
Event Calculus Planning Revisited
Murray Shanahan

Department of Computer Science,
Queen Mary and Westfield College,

Mile End Road,
London E1 4NS,

England.

Email: mps@dcs.qmw.ac.uk
Web: http://www.dcs.qmw.ac.uk/~mps

May 1997 DRAFT

Abstract
In 1969 Cordell Green presented his seminal
description of planning as theorem proving with the
situation calculus. The most pleasing feature of Green's
account was the negligible gap between high-level
logical specification and practical implementation. This
paper attempts to reinstate the ideal of planning via
theorem proving in a modern guise. In particular, I will
show that if we adopt the event calculus as our logical
formalism and employ abductive logic programming as
our theorem proving technique, then the computation
performed mirrors closely that of a hand-coded partial
order planning algorithm. Furthermore, if we extend
the event calculus in a natural way to accommodate
compound actions, then using exactly the same
abductive theorem prover we obtain a hierarchical
planner. All this is a striking vindication of Kowalski's
slogan “Algorithm = Logic + Control”.

Introduction
In 1969, Green offered a logical characterisation of planning
couched in terms of the situation calculus, in addition to an
implementation based on a resolution theorem prover.
What makes Green’s treatment so attractive is the close
correspondence between implementation and specification.
The very same axioms that feature in the formal description
of the planning task form the basis of the representation
deployed by the implemented planner, and each
computation step performed by the planner is a step in the
construction of a proof that a suitable plan exists.

However, Green’s seminal work, though much admired, has
had little impact on subsequent work in planning, owing to
the widespread belief that a theorem prover cannot form the
basis of a practical planning system. The following quote
from [Russell & Norvig, 1995] exemplifies the widely held
belief that planning via theorem proving is impractical.

Unfortunately a good theoretical solution does not
guarantee a good practical solution. . . . To make
planning practical we need to do two things: (1)
Restrict the language with which we define problems. .
. . (2) Use a special purpose algorithm . . . rather than

a general-purpose theorem prover to search for a
solution. The two go hand in hand: every time we
define a new problem-description language, we need a
new planning algorithm to process the language. . . .
The idea is that the algorithm can be designed to
process the restricted language more efficiently than a
resolution theorem prover. [Russell & Norvig, 1995,
page 342]

The aim of the present paper is to demonstrate that a good
theoretical solution can indeed co-exist with a good
practical solution, through the provision of a logical
account of partial order and hierarchical planning in the
spirit of Green’s work. However, where Green’s account
was based on the formalism of the situation calculus
[McCarthy & Hayes, 1969], the present paper adopts the
event calculus [Kowalski & Sergot, 1986], [Shanahan,
1997a]. Furthermore, while Green regarded planning as a
deductive process, planning with the event calculus is most
naturally considered as an abductive process. When event
calculus formulae are submitted to a suitably tailored
resolution based abductive theorem prover, the result is a
purely logical planning system whose computations mirror
closely those of a hand-coded planning algorithm.

The developments reported in this paper are part of an
ongoing research programme in Cognitive Robotics
[Lespérance, et al., 1994]. Researchers in Cognitive
Robotics aim to design and build robots whose
architectures are based on the manipulation of sentences of
logic, with a view to endowing them with high-level
cognitive skills such as the ability to reason about their
own goals and knowledge and the goals and knowledge of
others. The ideals of this research are close to those of the
designers of Shakey in the late Sixties and early Seventies
[Nilsson, 1984], and Cognitive Robotics can be thought of
as a revival of a research programme largely abandoned after
the Shakey project.

But hindsight has exposed a number of conceptual flaws in
the style of robotics promoted by the Shakey project. In
particular, Shakey was obliged to cease any activity in the
world while it planned, and once it had found a plan it
would commit to the execution of that plan come what

may.1 A major concern here, as in mainstream robotics and
planning, is to avoid these problems by smoothly
interleaving planning, sensing and acting. As we shall see,
this is one motivation for the study of hierarchical
planning. Theorem proving approaches to planning usually
employ regression, which generates actions in reverse order,
which is useless if we want to start executing a plan before
we’ve finished constructing it. Hierarchical decomposition,
on the other hand, can be adjusted to generate actions in
progression order (first action first).

1 A Circumscriptive Event Calculus
The formalism for reasoning about action used in this paper
is derived originally from Kowalski and Sergot’s event
calculus [Kowalski & Sergot, 1986], but is based on many-
sorted first-order predicate calculus augmented with
circumscription [Shanahan, 1997a].2 This section presents
the bare outlines of the formalism. An example of the use
of the formalism, which should make things clearer to
those unfamiliar with it, appears in the next section. For a
more thorough treatment, consult [Shanahan, 1997a].

Table 1 presents the essentials of the language of the
calculus, which includes sorts for fluents, actions (events),
and time points.

