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a b s t r a c t

This paper presents a model of long-range cortical communication by means of a global neuronal
workspace similar to that proposed by Dehaene and Naccache (2001). The model resembles that of
Shanahan (2008), which was based on reverberating circuits of one-to-one connections, but uses a
stochastic wiring regime in place of the highly regular scheme used there. The paper offers a systematic
analysis of the influence of certain parameters on the dynamics of networks built according to this regime.
Armed with a fuller understanding of the origins of the observed behaviour in the model, the qualitative
behaviour of the previous model is replicated, and further unexplored choices are examined for ongoing
work.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Though most cognitive neuroscientists agree that the human
brain integrates information from many different sources across
functional modalities, it is still unclear how this is accomplished
from an architectural and dynamical point of view. One theory
which attempts to account for some of this information integration
is Global Workspace Theory. Originally put forth and developed by
Baars (1988, 2002), Dehaene and Naccache (2001), Dehaene, Ker-
szberg, and Changeux (1998) and Dehaene, Sergent, and Changeux
(2003) used neural imaging data and neuropsychological testing to
further postulate that the architecture presented by this theory is
instantiated in the brain as a Global Neuronal Workspace (GNW).

Highlighted in the GNW is the role of neurons with long-range
cortico-cortical connections, allowing communication between
otherwise topologically and functionally distinct areas. Dehaene
et al. (2003) hypothesized that access to and mobilization of these
neurons accounted for several seemingly unconnected observa-
tions in neuropsychological testing data, such as correlation across
distant regions and sustained activity in certain areas of the cortex.
They then built a neural network model of cortical columns com-
peting for access to this GNWand tested it according to a simulated
paradigm borrowed from neuropsychology, the attentional blink.
The predictions of the GNW continue to be tested and confirmed at
present (e.g. Marzouki & Grainger, 2007; Van den Bussche, Segers,
& Reynvoet, 2008).

While modelling access alone to the nominal GNW provided
interesting results as well as further avenues of investigation,
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Shanahan (2008) extended the modelling of this structure to
include the dynamics and interactions of the set of excitatory
neurons with long-range connections to and from different areas,
that is to say the hypothesized workspace neurons themselves.
This work emphasized the central role of two particular aspects
of the dynamics of the workspace neurons: broadcast and
reverberation.

Broadcast is the ability of this set of neurons to disseminate
patterns of activation acrossmany otherwise disconnected groups,
preserving the information inherent in their spatiotemporal
structure. By utilizing the network of long-range connections
afforded by a GNW, distant and functionally separate groups of
neurons can coordinate and communicate.

Reverberation refers to the tendency of such a structure
to sustain a pattern of activation over an extended period of
time, usually through recurrent connections. This is not a new
concept—synaptic reverberation has been thought to underlie
persistent neural activity for 30 years and has been studied as a
potentially critical aspect of working memory (e.g. Durstewitz &
Seamans, 2006; Wang, 2001), and decision-making (Lo & Wang,
2006; Wang, 2002), amongst other things. Many of these studies
specifically focus on the investigation and emergence of bistability
between reverberation and decay of activation in neural dynamics
(e.g. Bentley & Salinas, 2004; Kalitzin, van Dijk, & Spekreijse, 2000),
but the overall effect of a sustained neural pattern of activation is
shared as a predicted quality of a GNW.

Bringing the ideas of broadcast and reverberation together in
a GNW framework, we present a model to investigate the role of
the set of neurons with long-range connections within otherwise
unconnected groups of neurons, in other words, the dynamics of
a GNW-like network. The main aim of the presented work is to
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confirm the expected GNW behaviour using a less constrained
model with fewer parameters, and a potentially more biologically
plausible setup than previous models.

While the currently presented model removes some parame-
ters and constraints from previous work, there are still distinct
choiceswhich could be questioned. Our goal is to present thiswork
as a useful step towards exploring a space of possible instantiations
of theGNWconcept, inwhich this particular stochastic setup is one
point, the model presented in Shanahan (2008) is another, and the
information integration acrossmany different sources instantiated
in the human brain may be another.

In this paper we first discuss the model as a whole, and the
construction of a GNW-like structure within that model, paying
special attention to the reasoning behindmany of the choicesmade
during this construction. We then single one parameter of the
model out for the in-depth study, the scaling factor for synaptic
weights, and analyse the changes in model behaviour due to
varying this parameter over a broad range of values. Furthermore,
we describe the implementation of this GNW in awidermodel and
reproduce results fromsimilarwork as a proof-of-concept exercise.
Finally, we discuss future work with this type of model and the
exploration of the space of possible instantiations of the GNW as a
whole.

2. The model

The model consists of a single set of 1600 spiking neurons
representing the workspace (1280 excitatory, 320 inhibitory) and
several separate groups of neurons attached to the workspace
representing functionally distinct neuronal clusters, or specialists,
each with 2048 spiking neurons (1638 excitatory, 410 inhibitory).
The ratio of roughly 4:1 excitatory to inhibitory neurons matches
earlier findings regarding such ratios in the mammalian cortex
(Binzegger, Douglas, & Martin, 2004; Gabbott & Somogyi, 1986).
The specialist areas should be considered as distant from each
other, the only connections between them being mediated by the
workspace (Fig. 1). The specialists are reciprocally connected to a
range of workspace neurons—the spatially nearest set of neurons
in the workspace. Neurons within a single specialist area are
also densely connected to each other but are not connected to
neurons in a different specialist area except via the workspace.
For some experiments (see Section 4), a competition is built in
to two neighbouring specialists, such that they each react to the
same input state, but with different responses. All such cases are
accompanied by an additional layer of diffuse lateral inhibition
between the two specialists.

The workspace neurons are organized as two one-dimensional
rings: onewith excitatory neurons, connected to each other in self-
excitatory cycles of long-range connections in order to best reflect
the underlying concepts of reverberation (self-excitatory cycles)
and broadcast (long-range connections), and one with inhibitory
neurons, connected diffusely to and from the excitatory neurons
(see Section 2.1 and Figs. 2 and 4). It is important to note that the
ring organization represents a spatial embedding, not the actual
connectivity. It is from this spatial embedding that a distance
metric is defined, and thus neurons are connected according to
long- or short-range connectivity rules (see Sections 2.1 and 4.1
for more detail).

