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Abstract—A significant obstacle in using phenomenological
models of spiking neurons for large-scale simulations is the
approximation of the optimal parameters for a type of neu-
ron, given the available experimental data. Here we show a
method for optimizing the parameters of such models, based
on a combination of different frequency-current and voltage-
current relations of a neuron as well as known physiological
properties. We also present a python toolbox which uses NeMo
spiking neural network simulator and provides a fast GPU-based
implementation of our method. As a benchmark, our toolbox was
used to fit Izhikevich equations to neurological data obtained
from a cat’s thalamic relay cell. Our resulting model was able to
predict the firing patterns of known membrane potential traces
of this neuron, although they were not explicitly defined during
training. A further comparison between this neuron model and a
previous approach, when both models are used in the simulation
of a generic thalamic nucleus, revealed that the distribution of
neuronal avalanches is significantly different and conforms better
to power law-like distributions, thus increasing the likelihood of
a critical regime and the biological plausibility of the simulation.

I. INTRODUCTION

Phenomenological models of spiking neurons can be very
useful in computational neuroscience, since they provide a
powerful way of capturing the dynamical behaviour of real
cells and replicating their exact membrane potential traces with
a reduced computational cost. For this reason, the popularity of
this approach is continuously growing, especially in large-scale
networks that include from real-time simulations of abstract
models [1], [2], [3] to slower simulations of complete brain
structures [4], [5], [6]. However, since a large proportion of
the parameters of these models do not have any biological
meaning, their employment usually requires prior fine-tuning,
to make them operate accurately in different regimes.

A number of different optimization methods have been
proposed that may involve matching exact membrane po-
tential trajectories in different stimulus conditions [7], spike
trains [8], approximation of the phase plane of a neuron [9],
frequency-current (F-I) or voltage-current (V-I) relations [10]
or a combination of the above [11] (for a review of these
methods, see [12]). In addition, a variety of recently developed
software tools, that aim to tune spiking neurons, provide
implementations for many of the aforementioned methods at a
certain computational cost. Examples of such software systems
include the software tools Neurofitter [12] and Optimizer [11]
as well as tools that work at the network level [13].

Despite the wide range of available approaches, the lit-
erature still lacks a general methodology and, as a result,
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researchers often prefer to follow the safest but remarkably
time-consuming solution of hand-tuning [14], [15], [16]. Also,
it is not yet clear which of the neuron features that have been
used for optimization are more important to capture realistic
dynamical behaviours at the network level [17].

In [10], Hertag et al. showed that the process of fitting
neuron models to frequency current (F-I) current clamp and
sub-rheobase voltage-current (V-I) data constitutes a sufficient
estimator of the firing patterns of a real neuron. Their method,
however, based on analytical approximation of F-I/V-I curves,
does not assess electrophysiological properties or statistical
variations of a neuron, two important properties for large-scale
simulations.

The purpose of this work is to build a robust automatic
method for parameter optimization, able to overcome the
problems posed by the previous approaches, as well as an
implementation of this method that minimizes its significant
computational cost. Our method, based on both global and
local optimization algorithms, combines the ideas of F-I/V-
I tuning with electrophysiological and statistical properties
estimation. In addition, a new python toolbox provides a GPU-
accelerated implementation of this method, based on [18], able
to complete the optimization process in a matter of minutes,
requiring minimized user intervention.

To assess the performance of the proposed method, we
examined to what extent it is able to improve a model of
a cat’s thalamocortical (TC) relay cell, previously fitted to
membrane potential traces. The resulting model was a closer
fit to the real cell properties than previous approaches. We
found that it was able to reproduce firing patterns which are
unique for TC neurons [19] without any relevant training.
Also the employment of this model as the building block
of a general thalamic nucleus resulted in a more biologically
plausible simulation than previous optimized neurons.