Formula Meaning

Initiates(α,β,τ) Fluent β holds after action α at time
τ

Terminates(α,β,τ) Fluent β does not hold after action
α at time τ

Releases(α,β,τ) Fluent β is not subject to the
common sense law of inertia after
action α at time τ

InitiallyP(β) Fluent β holds from time 0

InitiallyN(β) Fluent β does not hold from time 0

Happens(α,τ1,τ2) Action α starts at time τ1 and ends
at time τ2

HoldsAt(β,τ) Fluent β holds at time τ

Table 1: The Language of the Event Calculus

We have the following axioms, whose conjunction is
denoted EC.3

1 This isn’t quite true. If plan execution went extremely badly,
Shakey would eventually abandon its current plan and re-plan
from scratch.
2 Here we will confine our attention to relatively simple
domains, but [Shanahan, 1997a] shows how the calculus can be
used to handle domain constraints, continuous change, and
non-deterministic effects. Indeed, the planner described in this
paper can handle many types of domain constraint without
further modification.
3 Variables begin with lower-case letters, while function and
predicate symbols begin with upper-case letters. All variables

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t3) ← (EC2)
Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧

t2 < t3 ∧ ¬ Clipped(t1,f,t3)

Clipped(t1,f,t4) ↔ (EC3)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

¬ HoldsAt(f,t) ← (EC4)
InitiallyN(f) ∧ ¬ Declipped(0,f,t)

¬ HoldsAt(f,t3) ← (EC5)
Happens(a,t1,t2) ∧ Terminates(a,f,t1) ∧

t2 < t3 ∧ ¬ Delipped(t1,f,t3)

Delipped(t1,f,t4) ↔ (EC6)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Terminates(f,t2) ∨ Releases(a,f,t2)]]

Happens(a,t1,t2) → t1 ≤ t2 (EC7)

A two-argument version of Happens is defined as follows.

Happens(a,t) ≡def Happens(a,t,t)

The frame problem is overcome through circumscription.
Given a conjunction Σ of Initiates, Terminates, and
Releases formulae describing the effects of actions (a
domain description), a conjunction ∆ of Initially, Happens
and temporal ordering formulae describing a narrative of
actions and events, and a conjunction Ω of uniqueness-of-
names axioms for actions and fluents, we’re interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω.

By minimising Initiates, Terminates and Releases we
assume that actions have no unexpected effects, and by
minimising Happens we assume that there are no
unexpected event occurrences. In all the cases we’re
interested in, Σ and ∆ will be conjunctions of Horn clauses,
and the circumscriptions will reduce to predicate
completions. This result will come in handy when we
come to implement the event calculus as a logic program.

2 Planning as Abduction
Planning can be thought of as the inverse operation to
temporal projection, and temporal projection in the event
calculus is naturally cast as a deductive task. Given Σ, Ω
and ∆ as above, we’re interested in HoldsAt formulae Γ
such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω

�
 Γ.

Conversely, as first pointed out by Eshghi [1988],
planning in the event calculus can be considered as an
abductive task. Given a domain description Σ , a
conjunction Γ of goals (HoldsAt formulae), and a
conjunction ∆0 of Initially formulae describing the initial

are universally quantified with maximum possible scope unless
otherwise indicated.

situation, a plan is a consistent conjunction ∆ of Happens
and temporal ordering formulae such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω

�
 Γ.

As suggested by the title of Levesque’s Green-inspired
paper, “What is planning in the presence of sensing?”
[Levesque, 1996], logical characterisations such as this aim
to settle the question of the underlying nature of one or
other type of planning. Levesque’s answer, echoing Green’s
1969 paper, is based on the situation calculus. In the
situation calculus, a plan is expressed using the Result
function, which maps an action and a situation onto a new
situation. The Result function does not facilitate the
representation of narratives of events whose order is
incompletely known.4 By contrast, since the narrative of
actions described by ∆ above doesn’t have to be totally
ordered, the event calculus seems a natural candidate for
answering the question “What is partial order planning?”.

As an example, let’s formalise the shopping trip domain
from [Russell & Norvig, 1995]. The domain comprises
just two actions and two fluents. The term Go(x) denotes
the action of going to x, and the term Buy(x) denotes the
action of buying x. The fluent At(x) holds if the agent is at
location x, and the fluent Have(x) holds if the agent
possesses item x. Let Σ be the conjunction of the
following Initiates, Terminates and sundry formulae.

Initiates(Go(x),At(x),t)

Terminates(Go(x),At(y),t) ← x ≠ y

Initiates(Buy(x),Have(x),t) ←
HoldsAt(At(y),t) ∧ Sells(y,x)

Sells(DIYShop,Drill)

Sells(Supermarket,Banana)

Sells(Supermarket,Milk)

Let Ω be the conjunction of the following uniqueness-of-
names axioms.

UNA[Go, Buy]

UNA[At, Have]

Our desired goal state is to have a banana, some milk, and a
drill. Let Γ be the following conjunction of HoldsAt
formulae.

HoldsAt(Have(Banana),T) ∧ HoldsAt(Have(Milk),T) ∧
HoldsAt(Have(Drill),T)

Let ∆ be the conjunction of the following Happens and
temporal ordering formulae.

Happens(Go(Supermarket),T0)

Happens(Buy(Banana),T1)

Happens(Buy(Milk),T2)

Happens(Go(DIYShop),T3)

Happens(Buy(Drill),T4)

4 But see [Miller & Shanahan, 1994].

T0 < T1 T0 < T2

T1 < T3 T2 < T3

T3 < T4 T4 < T

Note that ∆ is not committed to any particular ordering of
the Buy(Banana) and Buy(Milk) actions. As we would
expect, according to the definition above, ∆ is indeed a plan
for Γ. In other words,we have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω

�
 Γ.

