] thus leaving 
only a short window for the excitatory neurons to fire after one 
period of inhibition wears off and before the next one starts 
[21]. 

Gamma-aminobutyric acid (GABA) is one of the two 
neurotransmitters that facilitate inhibition in mammal brains. 
The synaptic reversal potential of GABA receptor currents 
varies widely among cell types, and probably even between 
compartments within same cell. When the synaptic reversal 
potential is below the resting potential, inhibition will be 
hyperpolarizing. GABAergic synapses can be excitatory if the 

60 

40 
W �30 
E 

F 
20 

10 
-- - --

---- EI 

- - - IE 

--EI+EI 

, " 

" .-'-'-', 
-'. 

---" 
'- -----_ 

..... _-
------- -----------��0--�1� 5--�2� 0--�2�5�--�30�--735�--�4�0==�4�5--�50 

hz 
Figure 2. Mean evolved delays for QIF PING nodes. 

synaptic reversal potential is above the action potential 
threshold. If the synaptic reversal potential lies between the 
resting potential and the action potential threshold, GABAergic 
synapses will be shunting [22; 23]. For the models used in this 
paper, all synapses connecting from inhibitory neurons 
effectively use a synaptic reversal potential that is below the 
resting state (-65mV) of the target neuron, and as such 
inhibition is hyperpolarising (see section VIB for model 
details). 

B. Evolutionary generation of oscillatory popualtions 

Whilst the general PING architecture is well understood, 
the specific details required for both particular oscillatory 
frequencies and neuron model varies and involves a large space 
of parameter values within the general PING framework. In 
order to provide a wide range of different intrinsic oscillatory 
frequencies for the nodes used in the critical coupling 
experiment, it was decided to evolve within biologically 
plausible bounds every alternate oscillatory frequency between 
10hz and 50hz for both QIF and HH models. This was done 
whilst making each neural network evolved comply to the 
general PING architecture mentioned above. All neural 
populations used an excitatory layer of 200 neurons and an 
inhibitory layer of 50 neurons. The excitatory layer drives the 
entire network and so is the only one to receive external input. 
The input is generated from a poison process with parameter A, 
= 3.5/0.8. For QIF models the inputs are scaled by 8 and for the 
HH models the inputs are scaled by 15 in order to provide 
sufficient stimulus to induce firing. The networks were wired 
up with connections between inhibitory neurons (II), from 
excitatory to inhibitory neurons (EI) and from inhibitory to 
excitatory neurons (IE). In addition to the synaptic weight, a 
scaling factor of 5 was used on all synaptic current in the 
oscillatory populations for both QIF and HH models to 
simulate networks of a larger size than we could feasibly 
simulate otherwise. 

The parameters that were evolved were the synaptic 
weights and delays. Both of these were generated during 
genome expression of each individual in each generation using 
a normal distribution, with the means and variances for the 
weights and the delays being the parameters in the genome 
evolved. Weights were bound to evolve values between 0 and 1 
for excitatory connections and 0 and -1 for inhibitory 
connections. Long delays are quite unrealistic for a cluster of 
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Figure 3. Sweep ofQIF coupling strength using 10 nodes. 

neurons in which all neurons are anatomically close together. 
In the cortex synaptic latency ranges from 0.2 ms to 6 ms [24]. 
In order to produce realistic results, excitatory delays were 
bounded between 1 ms and 10ms. The IE and II delays were 
allowed to have a maximum value of 50ms to simulate the 
effect of slow inhibitory intemeurons, the behavior of which 
was otherwise not modeled. 

The fitness function for the genetic algorithm consisted first 
of taking the spike firing times of the excitatory population and 
converting it to a continuous time-varying signal. This was 
achieved by binning the spikes over time, and then passing a 
Gaussian smoothing filter over the binned data. Next a Fourier 
transform was performed on the signal to produce the 
frequency spectrum of the signal. The main fitness term was 
calculated by creating a scaled Gaussian centered around the 
desired frequency fin the spectrum of the form: 

clip = 200 (.r. 1O�0 ) (1) 

The frequency spectrum s was subtracted from this and 
normalized: 

� � abs (clip � s) fitness � ---=�'------"-
I clip 

(2) 

An extra penalty term was introduced to discourage frequencies 
outside the desired range. This was achieved by multiplying the 
frequency spectrum by -0.002 in the areas further away from 
the desired frequency whilst ignoring the area at and 
immediately around the desired frequency. The result was then 
normalized and added to the main fitness term. 

