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Abstract
Building on earlier attempts to characterise robot perception
as a form of abduction, this paper presents a logical account
of active visual perception in the context of an upper-torso
humanoid robot. Using the event calculus to represent
actions and change, and aspect graphs to represent shape,
the formalisation captures the way the robot’s knowledge of
the objects in its workspace can increase through interaction
with them.

1 Introduction
The goal of contemporary research in cognitive robotics is
to endow robots with high-level cognitive skills by
deploying the traditional AI concepts of representation and
reasoning [Lespérance, et al., 1994]. With a few exceptions
[Pirri & Finzi, 1999; Pirri & Romano, 2002], most
cognitive robotics work to date has concentrated on the
issue of determining a robot’s course of actions, and has
assumed that perception is a black box that can supply, on
demand, facts about the world to a higher-level cognitive
component [Levesque, 1996; Scherl & Levesque, 2003].
Accordingly, the critical issue of how the transition is made
from raw sensor data to meaningful symbolic
representation is cast outside the theoretical framework
used to tackle cognition.

By contrast, in [Shanahan, 1996a] and [Shanahan,
1996b], a logical account of robot perception was given,
based on abduction, that draws a less sharp distinction
between cognition and perception. This formal abductive
treatment of perception has been influential in cognitive
vision [Cohn, et. al., 2003] and spatial reasoning [Hazarika
& Cohn, 2002; Remolina & Kuipers, 2004], and has found
application in several robotics projects [Shanahan, 2000;
Shanahan & Witkowski, 2001]. In [Shanahan, 2002], the
basic abductive account was extended to permit a
bidirectional flow of information between cognition and
low-level sensing, through the mechanism of expectation.
The result is a theoretical framework which, being
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expressed in the lingua franca of formal logic, has the
potential to embrace the full conceptual trinity of
cognition, action, and perception.

The chief contribution of the present paper is to
overcome a significant shortcoming in previous logical
characterisations of robot perception using abduction.
Specifically, while data from simple sensors has been
given an abductive gloss in a dynamic setting [Shanahan,
1997b; Santos & Shanahan, 2002], and richer (visual) data
has been given the abductive treatment in a static setting
(ie: single frames) [Shanahan, 2002], the abductive account
has yet to be extended to a rich sensory modality, such as
vision, in a dynamic setting. This extension is important
because, as researchers in active vision have demonstrated,
the extra data resulting from a robot’s interactions with its
environment, far from increasing the burden of
interpretation, can actually facilitate it through the
provision of vital new cues about the scene [Aloimonos, et
al., 1987; Ballard, 1991]. Accordingly, the present paper
offers a logical characterisation of active visual perception,
based on abduction.

The experimental setup for this work is an upper-torso
humanoid robot with a stereo camera, mounted on a pan-
and-tilt head, and two arms, each having three degrees-of-
freedom (Figure!1). This robot is mechanically simpler
than other humanoids that have recently been built in Japan
and the U.S.A., but is nonetheless sufficient for our present
purposes. The robot’s task is to identify “interesting”
objects on a cluttered workbench, and then to nudge them
using visual servoing.

Typically, the changes in position and orientation of a
nudged object will permit its shape to be pinned down
more precisely. It is this capacity to improve the
representation of a perceived object through interaction
with it that the new theoretical account must encompass. In
addition, the theoretical story has to some extent been
validated by implementation. This takes the form of an
abductive meta-interpreter, written in Prolog, which carries
out a dialogue with a C++ program that uses standard off-
the-shelf, low-level vision algorithms to pre-process
incoming data from the robot’s camera.

The paper is organised as follows. Section 2
recapitulates the basic idea of treating visual perception as



abduction, and introduces the notion of explanatory value.
Section 3 sketches an implementation of this abductive
framework. Section 4 shows how to use the event calculus
to give a dynamic account of perception, setting the scene
for Section 5, which presents a version of abduction
suitable for active vision. Finally, Section 6 applies this to
sequences of visual frames, using the idea of an aspect
graph.