The provision of a logical characterisation of the planning
task is all very well. But for a complete picture, and to
address the issues raised in the Russell and Norvig quote in
the introduction, we need to look at computational matters.
These are the focus of the sequel.

3 Partial Order Planning = Event Calculus
+ Abduction
The title of this section deliberately echoes Kowalski’s
slogan “Algorithm = Logic + Control” [Kowalski, 1974].
The aim of the section is to sketch the use of logic
programming techniques to render the previous section’s
logical specification of partial order planning into a
pract ica l implementat ion.5 The basis of this
implementation will be a resolution based abductive
theorem prover, coded as a Prolog meta-interpreter. This
theorem prover is tailored for the event calculus by
compiling the event calculus axioms into the meta-level,
resulting in an efficient implementation.

As pointed out by [Missiaen, et al., 1995], the event
calculus axioms, in particular (EC1) to (EC6), can be
likened to Chapman’s “modal truth criterion” (but stripped
of the modalities) [Chapman, 1987]. The logic
programming approach to planning advocated in this paper
can be thought of as directly executing the modal truth
criterion. The event calculus Initiates, Terminates and
Releases formulae that constitute a purely logical
description of the effects of actions in a particular domain
are used directly as the domain description in the
implemented planner.

Many of the computational concepts central to the literature
on partial order planning, such as threats, protected links,
promotions and demotions [Chapman, 1987], [Penberthy &
Weld, 1992], turn out to have direct counterparts in the
theorem proving process. It’s interesting to note that these
features of the logic programming implementation weren’t
designed in. Rather, they are naturally arising features of
the theorem prover’s search for a proof. So our attempt to
provide a mathematically respectable answer to the question
“What is partial order planning?” inadvertantly offers
similar answers to questions like “What are protected
links?”. To see all this we need to delve into the details of
the meta-interpreter. In what follows, I will assume some

5 A full listing of the Prolog implementation is given in the
(electronic) appendix.

knowledge of logic programming concepts and
terminology.

3.1 An Abductive Meta-Interpreter for the Event
Calculus

Meta-interpreters are a standard part of the logic
programmer’s toolkit [Sterling & Shapiro, 1986, Chapter
19]. For example, the following “vanilla” meta-interpreter,
when executed by Prolog, will mimic Prolog’s own
execution strategy.6

demo([]).

demo([G|Gs1]) :-
axiom(G,Gs2), append(Gs2,Gs1,Gs3),
demo(Gs3).

demo([not(G)|Gs]) :-
not demo([G]), demo(Gs).

The formula demo(Gs) holds if Gs follows from the
object-level program. If Π is a list of Prolog literals [λ1,
..., λn], then the formula axiom(λ0,Π) holds if
there is a clause of the following form in the object-level
program.

λ0 :- λ1, ..., λn
One of the tricks we’ll employ here is to compile object-
level clauses into the meta-level. For example, the above
clause can be compiled into the definition of demo through
the addition of the following clause.

demo([λ0|Gs1]) :-
axiom(λ1,Gs2),
append(Gs2,[λ2, ..., λn|Gs1],Gs3),
demo(Gs3).

The resulting behaviour is equivalent to that of the vanilla
meta-interpreter with the object-level clause. Now consider
the following object-level clause, which corresponds to
Axiom (EC2) of Section 1.

holds_at(F,T3) :-
happens(A,T1,T2), T2 < T3,
initiates(A,F,T1),
not clipped(T1,F,T2).

This can be compiled into the following meta-level clause,
in which the predicate before is used to represent
temporal ordering.

demo([holds_at(F,T3)|Gs1]) :-
axiom(initiates(A,F,T1),Gs2),
axiom(happens(A,T1,T2),Gs3),
axiom(before(T2,T3),[]),
demo([not clipped(T1,F,T3)]),
append(Gs3,Gs2,Gs4),
append(Gs4,Gs1,Gs5), demo(Gs5).

6 Throughout the paper, I use standard Edinburgh syntax for
Prolog. Variables begin with upper-case letters, while
predicate and function symbols with lower-case letters, which
is the opposite convention to that used for predicate calculus.

To represent Axiom (EC5), which isn’t in Horn clause
form, we introduce the function neg. Throughout our logic
program, we replace the classical predicate calculus formula
¬ HoldsAt(f,t) with holds_at(neg(F),T). So we
obtain the following object-level clause.

holds_at(neg(F),T3) :-
happens(A,T1,T2), T2 < T3,
terminates(A,F,T1),
not declipped(T1,F,T2).

This compiles into the following meta-level clause.

demo([holds_at(neg(F),T3)|Gs1]) :-
axiom(terminates(A,F,T1),Gs2),
axiom(happens(A,T1,T2),Gs3),
axiom(before(T2,T3),[]),
demo([not declipped(T1,F,T3)]),
append(Gs3,Gs2,Gs4),
append(Gs4,Gs1,Gs5), demo(Gs5).