A state of activation can start and be sustained in theworkspace
while propagating quickly to different localities via the excitatory
cycles, eventually to be picked up by the specialists. One or
more of these specialists may respond to the state of workspace
activation and will attempt to influence the workspace in turn.
Fig. 1. Overall schematic of the model. Connections within the workspace area
(WS) allow for broadcast and reverberation of a state, while connections within
the specialist areas (S1-3) allow them to learn a spatiotemporal pattern in order to
have an effect on the state in the workspace. Connections between the workspace
and the specialist areas are highly focal and have only a small spread of conduction
delays, allowing for the maintenance of the spatiotemporal properties of a state
of activation between the different areas. S2 and S3 are arranged as competing
neighbours, with lateral inhibition. Circled sections of the workspace denote the
range of workspace neurons to which each specialist is connected.

a b

Fig. 2. (a) The neuronal workspace ring arrangement before being connected. (b)
An example of a cycle of connections (A→ B→ C → D→ E → A). Each neuron
would be connected in one and only one cycle of this type. The distance parameter is
typically chosen so that this occurs after an average of four or five neurons, usually
sufficient to have a representative in any part of the workspace where a specialist
area might be attached.

Diffuse inhibition in the workspace increases as total workspace
activation increases, keeping total activation in the workspace
from continually growing. Only a new state driven directly by
a specialist will be capable of taking over the workspace to be
broadcast. After this competition, therewill only be trace remnants
of the previous reverberating state.

For a spatiotemporal pattern to be transmitted from specialist
to workspace to the other specialists, it is important that the
spatiotemporal properties of a state of activation be preserved.
To this end, connections between different neuronal groups (e.g.
from specialist area 1 to the workspace) are focal with only a small
spread in conduction delay. In addition, the cycles of excitatory
connections in theworkspace have no connections between cycles,
and a workspace neuron belongs to one and only one cycle. This
ensures that a state of activation reaching the workspace does not
subsequently smear across other possible states.

The workspace could theoretically be connected to any
number of specialists, and a more complete model might have
neighbouring specialists attached all around the workspace. The
dynamics studied here, however, requires only the use of three
specialist areas, and this is chosen to minimize run times of the
model, thus allowing for more in-depth study of the parameters
involved.
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Fig. 3. Psuedo-code to describe the construction of connections between the
excitatory neurons of the workspace. Key: α → short-distance parameter, x →
label of the current neuron, y → label of the previous neuron, z → label of the
first neuron in this cycle, A → set of all neurons available for connection, B →
set of all neurons unavailable for connection just for this cycle, C → set of all
neurons already connected in a cycle, D → set of all ‘orphan’ neurons, neurons
with no possible long-range connections in the current setup.

2.1. Workspace structure and connectivity

The key to understanding the construction of the workspace
area of neurons lies in grasping the principles and rules by which
the self-excitatory cycles of long-range connections are created.

The neurons contained in the workspace are distinguished in
this model from neurons in the specialist groups as those neu-
rons which have long-range, reverberation-inducing connections,
appropriate for sustained broadcast. All connections within the
workspace are constrained to be of long range by ensuring that the
distance between any two connectedworkspace neurons is greater
than a predefined parameter, α. The distance between neurons is
measured by the number of neurons which lie between them on
the ring via the shortest path.1

Next, the workspace neurons should promote reverberation via
these long-range connections. To this end, self-excitatory cycles,
loops of neuronal connectivity, are created such that neuron A→
B → C → D → E → A (Fig. 2(b)). Keeping with the minimum
distance parameter, each of these neurons is in a distant part of
the workspace compared to the other neurons in that cycle. The
neurons of a given cycle act as representatives of the activity of
the cycle for that specific area of the workspace, and hence for any
specialists attached to that area of the workspace. If A is active, it
will in turn activate B, C , and eventually A again, and this will be

1 An actual distance (in millimeters, for example) could be assigned to the ring
and neurons placed on the ring according to a density function. However, we find
this to be unnecessary in this model. Such an approach can be compared with
Izhikevich, Gally, and Edelman (2004) where neurons are placed on the surface of
a sphere and biologically significant distances are used. An accurate model of the
brain would be much larger in scale than the order of thousands of neurons used
here, and would benefit from such an organization. However, the aim of this paper
is to explore some of the underlying concepts, parameters and behaviours of this
type of network in depth, and this is made feasible by using a smaller model.
sustained until stopped by inhibition. This occurs either in the form
of slow decay with time, or an abrupt and rapid decay of the state
caused by a competing state entering the workspace.

It is also assumed for this model that the only role of
this communication infrastructure is to broadcast and sustain
activation. This means a state of activity of neurons passing
through the workspace does not change, with some allowances
made for a reasonable level of decay in the state. To accomplish
this, the cycles of connections cannot overlap—each neuron in the
workspacemust belong to one and only one cycle, and connections
between cycles are disallowed.

Aside from the aforementioned restrictions, all connections
within the workspace are assigned stochastically in order to
remove any organizational biases that a more strictly engineered
approach may produce. The process of making connections
between the workspace neurons using these restrictions is
described by the pseudo-code in Fig. 3.

Typically, we choose a distance parameter of α = 192, which,
for a workspace of 1280 excitatory neurons, gives an average
circuit size of approximately 5 neurons and 256–260 total circuits
in the workspace, with very little variation. This allows for natural
comparisonwith the one-to-one connections between five distinct
workspace areas of 256 neurons each in Shanahan (2008). Despite
this natural comparison, however, it should be noted that there are
several significant deviations from thework described in Shanahan
(2008):

1. The treatment of the GNW as the one set of neurons with
stochastic connections, governed by certain rules, which are
chosen to emphasize the aforementioned dynamics. This is in
place of the highly engineered ‘workspace areas’ with one-to-
one connections and direct mappings in Shanahan (2008).

2. The exclusion of special ‘access areas’ to act as mediums
between neuron clusters and the workspace itself.

3. The connectivity of each workspace neuron is reduced—
each excitatory workspace neuron stimulates only one other
excitatory neuron, while each excitatory workspace neuron in
Shanahan (2008) stimulates two other excitatory workspace
neurons.

