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Abstract

This paper presents the theoretical foundations
of a vision system in which the effects of high-
level reasoning percolate all the way down to
influence the low-level processing of raw
sensor data. This is achieved through the
mechanisms of feedback and expectation. The
main contribution of the paper is to present a
formal framework, based on the abductive
interpretation of sensor data, that incorporates
the ideas of feedback and expectation in a way
that marries them to logical reasoning. To
enable this, two alternative measures of
explanatory value are defined.

1 INTRODUCTION
Work in cognitive robotics has typically adopted one of
two views of perception. According to the first view,
perception is considered as a black-box process from
the perspective of high-level cognition, whereby raw
data is turned into fluents on demand, following the
execution of a sensing action [Scherl & Levesque,
1993], [Levesque, 1996]. Formal accounts based on this
view concentrate on the difficulties associated with
formalising the effects of knowledge producing actions,
and the task of planning with such actions. According
to the second view, perception is a passive process,
whereby the robot’s model of the world is updated as a
side-effect of its physical actions [Shanahan, 1996],
[Shanahan, 1997]. In formal accounts based on this
view, abduction is used to supply possible explanations
of incoming sensor data, and the results of this
abductive process are assimilated into the robot’s
representations.

In both approaches to perception, the flow of
information is one-way — from raw sensor data to
high-level representations. By contrast, it has long been
recognised that in biological brains, the flow of
information between low-level perception and high-

level cognition is bidirectional [Cavanagh, 1999]. One
of the most prominent mechanisms for achieving this
bidirectionality is expectation. Low-level perceptual
cues suggest interpretations of raw sensor data that line-
up with past experience. This leads to the expectation of
certain features in the environment, which in turn feeds
back to low-level perceptual systems, making them
more sensitive to those features. Initial expectations are
then either confirmed or disconfirmed, and a stable
model of the environment is built up.

From an engineer’s point-of-view, it makes good
computational sense to adopt this biologically inspired
technique. Take vision, for example, which is the main
subject of the present paper. A robot’s visual system
delivers a large amount of raw sensor data. In the
unidirectional approach, this mass of sensor data is
processed using a battery of methods for extracting
features, such as edges and patches of uniform texture,
which are then used to segment the image, picking out
the foreground objects. This is a highly computationally
intensive business. In a cluttered scene, a large number
of features will be thrown up, which need to be sifted
and sorted. Moreover, the process is highly sensitive to
noise. Shadows, poor lighting, highlights, and surface
patterns can all render the output of the system useless.

The benefits of incorporating a two-way flow of
information include a reduction in computation and
increased robustness. A reduction in computation is
achieved because the sensitivity of low-level image
processing routines can be initially set low, so that only
a small number of highly prominent features are passed
up to the next highest level of processing. Prominent
features act as cues leading to the expectation of other
features in the visual field. These expectations are fed
back down to the low-level perceptual system, resulting
in a selective increase of sensitivity confined only to
those areas of the visual field that are potentially
interesting. Increased robustness also results, first
because of the initial insensitivity of the low-level
processing, and second because the feedback loop soon



eliminates from consideration features leading to
expectations that fail to be confirmed.

Similar arguments to these were used to motivate
pioneering work in active vision [Aloimonos, et al.,
1987], [Ballard, 1991]. Research on active vision
emphasises, among other things, the computational
benefits of selective head or camera movements to fix
on portions of the scene of interest while filtering out
the rest. In a sense, the rationale behind the present
paper is the same. The chief differences are that the
active component of the system presented here is not at
the level of physical movement, but at the level of
software adjustments to low-level image processing
routines. However, in more general terms, the paradigm
offered here encompasses a spectrum of possibilities,
all involving the following three steps of hypothetico-
deductive reasoning.

1 .  Generate competing hypotheses to explain the
sensor data.

2 .  Determine the consequences (expectations) of
those hypotheses.

3. Carry out actions that will confirm or disconfirm
these expectations, thus ruling out one or more of
the competing hypotheses.

A confirming/disconfirming action might take several
forms. At one end of the spectrum, it could be the
software adjustment of a parameter of a low-level
image processing algorithm, such as edge detection. At
the other end of the spectrum, it could be a knowledge
producing action, or knowledge producing plan, such as
“Find a telephone directory and look up John’s
number” [Scherl & Levesque, 1993]. Traditional active
perception, in which the actions in question are small-
scale physical adjustments of the sensory apparatus, can
be thought of as lying somewhere in the middle of this
spectrum. Although the examples presented here are all
of the first type, the theoretical treatment is intended to
be generic.

