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Abstract— Spiking neural network simulators provide envi-
ronments in which to implement and experiment with models
of biological brain structures. Simulating large-scale models
is computationally expensive, however, due to the number and
interconnectedness of neurons in the brain. Furthermore, where
such simulations are used in an embodied setting, the simulation
must be real-time in order to be useful. In this paper we
present a platform (nemo) for such simulations which achieves
high performance on parallel commodity hardware in the form
of graphics processing units (GPUs). This work makes use
of the Izhikevich neuron model which provides a range of
realistic spiking dynamics while being computationally efficient.
Learning is facilitated through spike-timing dependent synaptic
plasticity. Our GPU kernel can deliver up to 550 million spikes
per second using a single device. This corresponds to a real-
time simulation of around 55 000 neurons under biologically
plausible conditions with 1000 synapses per neuron and a mean
firing rate of 10 Hz.

I. INTRODUCTION

Models of spiking neural networks (SNNs) are impor-
tant tools in the quest for understanding the brain. Such
models make use of the precise timing of spikes from
discrete neuron firings to produce rich dynamic behaviours
[1]. Simple neuron models allow the construction of large
networks of sufficient scale and biological realism to pro-
duce network-level behaviour which can be studied to fill
the gap between models at lower (cellular, molecular) and
higher (functional) levels. The simulation of biologically
inspired networks based on even simple neuron models is
computationally demanding, however, due to the sheer size
of such networks and their high levels of interconnectedness;
simulating a whole primate brain (leaving aside the issue of
how to connect it!) is beyond the capability of even the most
powerful supercomputers of today.

The study of cognitive systems can be much aided by
considering embodiment, where the system can interact with
its environment through a (robotic) body. Indeed, a thorough
understanding of cognitive systems may never be achieved
unless the study is lifted out of the purely abstract in this
way. Employing SNNs in such an embodied setting places
additional demands on the neural simulator, as the simulation
must now be at least real time in order to support interaction
between the robot and its environment.

The need for fast simulation of large networks coupled
with the naturally parallel nature of neural networks, has
led practitioners to build simulators on a range of different
platforms, exploiting parallelism on custom hardware [2],
[3] and large-scale clusters [4], [5]. Such large-scale and
customised solutions can be costly to build and design. The
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current technological trend, however, is towards increased
levels of parallelism also within consumer-grade devices,
which offers alternative opportunities for accelerating sim-
ulations. This trend is fully realised in the latest Graphics
Processing Units (GPUs). Modern GPUs combine hundreds
of cores with very high memory bandwidth at consumer
prices. This paper presents a method for simulating networks
of spiking neurons based on Izhikevich’s phenomenological
model [6] on such devices, with the aim to make large-scale
modelling more accessible to the computational neuroscience
community.

The key contributions of this work are:
• A method for simulating spiking neural networks with

conduction delays on highly parallel graphics processing
units (Section III). The simulator relies on data organi-
sation tailored to the idiosyncrasies of the GPU memory
architecture.

• An extension to the basic simulator to incorporate
synaptic plasticity in a user-configurable manner (Sec-
tion IV).

• An evaluation of the resulting simulation kernel using
spiking networks with more than 30 thousand neurons
and 30 million synapses (Section V). The kernel can
deliver up to 550 million spikes per second on current
hardware, outperforming existing GPU kernels by a
factor of 4.5.

II. BACKGROUND

A. Neuron model

In the spiking neural networks we consider, neurons are
modelled as point-entities which produce discrete spikes.
These spikes correspond to the action potentials resulting
from the depolarisation of the neuron membrane. Neurons
connect via chemical synapses through which spikes are
communicated from the presynaptic to the postsynaptic neu-
ron. The details of this neuron-to-neuron communication is
greatly simplified with respect to full biological models,
but two essential aspects are retained. First, the presynaptic
neuron can induce a current in the postsynaptic neuron. The
magnitude of this current varies between synapses and can be
either positive (excitatory) or negative (inhibitory). Second,
synapses have an associated conductance delay, i.e. a delay
between the time a spike is generated in the presynaptic
neuron and the time when the spike affects the postsynaptic
neuron. These delays can range from one to a few tens of
milliseconds.