II. METHODOLOGY

A. Neuron models

Our methodology can be applied to any phenomenological
neuron model. The default selection in our toolbox is the
Izhikevich [20] simple model which is shown to have the
simplest possible form that is able to reproduce the majority
of the computational properties of brain cells and have indis-
tinguishable behaviour of in vitro and in vivo recordings [14].
The membrane potential v of this model is governed by

C
dv

dt
= k(v − vr)(v − vt)− u+ I (1)

du

dt
= a

(
b(v − vr)− u

)
(2)
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Fig. 1. Overview of the method used to find the mean values of the parameter
set for the targeted neuron. Pknown: The parameters whose real values were
found in NeuroElectro database. Ptune: The parameters that need to be tuned.
f(S): The fitness function.

where u a phenomenological recovery variable, C the mem-
brane capacitance, vr the resting membrane potential, vt the
instantaneous threshold potential and finally a, b and k are
three abstract parameters of the model. The neuron fires an
action potential when the voltage exceeds the threshold value
vpeak and the two variables of the model reset to

v → c

u→ u+ d
(3)

where c and d are two further abstract parameters. Finally,
I represents any input current that can be either dendritic or
synaptic. For the purpose of this optimization algorithm, we
do not model any chemical synapses and the input current of
each neuron can be simply described as I = Ispon+ Iinjected,
to take into account a general injected current that varies in
different experiments as well as the default constant current
Ispon that leads to the spontaneous activity of the cell.

For the rest of this paper we will use equations 1-3 to
generate analytical solutions when needed but a similar process
can be applied to the majority of the known phenomenological
models.

B. Optimization algorithm

The design of an optimization algorithm for spiking neu-
rons entails two main independent challenges [12]. First is the
definition of a function that is able to evaluate robustly the
fitness of a model to real biological data, and the second is
the choice of a heuristic technique that can use this function

to search for the optimal solution in the space of available
parameters. Starting with the latter, we used a global search
method to identify areas of potentially optimal solutions and
a local search method to further optimize solutions in each of
these areas [9]. This combination of global and local search
provides a balance between exploration and exploitation [21]
and facilitates the avoidance of local maxima convergence [12].

Figure 1 illustrates the high-level steps of the optimization
method proposed. Once the fitness function is defined based
on available experimental data, an evolutionary strategy called
covariance matrix adaptation (CMA-ES) [22] is used to find
areas of interest in the large and continuous parameter space.
This method is an optimized evolutionary algorithm (EA)
where the mutations represent real perturbations taken from
a normal distribution, adapted to the local fitness landscape.
Thus, this method is particularly suitable for ill-conditioned
fitness functions, such as the multi-objective function described
later in this section.

The best unique solutions of the EA are stored in a
pool that divides the parameter space into grid cells, where
each cell can contain up to one solution. This pool is up-
dated after each generation according to the following algo-
rithm

function UpdatePool(S)
if Pool < PoolSize then

Add S to Pool
else if Sscore < worst(Pool)score then

for p in Pool do
if p÷GrSize = S÷GrSize and Sscore < pscore then

Replace p with S and return
end if

end for
Replace worst(Pool) with S

end if

where S is the candidate solution, PoolSize the maximum size
of the pool and GrSize a parameter that controls the size of
the area enclosed by each grid cell.

After a pre-defined number of generations, or if the fitness
criteria are met, the EA stops and the final potential solutions in
the pool are returned. An exception is made for any solution
Si that Si mod GridSize ≈ 0 and ‖Si − Sj‖ < GridSize
for Sj being another solution. The former condition indicates
that the the grid cell occupied by Si might have a neighbour
with a better fitness score and the latter condition verifies this
assumption. Therefore, these solutions are treated as redundant
and removed from the pool.

Next, each solution in the resulting pool becomes the
subject of further local optimization based on the simplex
algorithm [23]. This method, unlike faster and more efficient
gradient-based alternatives [7], has been shown to overcome
the problem of noisy parameter spaces, and thus it is a natural
choice for the purpose of this algorithm.

