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Abstract 

This paper presents a computer model of cortical broadcast and competition based 
on spiking neurons and inspired by the hypothesis of a global neuronal workspace 
underlying conscious information processing in the human brain. In the model, the 
hypothesised workspace is realised by a collection of recurrently inter-connected 
regions capable of sustaining and disseminating a reverberating spatial pattern of 
activation. At the same time, the workspace remains susceptible to new patterns 
arriving from outlying cortical populations. Competition among these cortical 
populations for influence on the workspace is effected by a combination of mutual 
inhibition and top-down amplification. 
 
Keywords: Consciousness, global workspace theory, global neuronal workspace, 
cortical competition, reverberating networks 
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1   Introduction 
Global workspace theory has been highly influential among both philosophers and 
scientists interested in understanding consciousness (Baars, 1988; 1997; 2002). 
But the theory is commonly expressed in somewhat abstract terms, and it remains 
an open question how the architecture underlying the theory might be mapped 
onto the brain. According to one proposal, long-range cortico-cortical pathways 
realise a “global neuronal workspace” which enables a set of spatially distributed 
neural circuits to enter into a coherent, self-sustaining state during conscious 
episodes (Dehaene, et al., 1998; Dehaene & Naccache, 2001). 
 One way to render such a hypothesis more concrete is to build and evaluate 
biologically realistic computer models of the neural circuitry that might realise the 
mechanisms proposed. Accordingly, models of various aspects of the 
hypothesised global neuronal workspace have been constructed by Dehaene and 
his colleagues (Dehaene, et al., 1998; Dehaene, et al., 2003; Dehaene & 
Changeux, 2005). Continuing in this vein, the present paper describes a computer 
simulation of the hypothesised global neuronal workspace that incorporates 
mechanisms for both competitive access and broadcast, and in which a succession 
of distinct workspace states is exhibited. 
 In what follows, it will be assumed that cortical columns (or “modules”) are a 
basic unit of neural processing (Mountcastle, 1997). According to known 
neuroanatomy, a portion of the neurons that comprise any given cortical column 
will connect it to distant cortical sites via the cerebellar white matter. These 
connections are likely to include direct cortico-cortical projections through 
bundles of association fibres, such as the arcuate fasciculus and the occipito-
frontal fasciculi (Wakana, et al., 2004), as well as indirect cortico-thalamo-
cortical pathways mediated by what Sherman & Guillery (2002) call higher-order 
thalamic relays. The model presented here rests on the hypothesis that within 
certain cortical columns, called workspace nodes, a subset of such neurons exists 
that facilitates the flow of information to and from a global neuronal workspace, 
while the workspace itself is nothing more than the total set of such nodes plus the 
long-range pathways interconnecting them. 
 There is good evidence that cortical wiring, with its dense local connections 
and sparser long-range projections, enjoys the properties of a “small world” 
network (Sporns & Zwi, 2004). In theory, such an arrangement permits any given 
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cortical column to exert an influence over any other given column via a shortest 
path comprising only a handful of intermediate connections. According to the 
present proposal, workspace nodes can be thought of as so-called “hub nodes” in a 
large-scale, small-world cortical network, since their role is to link numerous local 
clusters of neurons to distant neural clusters via long-range connections into other 
hub nodes. 
 The present model comprises five workspace nodes and three further cortical 
columns including several populations of inhibitory and excitatory neurons. 
Reverberating patterns of activation are maintained in the workspace over several 
tens of milliseconds thanks to a balance of recurrent excitatory and inhibitory 
pathways between workspace nodes (Amit & Brunel, 1997; Wang, 2001). 
Competition for access to the workspace is governed by a combination of mutual 
lateral inhibition and top-down amplification, in a simplified version of the circuit 
used in (Dehaene, et al., 2003) and (Dehaene & Changeux, 2005). Individual 
neurons are simulated using Izhikevich’s “simple model” of a spiking neuron, 
which facilitates the efficient simulation of heterogeneous neural populations with 
biologically realistic behaviours (Izhikevich, 2003; 2007). 
 The paper is organised as follows. The next section supplies a short overview 
of global workspace theory, in which a number of guiding principles for the 
operation of the hypothesised global neuronal workspace are set out. The 
computer simulation is then presented, in terms of both its high-level architecture 
and the low-level neuron model deployed. The results of experiments with the 
simulation are then reported, with the behaviour of a single trial described in 
detail, and the outcome of a series of 36 trials summarised. 