The neurons in a spiking neural network can be simulated
at multiple levels of abstraction, where there is a general

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 536



trade-off between biological plausibility and computational
efficiency. Among computationally tractable models, Izhike-
vich provides a good phenomenological model [6]. The
model consists of a two-dimensional system of ordinary
differential equations defined by

v̇ = 0.04v2 + 5v + 140− u+ I (1)
u̇ = a(bv − u) (2)

with an after-spike resetting

if v ≥ 30 mV, then

{
v ← c

u← u+ d
(3)

where v represents the membrane potential and u the
membrane recovery variable, accounting for the activation
of K+ and the inactivation of Na+ providing post-potential
negative feedback to v. The parameter a describes the time
scale of the recovery variable, b describes its sensitivity to
sub-threshold fluctuations, c gives the after-spike reset value
of the membrane potential, and d describes the after-spike
reset of the recovery variable. The variables a–d can be set
so as to reproduce the behaviour of different types of neurons.
The term I in Equation 1 represents the combined current
from spike arrivals from all presynaptic neurons, which are
summed every simulation cycle.

Learning in spiking neural networks can be facilitated
by altering the conductance of synapses in response to
patterns of network activity. A number of mechanisms have
been observed in biological networks, operating at different
time scales. In spike-timing dependent plasticity (STDP) the
synaptic modification depends on the relative timing of pre-
and postsynaptic action potentials. This time-dependence
allows the mechanism to learn aspects of causality, and to
facilitate competition between synapses in their effect on the
postsynaptic action potential [7].

STDP operates on the timescale of tens of milliseconds be-
fore and after the postsynaptic firing. Spikes arriving shortly
before or shortly after this firing, modifies the synaptic
conductance in a way that depends on the time difference
∆t, between spike arrival and postsynaptic firing. The size of
the temporal window before and after the postsynaptic firing,
may be of different size, and the STDP function may take
different shapes depending on the pairs of neurons involved
[8].

B. Parallel SNN simulation

The need for high performance in the simulation of spiking
neural networks naturally leads to the use of parallelism.
Synapses outnumber neurons by several orders of magnitude,
and even at low firing rates spike delivery dominates simu-
lations. Since the current from incoming spikes is simply
summed, only a small amount of computation is needed
for each datum. The simulation is thus a problem bounded
mainly by memory and communication rather than by com-
putation.

For the simulation of very large networks a computer
cluster is a natural choice, as the very large amount of
memory required to store the connectivity data can be
distributed across a number of nodes. Ananthanarayanan
et al. [4] and Izhikevich et al. [5] are examples of such
simulations, simulating 109 and 1011 neurons respectively.
In both cases the focus is on overall simulation throughput
rather than real-time performance. In this work we consider
the performance on single devices, i.e. the performance on
what would constitute a single node in the above clusters.
Clearly, performance improvements at this level can be
exploited in a larger cluster architecture, but the performance
issues for single devices are different.

For very small networks, all the data can be stored on the
chip. In field-programmable gate array (FPGA) implementa-
tions Thomas and Luk [2] and Cheung et al. [3] do this to
achieve very high speedups (100 to 1000 times real-time).
Even with the large amount of on-chip memory available,
this is only possible for very small networks of no more
than 1000 densely connected neurons.

For simulations of larger networks, the storage of connec-
tivity must be done off-chip, in memory. Consequently the
communication and storage challenge becomes a challenge of
maximising the utilisation of memory. Without good memory
performance, the resources available on a chip cannot be
employed fully. Generally, memory should be organised such
that data which are accessed at the same time are located
close together. This is true for single- and multi-core CPUs,
but is especially so for GPUs due to the idiosyncrasies of
its memory architecture. Organising data such that accesses
are optimal is hard due to the fact that neurons can have
a large number of outgoing synapses to a dispersed set of
postsynaptic neurons, and also a large number of incoming
synapses from another dispersed set of presynaptic neurons.
Some amount of spike-related operations must take place for
both the presynaptic and postsynaptic neuron, and ensuring
data locality is generally only possible for one of them.

Some existing spiking neural network simulators exist for
GPUs. Nageswaran et al. describe the GPU-SNN simulator
[9]. The main difference with our simulator is in the way the
synaptic data is organised and processed. GPU-SNN stores
synaptic data on per-postsynaptic neuron basis, pulling data
in for each neuron for active synapses. This places limitations
on the number of synapses each neuron can have. In contrast
we store the synaptic data on a per-presynaptic neuron basis,
instead fanning data out only for the neurons which fire.
Our approach should result in better memory access patterns.
GPU-SNN has the advantage of using a highly compact
storage format for the connectivity.