The final step of the process is to approximate the varia-
tions in the observed electrophysiological properties of the real
cell, which can be used for more realistic multi-neuron simula-
tions. First, the neuron properties that are used as parameters of
the model (e.g. AP threshold or resting potential) are sampled
from a normal distribution N (µi, σi) where µi is the value



of the optimal solution, σi is the standard deviation of the
real recordings and i the parameter. Finally, if there are more
known properties that do not correspond to model parameters,
the CMA-ES algorithm is used again to optimize σi for the rest
of the parameters. This time, the fitness function has a single
objective which is the minimization of the difference between
the real standard deviations and the ones sampled from 1000
instances of the model.

C. Derivation of initial parameters and parameter space

The initial values of the neuron parameters that need to be
optimized, are sampled from a uniform distribution U(ai, bi),
where ai and bi express the logical limitations of the parameter
i. Also, parameters with values that can be obtained from
experimental studies (e.g. from the NeuroElectro database) are
sampled from a normal distribution, with standard deviation
obtained from the same source.

Whenever possible, some of the parameters of the neuron
model are inferred by the rest and their values are calculated
before any other step of the fitness function. This, however,
depends on the equations of the chosen neuron model that
can be used to infer extra relations between parameters. If a
found relation holds for every possible value of the rest “free”
parameters and equation variables, the deduced parameter is
not used in the ES chromosome. In the opposite case, these
relations impose restrictions to the parameter space but do not
reduce its dimension.

Examples of such relations for the simple integrated-and-
fire (IF) and the more realistic adaptive exponential IF neuron
models can be found in [10].

For the Izhikevich model given in (1-3), the parameters b
and k can be derived from the equations

b =
1

R
+ k(vr − vt) (4)

Irheo = max{b(v − vr)− k(v − vr)(v − vt)} (5)

were R is the input resistance and Irheo the rheobase current of
the cell. These relations however, which are explained in [14],
rely on the assumption that b < 0 and thus fall into the second
category of relations described above.

Also, as shown in Section III, the default current of the
neuron Ispon can be derived as the difference between the
model’s rheobase current and the real rheobase current of the
neuron Irheo obtained from any known F-I curve (Figure 3.B).

D. Fitness function

This is arguably the most crucial feature of the optimization
method since it defines the criteria by which the optimal
solution will be determined. The function proposed here is
based on the approximation of F-I and V-I relations in different
initial conditions of the neuron as well as any available elec-
trophysiological parameter values. This multi-objective nature
requires a careful consideration of each of these criteria, for
which a brief description is given below.

F-I curves: A frequency-current (F-I) curve is used to
describe relations between various amplitudes of injected
current in a neural cell and the action potentials evoked as
a response to this current. These relations have been used
for the optimization of single-point neurons and shown to
be sufficient for the reproduction of spike times in different
cortical cells [10].

The proposed algorithm here is using F-I curves in different
cases that include transient and steady state curves for differ-
ent initial currents. Both categories are important capturing
neuron’s behaviour. Transient relations encode information
regarding the initial response of a cell (such as rebound
dynamics), while steady-state relations show the actual spike
frequency and the overall behaviour of the cell. The fitness
of the individual with respect to an F-I curve fFI is given
as root-mean-square difference between the experimental data
points and the corresponding simulated neurons.

V-I curves: Similarly with above, V-I relations are also
divided into instantaneous and steady-state, and they are a
valuable source of information for the behaviour of the cell.
Above the spiking threshold, (dynamic) V-I curves have been
shown to be a self-contained method for accurate predic-
tion [24]. Also, at currents bellow the rheobase level, they
reflect the sub-threshold dynamics of the cell which are not
easily approximated with F-I relations.

The V-I fitness of the individual fV I can be obtained with
the same methodology as above, by simulating a number of
model neurons equal to the number of real data points. In
some cases, depending on the neuron model that is used, sub-
threshold V-I curves can be derived directly form its analytical
equations (See section III).