The evolutionary popUlation consisted of 20 individual 
genomes. For each generation, each individual was tested for 
2000ms of simulated time. After this each individual was rated 
for fitness and probabilistically selected for the next 
generations parents based upon their fitness ranking. Crossover 

was performed on parent genomes after which mutation was 
applied to the offspring with a probability of 0.1. 

An example of the spiking behavior of evolved population 
oscillating at 20hz can be seen in figure 1. All evolved weight 
for QIF solutions had very high means and small variances, 
whereas the HH solution showed greater variation in the weight 
means across evolved solutions for different frequencies, 
indicating greater sensitivity in the model and solution in that 
they require a very specific balance of the parameters for each 
particular solution. The means for the delays evolved for both 
QIF and HH solutions had a similar form, from which can be 
concluded that the EI mean delay + IE mean delay'" 1 000/2f 
with deviations being accounted for by delay variances as well 
as the fact that some evolved individuals did not evolve to peak 
fitness. The delay mean results for QIF neurons are shown in 
figure 2. 

III. EXPERIMENTAL SETUP 

A. Overview 

Our experiment attempted to reproduce Kuramoto's 
findings [12] in which he showed that, for an infinite number of 
oscillators with different intrinsic frequencies and phases that 
are all uniformally connected with one another using the same 
coupling strength, a) there is a critical coupling value Kc below 
which the oscillators are fully un synchronized, and b) there is 
another critical coupling value KL 2: Kc above which all 
oscillators become fully synchronized [16]. 

B. Assessing the notion of neural coupling strength 

Replicating this work experimentally with neural systems 
we are faced with one immediate question. How does the 
notion of coupling strength in Kuramoto's oscillator model, in 
which each node is a simple phase oscillator, relate to a neural 
model in which each oscillatory node is made up of many 
neurons? We have two options: the coupling between two 
nodes may refer to the number of synaptic connections between 
the neurons, or it may refer to the strength of these synaptic 
connections. 

To address this issue we first present results from a 
parameter sweep of connection ratios and synaptic weights. At 
each sweep point the experiment takes 10 QIF oscillator nodes 
that have each been previously evolved to oscillate at a 
different frequency using a PING architecture as described in 
section lIB above. Each node is chosen by frequency from a 
uniform distribution ranging between 10hz and 50hz. The 
excitatory layers in each node are connected to one another 
with a given connection ratio to form a network of nodes. A 
connection ratio of 1 defines an all to all connectivity between 
two nodes so that each neuron in one node's excitatory layer is 
connected to each neuron in another node's excitatory layer. 
Once the connections have been established they are given a 
weight as defined by the point in the sweep. The sweep is two 
dimensional, ranging from a connection ratio of 0 to 1 and a 
synaptic weight from 0 to 1. An increment of 0.05 is used for 
both the connection ratio and the synaptic weight strength in 
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Figure 4. Synchrony of network for a sweep of weights for 64 QIF nodes 

selected from a Gaussian distribution. 
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Figure 6. Unique frequency coalitions for QIF networks. 

the sweep. At each point in the sweep the overall synchrony of 
the network is measured as described in the materials and 
methods detailed in section VI. 

The result of the sweep is shown in figure 3. It can be seen 
that connection ratio and weight have a similar effect with 
neither showing a marked importance over the other and with 
the graph appearing symmetrical. From this result it is safe to 
assume that our use of both connection ratio and synaptic 
weight strength in the main Kuramoto experiment will not be 
biased by using a prescribed value for the connection ratio and 
sweeping across only the synaptic weight strength in order to 
explore Kuramoto notion of coupling strength. As such all 
further experiments will use a connection ration of 0.2 and 
simply sweep the synaptic weight parameter. 

