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Abstract—Neuronal avalanches are a cortical phe-
nomenon characterised by bursts of activity bracketed
by periods of quiescence. It has been shown both in vivo
and in vitro that the size and length of avalanche events
conform to power law-like distributions, suggesting the
system is within or near a critical state. This work in-
vestigates the interplay of network connectivity, synaptic
plasticity, and criticality. Using two different network con-
struction algorithms, we demonstrate that Spike Timing
Dependent Plasticity (STDP) robustly drives the network
towards a critical state. Our findings show that, while the
initial distribution of synaptic weights plays a significant
role in attaining criticality, the network’s topology at the
local level has little or no impact.

I. INTRODUCTION

CORTICAL networks demonstrate a variety of phe-
nomena which have been hypothesized to underlie

cognition. Examples include synchronous oscillations
[1], [2], modular firing [3], and neuronal avalanches
[4], [5]. Various factors, such as excitatory and in-
hibitory neural activity as well network connectivity
impact these phenomena. This paper focuses on the
impact of network structure on neuronal avalanches and
the identification of criticality. Neuronal avalanches are
bursts of activity followed by episodes of quiescence.
It has been shown in vivo [6] that neuronal avalanches
have statistical properties reminiscent of critical sys-
tems [4].

Using two parametrised algorithms for synthesis-
ing networks we constructed 3000 different structures
which underwent the same training. Using Spike Tim-
ing Dependent Plasticity (STDP) we evolved all net-
works towards a specific dynamical regime dependent
on initial excitatory and inhibitory synaptic strength.
After one minute of training, we stimulated the network
and measured the resulting avalanche activity for two
minutes.

By measuring small-worldness [7], modularity [3],
and synaptic weight distributions we analyse the post
learning networks and demonstrate how network struc-
ture impacts avalanche activity. We show that power
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law avalanche (or rather more appropriately power
law-like) distributions arise for many post learning
networks, therefore demonstrating how STDP may be
a sufficient process for evolving towards a critical state.
These findings expand on Li[8] and De Arcangelis[9]
who originally show that a Hebbian learning process is
sufficient for achieving critical states in simple network
models.

This paper begins by defining criticality and de-
scribing the various approaches for identifying critical
systems. We describe how avalanches play a role in
identifying criticality and why we use this approach.
Following the introduction to criticality, we define
the neural network model as well as the training
environment. The paper concludes by showing how
network structure impacts avalanche activity and by
demonstrating that STDP is a sufficient process to
produce power law-like avalanche distributions.

II. BACKGROUND

Neuronal avalanche activity was originally ob-
served in vitro by Beggs and Plenz [4] and later in vivo
by Gireesh [6] and Petermann [10]. Beggs and Plenz
identify avalanches by first dividing neural activity into
a series of continuous windows of size ∆t = 4 ms. A
window is active if any neurons fire, otherwise it is
inactive. An avalanche is a continuous series of active
windows encapsulated by inactive windows. They then
formally quantify avalanches by size (number of neural
firings within avalanche) and length (number of con-
tinuous active windows).

When measuring the size and length distributions
of neuronal avalanches Beggs and Plenz show that they
conform to a power law-like distribution (P (n)∼n−α)
of exponents −1.5 and −2 respectively. Identifying
a power law indicates the system is in, or near a
critical state [11], [12], [13]. Being in a critical state
represents the system being poised between order and
disorder as well as the possibility of a minor event
triggering a chain reaction leading to a large response
[11]. We observe this behaviour in natural events such
as forest fires, floods, and earthquakes. Natural systems
(including cortical networks) self organize into this
state via a critical branching process - Self Organized
Criticality [11], [14], [4].

It has been argued that this process is not just
a coincidence [11], [5], [12]. By self-organizing via
neuronal avalanche activity to operate near criticality,
the brain is said to optimize network behaviour. Beggs
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claims that this phenomenon affects network behaviour
with regards to information processing, information
storage, computational power, and stability - The Crit-
icality Hypotheses [15], [16]. Shew [5] extends this
hypothesis by proposing that a network near criticality
maximizes dynamic range.

In addition to recent work focusing on the impacts
of criticality, we also see many authors aiming to better
understand the phenomenon at the local [8], [9] and
global level [17]. In a similar vein, this paper aims to
improve our understanding of neuronal avalanches and
their contribution to criticality by modelling complex
local network structures and analysing how their con-
nectivity contributes to the formation of avalanches.

