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Abstract
Previous work on event calculus planning has viewed it as an abductive task, whose implementation through abductive logic
programming reduces to partial order planning. By contrast, this paper presents a formal framework for tackling event
calculus planning through satisfiability, in the style of Kautz and Selman. A provably correct conjunctive normal form
encoding for event calculus planning problems is supplied, rendering them soluble by an off-the-shelf SAT solver.
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1 Introduction

The event calculus is a well-known logic-based formalism for reasoning about actions for which a
robust solution to the frame problem has been developed [21]. It can be used to represent a rich array
of phenomena, including concurrent actions, actions with non-deterministic effects, actions with
indirect effects (ramifications), and continuous change [21]. It has found application in a variety of
areas, including natural language processing [13], intelligent agents [8], common sense reasoning
[17], and robotics [20].

In all previous research known to the present authors, such as [4, 2, 16, 7] and [23], planning
with the event calculus is considered as an abductive logic programming task. As shown in [23],
the computation carried out by these abductive event calculus planners mirrors closely that carried
out by partial order planners, such as UCPOP [19]. 1 Since the performance of partial order planners
compares poorly with that of more recent systems, such as Graphplan [1] and SATPLAN [11], it
is natural to enquire whether a more up-to-date planner can be developed for the event calculus.
This paper presents the formal foundations for one such planner, based on the idea of planning as
satisfiability developed by Kautz and Selman [10, 11].

The main achievement of this paper is to define a provably correct encoding of a restricted class of
event calculus planning problems into a propositional conjunctive normal form (CNF) suitable for
submission to a SAT solver. The aim is not to develop a novel way of encoding planning problems in
propositional CNF. Rather, the goal is to supply a correct mapping from the event calculus to a style
of propositional CNF that has already been shown to be computationally effective in published work
on planning as satisfiability. The difficulty here is due to the distinctive language of the event calculus
which, not being state-based, is representationally very different from the kind of propositional CNF
formula into which it needs to be translated.

1An exception is the event calculus planner described by Kakas et al. [9], which combines constraint solving technology
with abduction to achieve a significantly better performance than traditional abductive event calculus planners. Moreover, as
shown in [15], there is a close relationship between deductive and abductive planning for the event calculus.
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2 The event calculus

The version of the event calculus employed here is based on many-sorted predicate calculus aug-
mented with circumscription [21]. The event calculus has a number of variants [21, 15]. Our strategy
here will be to present, in its full generality, a version of the calculus that has been put to practical use
in several previously published papers (such as [20] and [17]), and then to restrict it for the purposes
of the present paper.

The language of the calculus includes sorts for objects, fluents, actions (events), and time points.
The time points are interpreted by the naturals, and the usual comparative predicates are taken for
granted. The predicate symbols presented in Table 1 are also included in the language.

TABLE 1. The language of the event calculus

Formula Meaning

Initiates(�,�,� ) Fluent � holds after action � at time �
Terminates(�,�,� ) Fluent � does not hold after action � at time �
Releases(�,�,� ) Fluent � is not subject to the common sense law of inertia after

action � at time �
Initially� ��� Fluent � holds from time 0
Initially���� Fluent � does not hold from time 0
Happens(�,��,��� Action � starts at time �� and ends at time ��
HoldsAt(�,�� Fluent � holds at time �
Clipped(��,�,��� Fluent � is terminated between times �� and ��
Declipped(��,�,��� Fluent � is initiated between times �� and ��

The language includes a countable set of constant symbols denoting time points. The language
also includes a finite set � of object-valued constant symbols, a finite set � of fluent-valued function
symbols, and a finite set � of action-valued function symbols. The following definition ensures that
the set of ground fluent terms and the set of ground action terms are both finite.

DEFINITION 2.1
An object term is either a variable or a member of �. A fluent term is either a variable or has the
form f(o�. . . o�� for some � � 0, where f � � and for all � � � � �	 �� is an object term. An
action term is either a variable or has the form a(o�. . . o�� for some � � �, where a � � for all
� � � � �	 �� is an object term.