Specifically, this paper presents a formal, logic-based
account of visual perception incorporating a two-way
flow of information between low-level image
processing routines and high-level reasoning. The
formalisation is a modification of the abductive model
of perception presented in [Shanahan, 1996]. In this
modified account, feedback and expectation are
incorporated via the preference relation that selects
between competing hypotheses. To facilitate this, two
measures of the explanatory value of a hypothesis are
proposed and compared — an ad hoc measure based on
some obvious design criteria, and a more principled
probabilistic measure. This general account is applied
to a specific vision task, namely the recognition of
cuboidal objects in a cluttered, noisy scene.

2 VISUAL PERCEPTION AS
ABDUCTION

According to the model of robot perception put forward
in [Shanahan, 1996], the task of robot perception is
characterised roughly as follows. Given a stream of
sensor data represented by the conjunction Γ of a set of
observation sentences, find one or more explanations of
Γ in the form of a logical description ∆ of the locations
and shapes of hypothesised objects, such that,

Σ ∧ ∆ 
�

 Γ

where Σ is a background theory describing how objects
in the world impact on the robot’s sensors. The form of
∆, that is to say the terms in which an explanation must
be couched, is prescribed by the domain. Typically
there are many ∆s of the permitted form that might
explain a given Γ according to this definition. So a
preference relation is defined for ordering them. This
preference relation will be the vehicle for introducing
expectation and feedback in the next section.

While this basic form of abduction is adequate for very
rudimentary forms of robot perception — with bump
switches or infra-red proximity sensors, for example
[Shanahan, 1996] — its limitations soon become
apparent when we try to apply it to a richer sensory
modality like vision. To begin with, we need to relax
the constraint, implicit in the above definition, that an
explanation must be found for all the sensor data, that is
to say for the whole of Γ . Snapshots of the robot’s
visual field contain a large number of features, and it
would be inappropriate for the perceptual process to try
to build a model of the world that accounts for every
one of them. On the contrary, we want a perceptual
system to ignore irrelevant data and pick out only those
objects in the scene that are pertinent to the robot’s
goals or desired behaviour.

More important still, in the context of the present paper,
is the fact that the basic abductive account leaves no
room for the sort of two-way flow of information
whose benefits were outlined in the introduction. It’s
especially galling that basic abduction has no means for
allowing high-level declaratively represented
expectations to inform low-level perceptual
mechanisms when we consider that one of the chief
attractions of an abductive treatment is that it is
expressed in high-level, declarative terms. (For another
attempt to reconcile abduction with top-down
perceptual processing, see [Josephson & Josephson,
1994], Chapter 10.)

To see how this situation might be remedied, let’s
consider a motivating example. The image at the top of
Figure 1 is the output from one of the stereoscopic
cameras mounted on the head of an upper-torso
humanoid robot. The image at the bottom shows the
result of applying a standard edge detection algorithm,
using the Sobel operator, with a high threshold. Let’s



look more closely at the block circled in white in the
unprocessed image. Our aim here is to devise a
mechanism that will exploit the cues present in the
image to conclude that a block of the right shape and
size is out there, and which won’t be distracted by the
fact that the block is composed of two differently
coloured halves, one of which is almost lost in the
shadows.

Figure 1: Some Raw Visual Data

More precisely, the problem is this. When a standard
region finding algorithm is applied to the edge data in
Figure 1, it comes up with the set of lines shown in bold
in Figure 2, namely AB, AD, BC, DE, CF, and EF.
Other lines, such as GC and HE are visible to the
human eye, but the region finding algorithm is blind to
them. If we turn up the sensitivity of the edge detector
sufficiently to make these lines visible to the region
finder, the number of spurious, unwanted lines thrown
up as well — caused by the grain of the wooden table-
top, for example — is so large that it becomes
computationally infeasible to attempt to interpret them
all, sorting out the useful data from the rest.

On the basis of this meagre and misleading data, how
are we to find the true outline of the block? An
abductive approach to perception initially seems like a
good idea here. The correct hypothesis — let’s call it
H1 — that the visible lines are caused by a block whose
base is the line HF, is indeed sanctioned by the
abductive definition. But so is the alternative hypothesis
— which we’ll call H2 — that the visible lines are
caused by a block whose base is the line EF. Moreover,
according to almost any plausible preference relation
we can think of for ordering multiple explanations, the

second, incorrect hypothesis comes out on top, due to
the influence of the line AD.

Figure 2: An Ambiguous Block

The main innovation of this paper is to supply a
modified abductive treatment of perception in which
the expectations generated by each hypothesis feed
back into the preference ordering for choosing between
them. In the present example, hypothesis H1generates
the expectation (among others) that the line DC extends
beyond D. Hypothesis H2, on the other hand, generates
the expectation of a vertical line extending downwards
from A. These expectations retrospectively adjust the
preference ordering for multiple explanations at the
next level down in the hierarchy of sensor data
processing, namely the process of finding edges and
lines. This translates into a highly selective increase in
the sensitivity of the edge detector at precisely those
places where edges are expected. With this increase in
sensitivity, the expectations of hypothesis H1 are
confirmed, and those of hypothesis H2 are
disconfirmed, leading to a revised ordering of the
hypotheses in which H1 comes out on top.