Figure 1: LUDWIG the Humanoid Robot

2 Visual Perception as Abduction
Logically speaking, visual perception can be characterised
as follows [Shanahan, 2002]. Let S be a background theory
that captures the causal relationship between objects in a
scene and the low-level image data they give rise to. Then,
given a conjunction G of formulae representing a collection
of low-level image data, the job of perception is to find a
conjunction D of formulae such that,

S Ÿ D  G.

In other words, the idea is to find hypotheses about the
external world that would explain the visual sensor data the
robot has received. To rule out trivial or uninformative
explanations, certain restrictions must be imposed on the
nature of D. First, D must be consistent with S. Second, a
set of predicates is designated as abducible, and D must
mention only predicates from that set.

It’s clear from this definition that, in general, there will
be many Ds that can explain a given G. To distinguish
them, we can introduce a measure of the explanatory value
of a hypothesis. The main criterion to be met by this
measure is that it should assign higher explanatory value to
hypotheses that explain more data. Since the definition
above insists that D  fully explains G , this criterion is
achieved through the deployment of noise terms [Poole,
1995; Shanahan, 1997b]. These are formulae that “explain
away” items of sensor data as noise. The more noise terms
a hypothesis has, the less its explanatory value should be.

Here are the formal details. Let   

† 

D1KDn  be the set of all
hypotheses that explain a given G according to the above
definition. Given that one and only one of these hypotheses

can be the true explanation, and if none of the hypotheses
is subsumed by any other, we can assume   
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D1 ⊕K⊕ Dn .
Now, consider any hypothesis Dk, and let R be,
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where P(Dk) is the prior probability of D and P(R) is the
prior probability of R. From the form of R, we have,
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n

i=1
Â

Ê 

Ë 
Á 

ˆ 

¯ 
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For any hypothesis D of the form   

† 

y1 ŸLŸym , we have,

† 

P(D) = P(y j )
m

j=1
’ (3)

From equations (1) to (3), the posterior probability of
any hypothesis can be calculated, given the set of all
hypotheses, and this is taken to be its explanatory value
[Poole, 1993; Shanahan, 2002]. All that remains is to
assign suitable prior probabilities to the individual
conjuncts in a hypothesis, that is to say to each type of
formula y that can appear in a D. In practise, a hypothesis
comprises two types of formula — formulae that postulate
objects in the external world and describe their properties,
and noise terms. It should be clear from equation (3) that,
in general, a hypothesis explaining a portion of G with
multiple noise terms will have a lower explanatory value
than one explaining the same portion of G with a single
formula that postulates an object in the external world. In
this way, the definition of explanatory value meets its main
design criterion.

Figure 2: A Block and its Edges
To clarify all this, let’s take a look at an example.

Suppose the robot is interested in cuboidal objects, such as
Lego bricks. In the implemented system, the recognition of
such objects proceeds in two stages — first, the abduction
of trapezoidal regions from straight line edges, then the
abduction of cuboids from trapezoidal regions. Only the
first stage is considered in what follows. The left-hand side
of Figure 2 shows part of a sample image from one of the
robot’s cameras. The middle of the figure shows the result
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of applying a simple edge detection algorithm based on the
Sobel operator. An edge following algorithm can then be
used to extract seven prominent straight edges, as shown
on the right of the figure.

Now, let the formula Line(w,p1,p2) mean that there is a
visible line w  from point p1 to point p 2. Let G  be a
conjunction of formulae representing the seven edges
shown, including, for example, the following two
formulae.

Line(1,[238,157],[241,147])

Line(2,[240,159],[247,157])

Next, let the formula Region(r) mean that there is a
visible trapezoidal region r. Let the background theory S
include the following axioms.

$ p1,p2 [Line(w,p1,p2)] ¨ (L1)
$ r [Region(r) Ÿ SideOf(w,r)]

$ p1,p2 [Line(w,p1,p2)] ¨ Noise(w) (L2)

The first axiom explains the presence of a visible line by
the presence of a visible region, while the second axiom
explains away a line as mere noise. In addition, let S
include a set of constraints about regions. These will insist,
for example, that a (trapezoidal) region has only four sides,
and that certain spatial relationships hold between them.
Here’s an example.