We have the following axioms, whose conjunction is denoted EC. 2

HoldsAt(f,t)� Initially� (f) � � Clipped(0,f,t) (EC1)

HoldsAt(f,t3)� (EC2)
Happens(a,t1,t2) � Initiates(a,f,t1) �

t2 
 t3 � � Clipped(t1,f,t3)

2All variables are universally quantified with maximum scope unless otherwise indicated.
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Clipped(t1,f,t4)� (EC3)
� a,t2,t3 [Happens(a,t2,t3) � t1 
 t3 � t2 
 t4 �

[Terminates(a,f,t2) � Releases(a,f,t2)]]

� HoldsAt(f,t)� Initially� (f) � � Declipped(0,f,t) (EC4)

� HoldsAt(f,t3)� (EC5)
Happens(a,t1,t2) � Terminates(a,f,t1) �

t2 
 t3 � � Declipped(t1,f,t3)

Declipped(t1,f,t4)� (EC6)
� a,t2,t3 [Happens(a,t2,t3) � t1 
 t3 � t2 
 t4 �

[Initiates(a,f,t2) � Releases(a,f,t2)]]

Happens(a,t1,t2)� t1 � t2 (EC7)

A two-argument version of Happens is defined as follows.

Happens(a,t)	��� Happens(a,t,t)

The frame problem is overcome through circumscription, as will be shown shortly.

3 Planning as abduction

This section offers a formal abductive definition of event calculus planning. First, we pin down
exactly what is meant by a ‘domain description’.

DEFINITION 3.1
An initiates formula has the form,

Initiates(�,�,t)� �� � ... � ��

where each �� is either an inequality or has the form,

(�) HoldsAt(��,t).

DEFINITION 3.2
A terminates formula has the form,

Terminates(�,�,t)� �� � ... � ��

where each �� is either an inequality or has the form,

(�) HoldsAt(��,t).

DEFINITION 3.3
A releases formula has the form,

Releases(�,�,t) � �� � ... � ��
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where each �� is either an inequality or has the form,

(�) HoldsAt(��,t).

If � = 0, the right-hand side of an initiates, terminates or releases formula is omitted.

DEFINITION 3.4
An effect axiom is either an initiates formula, a terminates formula, or a releases formula.

In addition to describing the effects of actions, a domain description must describe the precondi-
tions of those actions. In the event calculus, an action’s preconditions can be captured in two distinct
ways. The first option is to include them as HoldsAt conditions on the right-hand sides of effect ax-
ioms. Rather than preventing the execution of an action if its precondition doesn’t hold, this method
disables the action’s effects. This approach is common in the event calculus literature. The second
option, which is closer to the conventional planning approach, is to write axioms that rule out the
execution of an action altogether unless its preconditions hold. This is the option taken up in the
present paper.3

DEFINITION 3.5
A precondition axiom has the form,

Happens(�,t)� �� � ... � ��

where each �� is of the form,

(�� HoldsAt(��,t).

DEFINITION 3.6
A domain description is a finite conjunction of effect axioms and precondition axioms.

In general, the event calculus allows for much richer domain descriptions than fall within the
class defined above, encompassing concurrent actions with cumulative or cancelling effects, actions
with non-deterministic effects, actions with indirect effects (ramifications), compound actions, and
continuous change [15, 21, 22]. Although the ultimate aim of this research is to devise fast planners
that function with rich domain descriptions, the first step is to work on the sort of STRIPS-like
domains that have been the focus of most work in the planning community.

Next we have the definitions of an initial situation, a goal, and a plan.

DEFINITION 3.7
An initial situation is a finite conjunction of formulae of the form,

Initially���)
or,

Initially� ��)

where � is a ground fluent term, in which each fluent name occurs at most once.

3This option is only available in the context of a restriction to completely known initial situations and actions with deter-
ministic effects.
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In the present paper, we will be concerned with completely known initial situations, which are
defined as follows.4

DEFINITION 3.8
An initial situation �� is complete if for any ground fluent term � either

�� 
� Initially���) or �� 
� Initially� ��).

In order to avoid having to fully specify a complete initial situation, we have the following opera-
tor, which implements a closed world assumption.

DEFINITION 3.9
If �� is an initial situation, then CLO[��] is the conjunction of �� with all formulae of the form
Initially���), where � is a ground fluent term, such that

�� �
� Initially� ��).

The event calculus definition of a goal state is straightforward.

DEFINITION 3.10
A goal is a finite conjunction of formulae of the form,

(�) HoldsAt(�,� )

where � is a ground fluent term, and � is a time point constant.

Finally, a plan, in event calculus terms, is a narrative of actions.