In previous work [10] we present an alternative GPU ker-
nel, albeit one without STDP support. This kernel partitions
the network in a way similar to our current work, but then
makes a distinction between ‘local’ (within a partition), and
‘global’ (between partitions) connections, and uses different
mechanisms for the spike delivery for these two classes.
While the spike delivery for local spikes is efficient, per-
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Fig. 1. Generic GPU architecture with a collection of loosely coupled
streaming multiprocessors (SM), each composed of parallel scalar processors
(SP), and a two-level memory hierarchy.

formance for global spike delivery is low, limiting overall
performance. This is partly due to the queueing of individual
spikes, requiring a large amount of memory bandwidth. Our
current approach organises the connectivity data such that
this memory bandwidth requirement is greatly reduced.

C. GPU architecture

Our simulator targets a parallel Graphics Processing Unit
(GPU) based on the CUDA architecture (Figure 1). Such
devices are divided into multiple single-instruction multiple-
thread (SIMT) streaming multiprocessors (SMs), each of
which consists of several scalar processors (SP). A kernel,
the program executed by the device, is run in parallel using a
large number of threads. These threads are split into blocks,
each of which execute on a single multiprocessor. Thread
blocks typically have far more threads than there are scalar
processors on the multiprocessor, so the thread blocks are
further subdivided into smaller groups. The multiprocessor
switches between these groups, executing the threads within
each group in lock-step. All threads execute the same pro-
gram, but operate on different parts of the data.

Multiprocessors operate largely independently. They can
communicate via global memory, but can only be synchro-
nised via the host system (by invoking separate kernels).
Within a multiprocessor, however, the scalar processors can
coordinate their execution using barrier synchronisation. Fur-
thermore, each multiprocessor has a small local memory,
which scalar processors within the same multiprocessor can
use for exchanging data. This local memory works as a
programmer-managed buffer or cache.

One of the advantages of modern GPUs is the very large
amount of off-chip (global) memory bandwidth available.
Utilising this bandwidth, however, relies on specific memory
access patterns being used. The requirements differ slightly
between different devices, but generally memory should be
accessed such that groups of consecutive threads on the
same multiprocessor access groups of consecutive words in
memory. In the Nvidia nomenclature, memory is accessed
by a group of threads called a warp (consisting of 32
threads on current devices), and the well-aligned memory
access just described is said to be be coalesced. Accessing
non-consecutive words in global memory from within a
warp is of course possible, but the accesses are serialised.

Organising data and execution such that memory accesses
follow these patterns is of prime importance for achieving
high performance on memory-bound kernels, and is one of
the main design principles behind our kernel.

III. SIMULATION KERNEL

A. Overview

Our simulation kernel is discrete-time, with a temporal
resolution of one millisecond. Each simulation step involves
the invocation of a single kernel, consisting of the following
five main steps:

1) initialise incoming current using a per-neuron random
process;

2) gather incoming current for each neuron, resulting
from previous firings of its presynaptic neurons;

3) update neuron state according to Equations 1–3;
4) accumulate stdp statistics (potentiation and depression)

for plastic synapses;
5) scatter outgoing spikes for fired neurons
Of these, the steps related to spike delivery (2 and 5), and

the accumulation of synaptic plasticity statistics (4) are by
far the most computationally demanding.

To parallelise the simulation, the network is divided into
a number of partitions each of which is executed on a single
multiprocessor. The size of each partition is limited by the
need for local storage during the different kernel stages. On
current devices we set the partition size to 1024 neurons,
but future devices will support larger partitions. Neurons are
indexed using both the partition index and the index of the
neuron within the partition.

The kernel supports an optional randomised input current
for each neuron (step 1). This random input current is
generated on the device using a Gaussian random number
generator [11] whose parameters can be set individually for
each neuron. The random number generator state is also
stored on a per-neuron basis, so the input current generation
can be trivially parallelised.

The update of each neuron (step 3) is independent of
the others, given that the input current I has already been
computed, and is thus also trivially parallelisable across the
available cores. Furthermore, the required memory accesses
to the state vectors (u and v) and parameter vectors (a–d),
have ideal access patterns for this architecture.