III. METHODOLOGY

A. Neural Network Model

Continuing from the work of [8], [18], [9], we con-
struct a novel neural network reproducing avalanches.
The behaviour of a single neuron is produced using the
Izhikevich model:

v′ = 0.04v2 + 5v + 140− u+ I

u′ = a(bv − u)
(1)

if v ≥ 30 mV, then
{
v ← c
u← u+ d

(2)

where v and u represent the neuron’s membrane
potential and recovery respectively. The parameters
a, b, c, and d are set to model either excitatory
(0.02, 0.2,−65 + 15r2, 8− 6r2) or inhibitory (0.02 +
0.08r, 0.2 − 0.05r,−65, 2) neurons. The variable r is
drawn from a uniform distribution U(0, 1) to intro-
duce some variability in the neuronal population. I
represents current from neighbouring neurons as well
as external stimulation which we use to interact with
the system. When the membrane potential v exceeds a
threshold, eq (2) models the after-spike reset behaviour.
This approach is computationally efficient and compa-
rable to neural behaviour in nature [19].

Our model uses 800 excitatory neurons and 200
inhibitory neurons. Synaptic delays from inhibitory
neurons are 1ms and from excitatory neurons are ran-
dom U(1, 20). Inhibitory weights are fixed at wij = 4
and the pre-learning excitatory weight is a parameter
depending on network connectivity and the dynamical
regime the network drives towards (discussed later).

We define connectivity through two techniques -
Watts-Strogatz [7] and Klemm-Eguiluz [20]. Both use
wiring control parameters p ∈ [0, 1], allowing us to
produce more diverse networks. The Watts-Strogatz
procedure is well known so we omit further discussion

on their technique. However, the approach by Klemm-
Eguiluz is comparatively under utilised, thus we dis-
cuss their method further.

The Klemm-Eguiluz procedure produces networks
of modularity and small worldness comparable to
the Watts-Strogatz approach. However, unlike Watts-
Strogatz, the degree distribution is mathematically
defined (i.e. power law distribution). Furthermore,
Klemm-Eguiluz produces networks with more richly
connected neurons and hub nodes. This is achieved
by maintaining an active list of neurons which are
more likely to receive connections from other neurons
- preferential attachment.

We modify their approach so the wiring parameter p
does not impact the number of synapses. Our modified
version of their approach is given in algorithm 1.
Prettejohn provides a comparative and detailed review
of both Klemm-Eguiluz and Watts-Strogatz networks
[21].

Watts-Strogatz networks are built with k = 10
degree, Klemm-Eguiluz with m = 10 active nodes
and κ = 0.5 directional probability. An important
feature of the Watts-Strogatz approach and our version
of the Klemm-Eguiluz algorithm is that the value of
the wiring probability p does not affect the number of
synapses. This allows us to understand how only net-
work connectivity influences the formation of neuronal
avalanches.

A complex neural structure alone is insufficient for
producing neuronal avalanches. Dynamic long range
neuronal avalanches are unlikely to form with a flat
synaptic weight distribution. Using Spike Timing De-
pendant Plasticity (STDP) [22] allows for a more
complex weight distribution to form over time. The
following STDP function modifies excitatory synapses
based on timing between spikes:

∆w =

{
A+e

−∆/τ+ if ∆t ≥ 0
−A−e∆/τ− if ∆t < 0

(3)

where ∆w is the weight change, ∆t = tj − ti is
the time difference between the presynaptic i and
postsynaptic j spike. τ+ and τ− define the temporal
window of the synaptic modifications, while A+ and
A− define the strength of the modifications. We use a
temporal window of τ+ = τ− = 20 with modification
strengths of A+ = 0.05 and A−/A+ = 1.05 as used
by [8] and originally defined by [22].