[SideOf(w1,r) Ÿ SideOf(w2,r) Ÿ w1≠w2] Æ
[Parallel(w1,w2) ⁄ Joins(w1,w2)]

Next, suppose the Region and SideOf predicates are
abducible. Even with such a simple background theory,
there are several competing hypotheses for explaining G
according to the abductive definition. For example, let D1
be a hypothesis that posits two regions, one bounded on
three sides by lines 1, 2, and 3, and the other bounded on
three sides by lines 4, 5, and 6, with line 7 being explained
away as noise. The formulae comprising D1 will include
the following.

Region(R0)

SideOf(1,R0)

SideOf(2,R0)

Noise(7)

Let D2 be an alternative hypothesis that also posits a
region bounded by lines 4, 5, and 6, but whose second
posited region is bounded on two sides by lines 3 and 7. In
D2, lines 1 and 2 are dismissed as noise. (A less trivial S
would take account of partial sides.) Now suppose the prior
probability assigned to both Region and Noise formulae is
0.5. Then P(D1) = 0.125 and P(D2) = 0.0625. (SideOf

formulae are assigned a probability of 1, because they are
conditional on Region formulae, and can be ignored in the
calculation of explanatory value.) In other words, D1 has
greater explanatory value than D2 because it has fewer
noise terms, and properly explains more of the data.

Of course, as we can see from Figure 2, hypothesis D2 is
actually nearer the mark. There is indeed a surface bounded
by lines 3 and 7, and this surface constitutes one face of a
cuboidal object. The correct hypothesis comes out on top,
in this example, after stage two of the interpretive process,
which abduces cuboidal objects from trapezoidal regions.
However, for this to work, the abductive mechanism
requires the ability to test the expectations of a hypothesis.

3 Logic Programming Implementation
When the theoretical framework of [Shanahan, 2002] was
published, the accompanying implementation was still
under construction, so no details of it were given. A full
implementation now exists, and this forms the basis of an
ongoing project to implement the theory of active visual
perception presented below.

The core of the implementation is an abductive logic
programming meta-interpreter [Kakas, et al., 1992]. The
abductive meta-interpreter employs largely standard
techniques, with the following exception. Given a list of
data items G1 to G n, the procedure does not find an
explanation for G1, then an explanation for G2, and so on,
as a standard abductive procedure would. Rather, it finds
an explanation E for G1, and before moving on to consider
G2 fully, it finds out how much of G2 to Gn is already
explained by E. In this way, unpromising hypotheses that
explain very little of the sensor data can be weeded out
early. (The same issue is tackled in a somewhat different
way by Poole [1993].)

The core abductive meta-interpreter is embedded in a
procedure that carries out low-level tests on the raw image
to confirm or disconfirm the expectations of the hypotheses
under construction. The procedure uses the following
algorithm. First, a list of promising hypotheses is formed.
These are then ranked according to explanatory value.
Then, each of the best M hypotheses has its expectations
confirmed or discomfirmed. The hypotheses are then
ranked again, according to their updated explanatory
values, and the best N are picked. The parameters M and N
must be adjusted to ensure efficiency without loss of useful
hypotheses.

The present implementation has two components. The
abductive meta-interpreter is written in Prolog. But all the
low-level image processing is carried out by a C++
program, which also has executive control. As the
implementation currently stands, the user interacts directly
with the C++ program via a GUI, and selects a region of an
image for attention. A Sobel edge detector then finds all
straight line edges over a certain length within the selected
region. These are passed to the Prolog-based abductive
meta-interpreter, which finds the best explanations
according to the method outlined above.



In the current implementation, the expectations of a
hypothesis are straight line edges, represented by their end-
points. In order to confirm/disconfirm an expectation, the
abductive meta-interpreter forwards these end-points to a
routine in the C++ program, which runs a highly sensitive
edge-checking algorithm to gauge whether there might be
an edge between  them. This algorithm picks up far fainter
edges than the original edge finder, but is only ever run on
a pre-selected pair of points where there is already the
expectation of an edge.