Fitness of scalar values: The fitness level of electrophysio-
logical properties is also an important objective of the function.
Often, such properties represent crucial features of a targeted
neuron that need to be emphasised in the tuning process.
Additionally, in case of an insufficient amount of available
F-I/V-I experimental data, these properties provide a valuable
alternative for the approximation of instantaneous and steady-
state dynamical phenomena.

Some of the most important properties that have been tested
with this method include the resting potential of a neuron,
action potential (AP) threshold, amplitude and width, after-
hyperpolarization amplitude and width, cell capacitance, input
resistance and adaptation ratio. The real values of these param-
eters can be obtained from centralized databases such as [25],
where cross-study statistics of multiple neuron recordings can
be also easily extracted.

Unlike the previous cases, the fitness formula of an indi-
vidual here is using directly the real statistics via a normalized
Gaussian function. That is, if xj is the value of the parameter
j of an individual, the fitness of this parameter is given by

fsc (xj) = e
− (x−µj)

2

2σ2
j (6)

where µj and σj are the mean and standard deviation of the
real available data for the parameter j.

The value of σj encodes the range of accepted values and
provides a good approximation of the corresponding fitness



weights. Hence, the final fitness function has the form

f(S) =
∑

i∈CFI

wifFI +
∑

i∈CFI

wifV I +
∑

j∈Pknown

fsc(xj) (7)

All weights wi, although can be defined by the user, are set to
favour steady-state and transient F-I curves over V-I curves as a
default. The reason is that, in our experiments, the former two
cases were found to influence more the dynamical behaviour
of a neuron, and be less likely to over-fit.

E. Termination

If the algorithm does not return a satisfying solution, after
the completion of the above process, the range of the accepted
values for the known neuron properties broadens (by increasing
the value of σj) and the process starts again.

In the opposite case, the algorithm has to overcome the
final problem of over-fitting in any of the above objectives.
Frequently, the targeted neuron properties are obtained from
recordings from different cells and, depending on the model
used, there is no guarantee that a perfect individual that
matches parameters and all V-I and F-I curves exists. Since
there is no obvious solution to this issue, the algorithm keeps
track of all unique potential solutions via the pool described
earlier in this section. Hence, after the successful termination
of the process, all individuals in the pool should be visualized
(for an example see Figure 3) and shown to the user.

F. The toolbox

As a part of this study, a new optimization toolbox was de-
veloped, based on the above method and written in python. The
most important feature of this toolbox is its high performance,
which is achieved via the underlying spiking neural network
simulator, NeMo [18]. NeMo is based on a C++/CUDA back-
end and delivers a high performance when simulating large-
scale neural networks on graphics processing units (GPUs). In
a state-of-the-art graphics card set up, NeMo is able to simulate
up to 420.000 Izhikevich neurons in real time, connected with
a realistic number of synapses, a number that corresponds to
4.2 billion spike events per second.

Using this framework, the calculation of the fitness function
used by the above method can be almost fully parallelized
for each generation of the CMA-ES (Figure 2). Before the
beginning of the first generation, a new NeMo simulation is
initialized. The network of this simulation contains N times
the neurons needed for each calculation of the fitness function,
where N is the number of individuals.

In case that the available system accommodates M GPUs
instead of one, the toolbox automatically generates M NeMo
simulations and distributes the calculations equally.

For the implementation of the evolutionary algorithm, the
python library deap [26] was preferred, since it provides a
significant number of alternative algorithms that can be also
used, instead of CMA-ES, if required. Also, any local search
method used in the toolbox is implemented via the standard
optimization toolbox of the python library SciPy [27].

One of the major aims of this toolbox is to reduce the user
intervention throughout the duration of the optimization pro-
cess. As shown in Figure 1, the only requirement of the method
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Fig. 2. A single neural network is initialized in every generation of the ES
used and it is accommodated equally in all (M ) available GPUs of the system.
As a result, the fitness function for each individual is calculated concurrently
taking advantage of NeMo’s fast GPU calculation abilities.

is the location and extraction of the F-I and V-I relations
that will be used by the fitness function. Following the same
principle, the toolbox interfaces with NeuroElectro [25], an
online database of experimentally found electrophysiological
properties, that uses text mining to extract information from the
published literature and thus updates on a daily basis. When
the user initializes an instance of the toolbox and provides the
name of the targeted neuron, every available statistic for this
neuron will be downloaded, parsed and finally used during the
optimization process.