2   A Short Overview of Global Workspace Theory 
Global workspace theory posits an empirical distinction between conscious and 
non-conscious neural information processing based on the hypothesis that the 
brain instantiates the architectural blueprint sketched in Fig. 1 (Baars, 1988; 
1997). The architecture comprises a set of parallel specialist processes which 
compete for access to a global workspace. The process (or coalition of processes) 
that wins access gets to deposit a message in the global workspace, causing the 
message to be broadcast back to the entire cohort of parallel specialists. As Fig. 1 
shows, the global workspace exhibits a serial procession of states. Yet the 
transition from one state to the next is the result of selecting from and combining 
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many parallel computations. As such, it has the potential to marshal the brain’s 
massively parallel resources and orchestrate a unified, coherent response to the 
ongoing situation for an organism (Shanahan & Baars, 2005). 
 In the context of the global workspace architecture it is possible to posit the 
following distinction. Information processing carried out locally by the parallel 
specialists is non-conscious, and only information that is broadcast to the entire 
cohort is consciously processed. The validity of this distinction can be empirically 
tested using the experimental paradigm of contrastive analysis, wherein closely 
matched conscious and non-conscious conditions are compared (Baars, 1988), 
something made possible thanks to phenomena such as visual masking (Dehaene, 
et al., 2001). Recent evidence acquired in this way is largely favourable to the 
global workspace idea, and the broad terms of the theory have attracted 
widespread approval (Baars, 2002). 
 However, our current level of understanding leaves many theoretical and 
empirical questions open. Not least among these is the question of exactly how the 
brain might instantiate the global workspace architecture. On a naïve reading, the 
above characterisation of the global workspace suggests a functionally and 
anatomically distinct entity, something akin to the Cartesian theatre discredited by 
Dennett – a “place in the brain where everything comes together and 
consciousness happens” (Dennett, 1991). But the most plausible way to map the 
architecture-level description onto actual brain mechanisms is to consider the 
workspace as a brain-scale “communications infrastructure” realised through a 
network of interconnected nodes distributed throughout the central nervous 
system. Thanks to this communications infrastructure, the activity in a single, 

Fig. 1: The Global workspace architecture. Information flow within the 
architecture is characterised by alternating periods of competition (left) and 

broadcast (right). 
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localised cortical population can exercise a widespread, systematic influence on 
the activity of multiple distant cortical regions. 
 The global neuronal workspace proposed by Dehaene and Naccache (2001) 
conforms to this prescription (Fig. 2). They identify five classes of neural circuit 
that should, according to theoretical considerations, participate in a conscious 
state, namely high-level perceptual and motor systems, evaluative and attentional 
mechanisms, and long-term memory. They hypothesise the existence of 
“workspace neurons” linking these circuits together via long-range cortico-
cortical fibres, and point to evidence from monkey studies of suitable pathways 
interconnecting many of the brain regions most closely associated with these 
functions, including the dorsolateral prefrontal, premotor, and anterior cingulate 
cortices, as well as various sub-cortical structures. 
 The hypothesis that this is a plausible anatomical substrate for the global 
workspace architecture gains support if a biologically realistic computer 

Fig. 2: The Global neuronal workspace and its simulation (adapted from Dehaene, 
et al., 2006). The scope of Dehaene’s model is competitive access to the 

workspace, and it does not include the workspace in full. The present simulation 
incorporates a simplified form of competition, but it also models the dynamics of 

broadcast. 



 

5 

simulation can be built that exhibits the sort of information flow the architecture 
requires. Two such simulations have been built by Dehaene and his colleagues. In 
the simulation of (Dehaene, et al., 1998), the workspace is modelled as a pool of 
neurons whose state is influenced by several outlying cortical processes, and 
which in turn has either an inhibitory or excitatory effect on those processes, 
realising a form of cortical selection. The focus of the more recent work reported 
in (Dehaene, et al., 2003) and (Dehaene & Changeux, 2005) is a computer model 
of competitive access to the global workspace. In this model, the flow of 
information is mostly into the workspace, and the only influence of the workspace 
areas on outlying cortical populations is top-down amplification. The present 
paper can be thought of as complementing the work of Dehaene, et al. Its 
contribution is to supply an explicit model of the mechanism and dynamics of 
broadcast, something which is not present in their simulation, and to demonstrate 
a two-way flow of spatial patterns both into and out of the modelled workspace. 
The relationship between Dehaene, et al.’s more recent simulation and the one 
reported here is illustrated by the two bubbles in Fig. 2. 
 To fulfil the cognitive function accorded to it by the high-level theory, the 
following four principles governing the operation of the hypothesised global 
neuronal workspace are proposed (Dehaene & Naccache, 2001).  

• The workspace sustains patterns of activation over several tens of 
milliseconds. 

• The workspace disseminates (broadcasts) patterns of activation throughout 
cortex, preserving the information inherent in their spatiotemporal 
structure. 

• The workspace is sensitive to new patterns of activation, and when it is 
overtaken by them only a trace remains of any previous pattern. 

• Cortical populations win the right to influence the pattern of activation in 
the workspace through competitive interaction.  