Both approaches, and indeed an entire spectrum of possible
approaches, can provide different functionality and raise different
questions; however, these are beyond the scope of the current
work. These particular choices were made in an attempt to create
a less constrained model: a single general space of neurons for
the GNW rather than an arbitrary number of workspace areas, the
removal of excess areas with non-obvious justification or function,
and the use of themost reduced connectivity scenario.While some
constraints still remain in this model, the removal of constraints
from previous models is an important step. Fewer constraints can
clarify the mechanistic role of parameter choices in the model, as
well as of the remaining constraints. Ultimately, continuedwork in
this direction could lead to conditions (necessary and/or sufficient)
for a model to retain the important dynamics observed here and in
previous work.

The organization of the excitatory workspace neurons is based
on the principles of promoting reverberation and broadcast, and
keeping a state of activation distinct from other possible states of
activation. The connections of the workspace inhibitory neurons,
on the other hand, are organized to reflect the ability of a
new state entering the workspace to inhibit and subsequently
knock out a currently reverberating state. The desired effect
can be summarized as the one that samples the total activation
of the workspace, independent of the circuit construction and
inhibits diffusely proportional to the activation in the workspace.
With this in mind, the inhibitory neurons are set as a separate
ring, concentric to the first (Fig. 4 (a)). The inhibitory neurons
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Fig. 4. (a) Spatial organization of workspace inhibitory neurons. (b) The inputs and
outputs of a typical inhibitory neuron. Inputs are locally organized, while outputs
are randomly assigned. For a workspace of 1280 excitatory neurons, there are 320
inhibitory neurons, each with 200 inputs and outputs.

take diffuse input from many local excitatory neurons, and then
randomly and diffusely inhibit the rest of the workspace when a
certain level of activity has been reached (Fig. 4(b)).

The theoretical ideal setup is the one where there is no
inhibition for an accepted level of workspace activity, and
non-zero inhibitory activation when workspace activity exceeds
this—representing, for example, an additional state entering the
workspace. This would inhibit activation in the workspace until
it is reduced back to the acceptable level. It is assumed that
a strongly driven state of activation would remain, while only
traces of activation would remain from previous ‘competitions’.
This would be reminiscent of the strictly bistable states discussed
throughout the literature on reverberating neural activity and
working memory—a state of activation is in the workspace and
persistent, then it is quashed, replaced by a different state. In this
case, each workspace state could be considered bistable (active or
not), while theworkspace as awholewould hasmultistability (one
stable regime for each possible active state).

However, it is found that this particular model of inhibitory
neurons always collectively produce a minimum (non-zero) level
of inhibition with just a minimal base current input, and this
increases proportional to any added input. A more complicated
neural setup could simulate the strict inhibitory behaviour of
the type described above. However, in the interest of keeping
the model as general as possible, it is necessary to maintain a
minimal number of constraints. In addition, the recent literature
(e.g. Durstewitz & Seamans, 2006) has pointed out the growing
evidence that strict ‘on–off’ dynamics are rare during working
memory tasks, and that more complicated temporal dynamics are
likely at work.

We instead accept that a reverberating state in theworkspace is
not strictly persistent and will slowly decay with time. Additional
activation in the workspace (from a new state of activation, for
example) will invoke a larger inhibitory response and greatly
increase the rate of decay, resembling an ‘off’ switch but not
completely acting as one.

2.2. State of activation

We choose a simple form for spatiotemporal patterns of
activation in order to test the basics of this model. With a
workspace divided into 256–260 cycles of connections, these
cycles can be divided by number into four ‘quadrants’ of 64 cycles
each (1–64, 65–128, 129–192, 193–256), with cycles above 256
being ignored for these purposes. Each pattern is represented by
simultaneous activity of a specific group of cycles within one of the
quadrants firing (approximately 60% of the quadrant, or 37 cycles).
These groups of cycles are chosen for ease of visual representation
only, and realistically there is no reason that the entire quadrant
could not be active for each state.
States of activation which make use of overlapping circuits
(e.g. cycles 20–40 in one state and 30–50 in another) could also
be considered. In addition to the spectrum of possible network
structures with different constraints previously mentioned, there
is a spectrum of possible spatiotemporal patterns to consider. This
represents a significant departure in complexity from this model,
however, and poses questions for potential future work with this
kind of model.

2.3. Izhikevich neurons

Individual neurons were simulated using Izhikevich’s ‘‘simple
model’’ of spiking behaviour (Izhikevich, 2003, 2007). This model
is able to generate a large range of empirically accurate spiking
behaviours, like the Hodgkin–Huxley equations, while beingmuch
easier to compute with. It is thus well suited to a large-scale,
biologically plausible simulation. Moreover, the behaviour of the
model is governed by four parameters (a, b, c , and d in Eqs. (1)–(3)
below), which can be varied to emulate the signalling properties of
a wide variety of known neuron types. The model is defined by the
following three equations:

v̇ = 0.04v2
+ 5v + 140− u+ I (1)

u̇ = a(bv − u) (2)

if v ≥ 30 then

v← c
u← u+ d (3)

where v is the neuron’s membrane potential, I is its input current,
and u is a variable that regulates the recovery time of the neuron
after spiking. Eq. (3) describes the way the neuron is reset after
spiking, which is assumed to occur when its membrane potential
reaches 30 mV.

The values of the four parameters a, b, c , and dwere lifted from
Izhikevich (2003). For excitatory neurons, these were a = 0.02,
b = 0.2, c = −65 + 16r2, and d = 8 − 6r2, where r is a
uniformly distributed random variable in the interval [0, 1]. For
inhibitory neurons, the values used were a = 0.02 + 0.08r, b =
0.25 − 0.05r, c = −65, and d = 2, with r as above. The random
variable r introduces a degree of variation into each population
giving a range of different biologically plausible neural firing
patterns. These parameter choices place all neurons on an
appropriate scale of behaviours with a random factor introduced
to ensure thatmodel dynamics are not a serendipitous coincidence
of a homogeneous neural distribution. Excitatory neurons can be
between regular spiking or chattering types, with a bias towards
regular spiking, while inhibitory neurons are distributed evenly
between fast spiking and low-threshold spiking dynamics. This
is not intended to model distributions in a particular area of
the cortex, instead it reflects neural types found in the cortex
with a heterogeneous distribution to avoid unintended dynamical
artifacts (but see Izhikevich, 2003; Izhikevich et al., 2004, for more
detail). For example, in the excitatory case, if r = 0 we get the
regular spiking behaviour shown on the left of Fig. 5, while if r = 1
we get the chattering behaviour shown on the right of the figure.