The first finalized version of the toolbox will be released
in http://nemosim.sourceforge.net.

III. EVALUATION

A. Thalamocortical relay neuron

Dynamically, thalamocortical (TC) relay cells constitute an
interesting category of spiking neurons since they integrate two
spiking patterns with different dynamical behaviours. When
the cell receives enough hyperpolarization, the existence of
low-threshold activated Ca2+ current can cause a transient
depolarization and, as a result, strong bursting activity, while
at less hyperpolarized membrane potentials these neurons
produce regular tonic spikes [29], [28]. Both these modes
act as mechanisms to relay information that originates from
the senses and other sub-cortical structures and is directed
to the cortex. A unique characteristic that is shared among
all TC relay cells is that the activation of the Ca2+ burst
has a nearly “all-or-none” appearance [19]. Apart from this
interesting behaviour, the fact that this neuron has been the
subject of optimization with a different method [14] as well as
the availability of a substantial amount of data in NeuroElectro
database and in [28], made it a reasonable choice for the
evaluation of the proposed algorithm.

In [14], Izhikevich suggested an adjustment to the simple
model for the accurate simulation of TC relay neurons. Equa-
tion 2 splits into two parts depending on the level of membrane
potential in the neuron.

du

dt
=

{
a
(
b(v − (vr −m))− u

)
if v ≤ vr −m

−au otherwise (8)
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The new parameter m is positive in order to prohibit the
activation of the Ca2+ current during the resting state of the
neuron. When the membrane potential exceeds the threshold
value vpeak + 0.1u, the neuron fires a spike and the two
variables of the model reset to

v → c− 0.1u

u→ u+ d
(9)

With this adjustment, the purpose of the recovery variable u
changes in order to capture the effects of the low-threshold
Ca2+ current. Thus, with the proper parameter fitting, equa-
tions (1), (8) and (9) are able to reproduce firing traces of TC
neurons in both modes [14]. However, it is not clear to what
extent this model could be used to populate a biologically
plausible model of a thalamic nucleus.

Taking the above into account, a new optimization attempt
of the TC neuron was made, using the algorithm and the
toolbox described in Section II. The simple model was used
with the same adjustments described here, keeping only the
value of parameter m = 5mV from the model in [14].

To calculate Ispon, we assume that the membrane potential
of the neuron is around the AP threshold, where the input
current of the cell will be equal to the rheobase current
I = Irheo. Since b = 0 for large membrane potentials, the

system (1)-(8) behaves as a quadratic integrate-and-fire neuron
and it has two eigenvalues

λ1 = a (10)

λ2 =
k

C
(2v − vr − vt) (11)

The values of λ1,2 are always real, hence the transition from
the resting state to firing will take place via a saddle-node
bifurcation [14]. By definition, a condition for the classification
of a bifurcation to saddle-node is the existence of two real
eigenvalues one of which must be equal to zero. Therefore,
from Equation (11), the membrane potential close to the
rheobase will have the value vrheo = vr+vt

2 . In addition,
the equilibrium points of the system can be found from the
intersection points of their two nullclines, by solving the
system (1)-(8) for dv

dt = du
dt = 0. The resulting equation is

I(v) = k(v − vr)(v − vt) (12)

and provides an analytical method for the calculation of all
V-I relations of the neuron for voltages between vr −m and
the rheobase, as well as the transient-state V-I relations below
this interval. By applying the value of vrheo to (12), we can
get the rheobase current of the neuron

Irheo =
k

4
(vt − vr)2 (13)



The difference in the value of the rheobase current obtained
from (13) and the real rheobase current, that can be found
in the steady-state F-I curve in Figure 3.B, represents the
spontaneous current Ispon that the neuron needs to better fit the
physiological recordings. However, because of the existence of
this constant current, the parameters vr and vt do not represent
the resting and threshold potentials any more. To change that,
we can merge the current Ispon to parameters vr, vt and m.
This can be done if the equation

k(v − vr)(v − vt) + I = 0 (14)

has two real solutions. The solution with the lowest value
represents the neuron’s resting potential vnewr while the second
solution represent the threshold potential vnewt . Finally, the
parameter m in equation 8 can be transformed to mnew =
vnewr − vr +m.