3 EXPLANATORY VALUE AND
EXPECTATION

In this section, a formal description of abductive
perception with feedback is presented. The language
and consequence relation of standard first-order
predicate calculus are used throughout. First, we have a
basic definition of explanation, inherited from previous
work on the topic of abductive perception [Shanahan,
1996]. A background theory Σ , a set of atomic
abducible formulae, and a set of atomic explainable
formulae are assumed. A data set is a conjunction of
explainable formulae.

Definition 3.1. Given a background theory Σ , a
conjunction φ of abducible formulae is an explanation
for a data set Γ if,

Σ ∧ φ 
�

 Γ

and Σ ∧ φ is consistent. �
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In general, the perceptual system of a robot will be
many layered. That is to say, low-level features such as
pixels will be interpreted in terms of higher-level
features such as lines, which in turn will be interpreted
in terms of surfaces, which are finally interpreted in
terms of solid shapes. However, in the formal account
that follows, these will be compressed into a single
layer. The generalisation to multiple layers is
straightforward. (See [Josephson & Josephson, 1994],
Chapter 10 for an abductive account of layered
perception.)

In the following account, we suppose the presence of a
mass of sensor data. The focus here is visual
perception, and the mass of data in question is taken to
be the set of edges detected in a single snapshot of the
visual field. Dynamic aspects of the data are neglected
in the present paper, but obviously motion cues are a
valuable source of additional information.

Some form of attention mechanism is taken for granted
in the scheme described below. In effect, this means
that a small portion of the visual field is isolated, such
as the circle in Figure 1, and the task is to find the best
explanation for the edges within that area. (This is
obviously analogous to the visual attention mechanism
of the human brain, whereby eye saccades and head
movements cause the eye’s foveal area to alight on
objects of interest.) If the sensor data of interest is
described by a data set Γ, the challenge is to determine
the set of potential explanations for Γ, and to order
them.

A variety of ways to order alternative explanations of
the same sensor data might be employed. To facilitate
the introduction of expectation and feedback, the
method of choice here will be to assign a numerical
score, in the range 0 to 1, to each hypothesised feature
that explains Γ. This score is intended to reflect the
explanatory value of the hypothesis. One measure of
explanatory value is proposed in this section, and an
alternative based on probability is put forward in
Section 6. The set of features is partitioned into
primitive and non-primitive, where primitive features
are the raw sensor data themselves, and a non-primitive
feature is an abducible formula, representing, for
example, the presence of a block in a certain location.
The initial explanatory value of a primitive feature is a
function of the raw sensor data, scaled to fit the range 0
to 1. The initial explanatory value of a non-primitive
feature is a weighted average of the explanatory values
of those features it explains.

Definition 3.2. The initial explanatory value 
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where,

• Ψ is the set of all ψ such that H is an explanation
for ψ and

€ 

V0 1( )ψ θ> ,

• n is the cardinality of Ψ. �
The idea of the weighting factor is to give the highest
value to the feature that explains the most lower-level
features. However, the effect of this weighting
diminishes as the number of explained features goes up.
The role of the threshold value θ1 is crucial. Only those
lower-level features that themselves have a high enough
explanatory value are worth explaining. In terms of the
example of the previous section, pixels with too low a
Sobel value are ignored.

Now we introduce expectation and feedback, which is
the means by which those features too faint to be
considered initially get taken into account without
swamping the system with computational demands. The
initial explanatory value of a feature is increased to the
extent that it fulfills the expectations of a higher-level
feature, and is reduced to the extent that its own
expectations fail to be fulfilled.

Definition 3.3. Let k be any integer greater than zero,
and H be any feature. The unmoderated kth explanatory
value 
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where

• Φ is the set of all φ such that H is an explanation
for φ and

€ 

Vk− ≤1 2( )φ θ ,

• m is the cardinality of Φ, and

• if

• 

€ 

V Hk− >1 2( ) θ , and

•  there exists an α which is an explanation for
H such that 

€ 

Vk− >1 1( )α θ .

  then ω = R, else ω = 0. �

The constant Q  dictates the degree to which an
unfulfilled expectation reduces a feature’s explanatory
value. Similarly, the constant R dictates the degree to
which a feature’s explanatory value is enhanced if it
does fulfill some expectation. The constant θ 2
represents the threshold of explanatory value below
which a feature is considered to be effectively absent
and therefore to disconfirm higher-level features that
expect it. The behaviour of algorithms based on the
definitions given here is quite sensitive to the values of
these constants, as discussed below.