Consider a time t and a neuron i, and let Φ be the set of all
neurons j that fired at time t − d where d is the conduction delay
from neuron j to i. Then, the input current I for neuron i at time t is
given by

I(t) = Ib +
−
j∈Φ

Si,jF , (4)

where Ib is the base current, Si,j is the synaptic weight of the
connection from neuron j to i, and F is a scaling factor whose
value depends on the type of population to which i and j,
respectively, belong (e.g.: workspace area, lateral inhibitory pool,
etc.) and does not change with time. These scaling factors are an
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regular spiking (RS) chattering (CH)

v(t)

l(t)

Fig. 5. Varieties of excitatory neurons using Izhikevich’s simple model (from
Izhikevich (2003)—electronic version of the figure and reproduction permissions
are freely available at www.izhikevich.com).

important parameter of themodel and are the focus of the reported
investigation of the effect of parameter choice onmodel dynamics.

Conduction delays in the workspace are chosen to be either
5 or 6 ms at random. These are the minimum conduction delays
for which reverberation is consistently present—reverberation is
limited by neuron recovery times when lower conduction delays
are used. Higher conduction delays were tested (up to 20 ms) and
the overall dynamics were found to be robust, so these are chosen
in order to minimize run times. Two delays with a millisecond
difference are chosen so there are fewer manufactured timing
effects. For example, one can imagine very specific resonances
or frequencies caused entirely by an arbitrary choice of a single
delay. Possible variations in future models could include a much
larger spread of delays, perhaps dependent on the distance of the
connection. (See Izhikevich & Edelman, 2008; Izhikevich et al.,
2004, for this kind of treatment), or conduction delays directly
taken from biological data (inspired by precisely tunedmyelinated
axons, for example).

The scaling factor of a connection, together with the synaptic
weight, represents the overall strength of that connection—how
much input current the postsynaptic neuron receives from a
spiking presynaptic neuron. Ignoring for the moment unit scaling,
this can be considered to represent a few things. In the current
model, we effectively absorb the synaptic weight into the scaling
factor by setting the synaptic weights in workspace connections to
one. This means that the scaling factor can be seen to represent
the strength of a connection, or the amount of influence the
presynaptic neuron holds over the postsynaptic neuron, perhaps
affected by some kind of long-term potentiation or depression.
Another interpretation, in light of the relatively small neuron
population sizes, might consider each connection to represent
many related connections, where a higher scaling factor could
signifymore presynaptic neurons represented by that singlemodel
connection. Here we consider it generally as a measure of strength
of connection between neuron populations, regardless of whether
this comes about from more influential synapses or simply more
neurons and more connections.

3. Studying the workspace

The balance between excitation and inhibition in theworkspace
is a key feature of this model; this balance governs the strength of
reverberation of a state, the sensitivity of the workspace to new
patterns of activation, and the speed of decay of a state due to
inhibition. The level of excitation and inhibition in the workspace
is largely moderated by the choice of scaling factors to and from
excitatory and inhibitory neurons. Consequently, we present a
systematic investigation of the effect of different choices of scaling
factors on the dynamics of states of activation in the workspace.
This is done with the intention of making informed decisions from
what would otherwise be arbitrary parameter choices in future
work.

With only the workspace excitatory and inhibitory groups
of neurons, there are three kinds of connections—workspace
excitatory to excitatory, workspace excitatory to inhibitory, and
workspace inhibitory to excitatory, noting that there are no
inhibitory to inhibitory connections. For each of these a different
scaling factor (Fww, Fwi, and Fiw respectively) is set for all pulses
travelling via those connections.

The progression and reverberation of a single state in the
workspace is studied with a single pulse of 35 mA delivered to
neurons belonging to the appropriate 37 cycles of connections in
the workspace after 20 ms of rest.

3.1. Workspace excitatory to excitatory

Even without inhibition (Fwi and Fiw = 0), activation in the
workspace does not reverberate in any circuits for workspace
to workspace scaling factors (Fww) less than 25, and does not
consistently reverberate in all stimulated circuits for Fww less than
40 (Fig. 6). For Fww greater than this, activation in the workspace
has an initial peak followed by a steady state, both of which
increase in magnitude as the scaling factor is increased (Fig. 7(a)).

The relationship between Fww and activity in the workspace
(measured as the average steady-state firing rate) is displayed in
Fig. 7(b). As one would expect, as Fww increases, so does activity in
the workspace; however, the direct relationship between the two
is not obvious. Initially, activity in the workspace shows a shallow
linear progression as Fww increases, up to Fww ≈ 80. At this point,
a phase shift occurs and a steeper linear increase is observed. This
continues until Fww ≈ 130, where there is a significant change in
the dynamic between Fww and activity in the workspace. While it
is unknown why these phase shifts occur, there are several likely
possibilities. The size and nature of the self-excitatory cycles of
connections, and neuron firing strongly overlapping with neuron
recovery times seem the most likely contributors, though further
investigation is needed to pin down exactly what effect these
factors have.

In order to keep consistent and robust reverberation in the
workspace which is still sensitive to inhibition, typically 60 ≤
Fww ≤ 100 is used in experiments with specialist areas attached,
though it is noted that a much more pronounced change in
excitation, especially in the initial peak, occurs in the interval
between80 and100. To best study the effect of increased activation
in the workspace (and thus Fww) on other aspects of the model,
60 ≤ Fww ≤ 100 is also used for subsequent experiments with
only the workspace neurons.

3.2. Workspace excitatory to inhibitory

We next introduce non-zero Fwi in order to study the dynamics
of the workspace inhibitory neurons with unchanging activation
in the workspace excitatory neurons (Fiw = 0). With these
parameters, the inhibitory neurons fire due to input from the
excitatory population, but without resulting in actual inhibition of
the excitatory population. Unlike the excitatory neurons, there is
a low ambient level of firing in the inhibitory population with just
a low base current (2 mA). This firing is very small compared to
increased firing due to workspace excitation (2.5 firings per ms),
but is enough to cause a slow decay of workspace activation with
non-zero Fiw.

As connections from the excitatory workspace population to
the inhibitory are diffuse (200 per inhibitory neuron), we expect
a much stronger proportional increase in inhibitory firing from
a change in Fwi when compared with the increase in excitatory
firings from a change in Fww. Thus, the interval over which Fwi is
studied is lower than Fww with smaller increments (1–10).