Our STDP process is active until synaptic mod-
ification begins to stagnate, at which point STDP
is turned off to prevent over pruning. We use the
initial excitatory weight to guide the formation of
neuronal avalanches towards sub-critical, critical, or
super-critical regimes. Weights of WSw = (5, 9, 11)
and KEw = (11, 15, 17) guide Watts-Strogatz and
Klemm-Eguiluz networks respectively towards either a
sub-critical, critical or super-critical regime. A genetic
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Algorithm 1: Generating small world networks
based on Klemm-Eguiluz [20].
N = Number of nodes
m = Number of active nodes
p = Probability of connecting new edges to
active or inactive nodes
κ = Directional rewiring

1 Create fully connected sub network of active
nodes
for i← 1 to m do

Connect i and Active Nodes
end

2 Connect remaining nodes to active or inactive
nodes with probability p
for i← m+ 1 to N do

foreach Node j of Active Nodes do
if p > U(0, 1) or
Deactivated Nodes < m then

Connect i and j
else

c← false
while c = false do

Node h ← randomly chosen
from Deactivated Nodes
E ← sum(Degrees of all
Deactivated Nodes)
if Degree(h) / E > U(0, 1) and
i and h not connected then

Connect i and h
c← true

end
end

end
end
Deactivate node: Replace active node with i
Set i as Active Nodes
while node j not chosen do

j ← Random(Active Nodes)
d ← Degree(Active Nodes) ∗
(1/Degree(j))
if d > U(0, 1) then

Set j as chosen
Remove j from Active Nodes

end
end

end
3 Randomly rewire bi-directed edges

for i← 1 to N do
foreach Node j connected to i do

if κ > U(0, 1) then
h ← Random(AllNodes)
Connect i to h
Disconnect i from j

end
end

end

algorithm was used to identify the ideal weights result-
ing in critical activity (WSw = 9 and KEw = 15). By
choosing smaller and larger values we further analyse
sub-critical and super-critical regimes. Different values
are used due to each technique producing networks
with different numbers of synapses 10,000 and 19,890
for Watts-Strogatz and Klemm-Eguiluz respectively.

The model enables us to produce a variety of
avalanche dynamics under different circumstances.
This aids us in better understanding how network
structure impacts the formation of neuronal avalanches.

B. Network Measures

This section describes methods taken from graph
theory for measuring attributes common of complex
networks. Measuring such features aids in establishing
a correlation between specific network characteristics
and critical dynamics.

A common feature of complex networks is high
clustering [23]: If node x is connected to y and z then
it is likely that y and z are connected. For example,
your friends are likely to know each other. For our
purposes nodes with only one neighbour - leaf nodes
- have a clustering coefficient of zero, other authors
may use one for such cases. Kaiser [23] discusses the
effects of using zero or one in greater detail.

A complex network is further defined by a short
average path length [24], [7]. Both these features are
typical of small world networks.

Formally, we define small world networks by:

σG =
γG/γrand
λG/λrand

(4)

where γG and γrand are the clustering coefficients of
network G and an equivalent random network respec-
tively; and λG and λrand are the mean path lengths of
network G and an equivalent random network respec-
tively.

The clustering coefficient of a node j is the fraction
of the set of all possible edges between immediate
neighbours of j that are actual edges. The average
clustering coefficient γG is this value averaged for
all nodes in the network G. The mean path length
λG is the minimum number of steps from node i
to j averaged for all node pairs in network G. The
clustering coefficient of a random network with n
nodes and average degree k is γrand = k/n while
the mean path length is λrand = ln(n)/ln(k) [7].

We further define a complex network by its modu-
larity. A network is modular if nodes can be partitioned
into populations which are highly intra-connected and
sparsely inter-connected [3]. Newman [3] formally
defines modularity with respect to a given partitioning
c:

QG =
1

2m

∑
i,j

(Gij −
kikj
2m

)δcicj (5)
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where Gij > 0 indicates the presence of a connection
between i and j, m is the number of edges in the
network, cx indicates the module of neuron x, and

δxy =

{
1 if x = y

0 otherwise
(6)

Network modularity QG has a maximum value of
one and is negative when there are fewer connections
within a module than between modules. When gener-
ating networks probabilistically their modular division
is unknown. Using the Brain Connectivity Toolbox by
[25] we heuristically find network modules. However
the algorithm of [25] returns varying results on differ-
ent attempts. To control for variance we run modularity
analysis 100 times, and pick the community division
resulting in the highest network modularity QG.

Only post-learning networks produce dynamic long
range avalanches. Pre- and post-learning networks dif-
fer slightly in connectivity but primarily in synaptic
strengths. Due to this, in addition to computing the
modularity and small-worldness, we further analyse
networks according to their weight distribution - the
synaptic strengths from excitatory neurons to all other
neurons. This approach provides a more detailed look
at each network’s synaptic structure

With these network measures we demonstrate the
correlation between network structure and avalanche
activity. We also show how networks evolve from a
pre-learning state to a post-learning dynamical regime.