Definition 3.3 can yield values greater than 1 or less
than 0. The following definition imposes the
corresponding ceiling and floor.



Definition 3.4. The kth explanatory value 
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The repeated application of feedback generally takes
the explanatory value of each feature to a fixpoint. In
dynamical systems terms, this is an attractor basin,
analogous to the attractor basins in, for example, the
state space of a Hopfield net that might similarly be
used to recognise patterns in sensor data on the basis of
expectation and past experience. In contrast to a neural
net, however, the present system enjoys the advantages
of being able to carry out symbolic reasoning with
declaratively represented knowledge.

Definition 3.5. The final explanatory value 
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V H∞ ( )  of a
non-primitive feature H is equal to 
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V Hm ( )  where m is
the smallest integer such that,
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Further investigation is required into the conditions
under which there exists a final explanatory value for a
feature. However, none of the (limited) experiments
carried out so far has unearthed an unstable
combination of logical formulae and numerical values.

Definition 3.6. The explanatory value of a set of
features is the mean explanatory value of the set. �
Now, the preference relation used to order competing
explanations for the same item of sensor data mirrors
the assignment of final explanatory values to those
explanations.

4 EXPECTATION AND FEEDBACK IN
ACTION

The definitions above tell us very little about what
conditions that cause a feature’s explanatory value to
ascend to a fixpoint and what conditions cause it to
descend to a fixpoint. Further investigation of this issue
is required, but initial experimentation has shown that a
vision algorithm based on the definitions of the
previous section is effective — in the sense that the
explanatory values move in the required directions in
response to feedback — when θ1=0.4,

€ 

θ θ2
2
3 1= , R=0.1,

and Q=1.0.

The following example illustrates the way expectation
and feedback can distinguish between competing
hypotheses. The parameters θ1, θ2, R, and Q are set to
the above values. Suppose a snapshot of a robot’s
sensor data includes the primitive features F1 to F6,
with the following initial explanatory values.

V0 (F1) = 0.36 V0 (F2) = 0.63
V0 (F3) = 0.81 V0 (F4) = 0.72
V0 (F5) = 0.81 V0 (F6) = 0.20

Now suppose we have two non-primitive features H1
and H2 such that,

Σ 
�

 ¬ [H1  ∧ H2]
Σ ∧ H1 

�
 F1 ∧ F2 ∧ F3 ∧ F4

Σ ∧ H2 
�

 F3 ∧ F4 ∧ F5 ∧ F6.

In other words, H1 and H2 are competing hypotheses,
each of which explains some features of the sensor data.
However, the initial explanatory value of H2 is slightly
higher than that of H1.

V0 (H1) = 0.54
V0 (H2) = 0.58

So, at first glance, H2  looks a better bet than H1 .
However, the two hypotheses have different
expectations. In particular, H1 leads to the expectation
of F1, while H2 gives rise to the expectation of F6.
Neither F1 nor F6 were prominent enough to contribute
to the initial explanatory values of the hypotheses. But
with the application of feedback, these differing
expectations start to make a difference, and the two
hypotheses swap places. In particular, we have,

V1 (H1) = 0.58
V1 (H2) = 0.56

From this point on, the two hypotheses start to diverge.
This divergence reflects the fact that the initial
explanatory value of F1 is sufficient to fulfill the
expectation of H1, while the initial explanatory value of
F6 is so low that it disconfirms H2. The final
explanatory values of the hypotheses end up at opposite
ends of the spectrum.

V∞ (H1) = 0.80
V∞ (H2) = 0.00

It might seem counter-intuitive that the final
explanatory value of H2 is zero. After all, this
hypothesis surely has some value. In effect, this
outcome is an artefact of the way thresholds are used.
The result of applying feedback is to amplify the effects
of confirmation and disconfirmation until certain
hypotheses are dismissed altogether. The method of
applying feedback with the probabilistic measure of
explanatory value presented in Sections 6 and 7 is less
polarising.

This is obviously a simple example, and with a more
complex network of logical relations, the dynamics of
the system is correspondingly more complicated.
However, it should be clear that the example maps
easily to the benchmark vision problem from Section 2.



The next section offers a more formal treatment of that
benchmark problem.

5 VISION REVISITED
In this section, we take a closer look at the benchmark
vision problem of Section 2. The main task is to
formalise it as an abductive explanation problem, to
which the definitions of the previous section are
applicable. To this end, a series of axioms is presented
describing blocks in terms of surfaces, surfaces in terms
of lines, and the appearance of lines in terms of  visible
edges.