C. Critical K experimental setup 

Kuramoto calculated analytically the critical values in the 
case of an infinite number of oscillators connected all-to-all for 
a few well-known distributions of intrinsic oscillator 
frequencies [16]. For simplicity, Kuramoto assumed that the 
distribution of oscillator intrinsic frequencies was unimodal 
and symmetric about its mean frequency, as in a Gaussian 
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Figure 7. Unique frequency coalitions for HH networks. 

distribution for example [13]. We have evolved PING 
architectures for every alternate frequency between 10hz and 
50hz for both QIF and HH neuron models. In line with 
Kuramoto's specification we selected from these oscillators 
using a Gaussian distribution with a mean of 30hz. The 
variance we chose in order to ensure a good spread of different 
oscillator frequencies was 10hz. 

In all our experiments we used 64 neural oscillator nodes to 
form a network of nodes. Each node receives external input to 
its excitatory layer as with the evolutionary setup described in 
section lIB. The external input along with the PING 
architectures induces the intrinsic oscillation at the frequency 
the node was evolved for. The phase of each oscillator was 
determined by the time at which external input to the oscillator 
was started, which varied from Oms to lOOms. The slowest 
oscillator was 10hz and therefore a random start point ranging 
from Oms to lOOms allowed for 10hz oscillators (as well as all 
oscillators of higher frequency) to be completely out of phase 
with each other. The neurons in the excitatory layers of each 
node were synaptically connected to the neurons in the 
excitatory layers of each other node with a connection ratio of 
0.2. The experiments involved a sweep of synaptic weights for 
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2000 

all inter-node connections. These weights were all set to the 
same value for each iteration in the experimental sweep with 
each iteration changing this synaptic weight value. At each 
point in the sweep the overall synchrony of the network was 
measured as described in the materials and methods in section 
VI. The network was simulated for 2000ms for each iteration 
of the sweep. Each network comprised 16000 neurons and 
36,256,000 synapses. 
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IV. RESULTS 

2000 

Weight sweeps were performed for both QIF and HH 
networks with 100 sample weights for each model type. After 
an iteration in the sweep of a particular high coupling value, 
both network models exhibited "saturation", meaning that all 
excitatory neurons in all nodes were firing continuously. The 
results shown here display data up to the respective point of 
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Figure 12. Raster plot of HH network node I at connection strength 0.04. 

saturation for each model type as data beyond this point is not 
noteworthy. 

Both network types have an initial synchrony value of 0.65 
which corresponds to no synchrony apart from coincidental 
phase alignment. The weight sweeps for the QIF model can be 
seen in figure 4 and the weight sweeps for the HH model can 
be seen in figure 5. Both models show a steady increase in 
synchrony until saturation is reached, which is at weight 0.19 
for QIF networks and 0.45 for HH networks. The data is best 
understood by comparing the number of coalitions, where 
within each coalition the nodes are oscillating at the same 
unique frequency. As we are using discrete intrinsic oscillatory 
frequencies selected from a Gaussian distribution, in one run 
for one weight setting there may be several nodes with the 
same intrinsic frequency. Therefore comparing the number 
coalitions of oscillators sharing the same frequency during the 
experiment is only meaningful in relation to the number of 
coalitions that can be formed from the intrinsic frequencies on 
each trial. Figure 6 shows the number of frequency coalitions 
both intrinsic and actual results from the experiment during the 
sweep for QIF networks. Figure 7 presents the same data for 
HH networks. Weight 0.05 for QIF networks and weight O.ot5 
for HH networks marks the critical point Kc beyond which the 
number of coalitions becomes less than the number of intrinsic 
frequency coalition. This indicates that nodes are affecting one 
another so as to deter each other from their natural frequency 
towards a shared frequency. It is interesting to note that prior to 
the point Kc both network models display the ability to pull 
apart from their intrinsic frequency groups into more 
frequencies than prescribed by the initial Gaussian selection. 
The QIF model reaches a point of full synchrony KL, at 0.095, 
beyond which one frequency exist for all nodes and is 
maintained until saturation at 0.19. The HH model displays full 
synchrony at ;::::0.026 showing only one frequency group. It is 
clear from figures 6 and 7 that KL for the HH model is much 
less well defined than for the QIF model. 