The above techniques were taken into account for the
calculation of the fitness function described in methodology.
After 50 generations of the evolutionary strategy, 66 signifi-
cantly different solutions were gathered and further optimized
with a local search method. The resulting parameter values
of the optimal solution are Ispon = −100pA, C = 294pF ,
vpeak = 35mV , k = 1.2, vr = −78.99mV , vt = −38.71mV ,
and m = 2.81mV while the abstract parameters a = 0.0002,
b = 20.55, c = −49.22 and d = 21.8.

Figure 3 illustrates the properties of the resulting neuron
model and a comparison with real data and a previously
optimized set of parameters. Although the fitness function used
took into account only F-I and V-I relations as well as a few
basic electrophysiological properties, our simulations with this
model matched data and features of cat’s TC neurons that
were never explicitly programmed. For instance, in most cases,
activation of Ca2+ current evoked almost identical bursts,
indicating the “all-or-none” behaviour of the cell.

The result of the optimization algorithm could be further
improved if one additional recovery variable u2 was used along
with v and u. Since u is inactive in the regular spiking mode
of the neuron, the model acts as a quadratic integrate-and-fire
neuron with limited dynamical behaviours. Hence, with the
introduction of u2, the model would be able to exhibit rich
dynamics in both modes and it might have more realistic F-I
relations. However, for the purpose of this study which was the
evaluation of the proposed technique, the resulting TC model
needed to be comparable with previous optimized attempts,
which have used only one recovery variable [14].

B. Simulation of a thalamic nucleus

For further validation of the resulting TC model, we
attempted to simulate a neural ensemble, whose neuron types
and connectivity follow the general rules of a thalamic nucleus.
Two versions of this ensemble were created; the one using the
current TC model and the second using the previous approach
in [14] that was also used in the previous section. For clarity,
we will refer to these ensembles as E1 and E2 respectively.

In both cases, the network comprises 800 TC relay neurons
and 200 thalamic interneurons, keeping the balance that is
usually found in experimental studies [30], [19] and used
in other computational models [4]. The synaptic input to
the neurons was modelled using a typical conductance-based
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approach [31] with default parameters for AMPA, NMDA and
GABA neurotransmitters obtained from the same source. Each
thalamic interneuron sends gabaergic connections to 25% of
all other neurons in the group, while TC neurons have only
excitatory afferents to 25% of the interneurons. The delays of
all connections were randomized uniformly from 1 to 40 ms.

Furthermore, each neuron in the network was forced to
spike with a rate taken from a Poisson distribution, and
corresponds to 5 spikes/second, while TC neurons received
an extra injected current Iinj , fixed at a single value. The
distribution of weights, as well as the injected current Iinj
were tuned in order to maintain a spontaneous firing rate of
approximately 20 spikes/second [32].

Two different tuning scenarios were examined for more
accurate comparison of the two TC models. First, the network
connectivity and input current were kept fixed for both E1

and E2 and they were tuned to approximate the thalamic
spontaneous firing rate. In a second experiment, connectivity
remained again fixed but the injected current was tuned to
make the two nuclei fire at exactly the same spontaneous
frequency. To minimize the affected parameters in all cases,
the inhibitory-to-excitatory weights of E2 were normalized
with respect to a ratio factor C1/C2, to eliminate the effect
of different capacitance values to the synaptic current (see
equation 1).