DEFINITION 3.11
A narrative is a finite conjunction of formulae of the form,

Happens(�,� )
or,
�� 
 ��

where � is a ground action term, and � , �� and �� are time point constants.

Note that this definition permits partially ordered plans, as well as concurrent actions.
In general, a set of uniqueness-of-names axioms is required for actions and fluents. In what fol-

lows, the term UNA[f�, f�, . . . , f�] abbreviates the conjunction of all formulae of the form,

f�(x� , x�, . . . x�) �� f	(y�, y�, . . . , y�)

where � 
 � 
 
, with all formulae of the form,

f�(x�, x�, . . . x�� = f�(y�, y�, . . . , y�� � [x� = y� � x� = y� � . . . � x� = y�]

where � 
 
.

Now we are ready to characterize event calculus planning.

4Only named fluents are considered here. Models can include unnamed fluents, but they have no logical influence on the
encoding or its correctness.
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DEFINITION 3.12
Let � be a goal, let � be a domain description, let �� be an initial situation, and let � be the con-
junction of a pair of uniqueness-of-names axioms for the actions and fluents mentioned in �. A plan
for � is a narrative� such that,

CIRC[�; Initiates, Terminates, Releases] � CIRC[�; Happens] � �� � EC �� 
� �

and,

CIRC[�; Initiates, Terminates, Releases] � CIRC[�; Happens] � �� � EC � �

is consistent.

By minimizing Initiates, Terminates and Releases we assume that actions have no unexpected
effects, and by minimizing Happens we assume that there are no unexpected event occurrences. In
all the cases under consideration in this paper,� and� can be straightforwardly reduced to predicate
completions using theorems from Lifschitz [14].

In the following example, Blocks World planning is formulated in the event calculus.

EXAMPLE 3.13
Consider an event calculus language that includes the object constants A, B, C, and Table. It also in-
cludes a single action, Move(x,y,z), and two fluents, On(x,y) and Clear(x). Let � be the conjunction
of the following effect axioms and precondition axiom.

Initiates(Move(x,y,z),On(x,z),t)

Terminates(Move(x,y,z),On(x,y),t)

Initiates(Move(x,y,z),Clear(y),t)

Terminates(Move(x,y,z),Clear(z),t)� z �� Table

Happens(Move(x,y,z),t)�
HoldsAt(On(x,y),t)�

HoldsAt(Clear(x),t) � HoldsAt(Clear(z),t)

Let � be the conjunction of the following uniqueness-of-names axioms. 5

UNA[Move]
UNA[On,Clear]
UNA[A,B,C,Table]

Let �� be the conjunction of the following Initially� formulae.

Initially� (On(A,B))
Initially� (On(B,C))
Initially� (On(C,Table))

5Note that these axioms entail, for example, Move(A,B) ��Move(A,C).
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Initially� (Clear(A))
Initially� (Clear(Table))

Let the goal � be the conjunction of the following HoldsAt formulae.

HoldsAt(On(B,A),T)
HoldsAt(On(A,C),T)
HoldsAt(On(C,Table),T)

Now let � be the conjunction of the following Happens and temporal ordering formulae.

Happens(Move(A,B,Table),T1)
Happens(Move(B,C,Table),T2)
Happens(Move(A,Table,C),T3)
Happens(Move(B,Table,A),T4)
T1 
 T2 T2 
 T3
T3 
 T4 T4 
 T

Now, we have,

CIRC[�; Initiates, Terminates, Releases] �
CIRC[�; Happens] � CLO[��] � EC � � 
� �.

In other words, � is a plan.

Now we know exactly what event calculus planning is. But how do we compute plans? The
rest of the paper shows how event calculus planning problems can be mapped into the ‘planning as
satisfiability’ framework of Kautz and Selman [10], which has resulted in planners that outperform
the best of the previous generation of partial order planners [11, 12].

4 From event calculus to CNF

As shown by Kautz and Selman [10, 11], as long as the initial situation is completely known, and
all actions have completely known, deterministic effects, a planning problem can be encoded as a
conjunctive normal form formula in such a way that any model of the formula corresponds to a
plan. By conjoining together the set of all ground instances of this formula, a large propositional
CNF formula is obtained that can be submitted to an off-the-shelf SAT solver. Surprisingly, given
size of these CNF formulae and the NP-completeness of the SAT problem, Kautz and Selman [11]
have demonstrated that certain planning problems can be solved more quickly this way than by
other fast planners, such as Graphplan [1], which in turn have been shown to outperform partial
order planners such as UCPOP [19]. Although Kautz and Selman’s 1996 [11] results used hand-
crafted CNF encodings, more recent experiments have shown that similarly impressive results can
be obtained using automatic encoding [12].