C. Experiments

We ran 3000 simulations; 1000 for each dynamical
regime (sub-critical, critical, and super-critical) and
within each regime, 500 for each network construction
technique (Watts-Strogatz and Klemm-Eguiluz). The
simulations were hardware-accelerated using a GPU
in combination with the NeMo framework [26]. Each
simulation entails:

1) Generating the network structure for a given
wiring probability p.

2) Training the network for 30 seconds with an
external current I = 6 to excitatory neurons.

3) Generating neuronal activity for two minutes
with a lower external current I = 3 to
excitatory neurons.

4) Measuring pre and post learning network
statistics.

5) Measuring avalanche sizes according to win-
dows of ∆t = 1 ms (Due to a larger model
we use a smaller time scale in comparison to
[4], [8]).

6) Fitting and measuring confidence of power
law distributions according to [27] and [13].

IV. RESULTS

We use the terms sub-critical, critical, and super-
critical when referring to neuronal activity. Figure 1
shows what these terms refer to from the perspective
of neural firings. Subcritical firing reveals no obvious
pattern and is interpreted as noise, while super-critical
firing reveals an obvious banding due all neurons con-
stantly firing together in large avalanches. On the other
hand, critical firing falls between these two regimes; we
see some banding activity occurring but often breaking
down due to larger avalanches being less likely. If
sub-critical firing is noise and super-critical is overly
ordered then a critical network is likely to show more
interesting dynamics.

Similarly to [4], [8], when we measure these firings
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Fig. 2: Power law-like probability distributions P (S ≥
s) for both example Watt-Strogatz and Klemm-Eguiluz
networks.

we reveal power law-like distributions for the size and
length of avalanches. Our plotted distributions show the
probability that the avalanhce size is less-than-or-equal
to S rather than exactly S. If we plot the equivalent
P (S = s) the slope would appear steeper. Regardless
of appearence all distributions are fit with a power
law (P (n)∼n−α). Figure 2 shows the distributions for
both Watts-Strogatz and Klemm-Eguiluz networks. The
difference between untrained networks and networks
within a dynamical regime is later shown in figure 5.

Low initial excitatory weights (WSw = 5,KEw =
11) result in STDP modifying networks to exhibit a
more diverse avalanche distribution, however no large
avalanches occur, possibly reflecting the inability of
distant neurons to communicate. High initial excitatory
weights (WSw = 11,KEw = 17) result in larger
avalanches being more likely occur. This means distant
neurons are communicating more. However, if the
same neurons are in constant communication this rep-
resents the network being overly ordered and possibly
less dynamic. Fine-tuned excitatory weights (WSw =
9,KEw = 15) lead to power law-like avalanche dis-
tributions with exponents −1.49 and −1.51 for Watts-
Strogatz and Klemm-Eguiluz respectively. We identify
power laws using methods from [27], [13] which are
represented by a straight line on a log-log plot (figure
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2). These findings agree with previous experimental
results [4], [6], [10] and reflect the ability of distant
neurons to communicate but not become stuck in the
same ”conversation”.

Figures 1 and 2 mainly represent the model’s
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ability to produce neuronal avalanches comparable to
previous results [4], [8], [9]. We now question what
type of local network connectivity promotes criticality.
Figure 3 shows the small-worldness and modularity
of sub-critial, critical, and supercritical networks for
both Watts-Strogatz and Klemm-Eguilez networks for
any wiring probability p. These results show that: 1.
Klemm-Eguiluz networks tend towards a modularity of
0.28 regardless of the resulting dynamical regime and

2. Small-worldness and modularity are not required for
neural firing to follow any of these particular dynamical
regimes.

Since small-worldness and modularity do not ap-
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tributions for sub-critical, critical, and super-critical
networks

pear to affect avalanches, we carried out a more de-
tailed analysis of sub-critical, critical, and super-critical
networks for both Watt-Strogatz and Klemm-Eguiluz.
When looking at the degree and weight distribution
(figure 4) we see a clear difference between each
regime for both network types. Both network types
have different degree distributions, Watts-Strogatz be-
ing not well defined and Klemm-Eguiluz following
a power law. Regardless of degree distributions both
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networks access all dynamical regimes.
We see that weight distribution clearly affects

which dynamical regime the network operates within.
It appears that the magnitude of the weight distribution
defines the formation of avalanches and consequently
the networks’ criticality. From these results we hypoth-
esise that neuronal avalanches are defined primarily
by the network’s weight distribution, and other factors
such as small-worldness and modularity at least at the
local level do not affect avalanches. However, this does
not answer our initial question, does STDP promote
criticality?