The first axiom says that, under the right conditions, a
linear feature in 3D space gives rise to a visible edge
(according to the Sobel operator) in the robot’s visual
field. The linear feature might correspond to a spatial
discontinuity, such as the side of an object, or to a
colour discontinuity, such as a shadow across the
surface of an object. This axiom is used to reason
abductively from data items in the robot’s two-
dimensional visual field (edges) to spatially-located
features of the robot’s workspace.

[Line(w) ∧ FromTo(w,p1,p2) ∧ (1)
¬ Occluded(w) ∧

p3=Project(p1) ∧ p4=Project(p2)] →
∃ e [Edge(e) ∧ FromTo(e,p3,p4)]

The formula Line(w) represents that a linear feature w
exists in 3D space. The term Project(p) denotes the
point in the robot’s visual field onto which point p in
3D space projects. The formula Edge(e) represents the
presence of an edge e in the robot’s visual field. The
formula FromTo(x,p1,p2) indicates the end points, p1
and p2, of the line or edge x. These will be 3D co-
ordinates in the case of a line (in the robot’s
workspace), and 2D co-ordinates in the case of an edge
(in the robot’s visual field).

The formula Occluded(w) holds if some object lies
between w and the robot’s viewpoint. Several other
kinds of exception, in addition to occlusion, would
merit inclusion in a fuller axiomatisation, such as poor
lighting conditions, a faulty camera, and so on. In
Sections 6 and 7, there will be a requirement for
explicit noise and abnormality terms in formulae like
Axiom (1).

The next two axioms are used to reason abductively
from lines to surfaces and their properties. The two
axioms correspond to the two possible explanations of a
linear discontinuity — either it’s the edge of a solid
object or it’s a surface feature such as a shadow. The
formula Bounded(s,w1,...,w4) means that the
rectangular surface s is bounded by the four lines w1 to
w4. The formula Marked(s,w) means the surface s has a
linear feature w.

[Surface(s) ∧ Bounded(s,w1,w2,w3,w4)] → (2)
[Line(w1) ∧ Line(w2) ∧ Line(w3) ∧

Line(w4) ∧ Parallel(w1,w2) ∧
Parallel(w3,w4)]

[Surface(s) ∧ Marked(s,w)] → Line(w) (3)

Finally, Axiom(4) below takes the abductive process
from surfaces to cuboidal blocks. The formula
Faces(b,s1,...,s6) means that the block b has the six
faces s1 to s6, each of which is a rectangular surface.

[Block(b) ∧ Faces(b,s1,s2,s3,s4,s5,s6)] → (4)
[Surface(s1) ∧ Surface(s2) ∧ Surface(s3) ∧

Surface(s4) ∧ Surface(s5) ∧ Surface(s6) ∧
PParallel(s1,s2) ∧ PParallel(s3,s4) ∧

PParallel(s5,s6)]

These and similar axioms form the basis of a visual
perception system that combines high-level logical
reasoning with feedback and expectation to interpret
scenes that would present a challenge to a conventional
image understanding system. The knowledge inherent
in Axioms (1) to (4) is analogous to a 3D model in a
conventional machine vision system, and the abductive
interpretation of the sensor data corresponds to the
conventional process of matching a model to the data
from a given scene [Jain, et al., 1995, Chapter 15].
However, under the present scheme, it’s possible to
augment this knowledge with declarative sentences,
such as “all the red blocks are shorter than all the blue
blocks” or “one of the green blocks is hidden”.
Combined with a suitable inference mechanism, such
knowledge can be used to influence low-level
processing.

To see how the abductive process works, let’s return to
the simple example of Section 2. Suppose we have the
following set Γ  of items of low-level sensor data
(Figure 3).

Figure 3: Hypothesised Lines and Points

Edge(L1) ∧ FromTo(L1,A,B)
Edge(L2) ∧ FromTo(L2,A,D)
Edge(L3) ∧ FromTo(L3,B,C)
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Edge(L4) ∧ FromTo(L4,D,E)
Edge(L5) ∧ FromTo(L5,C,F)
Edge(L6) ∧ FromTo(L6,E,F)

Let the set of abducible formulae be all those of the
form Block(b), Faces(b,s1,...,s6), or Marked(s,w). Now,
let H1 be,

Block(B1) ∧ Faces(B1,S1,1,…,S1,6)

where, for some S1,i and S1,j in {S1,1,…,S1,6}, we
have,

Bounded(S1,i,L1,L2,L3,w)
Bounded(S1,j,w,L5,L6,L4)

for some hypothesised line w. Now, let H2 be,

Block(B2) ∧ Faces(B2,1,S2,1,…,S2,6)

where, for some S2,i and S2,j in {S2,1,…,S2,6} we
have,

Bounded(S2,i,L3,w1,w2,w3)
Bounded(S2,j,L5,w1,w4,w5)

for hypothesised lines w1,…,w5, such that,

FromTo(w1,C,p1) FromTo(w2,p1,p2)
FromTo(w3,p2,B) FromTo(w4,F,p3)
FromTo(w5,p3,p1)

for hypothesised points p1 to p3, all distinct from points
A to F. Next, let H3 be,

Marked(S2,i,L2).