This section defines a CNF encoding of event calculus planning problems, as defined in the pre-
vious section, in the spirit of Kautz and Selman. The encoding of this section is only defined for
a restricted class of problems, namely those with a complete initial situation and a ‘simple’ do-
main description, which excludes Releases formulae and forbids effect axioms from mentioning the
HoldsAt predicate. The exclusion of Releases formulae means that all fluents are subject to inertia



738 Event Calculus Planning Through Satisfiability

at all times, and the restriction on other effect axioms rules out actions with conditional or context-
dependent effects.

DEFINITION 4.1
A simple domain description is a domain description in which all effect axioms are initiates and
terminates formulae whose right-hand-sides do not mention the predicate HoldsAt.

Our attention will be confined to totally ordered plans, reflecting the fact that the CNF encoding
to be defined, like those of Kautz and Selman, doesn’t support the generation of partially ordered
plans.

DEFINITION 4.2
A narrative � is totally ordered if,

� for every distinct pair of time point constants �� and ��, either� 
� �� 
 �� or� 
� �� 
 ��, and

� for every time point constant � , there is at most one ground action term � such that � 
�
Happens(�,� ).

Since the set of time point constants occurring in a totally ordered narrative is isomorphic to a
subset of the naturals, standard decimal whole numbers will be used as time point constants from
now on, with the usual comparative predicates interpreted accordingly. The time of occurrence
of the 
th action in a totally ordered narrative will be denoted by the number 
. In the following
definitions, ‘+’ is used as a symbol in the meta-language. So ‘�+1’ means the time constant denoting
� ’s successor.

The next task is to define a series of functions that encode the various components of an event
calculus planning problem into propositional CNF. First, we define a function T 
 that deals with the
initial situation.

DEFINITION 4.3
If �� � �� � ... � �� is an initial situation, then T
 (��) is,

�� � ... � ��

where,

�� �

��
�

HoldsAt(��,0) if �� = Initially� (��)

� HoldsAt(��,0) otherwise.

The remaining functions depend on the ideas of substitution and instantiation.

DEFINITION 4.4
A substitution is a set of equalities of the form � = �, where � is a variable and � is a ground term, in
which no variable occurs more than once. If the set of variables occurring in a formula � is a subset
of the set of variables occurring in a substitution �, then � is a substitution for �. The instantiation
of a term or formula � with a substitution � for � is the result of replacing every variable � in � with
the corresponding term � such that � = � � �.

Next we define a function T� for encoding a single effects axiom.

DEFINITION 4.5
Let � be a time point constant. For any initiates formula 	 of the form,
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Initiates(�,�,t)� 


T��	,� ) is the conjunction of every instantiation of the formula,

� Happens(�,� ) � HoldsAt(�,�+1)

with a substitution � for that formula which is consistent with the inequalities in 
.

Similarly, for any terminates formula 	 of the form,

Terminates(�,�,t)� 


T��	,� ) is the conjunction of every instantiation of the formula,

� Happens(�,� ) � � HoldsAt(�,�+1)

with a substitution � for that formula which is consistent with the inequalities in 
.

Finally, for any precondition axiom 	 of the form,

Happens(�,t)� �� � ... � ��

T��	,� ) is the conjunction of every ground instance of the formula,

(� Happens(�,� ) � ��) � ... � (� Happens(�,� ) � ��)

EXAMPLE 4.6
If 	 is the initiates formula,

Initiates(Move(x,y,z),On(x,z),t)

then, T��	,1) is the conjunction of every ground instance of the formula,

� Happens(Move(x,y,z),1)� HoldsAt(On(x,z),2).

If 	 is the terminates formula,

Terminates(Move(x,y,z),Clear(z),t)� z �� Table

then, T��	,1) is the conjunction of every ground instance, excluding those in which z is bound to
Table, of the formula,

� Happens(Move(x,y,z),1)� � HoldsAt(On(x,z),2).