 The challenge now is to devise a detailed model of the global neuronal 
workspace which is compatible with the current state of neuroscientific 
knowledge, and to demonstrate that a computer simulation of the model can be 
built whose behaviour conforms to these four principles. 
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3   The Computer Model 

An overall schematic for the model is given in Fig. 3. The global workspace itself 
consists of five nodes (W1 to W5), each of which comprises a population of 256 
excitatory and 64 inhibitory neurons. The workspace nodes are interconnected in 
such a way that activity in one node quickly spreads into the others, effecting a 
form of broadcast. The recurrent interconnections among the workspace areas 
promote reverberation, which has been used successfully to model various aspects 
of working memory (Compte, et al., 2000; Deco & Rolls, 2003; Constantinides & 
Wang, 2004). The model also includes three further cortical columns (C1 to C3) 
capable of influencing the pattern of activation in the workspace, while the state 
of the workspace in turn influences the patterns of activation in those columns. 
Two of the columns (C2 and C3) compete for access to the same workspace node 
(W2). 
 A more complete computer model of the global neuronal workspace would 
consist of hundreds of workspace nodes and many hundreds of cortical columns. 
But to run such a model is at present computationally infeasible unless the 
columns and nodes are themselves idealised as a trivially small number of 
neurons. In the present simulation, each cortical column is modelled as a map of 

Fig. 3: Overall schematic of the model. The model comprises a number of 
interconnected workspace nodes (W1 to W5), plus three further cortical columns 
(C1 to C3). Columns C2 and C3 are near each other, and are mutually inhibiting. 
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approximately one thousand neurons, so that it can exhibit a spatiotemporally 
organised pattern of activation, while the number of workspace nodes and other 
columns is kept manageably small. With a realistically large number of workspace 
nodes, connections would be established on a statistical basis. To approximate this 
in the present model, with just five workspace nodes, each node is connected to 
two of its four peers with no direct reciprocal connections, resulting in the 
arrangement shown in Fig. 3. 
 Only two of the five workspace nodes in the model have outward connections 
to other cortical columns, and only three such columns are modelled. In reality all 
the workspace nodes, including W3, W4, and W5, would have outward 
connections to other cortical columns, like those of W1 and W2. But three cortical 
columns alone are sufficient to demonstrate the behaviour of interest here, namely 
a procession of broadcast workspace states wherein successor states are 
determined by cortical competition. C2 and C3 represent columns that are close 
enough to be directly mutually inhibiting and share the same workspace node, 
while C1 represents a column that is distant from C2 and C3. Mechanisms for 
competition between distant cortical populations are beyond the scope of the 
present simulation (see Discussion). 

3.1   Structure and Connectivity 

Fig. 4 depicts areas W2 and C2 in more detail. The model’s other workspace 
nodes and cortical columns have the same structure. Let’s consider the workspace 
nodes first. A workspace node comprises an excitatory pool (W+) and an 
inhibitory pool (W–). The excitatory pool receives afferents from the output layer 
of a cortical column (Cout) via an access area (A2). Recurrent top-down paths 
from access areas serve to amplify the activity in the output layer of a cortical 
column. Efferents run from excitatory workspace neurons (W+) directly to the 
input layer of a cortical column (Cin), as well as to the other workspace nodes to 
which it is connected (in this case W3 and W5). Additionally, workspace 
excitatory neurons stimulate the corresponding inhibitory pool (W–), which sends 
efferents to the same workspace nodes (W3 and W5). 
 Now let’s consider the structure of the cortical columns which are not part of 
the workspace (C1 to C3). In addition to its input and output layers (Cin and Cout), 
both of which comprise 256 neurons, each such cortical column includes a pool of 
320 non-specific excitatory neurons (C+) and a pool of 192 non-specific inhibitory 
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neurons (C–). All four sub-areas are recurrently connected to the entire column, 
with Cin, Cout, and C+ making excitatory connections and C– making inhibitory 
connections. Additionally, to implement the sort of competitive cortical dynamics 
that has been used by different authors to model a variety of phenomena (Wang, 
2002; Rolls & Deco, 2002; Dehaene, et al., 2003; Dehaene & Changeux, 2005; 
Deco & Rolls, 2005), the entire column receives a lateral inhibitory input from its 
competing neighbour (C3). In the opposite direction, the column stimulates a 
further pool of 204 inhibitory neurons (L2) which in turn connects to C3. With 
respect to lateral inhibition, column C3 is a mirror image of C2, while column C1, 
having no competitors for access to W1, lacks the circuitry for lateral inhibition. 
Access areas and lateral inhibitory pools are anatomically and functionally 
included in cortical columns. In Fig. 4, for example, the neurons in C2 are 
assumed to send out only intra-columnar efferents. A2 and L2 are considered part 
of the same column as C2, but comprise neurons that project short-range cortico-
cortical efferents to nearby columns, in this case C3 and W2. 
 A critical property of the model is the highly focal nature of the majority of 
excitatory paths, and in particular of the connections between workspace nodes 