The Prolog execution of these two meta-level clauses
doesn’t mimic precisely the Prolog execution of the
corresponding object-level clause. This is because we have
taken advantage of the extra degree of control available at
the meta-level, and adjusted the order in which the sub-
goals of holds_at are solved. For example, although we
resolve on initiates immediately, we postpone further
work on the sub-goals of initiates until after we’ve
resolved on happens and before. This manoeuvre is
required to prevent looping.

The job of an abductive meta-interpreter is to construct a
residue of abducible literals that can’t be proved from the
object-level program. In the case of the event calculus, the
abducibles will be happens and before literals. Here’s
a “vanilla” abductive meta-interpreter, without negation-as-
failure.

abdemo([],R,R).

abdemo([G|Gs],R1,R2) :-
abducible(G), abdemo(Gs,[G|R1],R2).

abdemo([G|Gs1],R1,R2) :-
axiom(G,Gs2), append(Gs2,Gs1,Gs3),
abdemo(Gs3,R1,R2).

The formula abdemo(Gs,R1,R2) holds if Gs follows
from the conjunction of R2 with the object-level program.
(R1 is the input residue and R2 is the output residue.)
Abducible literals are declared via the abducible
predicate. In top-level calls to abdemo , the second
argument will usually be [].

Things start to get tricky when we incorporate negation-as-
failure. The difficulty here is that when we add to the
residue, previously proved negated goals may no longer be
provable. So negated goals have to be recorded and re-
checked each time the residue is modified. Here’s a version
of abdemo which handles negation-as-failure.

abdemo([],R,R,N). (A1)

abdemo([G|Gs],R1,R3,N) :- (A2)
abducible(G),
abdemo_nafs(N,[G|R1],R2),
abdemo(Gs,R2,R3,N).

abdemo([G|Gs1],R1,R2,N) :- (A3)
axiom(G,Gs2), append(Gs2,Gs1,Gs3),
abdemo(Gs3,R1,R2,N).

abdemo([not(G)|Gs],R1,R3,N) :- (A4)
abdemo_naf([G],R1,R2),
abdemo(Gs,R2,R3,[[G]|N]).

The last argument of the abdemo predicate is a list of
negated goal lists, which is recorded for subsequent
check ing (in C lause (A2)) . I f N =
[γ1,1...γ1,n1]...[γm,1...γm,nm]] is such a list,
then its meaning, assuming a completion semantics for our
object-level logic program, is,

¬ (γ1,1 ∧ ... ∧ γ1,n1) ∧ ¬ (γm,1 ∧ ... ∧ γm,nm).

The formula abdemo_nafs(N,R1,R2) holds if the
above formula is provable from the (completion of the)
conjunction of R2 with the object-level program. (In the
vanilla version, abdemo_nafs doesn’t add to the residue.
However, we will eventually require a version which does,
as we’ll see shortly.)

abdemo_nafs(N,R1,R2) applies abdemo_naf to
each list of goals in N. abdemo_naf is defined in terms
of Prolog’s findall, as follows.

abdemo_naf([G|Gs1],R,R) :-
not resolve(G,R,Gs2).

abdemo_naf([G1|Gs1],R1,R2) :-
findall(Gs2,(resolve(G1,R1,Gs3),
append(Gs3,Gs1,Gs2)),Gss),

abdemo_nafs(Gss,R1,R2).

resolve(G,R,Gs) :- member(G,R).

resolve(G,R,Gs) :- axiom(G,Gs).

The logical justification for these clauses is as follows. In
order to show, ¬ (γ1 ∧ ... ∧ γn), we have to show that, for
every object-level clause λ :- λ1...λm which resolves
with γ1, ¬ (λ1 ∧ ... ∧ λm, γ2 ∧ ... ∧ γn). If no clause
resolves with γ1 then, under a completion semantics, ¬ γ1
follows, and therefore so does ¬ (γ1 ∧ ... ∧ γn).

However, in the context of incomplete information about a
predicate we don’t wish to assume that predicate’s
completion, and we cannot therefore legitimately use
negation-as-failure to prove negated goals for that predicate.

The way around this is to trap negated goals for such
predicates at the meta-level, and give them special
treatment. In general, if we know ¬ φ ← ψ, then in order
to prove ¬ φ, it’s sufficient to prove ψ. Similarly, if we
know ¬ φ ↔ ψ , then in order to prove ¬ φ, it’s both
necessary and sufficient to prove ψ.

In the present case, we have incomplete information about
the before predicate. Accordingly, when the meta-
interpreter encounters a goal of the form n o t

before(X,Y), which it will when it comes to prove a
negated c l i p p e d goal, it attempts to prove
before(Y,X) . One way to achieve this is to add
before(Y,X) to the residue, first checking that the
resulting residue is consistent.7

Similar considerations affect the treatment of the
holds_at predicate, which inherits the incompleteness of
before. When the meta-interpreter encounters a not
h o l d s _ a t (F , T) goal, it attempts to prove
holds_at(neg(F),T) , and conversely, when it
encounters not holds_at(neg(F),T), it attempts to
prove holds_at(F,T). In both cases, this can result in
further additions to the residue.