If 	 is the precondition axiom,

Happens(Move(x,y,z),t)�
HoldsAt(On(x,y),t)� HoldsAt(Clear(x),t) � HoldsAt(Clear(z),t)



740 Event Calculus Planning Through Satisfiability

then, T��	,1) is the conjunction of every ground instance of the formula,

(� Happens(Move(x,y,z),1)� HoldsAt(On(x,y),1))�
(� Happens(Move(x,y,z),1)� HoldsAt(Clear(x),1)) �

(� Happens(Move(x,y,z),1)� HoldsAt(Clear(z),1))

Building on the definition of T� , the function T� encodes all the effect axioms.

DEFINITION 4.7
If � is a time point constant and � = �� � ... � �� is a simple domain description, then T���,� ) is,

T����,� ) � ... � T����,� ).

The formulae in T���,� ) only take care of changes in fluents that are brought about by actions.
We also need a solution to the frame problem. That is to say, we need to represent the non-effects of
actions. Following the recommendation of Ernst et al. [3], the mapping below employs explanation
closure axioms in the style of Haas [6], as these lead to a more compact encoding than classical
McCarthy and Hayes style frame axioms.

DEFINITION 4.8
If � is a time point constant, � is a simple domain description, and � is a ground fluent term, then
E���,� ,�) is the conjunction of every formula of the form,

HoldsAt(�,� ) � � HoldsAt(�,�+1) � Happens(��,� ) � ... � Happens(��,� )

where 
�� ... ��� is the set of all instantiations of an action term � with a substitution � for �
such that � includes the formula Initiates(�,�,t) � 	 and � is consistent with the inequalities in 	.
Similarly, E���,� ,�) is the conjunction of every formula of the form,

� HoldsAt(�,� ) � HoldsAt(�,�+1) � Happens(��,� ) � ... � Happens(��,� )

where 
�� ... ��� is the set of all instantiations of an action term � with a substitution � for � such
that � includes the formula Terminates(�,�,t)� 	 and � is consistent with the inequalities in 	.

EXAMPLE 4.9
Suppose we have the same language and domain description� as in Example 3.13. Then E �(On(A,B),1,�)
is the formula,

HoldsAt(On(A,B),1) � � HoldsAt(On(A,B),2) �
Happens(Move(A,Table,B),1)� Happens(Move(A,A,B),1)�

Happens(Move(A,B,B),1)� Happens(Move(A,C,B),1).

(Note that this formula takes into account two impossible actions.)

E�(On(A,B),1,�� is the formula,

� HoldsAt(On(A,B),1) � HoldsAt(On(A,B),2) �
Happens(Move(A,B,Table),1)� Happens(Move(A,B,A),1)�

Happens(Move(A,B,B),1)� Happens(Move(A,B,C),1).
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(Note that this formula takes into account one impossible action, and one action that initiates the
same fluent that it terminates.)

Based on the mappings E� and E�, the function T
 encodes all the required explanation closure
axioms.
DEFINITION 4.10
If � is a time point constant and � is a simple domain description, then T
 ��,� ) is the conjunction
of all formulae E���,� ,�) � E���,� ,�) such that � is a ground instance of a fluent term mentioned
in �.

Finally, we need to exclude the possibility of multiple actions occurring at the same time. This is
done via the function T� .

DEFINITION 4.11
Let T� be the conjunction of every ground instance of the formula,

� Happens(��,� ) � � Happens(��,� )

such that �� �� ��.

We’re now in a position to define the CNF encoding of an event calculus planning problem.

DEFINITION 4.12
If � is a time point constant and � is a goal, then T���,� ) is identical to � except that every time
point constant occurring in � is replaced by � .

DEFINITION 4.13
If �� is an initial situation, � is a domain description, and � is a goal, then T(��,�,�,n) is,

T
���� �

��
���

T���	 i� �
��
���

T
 ��	 i� � T� � T���	 n+1��

5 The correctness of the encoding

This section presents a theorem showing that the set of solutions to an event calculus planning
problem is isomorphic to the set of solutions to its CNF encoding. First, we require a lemma ensuring
that, according to the event calculus axioms, the completeness of the initial situation carries over to
all subsequent time points.