As the measure of comparison, the dynamical behaviour
of E1 and E2 was assessed by means of the neural avalanche
events in each ensemble. In biological neural systems, the
size of neural avalanches over time has been found to follow
a power law distribution (P (x) ∼ x−a), both in cortical



slices [33] and in vivo [34], with an exponent a around
1.5 [33]. The degree of approximation of this distribution is a
good indicator of scale-free behaviour [34], [35] of the neural
system and of whether it is operating near a critical regime[36].

The size of avalanches was measured by taking the area of
neural firing activity, sampled in 1 ms bins, that exceeds the
threshold of 10 spikes/ms for a number of continuously active
bins (Figure 4.A). Figures 4.B and C illustrate the histograms
of the avalanche sizes and the corresponding best-fit power
law distribution.

In both simulated experiments, a Kolmogorov-Smirnoff
(KS) test showed that, with p-values 0.26% and 0.007%
respectively, the distributions of avalanche sizes in the two
nuclei are different. By subtracting the final cutoff points,
the result in the KS test changed to 0.42% and 0.16%, still
rejecting the null hypothesis that the two samples come from
the same distribution.

The next step was to run a test to see whether the two size
distributions conform to a power law distribution. Due to the
limited number of neurons in the system, these distributions
loose accuracy towards the tail and start to bend downward,
exhibiting an exponential cutoff that needs to be pruned before
any fitting attempt (Figure 4.C).

Following the methodology in [37], the tests failed in both
experiments and both models of TC neurons. However, this
can be partially justified due to the rigorous nature of this test.
In both simulated experiments, the KS distance between the
histogram of the current model and the best-fit power law was
found to be significantly smaller (in the order of 20% for the
illustrated experiment) than the other approach. Finally, the
distribution in Figure 4 could be also dramatically improved,
perhaps in a degree above the requirements of the test, if
the connectivity of the network was optimized by using, for
instance, some form of synaptic plasticity [36]. Nonetheless,
the results here suggest that networks using the optimized TC
model in E1 are closer to a critical state, a fact that increases
the biological plausibility of the simulation.

C. Benchmarking

To assess the computational performance of the presented
toolbox, we ran a number of simulations on different hardware
platforms, optimizing the same neuron and recording the
execution time of each generation. In order to calculate the
fitness of each individual, the equations of 100 simulated
neurons were numerically calculated for 2 seconds with 0.25
ms time step. The population of individuals was set to be 500,
which corresponds to 50,000 neurons for each generation.

The average execution times are illustrated in Figure 5. In
this figure, initialization time refers to all stages needed for
the initialization of the optimization algorithm apart from the
time of interaction with the online database NeuroElectro. All
simulations were executed on 64bit machines with 32GB avail-
able memory and the same hard drive, while the evolutionary
strategy was forced to continue for 40 generations.

The results reveal a significant speed up in GPU processing
over CPU, even in the case of a high-performance state-of-the-
art CPU processor with multi-threading support. This speedup
ranges from 1.35 to 3.65 for the 8-threaded simulation based on

0 50 100 150 200

One generation

Initialization time

2x GTX Titan Z
(SLI: 4 GPUs)

i7-2600 @ 3.4GHz
(Single threaded)

OpenMP, 8 cores
i7-4790K @ 4.0GHz

GTX Titan Black
(1 GPU)

GTX Titan Z
(2 GPUs)

average execution time (seconds)

Fig. 5. Average execution time of one generation of the CMA-ES for different
hardware. As the standard deviation was always < 2 seconds, it is omitted
from the graph.

the OpenMP API and from 2.31 to 6.25 for a single threaded
simulation. Initialization times were negligible in all cases
(< 12 seconds) with small increases in the case of multiple
GPU simulations. These results indicate that there is no
obvious bottleneck in our implementation and that execution
time depends highly on the spiking neuron simulation platform
used.