Note that these techniques for dealing with negation in the
context of incomplete information are general in scope.
They’re generic theorem proving techniques, and their use
isn’t confined to the event calculus. For further details of
the implementation of abdemo_naf, the reader should
consult the (electronic) appendix.

As with the demo predicate, we can compile the event
calculus axioms into the definition of abdemo and
abdemo_naf via the addition of some extra clauses,
giving us a finer degree of control over the resolution
process. Here’s an example.

abdemo([holds_at(F,T3)|Gs1], (A5)
R1,R4,N) :-
axiom(initiates(A,F,T1),Gs2),
abdemo_nafs(N,[happens(A,T1,T2),
before(T2,T3)|R1],R2),

abdemo_nafs([clipped(T1,F,T3)],
R2,R3),

append(Gs2,Gs1,Gs3),
demo(Gs3,R3,R4,
[clipped(T1,F,T3)|N]).

Now, to solve a planning problem, we simply describe the
effects of actions directly as Prolog initiates ,
terminates and releases clauses, we present a list
of holds_at goals to abdemo, and the returned residue,
comprising happens and before literals, is a plan.
Notice that, since the sub-goals of initiates are solved
abductively, actions with context-dependent effects are
handled correctly, unlike the implementation described in
[Missiaen, et al., 1995].

Further details of the implementation are relegated to the
(electronic) appendix, which presents a full program listing.
But with this sketch, we’re already in a position to compare
the behaviour of an abductive theorem prover applied to the
event calculus to that of a hand-coded partial order planning
algorithm.

7 In [Shanahan, 1989] and [Missiaen, et al., 1995], this
problem is tackled via the use of nested negations-as-failure at
the object level. The approach of the present paper is more
principled.

3.2 Protected Links, Threats, Promotions and
Demotions

The algorithm below, which is very similar to UCPOP
[Penberthy & Weld, 1992], illustrates the style of
algorithm commonly found in the literature on partial order
planning. It constructs a partially ordered plan given a goal
list. A goal list is a list of pairs 〈F,T〉 where F is a fluent
and T is a time point. A plan is a list of pairs 〈A,T〉 where
A is an action (more properly called an operator in planning
terminology) and T is a time point.

The key idea in the algorithm is the maintenance of a list
of protected links. This is a list of triples 〈T1,F,T2〉, where
T1 and T2 are time points and F is a fluent. The purpose of
this list is to ensure that, once a goal has been achieved by
the addition of a suitable action to the plan, that goal isn’t
“clobbered” by a subsequent addition to the plan.
Accordingly, each addition to the plan is followed by a
check to see whether it constitutes a threat to any protected
link. An action 〈A,T1〉 threatens a protected link 〈T2,F,T3〉
if the ordering constraint T2 < T1 < T3 is consistent with
the plan and one of the effects of A is to make F false. By
promoting or demoting the new action, in other words by
constraining its time of occurrence to fall either before T2
or after T3, we eliminate the threat.

1 while goal list non-empty
2 choose a goal <F1,T1> from goal list
3 choose an action <A,T2> whose effects

include F1
4 for each precondition F2 of A add <F2,T2>

to goal list
5 add <A,T2> to plan
6 add T2 < T1 to plan
7 add <T2,F1,T1> to protected links
8 for each <A,T3> in plan that threatens

some <T4,F3,T5> in protected links
9 choose either
10 promotion: add T3 < T4 to plan
11 demotion: add T5 < T3
12 end for
13 end while

Since the algorithm is non-deterministic, it has to be
combined with a suitable search strategy. With some minor
modifications, the algorithm can be turned into UCPOP,
which is both sound and complete, assuming a breadth-first
or iterative deepening search strategy [Penberthy & Weld,
1992]. Unlike the above algorithm, but like the abductive
meta-interpreter of the last section, UCPOP can also handle
actions with context-dependent effects.

The close correspondence between the behaviour of this
algorithm and that of the abductive theorem prover of the
previous section can be established by inspection. In
particular, consider Clause (A5). Line 3 of the algorithm
(choosing an action) corresponds to the first sub-goal of
(A5) (resolving on initiates). Line 4 (adding new
preconditions to the goal list) corresponds to the fourth
sub-goal. The effect of Lines 5 and 6 (adding the new action

to the plan) is achieved in (A5) by the second sub-goal.
Line 7 (adding the new protected link) and the for loop of
Lines 8 to 12 are matched by the third sub-goal of (A5),
which adds a new clipped literal to the list of negations.
Promotion and demotion (Lines 11 and 12) are achieved in
the theorem prover by abdemo_nafs which, as explained
in the previous section, will add further before literals to
the residue if necessary.

Like the non-deterministic hand-coded algorithm, the search
space defined by Clauses (A1) to (A5) can be explored with
a variety of strategies. If executed by Prolog, a depth-first
search strategy would result, but a breadth-first or iterative
deepening strategy is also possible.

To summarise, the concepts of a protected link, of a threat,
and of promotion and demotion, rather than being special to
partial order planning, turn out to be instances of general
concepts in theorem proving when applied to general
purpose axioms for representing the effects of actions. In
particular,

• A protected link is a negated clipped goal which, like
any negated goal in abduction with negation-as-failure, is
preserved for subsequent checking when new literals are
added to the residue,

• A threat is an addition to the residue which, without
further additions, would undermine the proof of a
previously solved negated clipped goal.