Spike delivery is done in two parts (scatter and gather), and
is facilitated by a spike queue. Our kernel organises synapses
into small groups which can be accessed through coalesced
memory accesses. Because of this grouping only indices to
the groups need to queued, rather than individual spikes.

There are three data structures associated with spike de-
livery: the forward synapse matrix, which stores the raw
synapse data; the forward group matrix, which provides an
index into the forward synapse matrix; and the incoming
group queue, which contains a compressed representation of
the spikes due for delivery. These three data structures are
organised so as to strike a balance between the competing
goals of 1) achieving good coalescing of memory accesses
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Fig. 2. Memory organisation of synapse data. A small network (top) with
seven neurons (labelled with partition/neuron indices) in two partitions, and
synapses with different delays. This network is stored in two data structures.
The synapse groups (bottom left) stores triplets of target partition, delay,
and group address. The synapse data proper (bottom right) stores the target
neuron and weights (not shown).

during spike delivery; 2) reducing the overall number of
costly global memory accesses; and 3) keeping the overall
memory usage near-linear in the number of synapses.

B. Synapse data format

The raw synapse data, consisting of the weight and target
neuron (within a partition), is stored in the forward synapse
data structure (FCM in Algorithm listings). The weight is
stored in a fixed-point format, with the number of fractional
bits set based on the range of weights in the input network.
Synapses are sorted into bundles sharing the same presynap-
tic neuron, delay, and target partition. These bundles contain
synapses which always need to be delivered at the same time.
Bundles are further split into synapse groups no larger than
w, where w is the size of a warp on the device. These synapse
groups are the basic units of spike delivery. Figure 2 shows
an example of a simple network and its mapping to these
data structures.

Neither the target partition nor the conductance delay are
explicit in the forward synapse data, but are instead stored
in the smaller forward group data structure (GROUPS in
Algorithm listings). This is a matrix with one row per neuron,
each specifying all the synapse groups associated with the
relevant neuron, regardless of delay or target partition. Each
entry within the row contains three data: the target partition,

the conductance delay, and the address of the relevant group
in the forward synapse data.

The data organisation described above has two advantages.
First, the two-level organisation means that whole groups
of synapses can be queued cheaply. Second, with suitable
memory alignment, reading a synapse group always results
in a coalesced read.

Memory for storing the synapse data can be a limiting
factor to scaling the network size due the potentially very
large number of synapses in networks of interest. Ideally,
therefore, we would like memory to grow linearly in the
number of synapses. The organisation of the forward connec-
tivity matrix into synapse groups leads to a worst-case scaling
that is super-linear, due to the presence of padding at the end
of groups which are not full. The above data structure can be
compacted into a linear-growth data structure, by combining
several small groups into the same forward synapse matrix
row, and adding mask data to the forward group data to
indicate the valid synapses within the group.

C. Group queue

The incoming group queue (QUEUE in Algorithm listings)
stores the synapse groups which are due for delivery. Each
(target) partition has its own rotating queue, with the number
of slots equal to the maximum conductance delay. Each entry
within the slot contains the address of the relevant synapse
group, and the slot as a whole contains all the synapse
groups due for delivery during a particular cycle. Neither the
source partition/neuron nor delay are relevant to the receiving
partition/neuron.

The incoming group queue should be large enough to
avoid overflowing. The fill rate of the queue, however,
depends on the activity level in the network. In the worst-case
scenario (every neuron constantly firing), the incoming spike
queue will be of a size of the same order of magnitude as the
forward synapse data. This worst-case scenario corresponds
to pathological network behaviour; neurons will typically
have some refractory period between firing, and even if a
particular neuron has a high rate of firing for some period,
it is unlikely that all other neurons also has so at the same
time. The queue size can therefore normally be reduced by an
order of magnitude, ensuring that its memory requirement is
not a limiting factor. This will still support a sustained firing
rate of 100Hz for the entire network.

D. Spike scatter

In the scatter step all the neurons which just fired (deter-
mined in the neuron update step) are processed sequentially
(Algorithm 1, see Appendix A for notation). For each fired
neuron, a whole row from the forward group matrix is
loaded, and placed (in parallel) in the appropriate group
queue slot for later processing in the target partition’s gather
step some simulation steps in the future. The reading of
forward group data is fully coalesced. The writing of synapse
groups to the queue is only partially coalesced, however.
Neighbouring synapse groups may target different partitions,
and hence end up being written to non-neighbouring queue

539



entries. The forward group data structure can be organised so
that groups from a single bundle, or from different bundles
with the same target partition are placed in consecutive
entries, and hence lead to partial coalescing. Determining the
appropriate queue slot for each group is somewhat costly as
it requires global memory atomic operations (in ‘nextFree’
in the listings). If many synapse groups target the same
partition’s queue, this can lead to serialisation.