Fig. 4: Detail of areas W2 and C2. C–, L2, and W– are inhibitory pools, while the 
other boxes comprise excitatory neurons. Access area A2 and inhibitory pool L2 

are conceptually and anatomically part of column C2. 
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and the connections to and from other cortical columns and their access areas 
(indeed these are all one-to-one in the simulation). This focal character ensures 
that the spatial properties of a pattern of activation are preserved throughout the 
workspace as well as in the input and output layers of columns C1 to C3. All 
inhibitory pathways, by contrast, are diffuse (fully connected with synaptic 
weights drawn uniformly from [0 1]), as are the recurrent connections within C1 
to C3 (also fully connected with initial synaptic weights uniformly drawn from [0 
1]). In the overall model, as well as in the individual cortical columns, the 
proportion of excitatory to inhibitory neurons is approximately four to one, as in 
real mammalian cortex. 

3.2   The Neuron Model 

Individual neurons were simulated using Izhikevich’s “simple model” of spiking 
behaviour (Izhikevich, 2003; 2007). This model is able to generate a large range 
of empirically accurate spiking behaviours, like the Hodgkin-Huxley equations, 
while being much easier to compute with. It is thus well suited to a large-scale, 
biologically plausible simulation. Moreover, the behaviour of the model is 
governed by four parameters (a, b, c, and d in Eqns. (1) – (3) below), which can 
be varied to emulate the signalling properties of a wide variety of known neuron 
types. The model is defined by the following three equations: 
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where v is the neuron’s membrane potential, I is its input current, and u is a 
variable that regulates the recovery time of the neuron after spiking. Eqn. (3) 
describes the way the neuron is reset after spiking, which is assumed to occur 
when its membrane potential reaches 30mV. 
 The values of the four parameters a, b, c, and d were lifted from (Izhikevich, 
2003). For excitatory neurons these were a = 0.02, b = 0.2, c = –65+16r2, and d = 
8–6r2, where r is a uniformly distributed random variable in the interval [0,1]. For 
inhibitory neurons, the values used were a = 0.02+0.08r, b = 0.25–0.05r, c = –65, 
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and d = 2, with r as above. The random variable r introduces a degree of variation 
into each population. For example, in the excitatory case, if r = 0 we get the 
regular spiking behaviour shown on the left of Fig. 5, while if r = 1 we get the 
chattering behaviour shown on the right of the figure. 
 Consider a time t and a neuron i, and let Φ be the set of all neurons j that fired 
at time t–δ where δ is the conductance delay from neuron j to i. Then the input 
current I for neuron i at time t is given by: 
 
 

! 

I(t) = Ib + Si, j
j"#

$ F   (4) 

 
where Ib is the base current, Si,j is the synaptic weight of the connection from 
neuron j to i, and F is a scaling factor whose value depends on the type of 
population to which i and j respectively belong (eg: workspace area, lateral 
inhibitory pool, etc). The scaling factors and conductance delays for the model’s 
various pathways are set out in Table 1. Scaling factors for topographically 
mapped pathways (eg: to, from, and among workspace areas) are significantly 
higher than those to and from inhibitory areas and those for recurrent connections 
within cortical columns to compensate for the correspondingly smaller number of 
connections per neuron for those pathways. 

3.3   Initial Training 

The three cortical columns C1, C2, and C3 were subject to an initial period of 
training while disconnected from the rest of the model, using a variant of spike-
timing dependent plasticity (STDP) (Abbott & Nelson, 2000; Song, et al., 2000). 
STDP is a Hebbian learning rule for spiking neurons that increases the strength of 
synaptic connections where there is a strong correlation between the timing of 

Fig. 5: Varieties of excitatory neurons using Izhikevich’s simple model (from 
Izhikevich, 2003). 
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pre-synaptic spikes and post-synaptic firing, and decreases the strength of 
connections where this correlation is weak. Details of the (slightly unorthodox) 
STDP update rule used in the present experiments are relegated to the Appendix, 
since our only concern here is with its results. 
 Each column learned to associate the presentation of a certain pattern to its 
input layer with the later presentation (after 40ms) of a different pattern to its 
output layer (Gerstner, et al., 1993; Rao & Sejnowski, 2000; Nowotny, et al., 
2003; Izhikevich, 2006). Each input and output layer was divided into four 
separate populations (neuron numbers 1–64, 65–128, 129–192, and 193–256 
respectively). The presentation of each input and output pattern involved the 
excitation, by means of four 10mA pulses at 5ms intervals, of 60% of the neurons 
in one of those four populations. After training, if a previously seen pattern was 
presented to a column’s input layer, it would respond with the associated pattern 
in its output layer without requiring further input, after a delay of approximately 
40ms (Fig. 6). The input stimuli used to show this consisted of 10ms bursts of 
random 8mA pulses delivered to the relevant subset of neurons, where the 
probability of such a neuron receiving a pulse in any given 1ms time step was 0.2. 
The learned repertoire of associations is the smallest possible – just one per 
column – that will allow the model to exhibit the desired behaviour, namely a 
succession of distinct global workspace states. Note that columns C2 and C3 have 
competing associations for the same input pattern. 