• Promotion and demotion are additions to the residue
which preserve the proof of a previously solved negated
clipped goal.

4 Soundness , Completeness and
Complexity
The aim of this section is to establish soundness and
completeness results for the abductive implementation of
Section 3.1 for a certain class of planning problems as
defined by the logical characterisation of Section 2, and to
demonstrate formally that the complexity of the
implementation is comparable to that of a hand-coded
partial order planning algorithm such as the one presented
in Section 3.2.

The soundness result is particularly straightforward to
obtain because the trace of a successful program execution
is itself a proof that the goals follow from the returned
plan.

TO BE COMPLETED

5 Hierarchical Planning
It’s a surprisingly straightforward matter to extend the
foregoing logical treatment of partial order planning to
planning via hierarchical decomposition, as first described
in detail by Sacerdoti [1974]. The representation of
compound actions and events in the event calculus is very
natural, and is best illustrated by example. The following
formulae axiomatise a robot mail delivery domain.

First we formalise the effects of the primitive actions. The
term Pickup(p) denotes the action of picking up package p,
the term PutDown(p) denotes the action of putting down
package p, and the term GoThrough(d) denotes the action of
going through door d. The fluent Got(p) holds if the robot
is carrying the package p, and the fluent In(x,r) holds if
object x is in room r. The formula Connects(d,r1,r2)
represents that door d connects rooms r1 and r2.

Initiates(Pickup(p),Got(p),t) ←
p ≠ Robot ∧ HoldsAt(In(Robot,r),t) ∧

HoldsAt(In(p,r),t)

Releases(Pickup(p),In(p,r),t) ←
p ≠ Robot ∧ HoldsAt(In(Robot,r),t) ∧

HoldsAt(In(p,r),t)

Initiates(PutDown(p),In(p,r),t) ←
p ≠ Robot ∧ HoldsAt(Got(p),t) ∧

HoldsAt(In(Robot,r),t)

Initiates(GoThrough(d),In(Robot,r1),t) ←
HoldsAt(In(Robot,r2),t) ∧ Connects(d,r2,r1)

Terminates(GoThrough(d),In(Robot,r),t) ←
HoldsAt(In(Robot,r),t)

Next we have our first example of a compound action
definition. Compound actions have duration, while
primitive actions will usually be represented as
instantaneous. The term ShiftPack(p,r) denotes the action
of retrieving and delivering package p to room r. It
comprises a number of sub-actions: two GoToRoom
actions, a Pickup action and a PutDown action. A
GoToRoom action is itself a compound action, to be
defined shortly.

Happens(ShiftPack(p,r1),t1,t6) ←
HoldsAt(In(p,r2),t1) ∧

Happens(GoToRoom(r2),t1,t2) ∧ t2 < t3 ∧
Happens(Pickup(p),t3) ∧ t3 < t4 ∧

Happens(GoToRoom(r1),t4,t5) ∧
t5 < t6 ∧ Happens(PutDown(p),t6)

Initiates(ShiftPack(p,r),In(p,r),t)

The effects of compound actions should follow from the
effects of their sub-actions, as can be verified in this case
by inspection. Next we have the definition of a GoToRoom
action.

Happens(GoToRoom(r),t,t) ← HoldsAt(In(Robot,r),t)

Happens(GoToRoom(r1),t1,t3) ←
HoldsAt(In(Robot,r2),t1) ∧ Connects(d,r2,r3) ∧

Happens(GoThrough(d),t1) ∧ t1 < t2 ∧
Happens(GoToRoom(r1),t2,t3)

Initiates(GoToRoom(r),In(Robot,r),t)

This illustrates both conditional decomposition and
recursive decompostion: a compound action can decompose
into different sequences of sub-actions depending on what
conditions hold, and a compound action can be decomposed
into a sequence of sub-actions that includes a compound
action of the same type as itself. A consequence of this is

that the event calculus with compound actions is formally
as powerful as any programming language. In this respect,
it can be used in the same way as GOLOG [Levesque, et
al., 1997], a programming language built on a different
logic-based action formalism, namely the situation
calculus. Note, however, that we can freely mix direct
programming with planning from first principles.

Once again, the effects of the compound action should
follow from the effects of its components. This property is
made more precise below.

Let Ω denote the conjunction of the following uniqueness-
of-names axioms.

UNA[Pickup, PutDown, GoThrough,
ShiftPack, GoToRoom]

UNA[Got, In]

The definition of the planning task from Section 2 is
unaffected by the inclusion of compound events. However,
it’s convenient to distinguish fully decomposed plans,
comprising only primitive actions, from those that include
compound actions.

Now let’s take a look at a particular mail delivery task. Let
Σp be the conjunction of the above Initiates, Terminates
and Releases formulae for primitive actions, and let Σc be
the conjunction of the above Initiates formulae for
compound actions. Let ∆c be the conjunction of the above
compound event definitions.

R1

R2

R3

D1 D2

P1

Robot

Figure 1: A Mail Delivery Domain

The conjunction Φ of the following Connects formulae
represents the layout of rooms illustrated in Figure 1.