The existing implementation works well for simple
examples, such as the one in Figure 2. But it is only a
proof-of-concept, and there is a great deal about it that
might be varied. For example, the basic techniques can
easily be adapted to take their input from other kinds of
low-level image processing technique, such as colour-
based segmentation, stereo matching, or optical flow. The
use of each of these is under investigation. In addition,
since sensor fusion can be accommodated within the
theoretical framework of abduction, work is also being
carried out to see how multiple sources of low-level data
might be exploited.

4 Abduction and Active Perception
One of the motivations for active perception is the
prodigious quantity of raw data available to a robot’s
sensors, especially to vision. Only a small portion of that
data can be processed in real-time. Therefore, techniques
are required that will focus attention on potentially the
most useful data. For example, most mammals instinctively
move their eyes and head so as to rapidly centre the visual
field on a potential source of danger. The selection of data
can also be made in such a way as to facilitate the piece-
by-piece construction of an increasingly complete and
accurate model of the world, and this can be done through
expectation.

In essence, perception, cognition, and action must act in
concert to carry out what philosophers of science call
hypothetico-deductive reasoning. This comprises three
steps. First, the most promising hypotheses are formed that
might explain the sensor data. This process was formalised
in Section 2. Second, the expectations of competing
hypotheses are deduced. Third, those expectations are
tested by carrying out experiments. The value of a
hypothesis is reduced if its expectations are unfulfilled,
while the value of a hypothesis increases if its expectations
are met.

In the example of Section 2, the hypothesis that there is a
long two-colour block that includes a face bounded by
lines 3 and 7 is in competition with the hypothesis that
there is a short white block that includes a face bounded by
lines 1 and 3. These hypotheses have differing
expectations. According to the first (correct) hypothesis,
for example, line 2 should extend further to the left to meet
line 7. According to the second (incorrect) hypothesis,
there should be a nearly vertical line running down from
the point where lines 5 and 6 meet. Various actions could

be performed to test these expectations. The robot could
nudge the object to see it from a new angle, it could move
its head to get a better view, or (as discussed in [Shanahan,
2002]) it could simply locally adjust the threshold of the
edge detection procedure to make it more sensitive.

The emphasis of the present paper is on robot actions
that bring about informative changes to its environment —
the act of nudging the block is an example — and the aim
is to devise a logic-based theory of perception that takes
such actions into account. But to accommodate informative
change, the basic abductive prescription of Section 2 must
be extended fairly dramatically. Three distinct
modifications are required.

1. In the preceding abductive definition of visual
perception, the background theory S describes a
static world. In the extended version, it must allow
for change, actions, and events.

2. The preceding definition produces a single
hypothesis from a single frame. The extended
version must generate an ever-improving series of
hypotheses in response to a continuous sequence of
frames.

3. For the preceding definition, the issue of tracking
doesn’t arise. By contrast, in the extended version,
an explanation of the sensor data has to incorporate
hypotheses about likely correspondences between
features in successive frames.

To begin with, let’s see how the basic abductive
definition can be made to take account of actions and
events. This requires the adoption of a logic-based
formalism for reasoning about action [Shanahan, 1997a].
This paper uses the event calculus, which has already been
successfully applied to robot perception [Shanahan,
1996a], though not to vision. The ontology of the event
calculus includes actions, fluents, and time points. The
basic axioms, adapted from [Shanahan, 1999], are as
follows.

HoldsAt(f,t) ¨ Initially(f) Ÿ ÿ Clipped(0,f, t) (EC1)

HoldsAt(f,t2) ¨ (EC2)
Happens(e,t1) Ÿ Initiates(e,f,t1) Ÿ t1 < t2 Ÿ

ÿ Clipped(t1,f,t2)

Clipped(t1,f,t3) ´ (EC3)
$ e,t2 [Happens(e,t2) Ÿ t1 < t2 < t3 Ÿ

[Terminates(e,f,t2) ⁄ Releases(e,f,t2)]]

The formula HoldsAt(f, t) means that fluent f is true at
time t , Ini t ia l ly( f) means that f  is true at time 0,
Happens(e,t) means that an action of type e occurs at time
t, Initiates(e,f,t) means that fluent f starts to hold after an
action of type e at time t, Terminates(e,f,t) means that f
ceases to hold after an action of type e at time t, and
Releases(e,f,t) means that fluent f  is not subject to the



common sense law of inertia after an action of type e at
time t. The frame problem is overcome by applying
predicate completion to Happens , Initiates, Terminates,
and Releases [Shanahan, 1997a].