Algorithm 1 Spike scatter step (for one partition)
Input: p: current partition; ~nfired: list of firing neurons

in current partition, t: current cycle, dmax: maximum
conductance delay

Output: QUEUE updated to reflect this cycle’s firings.
1: for all n ∈ ~nfired do
2: (~ppost, ~d,~g)⇐ GROUPS[p, n, :]
3: ~qslot ← (t+ ~d) mod dmax
4: ~qentry ⇐NC nextFree(ppost, ~qslot)
5: QUEUE[~ppost, ~qslot, ~qentry]⇐NC ~g
6: end for

See Appendix A for notation

E. Spike gather

In the gather step (Algorithm 2), all spikes due for delivery
in the current simulation cycle are accumulated in each neu-
ron’s incoming current buffer, thus computing the I-term in
Equation 1. Since there is one queue for each partition, this is
done in parallel on the device-level, with each multiprocessor
dealing with one or more partitions. For each partition, all
the relevant entries in the queue are located in consecutive
memory entries. These incoming synapse group addresses
are therefore loaded in parallel, in a fully coalesced read.

Algorithm 2 Spike gather step (for one partition)
Input: p: current partition; t: current cycle; dmax: maximum

conductance delay
Output: per-neuron current vector ~I

1: ~qslot ← t mod dmax
2: ~gpost ⇐ QUEUE[p, ~qslot, :]
3: for all ~i ∈ groups of 8 from 0: |~gpost| do
4: (~w,~npost)⇐ FCM[~gpost[~i], :]
5: atomicAdd(~I[~npost], ~w)
6: end for

See Appendix A for notation

Each loaded group corresponds to several synapses which
should induce a current in the target neurons. Several of
these groups are processed in parallel, such that each thread
processes one synapse. Because of the organisation of the
forward connectivity matrix into synapse groups, the loading
of synapse data is again fully coalesced.

To avoid a race condition when two synapses are inci-
dent on the same target neuron, the update of the current
vector is done using atomic addition operations on local
memory. These are supported in hardware, but only for

integers. This is one of the reasons for using a fixed-point
rather than a floating-point format for the synaptic weights,
as ensuring atomicity otherwise requires computationally
expensive workarounds. Arithmetic overflow in the current
accumulation is avoided by using saturating arithmetic, with
clamping to the minimum and maximum representable values
in the current fixed-point format.

Some performance overhead is caused by threads running
idle due to partially filled synapse groups. If the synapse
groups are consistently smaller than a warp, this will affect
a large number of threads. A high level of clustering within
the network may thus lead to improved performance.

IV. SPIKE-TIMING DEPENDENT PLASTICITY

A. Plasticity model

Our implementation of STDP (See Section II-A) supports
a single user-specified STDP function, of arbitrary shape and
variable length. This is specified by providing the function
values at the integer values of ∆t, both positive (for post-pre
pairs) and negative (for pre-post pairs). The total size of the
STDP window is currently limited to 64 ms - dmax, where
dmax is the maximum conductance delay in the network.
Synaptic plasticity can be enabled on a per-synapse basis.
Pairs of spikes are considered, using a reduced symmetric
nearest neighbour spike pairing scheme [12]. Our implemen-
tation also models weight saturation, which is specified by
a maximal weight (for excitatory synapses) and a minimum
weight (for inhibitory synapses).

B. Data structures

Dealing with synaptic plasticity requires the addition of
three data structures: First, the reverse connectivity matrix
(‘RCM’ in Algorithm listings) contains per-neuron synaptic
data for the incoming plastic synapses. Each synapse in
the reverse connectivity matrix specifies the presynaptic
neuron (partition and neuron index), the index of the relevant
synapse in the forward synapse matrix, and the conductance
delay of the synapse. Second, the STDP accumulator (‘ACC’
in listings) stores the accumulated weight potentiation and
depression for each synapse. The format of the accumulator
mirrors the reverse connectivity matrix. Third, the firing
history (‘HISTORY’ in listings) stores in a compact format
all the recent firing activity on a per-neuron basis.