Finally, let H4 be,

Marked(S2,j,L4).

It can be straightforwardly shown that H1  is an
explanation for Γ, as is the conjunction of hypotheses
H2 to H4. The latter combination is, of course, correct,
while H1 is incorrect. However, when data from the
actual vision system is plugged in, the initial
explanatory value of H1 is much higher than that of the
correct combination. With the application of
expectation and feedback, using the definitions of
Section 3, this situation is reversed. The incorrect
hypothesis H1 leads, through Axiom (4), to the
expectation of a vertical surface, one of whose edges is
AD. The failure of this expectation brings about a fall
in the explanatory value of H1. On the other hand, the
initially unpromising hypothesis H2 leads to the
expectation of a line extending from B to A and
beyond, to a point p2. This expectation is confirmed,
causing the explanatory value of H2 to rise. In the end,
the final explanatory value of the correct combination
of hypotheses exceeds that of the incorrect hypothesis,
which is the desired result.

6 A PROBABILISTIC MEASURE OF
EXPLANATORY VALUE

The measure of explanatory value proposed in Section
3 forms the basis of a workable system for perception
incorporating expectation and feedback. However, from
a theoretical perspective, the proposal looks ad hoc,
because the numerical values defined lack any sort of
semantic justification. In this section, an alternative
measure of explanatory value is devised, based on
probability. As we’ll see, when compared to the more
ad hoc measure, the probabilistic version has both
advantages and disadvantages.

Suppose we have a set F of abducible formulae. In the
absence of further information, all formulae in F are
assumed to be independent and to have equal prior
probability p. Note that, in the absence of further
information, the prior probability P(H) of any
conjunction H = f1 ∧ ... ∧ fn of abducible formulae is pn.

Now suppose we acquire some sensor data, represented
as a formula Γ . Using abduction, we find the set of
possible explanations of Γ is {H1...Hm}, where each Hi
is a conjunction of abducible formulae. Suppose the set
of hypotheses is mutually exclusive. So we have,

H1 ⊕ ... ⊕ Hm.

Using basic probability theory, we can now assign an
explanatory value to each candidate explanation H i,
corresponding to the posterior probability that it is true,
given the above disjunction. From Bayes’ Theorem we
have,
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Now, by setting q equal to any hypothesis Hi and r to
the rest of the hypotheses, we can calculate the
posterior probability of H i  given Γ, under the
assumption that H1...Hm is the set of all the possible
explanations of Γ. A related formula is derived by
Poole [1993] for abduction with probability. Poole’s
equation yields the conditional probability P(q|Γ), and
is equivalent to the present formula under the same
assumption.

Now suppose Γ comprises n separate items of sensor
data, each requiring explanation. In general, a
hypothesised object will only explain a portion of the
sensor data of interest. So a complete explanation will
comprise a number of hypothesised objects
supplemented with a number of noise terms to “explain
away” the rest of the sensor data [Poole, 1995],
[Shanahan, 1997].



To allow for noise terms, the background theory Σ must
be supplemented with some additional formulae. For
example, as well as Axiom (1) from Section 5, we
might have,

[Noise(w) ∧ FromTo(w,p1,p2) ∧
p3=Project(p1) ∧ p4=Project(p2)] →

∃ e [Edge(e) ∧ FromTo(e,p3,p4)].

Let the set F of abducibles comprise a set Fa of noise
terms each with probability pa and a set F b  of
propositions positing spatially-located objects, each
with probability pb. Formulae in Fb explain multiple
items of sensor data while formulae in Fa explain only
1 item of sensor data. What we’re interested in is how
the probability (and thus the explanatory value) of a
hypothesis grows with the number of items of sensor
data it explains.

Suppose the disjoined set of explanations of Γ obtained
by abduction is H1 ⊕ ... ⊕ Hm, such that,

H1 = [f ∧ fk+1 ∧ ... ∧ fn]

where f is drawn from Fb and each fi is drawn from Fa.
In other words, H1 explains k out of n items of sensor
data, and the rest have to be explained by noise terms.
We have,
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Let R be H2 ⊕ ... ⊕ Hm. Then we have,
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or alternatively,
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Note that the posterior probabilities of H1 to Hm sum to
1, as we would expect. To simplify the analysis, let’s
assume from now on that each hypothesis posits exactly
one object. So each data item unaccounted for by that
object is explained away with a noise term. Plugging in
the appropriate formula for P(R ), this leads to the
following probabilistic measure of initial explanatory
value, which is the counterpart to Definition 3.2. The
set of data items to be explained will be those in the
area of interest whose value exceeds some threshold.
We’ll designate this threshold θ1, since it corresponds
to θ1 in Section 3.