FWC 40 
FAW 90 
FWW 80 
FCC 3 
FCL 8 
FLC 140 
FWI 1.2 
FIW 1.4 
FAC 90 
FCA 90 
FLL 90 

 

δWC 10ms 
δAW 20ms 
δWW 5–6ms 
δCC 1–40ms 
δCL 2ms 
δLC 2ms 
δWI 2ms 
δIW 5–6ms 
δAC 2ms 
δCA 2ms 
δLL 2ms 

 

Key to parameters 
 
Fαβ = scaling factor applied to 
connections from area type α to 
area type β 
 
δαβ is the conductance delay for 
connections from area α to β 
 
W = workspace area 
I = workspace inhibitory pool 
C = cortical column 
L = lateral inhibitory pool 
A = workspace access area 

Table 1: Parameters of the Model 



 

12 

4   Experimental Results 
In each of the experiments described here, an initial stimulus was delivered after 
20ms directly to workspace area W1. This took the form of a single set of strong 
pulses (25mA) to 60% of the sub-population of neurons numbered from 1 to 64. 
Fig. 7 shows the evolution of areas W1 and W2 during one representative type of 
trial, while Fig. 8 shows the corresponding evolution of the three cortical columns 

Fig. 6: Cortical associations after initial training. Columns C1 to C3 each store a 
single input-output pair. The training set is designed so that the output pattern 

from each column stimulates a unique set of neurons, making it possible to 
identify the column that caused any given firing in a workspace area. 



 

13 

C1, C2, and C3 during the same trial. Areas W3 to W5 are not shown, but exhibit 
the same characteristic pattern as W1 and W2 with a phase difference of up to 
5ms. The chain of events depicted in the figures is as follows. 

4.1   A Single Trial in Detail 

The initial stimulus delivered to W1 at 20ms is transmitted to W2 and W4, thanks 
to the cortico-cortical connections shown in Fig. 3, from where it is in turn 
propagated to W3 and W5. Within 20ms this spatial pattern of activation has 
spread around the ring of workspace nodes, and thanks to the existence of 
multiple feedback pathways, has set up a self-sustaining reverberation that lasts 
for approximately 80ms. At the same time, this pattern of activity is transmitted, 
via workspace areas W1 and W2, to the input layers of cortical columns C1 to C3 
(see Figs. 3 & 4). 
 As shown in Fig. 8 (top right), area C1 begins to show a response to this 
pattern of activity at around 60ms. Neither of the other cortical columns has an 
association with strong activation in neurons 1–64, so their output layers remain 
quiescent. The response from C1 is a burst of activity in neurons 65–128, a pattern 
which is duly transmitted to workspace area W1. This new pattern of activation 
now begins to invade the whole workspace, propagating to each of the five 
workspace areas, and setting up a new self-sustaining reverberation that lasts from 
around 80ms to 140ms, with some neurons in the population maintaining the 
reverberation much longer. With the arrival of this new pattern, the old pattern 
fades thanks to a wave of inhibition (not shown) that spreads around the 

Fig. 7: A sequence of workspace states in a selected trial. Two representative 
workspace nodes are shown. The pattern of firing is similar in all five. The 

workspace exhibits a sequence of clearly demarcated states. 



 

14 

workspace in advance of the new pattern, and by 140ms it has disappeared 
altogether. 
 Both C2 and C3 have associations with strong activation in neurons 65–128 
(Fig. 8), so a period of competition ensues, owing to their mutually inhibiting 

Fig. 8: Cortical column behaviour in a selected trial. The column’s input areas 
(left) echo the state of the workspace. The output areas of columns C1, C2, and 