With non-zero Fwi, the dynamics of firing of the inhibitory
neurons become tied to the dynamics of the excitatory neurons.

http://www.izhikevich.com
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Fig. 6. (a)–(c) Representative raster plots for Fww = 40, 30, 20. Each point represents that at least one of the neurons belonging to that cycle has fired. (d)–(e) A plot of the
number of active cycles (measured by at least one neuron of that cycle firing in a 10 ms sampling of time) for Fww = 40 and 30. 37 cycles are initially stimulated.
A small peak or a high peak followed by a steady state in the
excitatory neurons leads to the same in the inhibitory neurons
(Fig. 8(a)). Much like the analysis of the excitatory dynamics with
Fww, the activity of the inhibitory population ofworkspace neurons
is measured via the average firing rate of the inhibitory neurons
once it has settled from the initial peak.
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Fig. 7. (a) Progression of the firing rate in the workspace excitatory population with time (averaged in 10 ms windows of time) in a few typical model runs with Fwi and
Fiw = 0, and varying Fww . There is an initial peak in activity immediately after presentation of a stimulus, which drops into a steady state. (b) A plot of the average steady-
state firing rate as changed by Fww . There seem to be several phase shifts where the increased scaling factor causes a shift in the dynamics of the model. All data points are
averages over several trials with different stochastic workspace connections.
Unlike the phase shifts in the dependence on Fww of the activity
of excitatory workspace neurons, the inhibitory neurons show a
much more direct increasing dependence on both the activity in
the workspace and the scaling factor Fwi (Fig. 8(b)–(c)). The clear
change in dependence of inhibitory activity on Fww between Fww =

80 and Fww = 90 closely mirrors the observed phase shift in
excitatory activity with Fww in that range. This indicates, as one
would expect, the inhibitory firing is directly dependent on the
amount of activation in the workspace, not the scaling factor Fww
itself.

While it may initially seem as if the inhibitory neurons fire
far more often than the excitatory neurons, this can be deceptive.
With only one active state in the workspace, only 37 cycles of
excitatory neurons are active. With 4–5 neurons per cycle, this
gives a maximum of 185 active excitatory neurons. On the other
hand, with highly diffuse connections and activity spread across
the workspace, it is possible that all 320 inhibitory neurons are
firing. Considering the differences in connectivity between the two
groups as well as differing conduction delays, it is not obvious how
to scale the firing rate data so that the two different groups are
comparable.

3.3. Workspace inhibitory to excitatory

Due to the isolated nature of the cycles in the workspace
(there is no excitatory interconnection between them), an active
cycle which stops firing due to inhibition will not start firing
again without a new stimulus. With non-zero Fiw, the previously
observed steady state of activation after a period of time instead
becomes a steady decay in the firing rate for both excitatory and
inhibitoryworkspace neurons. Activation in the excitatory neurons
increases activity in the inhibitory neurons, which then feed back
into the excitatory neurons randomly and diffusely, thus inhibiting
some of the reverberating cycles. The decreased activity in the
excitatory neurons drives less activity in the inhibitory population,
which in turn inhibits less, causing the speed of decay of the state
of activation to drop.

As with Fwi, Fiw are chosen in a range lower than Fww (1–10).
Some representative trials with different parameter values are
shown in Fig. 9. Themost significant decay has typically finished by
t = 200ms, and there is rarely observable ongoing decay after t =
300 ms except in cases of high inhibition. After this, there seems
to be a balance of excitation and inhibition, sufficient to sustain
roughly constant reverberation. Activation in the workspace for
times 500 ms ≤ t ≤ 600 ms, measured via the average firing rate
of the excitatory neurons, is shown in Fig. 10 for the full range of
inhibitory parameters tested.

The scaling factor Fwi is nearly interchangeable with Fiw in
contribution to the total inhibition of the workspace, but it seems
changes in Fiw have a slightly stronger effect (Figs. 8 and 9). In
general, we can choose equivalent inhibitory scaling factors (Fwi =

Fiw) for simplicity, with incremental changes possible in small
(change in Fwi) or large (change in Fiw) increments. While there is
strong decay in the state of activation for high combined inhibitory
factors (Fwi + Fiw ≥ 10), there are very few parameter choices
which lead to total loss of activation (Fig. 9). This suggests there
will often be at least small remnants of previously reverberating
states if a series of states is considered.

How, if at all, does the excitatory scaling factor, Fww, con-
tribute to the balance between excitation and inhibition? Com-
paring Fww = 80 to Fww = 100, where there is a known large
increase in activation due to the scaling factor, we see a typically
increased amount of activation, nearly twice as much in all cases
(Fig. 10(a)–(b)). Interestingly, however, if the same comparison is
made while observing only the number of active cycles, not the to-
tal activation, there is less difference between the two. Trials with
Fww = 100 do not maintain all active cycles for much higher inhi-
bition than those with Fww = 80, and in trials with increased inhi-
bition, the increased excitatory scaling factor only serves to keep a
fewmore circuits active (Fig. 10(c)–(d)). The largest difference can
be observedwithmid-range inhibition (5 ≤ Fwi+Fiw ≤ 10), where
trials with Fww = 100 maintain up to 15% more active cycles than
trials with Fww = 80.

This exploration of the parameter space of this model gives
a general picture of the reverberation of a single state in the
workspace. There is a balance between excitation and inhibition—
while strong reverberation is desired for a state of activation,
favouring strong excitation, a mechanism is required to allow a
new state to take over from an old one, highlighting the need for
inhibition. In order to maintain a state of activation in times of the
order of hundreds of milliseconds, a combined inhibitory factor
less than 10 seems ideal—beyond this there is a quick drop off in
the reverberation of a state.
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Fig. 8. (a) Progression of the firing rate in the workspace inhibitory population with time (as averaged in 10 ms windows of time) in a few typical model runs with Fiw = 0,
and varying Fwi and Fww . (b) Plots of the average firing rate at the steady state as changed by Fwi , for different Fww . (c) Plots of the average firing rate at the steady state as
changed by Fww , for different Fwi .
3.4. Dynamics of multiple stimuli

All of these experiments have focused on the effect of varying
scaling factors on the dynamics of a single stimulus. Although
reverberation of a state of activation is a key predicted feature of
theGNWmodel, it is also expected that such a structure is sensitive
to new states, allowing them to enter the workspace and begin
their own reverberation and broadcast. A new state of activation
competes with previously lingering states, each trying to inhibit
the other while sustaining its own reverberation. In order to study
the effect of parameter choice in this particular model on this
kind of competition, the interaction between different states of
activation entering the workspace at different times is important.