Definition 6.1. Given a data set Γ , the probabilistic
explanatory value VP(H,Γ) of a hypothesis H is equal
to,
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where

• Φ is the set of all hypotheses that explain Γ, and

• Sφ is the number of terms in hypothesis φ drawn
from Fa. �

Note that the pb term always drops out. (This is only the
case if each hypothesis posits the same number of
objects.) Let’s apply this definition to the example of
Section 4. Let θ1 be 0.4. Since both hypotheses explain
3 out of 4 items of sensor data, regardless of the value
of pa, we get,

VP(H1,Γ) = VP(H2,Γ) = 0.5.

Let’s pick a different example. Suppose the set of
explanations is {H1 ,H2}, and that H1  and H2
respectively explain 1 out of 4 and 2 out of 4 data items
without recourse to noise terms. In other words, H1
includes 3 noise terms while H2 includes 2 noise terms.
Plugging these values into the formula, we get,
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and,
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So, for example, if we let p a=0.1, the posterior
probability (explanatory value) of H1 is = 0.09 and the
posterior probability of H2 is 0.91 On the other hand, if
we let pa=0.5, the respective values we get for H1 and
H2 are 0.33 and 0.67. These examples show that the
probabilistic measure of explanatory value does assign
higher values to hypotheses that explain more data. So
it meets the most important criterion for a measure of
explanatory value. But by inspecting the two formulae
(the probabilistic version and the more ad hoc formula
in Definition 3.2), we also see the many differences
between the two measures.

•  The probabilistic measure takes account of the
number of unexplained data items rather than the
proportion of data items explained. So, all other
things being equal, it assigns the same
explanatory value to a hypothesis that explains
99 out of 100 data items as to a hypothesis that
explains 1 out of 2. In this respect the ad hoc
measure has more appeal.

•  The probabilistic measure, unlike the ad hoc
measure, isn’t weighted by the value of the
sensor data explained. So it doesn’t distinguish
hypotheses that explain prominent sensor data



from those that explain poor quality sensor data.
The assumption behind the probabilistic measure
is that all the data items in Γ are present and all
require explanation.

•  The probabilistic measure takes account of the
whole set of competing hypotheses when
assigning an explanatory value to each member
of that set. The ad hoc measure assigns the same
value to a hypothesis that is a unique explanation
of the data as to a hypothesis that is one among
ten competitors. In this respect, the probabilistic
measure is to be preferred.

•  The probabilistic measure takes into account the
probability of a noise term. According to the
probabilistic measure, the more noisy the data,
the narrower the gap between a hypothesised
object that explains a lot and one that explains
only a little. This makes sense, so in this respect
again the probabilistic measure wins out.

7 ABDUCTION, PROBABILITY, AND
FEEDBACK

The question now, of course, is how to incorporate the
probabilistic measure of explanatory value into a
scheme that exploits expectation and feedback. With
the ad hoc measure, the explanatory value of a
hypothesis is increased if it fulfills the expectation of
another hypothesis, and decreased if its own
expectations are unfulfilled (Definition 3.3). With the
probabilistic version, a different strategy will be
adopted, whereby the set Γ of data items to be
explained is increased, as a result of feedback, to
include the outcome of testing the expectations of all
the candidate hypotheses. The tricky part is to augment
Γ in such a way as to include the absence of expected
data items as well as their presence.

First, the notion of a data set is widened to include
negated formulae. These will be used to represent
unfulfilled expectations.

Definition 7.1. An augmented data set is a conjunction
of the form (¬)ψ1 ∧ ... ∧ (¬)ψn, where each ψi is a data
item. �
The definition of an explanation now has to be
modified to cater for augmented data sets. The
important thing to note here is that there is no
requirement for an explanatory hypothesis to entail a
negated formula in the data set, but simply to be
consistent with it.

Definition 7.2. Let Γ be an augmented data set. Given a
background theory Σ , a conjunction φ  of atomic
abducible formulae is an explanation of Γ if, for all
positive formulae ψ in Γ,

Σ ∧ φ 
�

 ψ

and, for all negative formulae ¬ψ in Γ,

Σ ∧ φ �  ψ

and Σ ∧ φ is consistent. �
For this definition of explanation to be effective, non-
monotonicity needs to be introduced. Specifically, the
expectations of a hypothesis must be given the status of
defaults. In the same way that a noise term can be
introduced to fill in gaps in the explanation, an
abnormality term can be introduced to override a
default expectation that was unfulfilled. But when it
comes to calculating the explanatory value of a
hypothesis, the inclusion of an abnormality term, like
the inclusion of a noise term, is costly, as we’ll see
shortly.