LEMMA 5.1
Let�� be a complete initial situation, let� be a simple domain description, let � be the conjunction
of a pair of uniqueness-of-names axioms for the actions and fluents mentioned in �, and let � be a
totally ordered narrative. For any ground fluent term � and time point constant � , either

CIRC[� ; Initiates, Terminates, Releases] �
CIRC[�; Happens] � �� � EC � � 
� HoldsAt(�,� )

or,

CIRC[� ; Initiates, Terminates, Releases] �
CIRC[� ; Happens] � �� � EC � � 
� � HoldsAt(�,� ).
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PROOF. The proof is by induction over the time points. It follows from the completeness of � � that
the lemma holds for � = 0. Now suppose the lemma holds for � � 
. Then we can show that the
lemma holds for � � 
 � � as follows. Consider any ground fluent term �. There are two cases to
consider. Case 1: we have HoldsAt(�	 
). From EC, this is either because � held at time point 0 and
has not been terminated between 0 and 
, or because some event occurred before 
 that initiated �.
Now, if an event occurs at time 
 that terminates �, then we will have � HoldsAt(�	 
 � �), from
(EC5). But if no event occurs at time 
 that terminates �, then we will have HoldsAt(�	 
 � �),
from (EC2). Either way, the lemma holds at time 
 � �. Case 2: We have not HoldsAt(�	 
). The
argument is analogous to the first case.

Next, we have a lemma showing that, given any totally ordered narrative, the CNF encoding agrees
with the original event calculus formulation on what fluents hold when.

LEMMA 5.2
Let�� be a complete initial situation, let� be a simple domain description, let � be the conjunction
of a pair of uniqueness-of-names axioms for the actions and fluents mentioned in �, and let � be a
totally ordered narrative. For any fluent � and time point � � n,

CIRC[�; Initiates, Terminates, Releases] �
CIRC[�; Happens] � �� � EC � � 
� HoldsAt(�,� )

if and only if,

T
���� �

��
���

T���	 i� �
��
���

T
 ��	 i� � CIRC[�;Happens] � � 
� HoldsAt(�,� ).

PROOF. First, we note that the event calculus formulation is inconsistent if and only if the CNF
formulation is inconsistent. (In the event calculus formulation, inconsistency arises if and only if
some fluent � is both inititated and terminated at the same time point � . Definition 4.5 ensures
that both HoldsAt(�,� ) and � HoldsAt(�,� ) follow from the transformation if and only if this is the
case.) So we can confine our attention to the consistent cases. The proof is by induction over the
set of time points. First we show that the lemma holds for � = 0. Consider any ground fluent term
� that holds at time 0 according to the event calculus formulation. Then, given the event calculus
axioms, we must have Initially� ��), in which case T
���� 
� HoldsAt(�,0), so � also holds at time
0 according to the CNF formulation. An analogous argument holds for ground fluent terms that do
not hold at time 0. The completeness of the initial situation ensures that this covers all ground fluent
terms. Now suppose the lemma holds for � � 
, where 
 
 �. Then we can show that the lemma
holds for � � 
�� as follows. Consider any ground fluent term �. There are four cases to consider,
given Lemma 5.1. Case 1: � doesn’t hold at 
 but does hold at 
�� according to the event calculus
formulation. Given the event calculus axioms, it follows that we have� 
� Initiates(�	 �	 
) for some
action � such that � 
� Happens(�	 
). In this case we also have, T���	 
) 
� Happens(�	 
) �
HoldsAt(�	 
��), from which it follows that � doesn’t hold at 
 but does hold at 
�� according to
the CNF formulation. Case 2: � holds at 
 but doesn’t hold at 
 � � according to the event calculus
formulation. An analogous argument to that for the first case shows that � also holds at 
 but doesn’t
hold at 
�� according to the CNF formulation. Case 3: � holds at both 
 and 
�� according to the
event calculus formulation. It follows that, for every action � such that � 
� Terminates(�,�	 
), we
have � �
� Happens(�	 
). But if � 
� Terminates(�,�	 
), we also have T
 ��,i) 
� �HoldsAt(�	 
)
� HoldsAt(�	 
 � �) � Happens(�	 
). Since � �
� Happens(�	 
), it follows from this that � holds
at both 
 and 
 �� according to the CNF formulation. Case 4: � doesn’t hold at 
 and doesn’t hold
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at 
 � � according to the event calculus formulation. An analogous argument to that for the third
case shows that � doesn’t hold at 
 and doesn’t hold at 
 � � according to the CNF formulation.