Many of the effects of varying scaling factors on the dynamics
of multiple states of activation are similar to the effects on a
single state. The previous observations with regard to Fww and Fwi
(Fiw = 0) can be extended tomultiple different states of activation,
because the cycles themselves do not interact without inhibitory
influence, simply by considering states with twice the amount
of activation. Even with a non-zero choice of both inhibitory
parameters, activation from two stimuli presented at or very
near the same time (two pulses, each delivered to 37 different
cycles of neurons with no overlap) inhibits each other in exactly
the same way activation from a single stimulus with twice as
much activation (a single pulse delivered to 74 different cycles of
neurons) decays.

As previously mentioned, different sizes and forms of states
of activation (for example, states with 74 active cycles instead
of 37) in the workspace represent a significant avenue of
future investigation. Here we limit the scope of investigation to
temporally distinct stimuli, presented to the workspace greater
than 100 ms apart, with non-zero choices of all scaling factors,
such that the two states can interact due to the random, diffuse
inhibition, which is not restricted to particular cycles. Some
examples of these trials are shown in Figs. 11 and 12.

With non-zero Fiw, there is still a similar balance between exci-
tation and inhibition as in the trials with a single presented stimu-
lus. The inhibition still comprises roughly equal contributions from
Fiw and Fwi with slightly greater contribution from a change in Fiw
(Fig. 11(a)–(d)). The total amount of activation in the workspace
which can be sustained over longer periods of time (more than
300 ms) for a given amount of inhibition seems to be conserved—
the total activation caused by both stimuli as they reach a steady
state is roughly equal to the amount of activation observed at the
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Fig. 9. (a)–(b) Some representative trial firing rate plots for Fww = 80 and 100, with varying Fwi and Fiw . There is increased inhibition in the Fwi = 2, Fiw = 5 case relative
to the Fwi = 5, Fiw = 2 case. (c)–(d) Corresponding plots of the number of active cycles in the workspace as time progresses. In the Fwi = 0 case (not shown) all stimulated
cycles remained active for the full time.
steady state for trials with the same scaling factors and only a sin-
gle initial stimulus (Fig. 11(c)–(d)).

It is also interesting to note that the activation in theworkspace
a few hundred milliseconds after presentation of the second
stimulus is often split evenly between the two different stimuli
(Fig. 11(c)–(d)). This demonstrates that a novel state of activation
entering the workspace is inhibited just as much from an older
reverberating state as the older reverberating state is inhibited by
the incoming novel state of activation. This seems to hold true even
though one state of activation can strongly dominate the other
for short periods of time (Fig. 12(c)–(f)). In such cases, it is not
obvious from parameter choice alone which state will dominate
(Fig. 12(a)–(f)).

These latter cases (Fig. 12) resemble the predicted competition
of a GNW, but only appear with high inhibitory parameter
choices—in the range where significant reverberation of a single
state is impossible. This suggests a combined inhibitory parameter
choice around 10, the boundary where the opposing two effects
of strong reverberation and competition between states meet,
for future experimentation with this kind of workspace model.
However, even with this restricted choice of scaling factors, the
observed behaviour of the model is less than ideal. There is limited
reverberation of a state over the time span of a few hundred
milliseconds (more than half the cycles of the state often cease
activity), and the competition between different states in the
workspace consists more of finding an equilibrium between the
two than the predicted ‘winner-takes-all’.

These issues can be partially addressed through a more
thorough look at the question ‘What is a state of activation?’,
but a simpler effect can be tested which may account for the
differences between a predictedworkspace and the currentmodel:
driven stimulation. Though it is certainly possible a stimulus is
presented to the workspace once, it seems more likely that a
stimulus is presented over a span of time, as regularly timed pulses,
for example. In this way, a distinction can be made between a
strongly driven stimulus (presented many times or over a longer
period of time) and a weakly driven stimulus. A driven stimulus
may promote strong reverberation over the span of time in which
it is presented. Once it ceases to be driven, reverberation continues
but tails off with time so that a new driven stimulus presented to
the workspace can compete and almost completely take over the
state of the workspace.

Rather than presenting a single pulse at t = 20 ms and a differ-
ent pulse at t = 300ms, a series of pulses is used, 10ms apart from
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Fig. 10. (a)–(b) Surface plots showing the relative change in workspace activation (measured as the average firing rate of excitatory neurons for time 500 ≤ t ≤ 600 ms)
over the full range of inhibitory parameters tested for Fww = 80 and Fww = 100. (c)–(d) The number of cycles still actively reverberating in the measured timeframe for
Fww = 80 and Fww = 100. Interestingly, though trials with Fww = 100 show double the activation of trials with Fww = 80, there are only consistently more active cycles in
the Fww = 100 case at the mid-range of inhibition (5 ≤ Fwi + Fiw ≤ 10).
each other for a duration of 160 ms.2 As predicted, driven stimu-
lation promotes stronger reverberation and more clear competi-
tion. Fig. 13 shows a typical trial with the same scaling factors as
in Fig. 12, but this time with driven stimuli. Unlike the single pulse
stimulus trials, the second driven stimulus consistently ‘wins’ the
competition, and both states of activation consistently reverber-
ate with more than 27 active circuits (roughly 75% of the full state)
while driven.

4. A more complete model

The discussion thus far has revolved around theworkspace neu-
rons: broadcast and reverberation, how the balance between exci-
tation and inhibition facilitates these phenomena, how modifying
the scaling factors affect the excitation and inhibition, and the im-
portant role of driven stimulation. While stimuli were simulated
by a direct injection of current to the appropriate set of neurons,

2 The exact choices involved with a ‘driven stimulus’, such as the time between
pulses and the overall time of the series of pulses, were varied to test for robustness.
As one would expect, longer duration of the series of pulses and shorter times
between pulses have a stronger effect. The particular values used here were chosen
as sufficient to convey the overall point—a driven stimulus promotes stronger
reverberation and clear-cut competition.
the model is designed for these to come instead from functionally
distinct neuronal clusters—specialist areas—which are attached to
theworkspace. Specialist areas in thismodel are groups of neurons
with many diffuse internal connections, representing the close-
range connections of the model, in contrast to the long-range con-
nections of the workspace neurons.