Many of the formulae in the background theory Σ need
to be rewritten to turn them into default rules. For
example, Axiom (1) from Section 5 becomes,

[Line(w) ∧ FromTo(w,p1,p2) ∧
¬ Occluded(w) ∧ ¬ Abnormal(w) ∧

p3=Project(p1) ∧ p4=Project(p2)] →
∃ e [Edge(e) ∧ FromTo(e,p3,p4)].

Default reasoning can now be effected through
circumscription. Each hypothesis is circumscribed,
minimising the Abnormal predicate. No further details
will be given here, and from now on, all hypotheses
should be assumed to be implicitly circumscribed in
this way. Because only atomic abnormality formulae
are made abducible, the mathematics of this is
straightforward, always yielding simply the completion
of the Abnormal predicate. In real-world terms, the
abnormality predicate represents a whole raft of
circumstances that might explain the non-appearance of
an expected edge, such as poor lighting, lack of contrast
between foreground and background, occluding objects,
and so on.

The set F of abducible formulae has to be expanded to
include abnormality terms. In particular, let’s assume
the subset Fa of F now comprises both noise terms and
abnormality terms, each with prior probability pa.

We’re now in a position to define an augmentation
operator that adds both fulfilled and unfulfilled
expectations to a data set. First we make precise the
notion of an expectation.

Definition 7.3. Given a background theory Σ, the set of
expectations Exp(H) of a hypothesis H  comprises all
data items ψ such that,

Σ ∧ H  
�

 ψ �

Now we define the augmentation operator, and
introduce two new threshold values, θ2 and θ3 (Figure
4). Intuitively, the meaning of these thresholds is as
follows. If the value assigned to a data item is above θ1,
then that data item is assumed to be present, as before.



If it falls below θ3, then it’s assumed to be absent. And
if it falls between θ2 and θ1 then it’s assumed to present
if it was expected.

Figure 4: Data Item Thresholds

Definition 7.4. If Γ is a data set, then the augmented
data set Aug(Γ) is Γ ∪ P ∪ N, where,

•  P  is the set of all ψ  such that ψ  ∈  Exp(H) for
some H where VP(H,Γ) ≥ θ1, and the value of ψ
≥ θ2, and

• N is the set of all formulae of the form ¬ψ such
that ψ  ∈  Exp(H) for some H where VP(H,Γ) ≥
θ1, and the value of ψ < θ3. �

In the example of Section 4, if θ1=0.4, θ2=0.35, and
θ3=0.30, then Aug(Γ) = {F1, F2, F3, F4, F5, ¬F6}. So H1
contains only 1 noise term (for F5) to explain 6 data
items, while H2 contains 2 noise terms (to account for
F1 and F2) and one abnormality term (to account for
¬F6). If we let pa=0.1, this gives

VP(H1,Aug(Γ))=0.99

VP(H2,Aug(Γ))=0.01.

More realistically, if we let pa=0.5, we get,

VP(H1,Aug(Γ))=0.8

VP(H2,Aug(Γ))=0.2.

Either way, hypothesis H1 emerges as the clear winner,
as we would expect. Note that Aug(Aug(Γ))=Aug(Γ). In
other words, further applications of the Aug operator
have no effect in this case.

8 CONCLUDING REMARKS
The methods described above have been incorporated
in an implemented vision system for deployment on an
upper-torso humanoid robot which is currently under
construction at Imperial College (Figure 5). The robot
has two arms, each with three degrees-of-freedom, and
a pan-and-tilt head with stereoscopic vision. (The
exploitation of depth information from the stereo
cameras is one of many topics for further investigation.)
The robot’s forearms are mechanically constrained to
be parallel to the workbench in order to cut down on
degrees-of-freedom and simplify the control issues. In
its first incarnation, the robot will be equipped with
simple prods, not grippers or hands, at the ends of its
forearms.

The robot’s task is to survey a table-top cluttered with
objects. Most of the objects will be unfamiliar, but
some will be cuboidal. The robot’s perceptual system
needs to pick out these objects, and form a
representation of their locations and dimensions. The
robot, or a demonstrator, will nudge the objects, and the
robot must track familiar objects, increasing the quality
of its representations as the objects are viewed from
new angles and previously unseen parts become visible.
Initial experiments using the vision system described
are promising.

Figure 5: LUDWIG the Humanoid Robot

Several avenues of further research are being followed.
These include the use of more sophisticated forms of
high-level reasoning in the perceptual process, in order
to deal with occlusion and object persistence [Randell,
et al., 2001]. This necessitates taking account of the
ongoing actions of the robot and other agents
[Shanahan, 2000], ensuring that, as in work on animate
vision, the dynamics of the robot’s interaction with the
world enhance, rather than handicap, the perceptual
capabilities of the robot.
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