C3, in that order, deliver a series of patterns of activation into the workspace. C2 
wins the initial competition with C3 (at around 120ms). But C3 gets a turn in the 

end, thanks to lingering firing in neurons 65–128. 
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relationship. Though closely matched, and in receipt of near identical input 
patterns, small statistical differences in the training of columns and C2 and C3 
result in an outright winner, namely C2. A strong early response by a subset of 
neurons in C2’s output layer (and by one neuron in particular) is sufficient to 
excite the inhibitory pool connected to C2 (L2 in Fig. 4), which inhibits C3 and 
blocks its activity for approximately 50ms, an effect that is reinforced by the top-
down amplification of the activity in C2’s output layer from area A2. As a 
consequence, C2 gains exclusive access to the workspace. As Fig. 7 shows, the 
resulting pattern of strong activation in neurons 193–256 occupies the workspace 
from approximately 150ms to 210ms. 
 Despite C2’s initial victory, it doesn’t have the last word. This is because a 
subset of the neurons in the workspace, thanks to statistical variations in their 
parameters, tend to exhibit “chattering” behaviour after initial stimulation by an 
appropriate set of spikes. These neurons will continue to fire after the rest have 
become quiescent. This effect is visible throughout the model, as the figures 
show. (It is noteworthy, however, that the synchronous oscillations induced by the 
initial stimulus in neurons 1–64 do not seem to give rise to this effect. The reason 
for this is unclear.) 
 Of particular interest here is the lingering activity throughout the workspace in 
neurons 65–128 after C2’s initial victory. Because of this, the output layer of C3 
exhibits a renewed burst of firing at around 190ms, when the inhibitory influence 
of C2 has faded (Fig. 8, bottom right). Moreover, by 210ms the reverberating 
pattern initiated by C2 in workspace neurons 193–256 is also starting to fade, a 
process accelerated by the transmission of the renewed activation in neurons 129–
192 of C3’s output layer to workspace area W2, from where it duly propagates 
throughout the workspace, pushing a wave of inhibition before it. By 290ms this 
pattern too has faded, and because no further relevant associations are stored in 
C1 to C3 the whole interconnected system of neuronal populations becomes 
quiescent. 

4.2   Variation Across Trials 

A series of 36 trials like the one above was conducted, comprising three trials for 
each of 12 different training runs. In each training run, the input-output pairs were 
the same as for the example depicted in Fig. 6. But there were three sources of 
variation across trainings. First, there was statistical variation in the parameters a, 
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b, c, and d used to model individual neurons. Second, initial synaptic strengths 
prior to the application of STDP were drawn from a uniform distribution over [0 
1]. Third, inter-neuronal conductance delays were drawn from a uniform 
distribution over [1 40]. Additionally, at each 1ms time step throughout training 
every neuron was assigned a base input current drawn from a Gaussian 
distribution (mean 0, standard deviation 1). Variation across trials with the same 
training was the result of the addition of Gaussian noise to the 2mA base input 
current for each neuron (mean 0, standard deviation 1). 
 In each trial, the workspace exhibited a succession of well demarcated, stable 
states, which can be thought of as a series of distinct epochs lasting some 50-
60ms. During the first epoch of each trial, the workspace was dominated by the 
initial stimulus (activity in neurons 1–64), and during the second epoch it was 

Trial Training 
Influence 

of C2 
(firings) 

Influence 
of C3 

(firings) 

Difference 
(% of total 

firings) 
Winner 

1 1 590 127 64.6 C2 
2 1 571 161 56.0 C2 
3 1 572 17 94.2 C2 
4 2 757 364 35.1 C2 
5 2 274 718 -44.8 C3 
6 2 537 622 -7.3 N/A 
7 3 593 0 100.0 C2 
8 3 0 542 -100.0 C3 
9 3 632 0 100.0 C2 
10 4 679 186 57.0 C2 
11 4 672 668 0.3 N/A 
12 4 764 184 61.2 C2 
13 5 579 743 -12.4 N/A 
14 5 556 736 -13.9 N/A 
15 5 508 731 -18.0 N/A 
16 6 126 680 -68.7 C3 
17 6 480 590 -10.3 N/A 
18 6 532 218 41.9 C2 

 

Table 2: The post-competitive epoch across trials 1 to 18 
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characterised by activity in neurons 65–128, thanks to the influence of C1. But the 
character of the third epoch depended on the outcome of the competition between 
C2 and C3, yielding several qualitatively different types of behaviour. These are 
summarised in Tables 2 and 3. It should be noted that, thanks to the character of 
the initial training, each cortical column excites a unique subset of workspace 
neurons (Fig. 6). Therefore we can clearly identify which cortical column was the 
cause of any given firing in a workspace area. 
 The third column of the tables shows the number of C2-influenced firings 
(neurons 193–256) in the representative workspace area W1 between 155ms and 
205ms, a period that more-or-less coincided with the post-competitive epoch in 
each trial. The fourth column presents the same statistic, but for C3-influenced 
firings (neurons 129–192). The fifth column shows the difference between C2- 
and C3-influenced firings as a percentage of the total number of C2- and C3-

Trial Training 
Influence 

of C2 
(firings) 

Influence 
of C3 

(firings) 