Each specialist area goes through a period of training before an
experiment, duringwhich that group of neurons learns to associate
a particular input state of activation with a different output state
of activation. Several specialist areas, each trained in this way
with different inputs and outputs, and connected to each other
via the workspace discussed above, represent a model which can
go through alternating periods of broadcast and competition, as
theorized might occur in a GNW by Dehaene et al. (2003).

Here we present the construction of such specialist areas
in the context of this model and produce similar results to
the comparable model of Shanahan (2008). The goal of this
is to demonstrate the similarity of these models despite the
modifications, as well as to highlight any differences in behaviour
in the context of these same modifications.

4.1. Specialist structure and connectivity

Each specialist area can be divided into three groups: input,
output, and generic internal neurons (Fig. 14). The input and
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Fig. 11. (a)–(b) Raster plots for two trialswithmultiple stimuli that characteristically progress similarly over time. Inhibitory scaling factors, Fwi and Fiw , are roughly reversed,
with (Fwi, Fiw) = (1, 5) in one and (6, 2) in the other. Increased Fiw typically inhibits slightly more than increased Fwi . (c)–(d) Corresponding firing rate plots for the two
trials shown. After some time it is difficult to distinguish which state of activation is ‘winning’.
output areas are groups of 256 excitatory neurons, each of which
represents a mapping of possible workspace states. Each neuron
in these areas is numbered for organizational purposes (1–256),
and neurons in one area map directly to neurons with the same
number in the other areas. As explained in Section 2, the cycles
of the workspace are similarly numbered; they also share this
mapping.

Specialist areas are each designated a length of 384 work-
space neurons (twice the short-distance parameter α) which
are ‘spatially close’ (see Fig. 1 for a reminder of the overall
arrangement of specialist areas and workspace). There are one-
to-one connections from nearby neurons of the workspace to the
input neurons of the specialist areas, and from the output neurons
of the specialists to the nearby neurons of the workspace. These
one-to-one connections are organized by the cycle numbers of
the workspace and the appropriately mapped neuron numbers of
the specialist input and output neurons. For example, activity in
neuron number two of the specialist input is stimulated by activity
of a nearby neuron in the workspace belonging to cycle number
two, ensuring that the specialist area ‘sees’ states of activation from
theworkspace. Firings of neuron number two in a specialist output
area will stimulate firings in a nearby neuron in cycle number two
of the workspace, thus attempting to pass a state of activation on
to the workspace.

The group of generic internal neurons comprises 1126 generic
excitatory neurons and 410 inhibitory neurons.3 Connections
between the generic neurons, the input neurons and the output
neurons, as well as internally within these subdivisions, are diffuse
and their connection weights are initially drawn from a uniform
random distribution in the interval [0, 1]. These connections are
then strengthened or weakened according to a spike timing-
dependent plasticity (STDP) rule during a training period prior to
the full trial.

4.2. Specialist training

All specialist areas go through a pre-trial training period.
The purpose of this is to strengthen and weaken the internal

3 Note that, excluding the laterally inhibiting groups of neurons, the specialist
areas contain the standard proportion of excitatory to inhibitory neurons in a real
mammalian cortex, 4:1 (Binzegger et al., 2004; Gabbott & Somogyi, 1986). This ratio
is maintained throughout the specialist areas and workspace.
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Fig. 12. Two trials in which identical scaling factors were chosen and very different results are observed. (a)–(b) Raster plots for the two trials. In one there is clearly strong
activation from the second stimulus while in the other the second stimulus is almost completely blocked out. (c)–(d) Firing rate plots of the two trials. Despite only weak
activation of the second stimulus in one trial, there is still a nearly even balance of activation from both stimuli. (e)–(f) Plots of the active cycles of each state for both trials.
Neither trial shows strong reverberation of a state over hundreds of millisecond timescales, nor is there a clear ‘winner’ of the competition between the two, despite nearly
complete initial blocking out of the second stimulus in one trial.
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Fig. 13. (a)–(c) Raster, firing rate and active cycle plots for a representative trial with driven stimulation. While being driven (a duration of 160 ms from the start of
stimulation) each state shows significantly improved reverberation. In addition, when the second state of activation, driven by repeated stimulation, enters the workspace
it strongly inhibits the un-driven firststate of activation, creating competition with a much clearer ‘winner’.
connections of the specialist area such that it has some overall
functionality. In this model, ‘functionality’ takes the form of
transforming a state of activation—given a particular state of
activation of the input neurons, a different state of activation fires
in the output neurons. These states of activation are identical in
organization to the states of activation of the workspace in the
previous section (a subset of one of four quadrants simultaneously
firing—see Section 2.2).

During the training period, the specialist areas are disconnected
from all other structures and are each alternately presented with a
stimulus in the input area, followed by a different stimulus in the
output area. This is repeated while a form of STDP is applied (Song
& Abbott, 2001). After several iterations, the internal neural
connectionswhich lead the specialist area to fire the response state
in the output area after the appropriate state appears in the input
area are strengthened, while other connections are weakened.

The neurons for an input state are excited by four 10mA pulses,
5 ms apart from each other, followed by the same treatment for a
response in the output, after a delay of 40ms. Each training lasts for
200 ms of model time, and this process is performed three times
for each specialist area before every trial.

Even without changing the input and output states or generic
set of neurons, different forms of training are possible. Rather
than four pulse input, delay, and four pulse output, many other
choices exist and do indeed provide slightly different dynamics.
One such choice attempted in this study was alternating from
single pulse input to single pulse output, with a delay between
each repetition of this. The overall behaviour of the model was
found to be robust, but the choices involved in the STDP training
of the model are numerous (see Caporale & Dan, 2008, for a recent
review ofmany of the currently studied STDP rules observed in real
neurons). How the so-called specialist clusters of neurons reach
a state of having this functionality is easily the topic of a much
broader study—here we assume that it has reached the state of
having such functionality and use the aforementioned STDP rule
just as a method of emulating this process in a less engineered
fashion than setting the connection weights as a parameter.

Usually the different specialists have different inputs to which
they respond and can together be trained to give a series of
activation states if the appropriate response states reverberate in
the workspace, thus becoming inputs for other specialist areas.
Each specialist is given a unique response state, so it is possible
to tell at any one time where the state currently in the workspace
originated.
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Fig. 14. Connections to, from and within a specialist area. A specialist area with
a competing neighbour would have an additional group of laterally inhibiting
neurons receiving its input from the Sout group of neurons (not shown). Connections
between the workspace and Sin or Sout are one to one. Within the main body of the
specialist area, connections are initially diffuse and randomand aremodified before
the main trial using a form of STDP and test pulses.