Taking a closer look, we present plots of pairwise 
synchrony between node I in the network and all other nodes 
at particular weight points in the sweep. Figure 8 shows 
pairwise synchrony for the QIF network at weight 0.07, a 
point after Kc. Each sub-plot shows the nodes in a coalition 
sharing the same frequency. As can be seen the behavior is 
very tight with the nodes in each group moving closely 
together both in the same pattern and with little offset 
indicating matching phases as well. However they do not 
maintain a constant offset from the phase of node 1 indicating 
that whilst the frequency and phase of a coalition remains the 
same within itself, a more complex synchronized behavior is 
at play in the network of nodes as a whole. A few 

de synchronous moments appear for the group with frequency 
25.88hz indicating that the nodes themselves are not fully 
stable at this coupling strength. Figure 9 shows the pairwise 
synchrony for the QIF network at weight 0.105. As can be 
seen, all nodes are synchronous with minor periodic deviations 
of up to 0.05 from maximum synchrony resulting in general 
synchrony over 0.955 which is very high. The HH model 
behaves a lot more noisily. Figure 10 displays the pairwise 
synchrony at weight 0.02, a point beyond Kc. Nodes sharing 
frequency 25.88hz show distinct phase offset, whereas nodes 
sharing frequency 46.88hz do not appear very synchronous at 
all. A closer inspection of the spiking behavior for this group 
shows that whilst they share a common main frequency their 
firing patterns are much noisier with other less well defined 
frequencies present. Similar behavior is seen in figure 11 
which shows the HH network at weight 0.04, a point at which 
all nodes share the same frequency. Again on inspection of the 
firing behavior shown in the raster plot in figure 12, a much 
noisier behavior is seen in which other frequencies underlie 
the main frequency of 20.51hz. 

V. DISCUSSION 

The experimental results presented in this paper show that 
suitably connected oscillatory populations of Type I and Type 
II neurons broadly conform to critical coupling findings found 
in Kuramoto oscillators. However both Type I and Type II 
models display much greater spectral complexity than that 
which the simple Kuramoto oscillator can capture. In fact, the 
more detailed and biologically plausible the model is then the 
greater the spectral complexity. This greater complexity may 
have implications for neural simulation using the Kuramoto 
abstraction, as this simple model only partially captures the 
range of temporal phenomena we find with biologically 
plausible spiking models. 

VI. MATERIALS AND METHODS 

A. Neural models 

Hansel et al [25] distinguish two types of neuron responses. 
The first type of neuron (Type I) always responds to small 
depolarization by advancing the next spike. An example of 
such a neuron is the integrate-and-fire model. The second type 
(Type II) is exemplified by the Hodgkin-Huxley model in 
which there is a negative region just after the refractory period, 
where a depolarization delays the firing of the next spike 
because the delayed rectifier potassium current is greater than 
the sodium current, while an excitatory post-synaptic potential 
received at a later time advances the ftring. In this paper both 
Type I and Type II models are assessed. 

J) Quadratic integrate-and-fire neurons 
The QIF model [17] displays Type I neuron dynamics [ 26]. 

The time evolution of the neuron membrane potential is 
given by: 

dV 1 I -=-(V-V Xv-v)+-
dt r ' t C (3) 



where V is the membrane potential, with Vr and VI being the 
resting and threshold values respectively. C is the capacitance 
of the cell membrane. 't" is the membrane time constant 

such that 't" = RC with R being the resistance. I represents 
a depolarizing input current to the neuron. 

An action potential occurs when V reaches a value Vpeak at 
which point it is reset to value Vresel. The QIF model is 
equivalent to the theta neuron model described by Ermentrout 
and Kopell [27] if o n e  s e t s  the reset condition Vpeak = = 
and Vresel = -= . L i k e  Borgers and Kopell [28] we use 
values Vr = Vreset = 0 and Vt = Vpeak = 1, which reduces 
equation (1) to: 

dV I 
-= aV (V -1)+ -dt C (4) 

Here a=� 
and is set to the value 2 for all experiments carried 

r 

out in the paper. When working with the QIF model we assume 
a membrane potential between Vr = -65 m V and VI = -45m V. 