Connects(D1,R1,R2)

Connects(D1,R2,R1)

Connects(D2,R2,R3)

Connects(D2,R3,R2)

Let ∆0 denote the conjunction of the following formulae
representing the initial situation depicted in Figure 1.

Initially(In(Robot,R3))

Initially(In(P1,R1))

Let Γ denote the following HoldsAt formula, which is our
goal state.

HoldsAt(In(P1,R2),T)

Consider the following narrative of actions ∆p.

Happens(GoThrough(D2),T0)

Happens(GoThrough(D1),T1)

Happens(Pickup(P1),T2)

Happens(GoThrough(D1),T3)

Happens(PutDown(P1),T4)

T0 < T1 T1 < T2

T2 < T3 T3 < T4

T4 < T

Now we have, for example,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ

�

Happens(ShiftPack(P1,R2),T0,T4).

We also have,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ

�
 Γ.

So ∆p constitutes a plan. Furthermore, we have,

CIRC[Σp ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ; Happens] ∧ EC ∧ Ω ∧ Φ

�
 Γ.

So ∆p constitutes a plan in the context of only the
primitive actions. In general, if we let ∆p be any narrative
description comprising only primitive actions and Φ be any
conjunction of Connects formulae, we have the following
theorem. For any fluent β and time point τ, HoldsAt(β,τ)
follows from,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ

if and only if it follows from,

CIRC[Σp ; Initiates, Terminates, Releases] ∧
CIRC[∆p ; Happens] ∧ EC ∧ Ω ∧ Φ.

We should expect such a property to follow from any
correctly formulated domain description involving
compound actions, since the (chief) purpose of compound
actions is to adjust the computation by cutting down on
search, and not to increase the set of consequences of the
theory. However, the inclusion of compound actions in the
logical account gives meaning to partially decomposed
plans, which are the intermediate steps in this computation.
This is an example of a logical innovation which is highly
suggestive of the form the computation should take, and
this in turn suggests that the absolute separation of
computational and representational issues that’s popular in
certain quarters isn’t always appropriate.

In general we will require our planner to find fully
decomposed plans, although it’s extremely useful to be able
to suspend the planning process before a fully decomposed
plan has been found, and still to have a useful result in the
form of a partially decomposed plan. The suspension of
planning can be achieved in a logic programming
implementation with a resource-bounded meta-interpreter

such as that described by Kowalski [1995]. Furthermore,
the use of hierarchical decomposition facilitiates the
generation of plans in progression order (first action first),
as opposed to the regression order (last action first) usually
found in logic-based planners. The generation of plans in
regression order would rule out the possibility of
suspending planning in mid-execution and still receiving
useful results.8

This brings us to the issue of implementation, and one of
the most striking results of this paper. What modifications
are required to the abductive meta-interpreter of Section 3 to
enable it to perform hierarchical decomposition? The
answer is remarkable. None whatsoever. When presented
with compound event definitions of the above form, it
automatically performs hierarchical decomposition.
Whenever a happens goal is reached for a compound
action, its resolution yields further happens sub-goals,
and this process continues until primitive actions are
reached, which are added to the residue.9

Section 3 was entitled “Partial Order Planning = Event
Calculus + Abduction”. Now we’ve arrived at another
instantiation of Kowalski’s equation. Hierarchical planning
= event calculus with compound events + abduction. Using
the methodology of this paper, all we have to do to obtain
a hierarchical planner from a partial order planner is
represent compound actions in the obvious way.

Concluding Remarks
This paper continues a line of work on event calculus
planning begun in [Eshghi, 1988]. Eshghi’s techniques
were simplified (and applied to temporal explanation) in
[Shanahan, 1989]. But neither of these papers described a
practical planner. The first usable event calculus planner
was developed in Belgium by Missiaen, et al. [1995].
Recently, another abductive event calculus planner has been
developed at DFKI in Germany [Jung, et al., 1996]. All of
these planners are based on similar ideas to those presented
in this paper: all use abductive logic programming
techniques to generate plans using a similar style of
representation via initiates , terminates and
happens predicates.

The present paper goes beyond the work of its predecessors
in several ways. First, it tackles the issue of hierarchical

8 This observation prompts Kowalski [1995] to abandon
traditional effect axioms altogether. Using compound actions,
we can preserve traditional event calculus style effect axioms,
along with Eshghi’s abductive characterisation of event
calculus planning with its strong logical relationship between
goals and plans.
9 Furthermore, if we make Connects abducible in the mail
delivery example instead of Happens, we can use exactly the
same meta-interpreter to determine room connectivity given a
narrative of actions and a conjunction of formulae of the form
HoldsAt(In(Robot,ρ),τ). This further underlines the generic
nature of the techniques being applied here.

planning. Second, the event calculus formalism used is not
just a logic program, but is specified in first-order predicate
calculus augmented with circumscription. Third, the paper
exposes close correspondences with existing planning
algorithms. Since the planner is simply the result of
applying general purpose theorem proving techniques to a
general purpose action formalism, it can be argued that this
illuminates the nature of several commonly deployed
concepts in the planning literature. Fourth, unlike the
planners in [Missiaen, et al., 1995] and [Jung, et al.,
1996], the planner of the present paper can handle actions
with context-dependent effects. Finally, since it uses
abduction to solve initiates and terminates goals,
the planner is both sound and complete, and performs
correctly on a number of potentially anomalous examples
described in [Missiaen, et al., 1995].