To answer this question we sweep the Watt-
Strogatz and Klemm-Eguiluz wiring parameter p be-
tween 0 and 1 for the three dynamical regimes. Figure
5 shows the resulting avalanche size distributions for
the different values of p. We see that the dynamical
regime towards which a network is trained by STDP
is not affected by the value of p. Previously we saw
that connectivity alone does not impact criticality, but
rather the initial weight assignment affects criticality.
Here we see a similar phenomenon. Initial connectivity
has little influence. Rather, STDP robustly drives the
network into one of the three dynamical regimes, and
which regime this is depends chiefly on the initial
balance between excitatory and inhibitory weights. But
how robust is the learning towards critical networks
specifically?

Figure 6 shows that when we ran the simulation
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Fig. 6: Exponents α of avalanche size P (S)∼S−α and
length P (L)∼L−α probability distributions for critical
networks between wiring probability 0 ≤ p ≤ 1.

500 times for each network type the resulting size
exponent is the same ≈ −1.5 with some variance
≈ 0.1. For the length distribution we see that Watts-
Strogatz and Klemm-Eguiluz networks differ with ex-
ponents of ≈ −1.6 and ≈ −1.7 respectively. For
500 simulations we only saw 21 and 30 failures to
train towards a critical network for Watts-Strogatz and
Klemm-Eguiluz respectively, where a failure is defined
as the confidence of the power law fit dropping below

0.1 This shows that STDP will consistently drive the
size of avalanches towards the same power law-like
behaviour and possibly towards criticality.

V. DISCUSSION

Our work shows that STDP is a robust training
process for driving a variety of networks towards the
generation of avalanches whose sizes conform to a
power law-like distribution. The specific dynamical
regime that results is primarily dependent on the initial
synaptic weight distribution. In our work, by modifying
the networks’ internal excitation we demonstrate how
various dynamical regimes may be reached regardless
of initial network connectivity. Our work not only
demonstrates the power of an STDP training process
towards these dynamical regimes but also demonstrates
how criticality is a robust phenomenon which may be
identified for a variety of networks using power law-
like avalanche distributions as indicators.

Throughout this paper we have used the term
power law-like. We use this term due to the current
debate regarding the validity of the power laws being
identified in critical systems. Power laws are visually
similar to other distributions (example gamma and
exponential distributions) resulting in their often being
misidentified, thus calling into question the claim of
neural systems being critical. Currently many authors
debate both these questions with no clear consensus so
far [27], [28], [12], [29], [13].

If power laws are possibly unreliable indications of
criticality, how can we confirm that neural systems are
critical? An alternative method is to determine if the
system exhibits a phase transition. A phase transition
takes place if, while sweeping some control parameter,
a sharp transition occurs in a corresponding order
parameter. The Ising Model [30] exhibits this behaviour
- as the temperature (control parameter) is applied,
the correlation length (order parameter) between iron
particles sharply maximizes for a critical temperature
range. Recent work by [17] demonstrates neural phase
transitions at large scale. However, at the local level,
how to identify neural phase transitions as well as how
the control and order parameters are selected is still
largely unknown.

With no conclusion regarding the validity of the
power law in these systems, and with local neural phase
transitions still in need of investigation, the question of
neural criticality and how to identify it remains open.
Thus we have adopted the term power law-like, and
following [4], [12] and [8] we assume power law-like
avalanches with an exponential cut-off represent the
ability for dynamic long-range correlations to form,
thus showing the system may be near a critical state.

We hope to expand our work by attempting to iden-
tify local neural phase transitions, thus confirming that
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our model is in a critical state rather than simply near
one. Furthermore we aim to improve our model with
the inclusion of STDP affecting inhibitory synapses
and with STDP being a continuous process. We aim to
demonstrate that local network connectivity does not
affect criticality and that criticality is a fundamental
property underlying other neural phenomena such as
synchronisation [1] and metastability [31].
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