The firing history is a per-neuron bit vector where the
set bits indicates that the neuron fired during a particular
cycle. This firing history is updated during the neuron
state update step, once the firing status for each neuron is
known. For pairs of neurons connected by a synapse, the
two relevant history bit-vectors along with the conductance
delay contains sufficient information to determine all recent
relevant pre-post and post-pre spike pairs which could result
in potentiation or depression.

C. Accumulating STDP statistics

The firing of a particular (postsynaptic) neuron can lead
to either potentiation or depression of its incoming synapses.
The accumulation of these per-synapse statistics is only
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performed once all presynaptic firings relevant to the post-
synaptic firing have taken place, i.e. once the whole STDP
window surrounding the postsynaptic firing is in the past.
During each simulation step, the kernel inspects the recent
firing history and determines which (postsynaptic) neurons
have firings which may now be processed.

These firing postsynaptic neurons are processed sequen-
tially, and for each such neuron its incoming synapses are
processed in parallel (Algorithm 3). Each synapse in the
reverse connectivity matrix incident on the fired neuron is
associated with a single presynaptic neuron. The recent firing
history of these presynaptic neurons are loaded (again in
parallel, but now non-coalesced). With the compact firing his-
tories of both the pre- and postsynaptic neuron available, any
relevant pre-post and post-pre pairs as well as the associated
spike timing difference can be determined using simple bit-
manipulation. Both potentiation and depression is determined
at the same time, and the STDP accumulation matrix is
updated with this combined value (using the function ‘stdp’
in the listings).

Algorithm 3 STDP accumulation step
Input: t: current cycle; tpostfire: length of postfire part of

STDP window
1: ~h⇐ HISTORY[p, :]
2: (~nfired,~hfired)← fired at(~h, t − tpostfire)
3: for all (npost, hpost) ∈ ~nfired × ~hfired do
4: (~ppre, ~npre, ~s)⇐ RCM[p, npost, :]
5: ~hpre ⇐NC HISTORY[~ppre, ~npre]
6: ∆w ← stdp(~hpre, hpost)
7: ACC[~ppre, ~npre, ~s]⇐NC ACC[~ppre, ~npre, ~s] + ∆w
8: end for

See Appendix A for notation

D. Applying the accumulated statistics
While the STDP statistics are continuously accumulated,

they may not necessarily need to be applied continuously.
Instead, the synapse weights are updated through a separate
kernel (Algorithm 4). This may be invoked at a fixed fre-
quency, or may be invoked in response to specific events to
reward certain behaviours.

Since the synapse weights are stored in a forward order
(organised by presynaptic neuron), while the per-synapse
potentiation/depression accumulator is stored in reverse order
(organised by postsynaptic neuron), applying the accumu-
lated statistics involves a form of matrix transposition.

The update of each weight takes into account both the
existing weight of the synapse, as well as the global upper
and lower weight limits to ensure that weights do not stray
out of bounds or change sign (the function ‘bound’ in the
listings).

V. RESULTS

A. Benchmarks
For benchmarking we use a randomised toroidal network,

parametrised by network size (p) and a connection locality

Algorithm 4 STDP application kernel
Input: r: STDP reward; ACC: STDP statistics accumulator;

p: current partition
Output: Synapse weights in FCM updated to include accu-

mulated statistics.
1: for all n ∈ partition neurons do
2: ~∆w ⇐ ACC[p, n, :]
3: ACC[p, n, :]⇐ ~0
4: ~sfcm ⇐ RCM[p, n, :]
5: ~wt ⇐NC FCM[~sfcm]
6: ~wt+1 ← bound(~wt+1 + ~∆w × r)
7: FCM[~sfcm]⇐NC ~wt+1

8: end for
See Appendix A for notation

parameter (σ). This is designed to highlight the scaling prop-
erties and the potential performance bottlenecks of the kernel,
while operating under a biologically reasonably plausible
regime. The network is a ring torus which is constructed
from an integer number of patches consisting of 32 × 32
neurons evenly spaced on a grid. The torus diameters are
thus 32 and 32p, and the number of neurons in a network
is 1024p. The patch size by design corresponds exactly to
the maximum partition size used in the kernel. The network
is split into excitatory (80%) and inhibitory (20%) neurons.
These are organised randomly on the grid. The neuron
parameters, including for random input current, are chosen
as in Izhikevich’s example network in [6].