The background theory S now incorporates axioms
(EC1) to (EC3), and includes a collection of Initiates,
Terminates, and Releases formulae that describe the effect
of robot actions on the world, and the consequent impact of
the world on the robot’s sensors. The basic abductive
characterisation of perception can then be upgraded as
follows. Given,

• a narrative Y of robot actions expressed in terms
of Happens formulae, and

• a description G of sensor data expressed in terms
of HoldsAt formulae,

the task of perception is to find descriptions D of objects in
the environment such that,

S Ÿ Y Ÿ D  G.

As usual, D must be consistent and can mention only
abducible predicates. Competing Ds can be ordered using
the measure of explanatory value defined in Section 2.

5 Abducing Visual Events
With its capacity to represent robot actions and their
effects, the modified abductive formulation of Section 4
can encompass various forms of active perception. In
[Shanahan & Witkowski, 2001], for example, a similar
definition is used to characterise the perception of a mobile
robot with infra-red proximity sensors as it explores an
unknown office-like environment. In this case, the sensor
events are very simple. — The forward proximity sensors
go high when the robot encounters an obstacle, the left-
hand proximity sensors go low when it passes an open
doorway, and so on. — The detection and classification of
visual sensor events, on the other hand, is more subtle, and
presents a far greater challenge to a logic-based approach.
Shortly, we’ll see an example of the use of the event
calculus to define a class of visual events using the idea of
an object’s aspect graph [Koenderink & van Doorn, 1979].
But the next step is to tailor the foregoing treatment of
perception to sequences of camera frames.

First, rather than a single hypothesis, the abductive
process must generate a sequence of hypotheses
D1,D2,...,Dn in response to a sequence of frames
G1,G2,...,Gn. Second, since there is nothing in the raw data
to link features in one frame with features in the next, the
abductive definition has to be extended to deal with these
inter-frame correspondences explicitly. Fortunately, the
help of an off-the-shelf tracking algorithm can be enlisted
here, such as the feature-based KLT tracker [Shi &
Tomasi, 1994]. The tracker can supply a list of apparent
correspondences to prime the abductive process. However,
the final responsibility for deciding whether the apparent

identity of two features is real or not should be left to the
abduction.

These considerations lead to the following definition. As
before, the background theory S must contain axioms
(EC1) to (EC3), and has to describe both the effects of
robot actions on the world and the impact of the world on
the robot’s sensors, in this case its vision system. However,
to strengthen the effect of formulae that constrain the
permissible hypotheses, which up to now have been
included in S, they can now be conjoined in a formula SIC,
which appears on the right-hand-side of the turnstile. This a
standard manoeuvre in the abductive logic programming
literature, where such formulae are called integrity
constraints [Kakas, et al., 1992]. Given,

• a hypothesis Di describing objects in the world,
• a narrative Y of robot actions,
• a description G of a single frame of raw image

data, and
• a description F  of apparent correspondences

between features in G and features in Di,
the task of perception is to find Di+1, and DC, where,

• Di+1 is a description of objects in the world, and
• DC is a set of hypothesised correspondences

between features in G and features in Di+1

such that,
• Di+1  Di, and
• S Ÿ Y Ÿ Di+1 Ÿ DC  G Ÿ F  Ÿ SIC.
The usual restrictions apply to Di+1, and DC. They must

be consistent, and can mention only abducible predicates.
Note that the form of abduction defined in Section 2 is a
special case of the new definition, in which Di, DC, F, and
SIC are all empty.

In the next section, this definition is used to capture a
form of active visual perception in which a humanoid robot
manipulates objects in its workspace, thereby causing them
to present a series of different aspects to the robot’s view.
Because only certain sequences of aspects are possible for
an object of a given shape, by nudging it around, the
expectations of competing hypotheses about the nature of
the object can be tested.