2) Hodgkin-Huxley neurons 
The Hodgkin-Huxley [18] model is widely considered as 

the benchmark standard for neural models. It is based upon 
experiments on the giant axon of the squid. Hodgkin and 
Huxley found three different types of ion current: sodium 

(Na +), potassium (r), and a leak current that consists mainly 

of chloride (Ct) ions. Different voltage-dependent ion channels 
control the flow of ions through the cell membrane. From their 
experiments, Hodgkin and Huxley formulated the following 
equation defining the time evolution of the model: 

dn dt = a n (v)(1 -n ) -Pn (V)n (6) 

(7) 

(8) 

C is the capacitance and n, m and h describe the voltage 
dependence opening and closing dynamics of the ion channels. 
The maximum conductance of each channel are: gk=120, 
gNa=36 and gL =0.3. The reversal potentials are set so that that 
Ek=-12, ENa=115 and EL=10.6. The rate functions for each 
channel are: 

a (V)= 
(O.I-O.OIv ) 

n exp (1.0-0.Iv )-1.0 (9) 

Pn (V) = 0.I25exp (�) 
80.0 

a (V) = 2.5 -O.Iv 
m exp (2.5 -O.Iv ) -1.0 

Pm(V)= 4.0exp (�) 
18.0 

ah(V) = 0.07exp (�) 
20.0 

fJ (V) = 
1.0 

h exp (3.0 -O.Iv ) + 1.0 

(10) 

(11) 

(12) 

(13) 

(14) 

All work in this paper using the HH model adjusts the 
neuron resting potential from Om V of the standard HH 
implementation to the more accepted value of -65mV [29] 

B. Synaptic model 

The synaptic model for experiments using the QIF model 
simply multiplies the incoming spike by a synaptic weight, 
whereas the HH model uses synaptic reversal potentials to 
further scale incoming spikes. The latter model is as follows: 

(15) 

where Sy(t) is the synaptic input from neuron i to neuron j at 
time t, ti is the spike from neuron i at time t, and wij is the 
weight of the synapse connecting the two neurons. Revij is the 
reversal potential of the synapse and fj is the voltage of the 
target neuron. The reversal potentials for the model are set to 
the same values in all experiments. For excitatory inputs the 
value is OmV, and for inhibitory inputs the value is -70mV. Not 
using a synaptic reversal model for the QIF model is equivalent 
to using a synaptic reversal model with reversal potentials set 
to +oom V for excitatory neurons and -oom V for inhibitory 
neurons. 

C. Synchronization metrics 

We only calculated synchrony for the excitatory neuron 
layer in an oscillatory cluster. The spikes of each neuron in a 
cluster were binned over time, and then a Gaussian smoothing 
filter was passed over the binned data to produce a continuous 
time varying signal. Following this, we performed a Hilbert 
transform on the mean-centered filtered signal in order to 
identify its phase. The synchrony between each pair of clusters 
was then calculated as follows: 

sync jk = _I - L (mean (exp (ht j (t)i), exp (htk (t}»)) 
tMax (16) 



where htlt) and htlt) are the Hilbert transforms at time t of 
clusters j and k respectively. i is the square root of -1 and tMax 
is the length of time of the simulation. Pairwise synchrony 
between oscillator j and all other Q-I oscillators in the 
collection is calculated as: 

. 1 '" palrj = 

Q
_ 1 L.. sync jk (17) 

The total synchrony of all oscillators <I> in the collection is 
simply: 

(18) 

D. Hardware acceleration 

Each of our experiments required 16000 neurons and 
36,256,000 synapses, entailing an immense computational 
burden. To cope with this, we used the NeMo neural network 
simulator, which processes neurons concurrently on general 
purpose graphics processing units (GPUs) [30]. The NeMo 
software permits the addition of user plugins for neural models 
which allowed us to implement both QIF and HH models fo; 
the NeMo simulator facilitating the work presented here. 
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