Each neuron has 1000 synaptic connections with other
neurons. These connections are randomised such that the
distribution of distances (2D Cartesian distance along the
torus surface) between pairs of neurons follow a normal
distribution as suggested by [13] (although we deal only with
two dimensions and arbitrary distance units). For excitatory
connections the distance is drawn from N (0, σ), the weight
is uniformly random between 0.0 and +0.5, and the delay
is a linear function of distance, with a maximum delay of
20 ms. For inhibitory connections the distance is drawn from
N (0, 16), the weight is uniformly random between 0.0 and
-1.0, and the delay is fixed at 1 ms. The resulting network
fires at a mean rate of around 7.5Hz, regardless of size or
locality parameters.

The benchmarks are executed both with and without
STDP. When STDP is used, all the excitatory synapses are
plastic, whereas the inhibitory synapses are static. The STDP
function is α exp(∆t/τ). For pre-post pairs α = +1.0, for
post-pre pairs α = −0.8, and τ = 20 for both.

In the following experiments we map one patch to exactly
one multiprocessor. We use network sizes ranging from 8
patches (8K neurons) to 30 patches (30K neurons). At the
largest network size all the multiprocessors on the device
are active in parallel, saturating the device. The network
size can be scaled further (available memory permitting),
but throughput will not increase much further. Instead, larger
networks will lead to longer latencies. This setup allows us
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to investigate the scaling properties of the kernel, up to the
computational and memory bandwidth saturation point of the
device. In practice, the kernel should also deal with load
balancing issues.

B. GPU implementation

We run benchmarks on the Nvidia Tesla C1060 GPU,
based on the CUDA architecture. The C1060 contains
30 multiprocessors and 240 scalar processors, clocked at
1.3 GHz, totalling a peak single-precision floating point
performance of 933 Gflops. The device has 4 GB of global
memory, with a peak bandwidth of 102 GB/s. The user-
managed local memory available within a multiprocessor is
limited to 16 KB.

C. Throughput and speedup without STDP

For performance we are interested in maximising through-
put and speedup. We measure throughput in terms of spike
deliveries (not firings) per wall-clock second. This measure is
somewhat insensitive to the average firing rate and the num-
ber of synapses per neuron. Figure 3 shows this throughput
scaling well for different network sizes with different levels
of locality, peaking at 551M spike deliveries per second.

One might expect the locality parameter to have some
effect on performance, as less clustered networks are likely to
have smaller synapse groups due to a wider range of targets.
This in turn will lead to poorer memory bandwidth utilisation
for the main memory operation, namely reading the synapse
data. For the networks constructed using the above method
there is some variation in performance for networks with
different levels on locality. However for these networks,
the effect of partially-filled synapse groups (which lowers
performance for less local networks) is balanced by the effect
of global atomic memory operation collisions in the scatter
step (which lowers performance for more local networks).
Overall the effect is only minor differences in performance
between the networks as currently constructed, even though
there are differences in the distribution of synapse group sizes
(Figure 3, bottom).

To evaluate the effect of underutilisation of the device due
to small groups, we simulate a network which by design is a
worst case in terms of group sizing. The ‘uniform’ network
is similar to the above torus networks, but both the target
neurons and the delays are (indpendently) randomly chosen
from a uniform distribution. As can be seen in Figure 3 this
results in predominantly very small groups. The throughput
of the simulation of this network is less than 200M spike
deliveries per second. Furthermore, the memory bandwidth
is already fully utilised for a small network of 8K neurons, so
simulating larger networks has little effect on performance.
Networks where there is any amount of clustering at the
scale of thousands of neurons, or where delay is distance-
dependent should result in higher throughput than this worst-
case.

The speedup for the benchmarks which fully utilise the de-
vice falls between 2.2 and 2.5 times real-time (for ‘uniform’
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Fig. 3. Top: effect on throughput of scaling network size for different
levels of locality in the network connections, for simulations with STDP
disabled. Bottom: the distribution of synapse group sizes (between 1 and
32) for different network sizes and levels of locality. A larger proportion
of “full” groups means fewer idle threads, and potentially better memory
utilisation.

TABLE I
COST OF ACCUMULATING AND APPLYING STDP STATISTICS

Accumulation Application Throughput
enabled frequency (spike arrivals/s)

7 N/A 551M
X 0 332M
X 1Hz 308M
X 10Hz 280M
X 100Hz 150M

it is 0.96). There is thus scope for increasing network size
further and still use the simulation in an embodied setting.