6 Aspect Graphs and the Event Calculus
In [Koenderink & van Doorn, 1979], attention was drawn
to the fact that slight rotations of an object typically do not
bring about a qualitative change in the aspect it presents to
the viewer. Indeed, for simple regular-sided 3D shapes, the
number of qualitatively distinct aspects they can present is
small, and only certain transitions between these aspects
are possible. These can be represented in a graph, known as
the shape’s aspect graph, in which qualitatively distinct
aspects are the nodes and the possible transitions between
them are the arcs (Figure 3). In the terminology of



qualitative spatial reasoning, an aspect graph represents the
structure of a conceptual neighbourhood [Cohn &
Hazarika, 2001].

Aspect graphs are well-suited to the representation of
shape in the context of an upper-torso humanoid, since

knowledge of each object in such a robot’s workspace is
acquired through the aspect it presents to the robot’s
camera, and that aspect can change as a result of the the
robot’s arm movements.

Figure 3: Partial Aspect Graphs of a Cuboid and a Wedge
In what follows, the formula Arc(s,y1,y2) means that

there is an arc between aspect types y1 and y2 in the aspect
graph representing shape s. In particular, the shapes Cuboid
and Wedge will be assumed. The cuboid or wedge aspect
types labelled n in Figure 3 are denoted, respectively, by
the terms Wedge(n) or Cuboid(n).

Section 2 of the present paper presented an abductive
account of the transition from edges in an image to
hypothesised regions. This is the first stage of abduction in
what is in fact a three-layer process. The next task is to
extend this account to the second layer — the transition
from regions to aspects. Then, with the introduction of a
temporal dimension, the formalisation can be further
extended to the third layer — the transition from sequences
of aspects to 3D shapes.

In anticipation of the introduction of time, predicates that
have up to now been atemporal must now be regarded as
fluents, and are therefore reified using the HoldsAt
predicate. For example, where previously we wrote
Region(r), we now write HoldsAt(Region(r),t). First-layer
axioms such as (L1) and (L2) in Section 2 must be
amended accordingly. Here’s an example of an axiom that
will be included in the second-layer background theory S.
The second-layer description G of the raw data comprises
formulae of the form HoldsAt(Region(r),t). These are
supplied by the first layer of abduction. In effect, the
disjunction of all the Ds output from the first layer becomes
the G input to the second layer.

HoldsAt(Region(r),t) ¨ (R1)
$ x,v,a [HoldsAt(Occupies(x,v),t) Ÿ

HoldsAt(Aspect(x,a),t) Ÿ RegionOf(r,a)]

The fluent Occupies(x,v) means that object x occupies
the 3D volume of space v. In effect, the assertion that there
exists an x and v such that HoldsAt(Occupies(x,v),t) means
that object x exists at time t in a physical sense (in addition
to the purely logical sense). The fluent Aspect(x,a) means
that object x is presenting aspect a to the viewer. Note that
a  is an aspect instance not an aspect type. Used

abductively, this axiom explains a visible region in terms
of a physical object and the 2D aspect it instantaneously
presents.

In addition, the following formula will be among the
integrity constraints in SIC. The formula Type(a,y) means
that aspect a is of type y. The formula Shape(x,s) means
that object x has shape s, where a shape is represented as an
aspect graph.

HoldsAt(Aspect(x,a),t) Æ (R2)
$ s, y1,y2 [Type(a,y1) Ÿ Shape(x,s) Ÿ Arc(s,y1,y2)]

The Shape predicate is made abducible at the second
layer of abduction, alongside Occupies  and Aspect.
Without the addition of this integrity constraint, hypotheses
are not obliged to suggest a shape for each object they
posit. Indeed, as Pylyshyn argues, it is sometimes
necessary to provide “a direct (preconceptual, unmediated)
connection between elements of a visual representation and
certain elements in the world [that] allows entities to be
referred to without being categorized or conceptualized”
[Pylyshyn, 2001]. However, the inclusion of (R2) will be
assumed in what follows.

The role of the third layer of abduction is to make
hypotheses about a moving object’s overall 3D shape based
on its changes of aspect. To see how this final layer works,
we’ll formalise an example of active perception with a
humanoid robot, in which the robot nudges an object in
order to see it from a new angle. In what follows, the terms
Move(x ) and Stop(x) respectively denote the actions of
setting object x in motion and stopping it. The fluent
Changing(x ,a ) holds when object x  is in motion and
presenting a changing aspect a. (In general, if an object is
presenting a changing aspect to the viewer, then some of its
faces are shrinking while others are expanding.)