Difference 
(% of total 

firings) 
Winner 

19 7 679 658 1.6 N/A 
20 7 743 311 41.0 C2 
21 7 740 513 18.1 N/A 
22 8 723 576 11.3 N/A 
23 8 790 503 22.2 N/A 
24 8 753 477 22.4 N/A 
25 9 750 0 100.0 C2 
26 9 820 157 67.9 C2 
27 9 671 133 66.9 C2 
28 10 457 813 -28.0 C3 
29 10 391 778 -33.1 C3 
30 10 389 838 -36.6 C3 
31 11 184 630 -54.8 C3 
32 11 204 524 -44.0 C3 
33 11 145 596 -60.9 C3 
34 12 196 708 -56.6 C3 
35 12 199 708 -56.1 C3 
36 12 143 615 -62.3 C3 

 

Table 3: The post-competitive epoch across trials 19 to 36 
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influenced firings. If this figure is positive then the competition was won by C2 
but if it is negative the winner was C3. The absolute value of this figure indicates 
the margin of the win. The sixth column shows the winner of the competition. No 
overall winner is indicated if the margin was less than 25%. 
 As the tables show, the competition was effectively won by one or other of the 
cortical columns in 25 out of the 36 trials. C2 is the clear winner in 13 cases, with 
C3 the clear winner in 12. In the remaining 11 trials both columns gained roughly 
equal access to the workspace during the period in question. Of especial interest 
are trainings 2, 3, and 6. For each of these trainings different winners were 
produced by different trials, although there were no changes in synaptic weights 
from trial to trial. This suggests a chaos-like sensitivity to small differences at the 
onset of the competition. The results with training 3 are particularly dramatic. In 
each of the trials with this training, one or other of the columns managed to 
silence its rival completely, permitting it no influence on the workspace at all 
during the period in question (Fig. 9). 

5   Discussion 
The model described contains three already well-established types of circuit – for 
sequence learning and retrieval, for competition through mutual inhibition, and for 
maintaining activation patterns through reverberation. The experimental results 
presented show that the right combination of this circuitry implements a global 
neuronal workspace whose behaviour conforms to the four principles set out in 
Section 2. It sustains and disseminates a spatial pattern, and is sensitive to new 
patterns that have become established through competitive interaction among 
cortical populations. As a result, it is capable of exhibiting a succession of 
distinct, well demarcated stable states. The overall schematic of the model maps 
cleanly onto the global workspace architecture, making it possible to impose the 
conscious / non-conscious distinction proposed by global workspace theory onto 
its information flow. Specifically, the computations carried out locally within the 
cortical columns C1 to C3 model non-conscious information processing, while 
patterns of activation that spread throughout the workspace nodes W1 to W5 and 
into the input layers of the cortical columns model consciously processed 
information. 
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5.1   An Internal Sensorimotor Loop 

In (Shanahan, 2006), a cognitive architecture is proposed in which a global 
workspace is combined with an internally closed sensorimotor loop. The proposal 
is in support of the hypothesis that organisms whose brains are endowed with 
such a loop are capable of rehearsing the consequences of potential actions prior 
to actually carrying them out (Cotterill, 1998; Hesslow, 2002). The paper presents 
a computer implementation of the architecture that performs a simple form of 
cognitively mediated action selection. However, the implementation presented in 
(Shanahan, 2006), though useful as a proof-of-concept, lacks neurological 
plausibility, both at the level of the neuron model used and in its employment of a 
single attractor network to model the global workspace. 
 The present simulation can be regarded as a neurologically more plausible 
sequel to the work reported in the earlier paper, and the circuitry described here 
has the potential to fulfil the same function as the “core circuit” described there. 
Specifically, if cortical columns learn to associate a landmark sensorimotor state 
with one or more of the landmark sensorimotor states that might be expected to 
follow it, the procession of workspace contents can rehearse a trajectory through 
the organism’s sensorimotor space. As a result of this rehearsal, both desirable 
and undesirable outcomes can be anticipated, and the organism’s mechanism for 
action selection influenced accordingly. 
 However, to effect a proper search of sensorimotor space, and therefore to 
carry out planning, the workspace must be capable of revisiting the same 
sensorimotor state more than once in order to explore alternative outcomes. It has 

Fig. 9: Trial 7 (left) and Trial 8 (right) yield different sequences of workspace 
states with the same training and initial stimulus, showing that small statistical 

variations in intial conditions can result in large, qualitative differences over time. 
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been shown by Tani (1996) that, though lacking anything analogous to the stack 
in a conventional computer with a von Neumann architecture, a neurally-based 
system can in principle search a space of combinatorial structures by exploiting 
chaotic dynamics. Trials 7 and 8 (Fig. 9) therefore demonstrate a potentially 
important property of the present model, namely a sufficient degree of sensitivity 
to small differences in initial conditions for qualitatively indistinguishable states 
of the workspace to have non-unique successors. 