IV. CONCLUDING REMARKS

The main contributions of this paper are as follows. First,
the presentation of a fast optimization process that produces
parameters and statistics for phenomenological neuron mod-
els which can be used for large-scale biological plausible
simulations. Second, a python toolbox that implements the
above process using a GPU-based high-performance spiking
neural network simulator. The low requirements of this method
along with the hardware acceleration allow the complete
tuning process to be carried out in a manner of minutes and
thus constitute the key feature of the toolbox. In addition,
the initialization of this algorithm is automated, requiring a
minimized user intervention. Any experimentally found neuron
properties can be located in an online database and downloaded
automatically.

The third and final contribution is a new model of the
TC relay neuron, that is shown to fit better than a previous
approach to experimental data, and to generate more realistic
large-scale simulations. The detection of statistical differences
in networks constructed with this new model and the previ-
ously optimized TC neuron is of high importance considering
the already high accuracy of the latter.

One of the major aims of this work is to make the
optimization procedure for this type of neuron models as
automated and fast as possible. Nonetheless, the user of our
toolbox still needs to detect a number of experimentally found
F-I/V-I relations, to achieve high performance. This type of
information is widely available in the literature of in-vitro cell
recordings, either in the form of a curve or, implicitly, through
other experiments. This issue can be overcome in the future,
if more centralized databases for neurological data, such as
NeuroElectro, arise.

We are currently extending the toolbox functionality in two
ways. First, we introduce a method where the optimization
includes the detection of the simplest possible model that is
able to produce a good fit to the available data. In its current
stage, this method starts to optimize a quadratic IF neuron as
described in Section II. If no individual can be found with a



good fit, the process starts again incrementing the number of
helping variables ui as described in the last paragraph of the
section III.A. Hence, the process is likely to return a solution
with a better fit, as well as the least number of variables
needed.

The second extension concerns optimization at the network
level. The parameter sets currently produced by the toolbox
are accompanied by estimates of their variation, that can be
used to produce more realistic neural ensembles. Hence, based
on the foundation of [13] and the processing capabilities of
NeMo, we are developing a method that can optimize the
connectivity parameters between and within ensembles, as well
as other important network features, based on knowledge on
their behaviour in different simulation scenarios.

ACKNOWLEDGMENT

This work was supported by an EPSRC studentship award.
The authors would like to thank NVIDIA for donating the
hardware that was used for the GPU computations and Mr.
Pedro Martinez Mediano for his valuable recommendations
and discussions.

REFERENCES

[1] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A large-scale model of the functioning brain,”
science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[2] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief net-
work,” Frontiers in neuroscience, vol. 7, 2013.

[3] D. Gamez, Z. Fountas, and A. K. Fidjeland, “A neurally controlled
computer game avatar with humanlike behavior,” Computational Intel-
ligence and AI in Games, IEEE Transactions on, vol. 5, no. 1, pp. 1–14,
2013.

[4] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mam-
malian thalamocortical systems,” Proceedings of the national academy
of sciences, vol. 105, no. 9, pp. 3593–3598, 2008.

[5] M. D. Humphries, R. Wood, and K. Gurney, “Reconstructing the three-
dimensional gabaergic microcircuit of the striatum,” PLoS computa-
tional biology, vol. 6, no. 11, p. e1001011, 2010.

[6] Z. Fountas and M. Shanahan, “Phase offset between slow oscillatory
cortical inputs influences competition in a model of the basal ganglia,”
in Neural Networks (IJCNN), 2014 International Joint Conference on.
IEEE, 2014, pp. 2407–2414.

[7] U. S. Bhalla and J. M. Bower, “Exploring parameter space in detailed
single neuron models: simulations of the mitral and granule cells of the
olfactory bulb,” Journal of Neurophysiology, vol. 69, no. 6, pp. 1948–
1965, 1993.

[8] C. Rossant, D. F. Goodman, B. Fontaine, J. Platkiewicz, A. K. Magnus-
son, and R. Brette, “Fitting neuron models to spike trains,” Frontiers in
neuroscience, vol. 5, p. 9, 2011.

[9] P. Achard and E. De Schutter, “Complex parameter landscape for a
complex neuron model,” PLoS Computational Biology, vol. 2, no. 7, p.
e94, 2006.
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