Initiates(Move(x),Changing(x,a),t) ¨ (A1)
HoldsAt(Aspect(x,a),t)

Terminates(Stop(x),Changing(x,a),t) (A2)



While an object is stationary, the Aspect fluent is subject
to the common sense law of inertia. But between a Move
and a Stop action, the Aspect fluent becomes non-inertial,
and its value becomes dependent (in a trivial way) on the
Changing fluent.

Releases(Move(x),Aspect(x,a),t) (A3)

Initiates(Stop(x),Aspect(x,a),t) ¨ (A4)
HoldsAt(Aspect(x,a),t)

HoldsAt(Aspect(x,a),t) ¨ (A5)
HoldsAt(Changing(x,a),t)

If an object is presenting a changing aspect, then it is
heading towards an aspect transition. Let Trans(x) denote
an event that occurs when object x undergoes a qualitative
change in aspect. The time at which this transition occurs
will depend on the exact trajectory of the object’s motion.
However, this trajectory is neither knowable, nor relevant
at a qualitative level of abstraction.

For this reason, a non-inertial “determining fluent” is
used to substitiute for the details of the trajectory
[Shanahan, 1999]. In general, the formula ByChance(f,t)
means that the determining fluent f holds at time t. In an
abductive context, the ByChance  predicate is made
abducible, allowing actions with non-deterministic effects
to be handled correctly, or, as in the present case, events
with a non-deterministic time of occurrence. In the
following axiom, the term D e l a y (x ,d ) denotes a
determining fluent that holds when the time to the next
aspect transition for object x is d.

Happens(Trans(x),t2) ¨ (A6)
$ e,t1,x,a,d [Happens(e,t1) Ÿ

Initiates(e,Changing(x,a),t1) Ÿ
ÿ Clipped(t1,Changing(x,a),t2) Ÿ

ByChance(Delay(x,d),t1) Ÿ t2 = t1 + d]

The effect of a Trans(x) action is that object x presents a
new aspect to the viewer. The particular new aspect
presented depends on various factors that are, again,
neither knowable nor relevant at a qualitative level, such as
the object’s precise initial orientation and location.
Accordingly, another determining fluent is used to conjure
away these details in the formalisation. The determining
fluent AtTrans(x,a) holds if object x  is on the point of
transition to aspect a.

Initiates(Trans(x),Changing(x,a),t) ¨ (A7)
ByChance(AtTrans(x,a),t)

Terminates(Trans(x),Changing(x,a),t) ¨ (A8)
HoldsAt(Changing(x,a),t)

The use of this determining fluent may seem like a form
of “cheating” here. But the trick is to impose further
constraints on the permissible aspect transitions based on

the set of aspect graphs of known object shapes. Here’s an
example of such a constraint, which is to be included in
SIC.

Initiates(Trans(x),Changing(x,a2),t) Æ (A9)
$ a1,y1,y2,s [HoldsAt(Aspect(x,a1),t)  Ÿ

Type(a1,y1)Ÿ Type(a2,y2) Ÿ
Shape(x,s) Ÿ Arc(s,y1,y2)]

When these axioms are used abductively, the Shape
predicate is again made abducible, and the function of this
integrity constraint is to reduce the set of shapes that can be
hypothesised for a given object to those that are consistent
with some known aspect graph. The upshot is that, with
each new aspect an object presents, the perceptual system
gets closer to identifying its shape uniquely.

Figure 4: Two Views of a Block
Now let’s look at an example of the third layer at work.

(In what follows, the issue of tracking and finding inter-
frame correspondences will be set aside, for the sake of
simplicity.) Figure 4 shows, in an idealised and
exaggerated way, two successive frames depicting a block
from different angles, both taken after the robot has
executed a Move action. In the left-hand frame, taken at
time T1, part of the block is obscured by a shadow which
has generated a false edge along the side of the block and
hidden three of the other edges. Suppose there are two
known shapes — a cuboid and a wedge. Let G1,1 and G1,2
correspond to two second-layer hypotheses that explain
this frame in terms of, respectively, a cuboid and a wedge.
The input G to the third layer will be G1,1 ⁄ G1,2. Suppose
G1,1 includes the following formulae.