5.2   Shortcomings and Limitations 

Needless to say, the model has many shortcomings and limitations that point to 
the need for further research. For example, the majority of activity in cortical 
columns C1 to C3 is in the input and output areas, and closely mirrors the activity 
in the global workspace. The cortical columns, as modelled, are very simple, and 
there is little in the way of intermediate activity between their inputs and outputs – 
just a low level of firing in the pools of non-specific neurons (labelled C+ and C– 
in Fig. 4). A richer model, devised to illustrate a wider range of phenomena, 
would perform more complex cortical computations, and it is easy to imagine 
expanding each of C1 to C3 to include several hierarchical stages, all of which 
would, according to global workspace theory, carry out non-conscious 
information processing. Another drawback of the present simulation is the extent 
to which a prior structure has been imposed on the workspace (Fig. 3). It would be 
satisfying if a future, more sophisticated model could demonstrate that the kind of 
long-range connectivity between remote cortical populations required to realise a 
global workspace can arise through self-organisation along the lines described in 
(Izhikevich, et al., 2004). 
 A further shortcoming is that the only form of competition in the present model 
is between nearby cortical columns, and it makes no provision for a competition 
among spatially separated columns with no direct, short-range inhibitory 
pathways connecting them (such as C1 and C2). A more global mechanism for 
cortical selection is required for this. One candidate is the type of basal ganglia 
loop through cortex hypothesised by Redgrave and his colleagues to be implicated 
in action selection (Redgrave, et al., 1999). Although their modelling work to date 
has been confined to motor-cortical selection (Prescott, et al., 2006), the 
anatomical structures and pathways they have emulated seem to be replicated for 
much of the cortical sheet (Alexander, et al., 1986; Middleton & Strick, 2002; 
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Postuma & Dagher, 2006). So it seems plausible that they fulfil a similar 
selectional role throughout, a possibility that has been explored by computational 
modellers in the context of working memory (Frank, et al., 2001; O’Reilly & 
Frank, 2006). The incorporation of a similar gating mechanism for workspace 
access would enhance the present model. 
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Appendix: The STDP Learning Rule 

The Hebbian learning rule used for the initial training of the three cortical 
columns C1 to C3 was a form of spike timing dependent plasticity (STDP). After 
each 1ms time step, the STDP update rule was applied to every neuron in each 
column. The update rule works as follows. Consider a neuron i that fires at time 
t1. We are interested in spikes that arrive at i within a window of ω milliseconds 
either side of t1. Suppose that a spike from some neuron j arrives at neuron i at 
time t2 such that –ω ≤ τ ≤ ω, where τ = t2– t1. Then the synaptic weight S of the 
connection from neuron j to neuron i is adjusted by an amount ΔS, given by the 
following equation. 
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 Note that τ depends on the arrival time of an incoming spike rather than the 
firing time of the neuron that delivered it. When, as in the present simulation, 
there are variable conductance delays, this is clearly the more realistic option, 
although it is computationally more burdensome since it requires the simulation to 
maintain more data for each firing. Moreover, as Izhikevich (2006) shows, the 
interplay of STDP with variable conductance delays (properly treated) can 
enhance a network’s ability to learn spatiotemporal patterns. 
 For the reported experiments ω = 10ms and Smax = 2, giving the characteristic 
illustrated in Fig. 10. Each column was subjected to two 200ms periods of training 
in order to learn a single pairing. In each period, the first pattern was presented to 
the column’s input layer as four sets of 10mA pulses, delivered at 20ms, 25ms, 
30ms and 35ms. This was followed by the presentation to the output layer of the 
second, associated pattern in the form of four sets of 10mA pulses delivered at 
80ms, 85ms, 90ms, and 95ms. The result of this training for the chosen patterns 
and their associations is depicted in Fig. 6. 

Fig. 10: The characteristic of the STDP update rule. The change in synaptic 
strength ΔS is inversely proportional to the difference τ between the post-synaptic 

and pre-synaptic spike times, as well as being weighted by the current synaptic 
strength S. 
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 The formulation of the update rule is a little unconventional as it foregoes the 
usual exponential terms (Song, et al., 2000), instead giving ΔS a linear form. 
Moreover, the adjustment to S is weighted by S itself, so that synaptic strengths 
gradually approach either Smax or zero, which does not occur with the more usual 
form of the rule in which there are sharp cut-offs at Smax and zero. The former 
modification promotes fast training, but also tends to overfit the data very quickly. 
As such it is well suited to the present application, where only a single pairing of 
stimuli needs to be learned, as it enables the training process to be completed in 
just 400ms of simulation time, yet results in a network with realistic statistical and 
dynamical properties. 