Next we prove the correspondence between models of the CNF encoding and abductively defined
event calculus plans. This correspondence relies on the completeness of the initial situation and the
fact that all actions in a simple domain description have deterministic effects. First we define some
useful semantic concepts for propositional calculus.

DEFINITION 5.3
Let U be a set of propositional variables. A truth assignment for U is a function from U to the set

True,False�. Two truth assignments V� and V� agree if there is no propositional variable � such
that V�(�) �� V�(�).

DEFINITION 5.4
Let C be a CNF formula, and let U be the set of all propositional variables occurring in C. The
formula C is satisfiable given the truth assignment V� if there exists a truth assignment V� for U that
agrees with V� and which satisfies C.

Next we define a function that maps from event calculus narratives to propositional truth assign-
ments.

DEFINITION 5.5
If C is a CNF formula and� is a totally ordered narrative, then the truth assignment V��� is defined
as follows. For every propositional variable of the form Happens(�,� ) that occurs in C,

V���(Happens(�,� )) =

��
�

True if � 
� Happens(�,� )

False otherwise.

The next lemma provides a bridge between satisfiability and entailment for encoded planning
problems, in the context of simple domain descriptions and totally ordered narratives. It shows that
an encoding plus a narrative is satisfiable if and only if the encoding minus the goal plus the narrative
entails the goal.

LEMMA 5.6
For any complete initial situation ��, any simple domain description �, any goal �, and any totally
ordered narrative � of length �,6 C = T(��,�, �	 �) is satisfiable given the truth assignment V���

if and only if C� is consistent and C� 
� T�(�	 �� �) where C� is,

��
���

T���	 i� �
��
���

T
 ��	 i� � CIRC[�;Happens] � T
���� � ��

PROOF. Given the consistency of C�, the if half of the lemma follows directly. The only-if half
can be shown as follows. Since the initial situation is complete, the form of T���	 �� and T
 ��	 ��
guarantees that, for any fluent � and any time point � � �, either C� 
� HoldsAt(�,� ) or C� 
� �
HoldsAt(�,� ). (This can be shown by induction over time points. The details are omitted.) In other
words, all models of C� satisfy exactly the same set of HoldsAt formulae. Now, note that any model
V of C that agrees with the truth assignment V��� is also a model of C�. Therefore, since V satisfies
T���	 �� �), we have C� 
� T���	 �� �).

6The length of a narrative or plan is the number of actions it contains.
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Finally, we have the main result.

THEOREM 5.7
For any complete initial situation ��, any simple domain description �, and any goal �, � is a plan
for � of length � if and only if C = T(��	�	�	 �) is satisfiable given the truth assignment V��� .

PROOF. The theorem follows directly from Lemmas 5.1, 5.2, and 5.6

Theorem 5.7 guarantees, for example, the soundness and completeness of any planner that CNF-
encodes an event calculus planning problem using the transformation defined, and then submits it to
a sound and complete SAT solver.

6 Concluding remarks

Although the focus of this work is logical foundations not implementation, a working prototype event
calculus planner has been implemented based on the CNF encoding presented here, in combination
with Kautz and Selman’s (sound but not complete) WalkSat solver. In addition, the planner employs
the action splitting technique described by Ernst et al. [3] to reduce the size of the encoding. The
system was implemented in C and deployed on a 933 MHz Pentium III processor. The planner
was run 100 times on the 9-block Blocks World problem ����� � from the BlackBox test suite
[12], and it found an optimal solution in an average time of around 9 seconds. This performance
isn’t competitive with recent high-speed domain-independent planners. But, as expected, it offers a
significant improvement on traditional abductive event calculus planners, such as that presented in
[23], which fail to solve Blocks World problems with five or more blocks in measurable time. The
door is obviously open to using recent and future advances in satisfiability planning to obtain a better
performance.

The implemented planner has been extended to cope with actions with conditional effects, al-
though the formal basis for this is beyond the scope of the present paper. In future work, it is hoped
to further extend the CNF encoding to encompass a richer class of event calculus planning prob-
lems, in a similar vein to [5]. For example, actions with non-deterministic effects can be handled by
a form of generate-and-test algorithm, first generating plans that work for some outcome of the non-
deterministic actions, and then testing to see whether they work for all possible outcomes. Mueller
has already made considerable progress in this direction [18].
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