In a series of papers related to this one (culminating in
[Shanahan, 1997b]), an abductive characterisation of sensor
data assimilation is provided. According to this account,
sensor data is explained by hypothesising the existence of
suitably shaped objects in appropriate locations. The role of
the present paper is to supply a complementary account of
planning. The present aim of the EPSRC Cognitive
Robotics project at Queen Mary and Westfield College is to
integrate these accounts into a single system implemented
and deployed on our small fleet of miniature Khepera
robots.

Acknowledgments
Thanks to Rob Miller. This work was carried out as part of
the EPSRC funded project GR/L20023 “Cognitive
Robotics”.

References
[Chapman, 1987] D.Chapman, Planning for Conjunctive

Goals, Artificial Intelligence, vol. 32 (1987), pp. 333–
377.

[Eshghi, 1988] K.Eshghi, Abductive Planning with Event
Calculus, Proceedings of the Fifth International
Conference on Logic Programming (1988), pp. 562–579.

[Green 1969] C.Green, Applications of Theorem Proving
to Problem Solving, Proceedings IJCAI 69, pp. 219–
240.

[Jung, et al., 1996] C.G.Jung, K.Fischer and A.Burt,
Multi-Agent Planning Using an Abductive Event
Calculus, DFKI Report RR-96-04 (1996), DFKI,
Germany.

[Kowalski, 1979] R.A.Kowalski, Algorithm = Logic +
Control, Communications of the ACM, vol. 22, pp.
424–436.

[Kowalski, 1995] R.A.Kowalski, Using Meta-Logic to
Reconcile Reactive with Rational Agents, in Meta-
Logics and Logic Programming, ed. K.R.Apt and
F.Turini, MIT Press (1995), pp. 227–242.

[Kowalski & Sergot, 1986] R.A.Kowalski and M.J.Sergot,
A Logic-Based Calculus of Events, New Generation
Computing, vol 4 (1986), pp. 67–95.

[Lespérance, et al., 1994] Y.Lespérance, H.J.Levesque,
F.Lin, D.Marcu, R.Reiter, and R.B.Scherl, A Logical
Approach to High-Level Robot Programming: A
Progress Report, in Control of the Physical World by
Intelligent Systems: Papers from the 1994 AAAI Fall
Symposium, ed. B.Kuipers, New Orleans (1994), pp.
79–85.

[Levesque, 1996] H.Levesque, What Is Planning in the
Presence of Sensing? Proceedings AAAI 96, pp. 1139–
1146.

[Levesque, et al., 1997] H.Levesque, R.Reiter,
Y.Lespérance, F.Lin and R.B.Scherl, GOLOG: A Logic
Programming Language for Dynamic Domains, The
Journal of Logic Programming (1997), to appear.

[McCarthy & Hayes, 1969] J.McCarthy and P.J.Hayes,
Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in Machine Intelligence 4, ed.
D.Michie and B.Meltzer, Edinburgh University Press
(1969), pp. 463–502.

[Miller & Shanahan, 1994] R.S.Miller and M.P.Shanahan,
Narratives in the Situation Calculus, The Journal of
Logic and Computation, vol. 4, no. 5 (1994), pp. 513–
530.

[Missiaen, et al., 1995] L.Missiaen, M.Bruynooghe and
M.Denecker, CHICA, A Planning System Based on
Event Calculus, The Journal of Logic and Computation,
vol. 5, no. 5 (1995), pp. 579–602.

[Nilsson, 1984] N.J.Nilsson, ed., Shakey the Robot, SRI
Technical Note no. 323 (1984), SRI, Menlo Park,
California.

[Penberthy & Weld, 1992] J.S.Penberthy and D.S.Weld,
UCPOP: A Sound, Complete, Partial Order Planner for
ADL, Proceedings KR 92, pp. 103–114.

[Sacerdoti, 1974] E.D.Sacerdoti, Planning in a Hierarchy of
Abstraction Spaces, Artificial Intelligence, vol. 5 (1974),
pp. 115–135.

[Shanahan, 1989] M.P.Shanahan, Prediction Is Deduction
but Explanation Is Abduction, Proceedings IJCAI 89, pp.
1055–1060.

[Shanahan, 1997a] M.P.Shanahan, Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia, MIT Press (1997).

[Shanahan, 1997b] M.P.Shanahan, Noise, Non-
Determinism and Spatial Uncertainty, Proceedings AAAI
97, to appear.

[Sterling & Shapiro, 1986] L.Sterling and E.Shapiro, The
Art of Prolog, MIT Press (1986).

Appendix
A fully commented program listing of the latest version of
the planner is available electronically from
http://www.dcs.qmw.ac.uk/~mps/planner.txt. The planner
is written in LPA MacProlog 32, but should be easy to
port to other Prolog systems. Stripped of comments, the
current version of the planner is only 150 lines long.