HoldsAt(Occupies(X,V1),T1)

HoldsAt(Aspect(X,A1),T1)

Type(A1,Cuboid(2))

Shape(X,Cuboid)

And suppose G1,2 includes the same first two formulae,
plus the following.

Type(A1,Wedge(1))

Shape(X,Wedge)

Given this frame alone, the third layer of abduction
trivially generates two corresponding hypotheses using



axiom (EC1). The first hypothesis D1,1 includes the
following formulae.

Initially(Occupies(X,V1))

Initially(Aspect(X,A1))

Type(A1,Cuboid(2))

Shape(X,Cuboid)

The second hypothesis D1,2 is analogous, but for a wedge
shape. Because of the shadow, neither hypothesis is
assigned a significantly higher explanatory value than the
other. As we’ll see, when the second frame, taken at time
T2, is taken into account, the ambiguity is resolved. Let the
new input to the third layer be G =  G2,1 ⁄ G2,2, where G2,1
and G2,2 correspond to two second-layer hypotheses that
explain the second frame, again in terms of, respectively, a
cuboid and a wedge. So G2,1 will include the following
formulae.

HoldsAt(Occupies(X,V2),T2)

HoldsAt(Aspect(X,A2),T2)

Type(A2,Cuboid(3))

Shape(X,Cuboid)

G2,2 will be analogous, but for a wedge shape, and in
particular will include the following formula.

Type(A2,Wedge(3))

Shape(X,Wedge)

Now consider a third-layer hypothesis D2,1 that includes
all the formulae in D1,1 plus the folrmulae,

ByChance(Delay(X,d),T1)

ByChance(AtTrans(X,A2),T1+d)

for some d  such that T1+d  < T 2. Assuming S and SIC
contain all the relevant formulae from above and Y
describes the robot’s Move  action, then D 2,1 is an
explanation for G, according to the definition in Section 5.
In other words, we have,

S Ÿ Y Ÿ D2,1  G Ÿ SIC.

In particular, thanks to axiom (A6), D2,1 entails the
occurrence of a Trans(X ) event at time T 1+d, which
initiates the fluent Changing(X,A2), where the type of A2 is
Cuboid(3). By contrast, the competing hypothesis D2,2, in
which X is a wedge, is not an explanation. This is because,
while D2,1 is consistent with the constraint (A9), D2,2 is not.
This, in turn, is because the transition from Wedge(1) to
Wedge(3) is not permitted by the aspect graph.

7 Concluding Remarks
There are several major strands of further research in
pursuit of the theoretical ideas in this paper. First, the
repertoire of shapes that can be handled by the background
theory S  must be widened. The large body of extant
literature on aspect graphs can be exploited here. Other
kinds of conceptual neighbourhood diagram can also be
used. For example, in [Randell, et al., 2001], an occlusion
calculus is developed which maps three-dimensional
bodies and viewpoints to their corresponding two-
dimensional images, and identifies an exhaustive and
pairwise disjoint set of visual occlusion relations. When
worked into the event calculus, the resulting conceptual
neighbourhood diagram can be used to abduce the spatial
arragement of bodies in space to explain the spatial
relations on their corresponding detected images.

In addition to working on these knowledge
representation issues, a larger body of off-the-shelf low-
level vision techniques (such as stereo matching, optical
flow, and colour-based segmentation) must be recruited to
supply cues for the high-level abductive process.
Abductive techniques for effecting a logic-based merging
of low-level data from several such sources are also under
investigation, drawing on existing work in the field of
sensor fusion.

Although the emphasis of the present paper is
theoretical, implementation of the framework described
here is well underway, along the lines indicated in Section
3. At the time of writing, the high-level abductive
reasoning component is complete and working well with
single frames. Work is ongoing to get the system to
assimilate multiple frames, and to close the loop so that the
robot can nudge the objects it has recognised
autonomously.
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