4.3. Competing specialists

In addition to the competition within the workspace of
simultaneous states of activation, direct competition between
two neighbouring specialists for access to the workspace can
be modelled. Two competing specialists are trained to react to
the same input, but with different responses, and in all trials
presented here the two specialists share the same stretch of local
workspace neurons (though this is not necessary). An additional
group of inhibitory neurons (one fifth the size of a specialist area)
is connected randomly and diffusely from the output group of
neurons of one specialist to the entirety of the other specialist. This
is appropriately mirrored from the other specialist with a second
group of laterally inhibiting neurons. Thus, when there is activity
in the output group of neurons of either specialist, indicating an
attempt to influence the workspace with a new state, the other
specialist receives a diffuse inhibitory signal, attempting to shut
down any competing attempt to access the workspace.

4.4. Sample trials

Consider a single run with this model. The first specialist area
is trained to associate an input state A with an output state B, the
second specialist area associates an input state B with an output
state C , and the third specialist area associates an input state B
with an output state D. The experiment begins with the injection
of a pulse representing state A directly into the workspace. With
sufficient reverberation, the first specialist area picks this up and
responds by attempting to influence the workspace with state B. If
this reverberates and is broadcast to the second and third specialist
areas, theywill compete to place statesC orD, respectively, into the
workspace.

Fig. 15 shows several representative trials with this behaviour
using scaling factors Fww = 100, Fwi = 5, Fiw = 6, with some
sample trials taken from Shanahan (2008) for comparison. In
agreement with the idea that these two different models both
contain an underlying GNW structure, the same qualities of
competition between states, both within the GNW and directly
between specialist areas, reverberation, and broadcast appear in
both models. There are some minor differences between the two
(e.g. the appearance of the eventual ‘loser’ early in competition in
the presented model as opposed to little trace at all in Shanahan
(2008)) but these are probably due to structural choices without a
weighty interpretation.

In the case shown, the response is mostly bistable between
states C and D (there are some traces of a ‘loser’ state which avoid
inhibition due to the statistical nature of the inhibition in the
model). However, this is sensitive to parameter choices—without
sufficient excitation, no state is stable, and without sufficient
inhibition, multiple states do not compete and the workspace acts
like a single ‘on’ switch. Note that additional specialist areas and
competitions could be included in the model, in which case there
would be multistability for the workspace as a whole.

5. Discussion

With both the GNW-only model and the larger model with
specialist areas, we aim to present a possible instantiation of
the GNW concept originally proposed by Dehaene et al.. We
have shown that three major components of the GNW theory
(broadcast, reverberation, and competition between different
states of activation) can come about in a model different from
those already proposed. With this in mind, it seems that there is
a potentially large unexplored space of possible instantiations of a
GNW. While this model attempts to remove some of the arbitrary
choicesmade in the previouswork, it is clear that other choices can
be made, perhaps including a biologically accurate instantiation of
a GNW.

In the spirit of further removing constraints from the model,
certain choices made here can be analysed with an eye to future
work. In particular, the use of stochastic wiring with isolated
cycles in the workspace, though it was chosen as an alternative
to an arbitrarily engineered network, could be changed. Perhaps
the right balance of inhibition and excitation could be used to
overcome blurring of states of activation without the use of
completely topographic connections (Wang, 2001). Alternatively,
topographic connections of the kind used both here and in
Shanahan (2008) may be justified as emergent through the correct
application of a synaptic learning rule like STDP in amodel like that
used in Izhikevich et al. (2004).

Here we choose to separate the neurons with long-range con-
nections into a distinct group, the workspace. However, this is not
necessary. Amore biologically plausiblemodelmight show the dis-
tinct GNW qualities described here, but amongst clusters of neu-
rons where no preference is given to the neurons with connections
between clusters (long-range connections). An interesting, and po-
tentially vast, avenue of study lies in determining the minimum
rules and restrictions on the construction of connections within a
set of neurons such that there is activity resembling a GNWwithin
that set.

It is also not yet clear what role the particular neuron model
used plays in the overall network dynamics. The model used
here (Izhikevich, 2003) was chosen for its balance between
diverse, realistic neural dynamics and computational tractability.
It would be an interesting exercise to confirm that these results
remain largely unchanged for different neuron models, such as a
simple integrate-and-fire model. Furthermore, any differences in
dynamics could be analysed in order to judge whether there are
interesting effects at work, or simply artifacts of the model. This
could potentially lead to a better understanding of the limits or
pitfalls of using one model rather than another, and its usefulness
would extend beyond the scope of GNWmodels.

The effectiveness of thismodel as a GNWdepends on the choice
of certain parameters, and we have shown how the behaviour
changes with regard to one particular parameter (the scaling
factor). Though the effects ofmodifying this parameter can at times
be obvious (e.g. increasing an excitatory scaling factor leads to
more activation), the range of parameters for which GNW-like
behaviour is observed is not. Here we have shown, in the context
of this model, how modifying the scaling factors of connections
within the GNW can lead to regimes of overly strong reverberation
(such that inhibition does not stop activation from increasing as
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Fig. 15. (a)–(b) Raster plots for a single trial shown over the whole 1000 ms of the trial and just for the first 300 ms as in Shanahan (2008). (c)–(d) Raster plots for two
different trials with the same scaling factors, but with different competition outcomes. (e)–(f) Raster plots for two different trials with different competition outcomes using
the Shanahan (2008) model for comparison (from Shanahan (2008)).
more states of activation enter the workspace) or quick decay of
states, such that they never have a chance to be broadcast around
the entire workspace.
Other parameters, such as conduction delays between neurons
and the connectivity of neurons, play a similarly important role in
modulating this behaviour. The choice to have tightly distributed
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delays could potentially be lifted with few consequences to
the overall dynamics, though our own preliminary work in this
area has shown that delays which are too low can lead to
network dynamics, such as reverberation, being disrupted by
neural dynamics, such as individual neural recovery times. Work
towards exploring more general principles governing the overall
changes in behaviour due to changes in these parameters within
the space of possible GNW instantiations is warranted.
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