D. Performance when using STDP

The addition of STDP to the kernel incurs some overheads,
as each neuron firing affects both its postsynaptic and presy-
naptic incident neurons. The application of the accumulated
changes, incurs additional overheads on top of this. The
current STDP application scheme (Algorithm 4) performs
a costly full walk over all the synapses to determine which
ones require updating. Table I shows the performance for
a network with p = 30 and σ = 128 running with STDP
accumulation both enabled and distabled, and varying STDP
application frequencies. Our current application method is
best suited to relatively infrequent application. If frequent
or continous application is desired, a different scheme could
avoid walking over the full set of synapses.

E. Comparison with alternative implementations

We evaluate the performance of our kernel compared with
a CPU-based kernel, and GPU-SNN, the GPU-based kernel
described in [9]. The results are summarised in Table II, for
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TABLE II
COMPARISON OF SIMULATORS (NETWORKS OF 30K NEURONS)

Simulator Platform Cores synapses/ Throughput
neuron

GPU (This work) Tesla C1060 30 1000 510-550
GPU-SNN [9] Tesla C1060 30 500 ∼121M

CPU Xeon E5420 4 1000 ∼25M

networks with 30K neurons and 1000 or 500 synapses per
neuron.

The CPU kernel uses similar data structures to the GPU
kernel, but does not deliver spikes in fixed-size groups, since
the memory system does not have the same coalescing con-
straints. The CPU kernel makes use of multi-core parallelism
(using pthreads), and has had some memory-related optimisa-
tions applied. Specifically we have optimised memory access
patterns by aligning data in the connectivity data structures to
cache-line boundaries, and by setting thread affinity such that
data need not migrate between the different cores’ caches. We
run the same benchmarks as in the throughput experiments
above, on a 4-core 2.5GHz Xeon E5420 with 6MB of L2
cache. The CPU kernel is largely insensitive to variation in
the locality parameter. The overall throughput is around 25M.
Our kernel achieves up to 22 times this throughput.

For the GPU kernel described in [9] (GPU-SNN) we made
use of the source code distributed with that paper. GPU-
SNN limits the number of synapses per neuron to 550 and
uses a different scheme for delivering random neuron input.
We were therefore unable to recreate our benchmarks. To
measure performance we made use of one the networks
similar to the one described in [9], with 30K neurons and
500 synapses per neuron. The neuron parametrisation and
the firing rate is similar to in our benchmarks. The time to
compute random input current has been factored out from
the reported results, so as not to penalise the GPU-SNN
for using a more expensive method. For the current mix
of benchmarks, our kernel achieves a throughput which is
around 4.5 times higher, although a more thorough compari-
son with an updated version of GPU-SNN running the exact
same network as us would provide a better comparision of
their relative merits.

VI. CONCLUDING REMARKS

This paper has presented a GPU kernel which can simulate
networks of a few tens of thousands of highly connected
neurons in real time. This simulator improves on existing
GPU-based simulators, by better exploiting the memory
architecture on the GPU, and achieves up to 4.5 times higher
throughput. The simulator provides a good basis on which
to build a larger cluster-based simulator, which will allow
us to simulate significantly larger networks. In other further
work, we consider improving the mapping from neurons to
processors to deal with less structured networks, and also
changing the STDP implementation to use a more general
trace-based approach [12], which would support a greater
range of STDP protocols.

APPENDIX

A. Typographic Conventions in Algorithm Listings

The pseudocode in the algorithm listings distinguish be-
tween local memory (italics) and global memory (SMALL
CAPS). The global memory data structures are described in
the text. For local memory, 1D vectors are denoted like ~x,
and scalars like y. For accesses to multidimensional data in
global memory, ‘:’ indicates all indices along the relevant
dimension. For global memory, coalesced operations are
denoted by ‘⇐’, and non-coalesced operations by ‘⇐NC’.
Operations on registers and local memory are denoted by
‘←’. Some common variable names recur: p denotes a
partition index, n a neuron index (within a partition), s a
synapse index, g a group index, d a delay, and w a weight.

B. Software

The simulation software library, libnemo, is available as
a C/C++ source library from the first author’s website. It is
published under a GPL v2 licence.
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