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Modular networks of delay-coupled and pulse-coupled oscillators are presented that

display both transient (metastable) synchronization dynamics and the formation of

a large number of “chimera” states characterized by coexistent synchronized and

desynchronized subsystems. We consider networks based on both community and

small-world topologies. It is shown through simulation that the metastable behavior

of the system is dependent in all cases on connection delay, and a critical region

is found that maximizes indices of both metastability and the prevalence of chimera

states. We show dependence of phase coherence in synchronous oscillation on the level

and strength of external connectivity between communities, and demonstrate that

synchronization dynamics are dependent on the modular structure of the network.

The long-term behaviour of the system is considered and the relevance of the model

briefly discussed with emphasis on biological and neurobiological systems.
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Modular systems of identical weakly-coupled oscillators have been shown to

exhibit a rich set of dynamics, including metastability and the formation of

an unstable procession of concurrently synchronized and desynchronized coali-

tions, so-called chimera states. The phase-lagged coupling between oscillators

employed in previous studies is not an accurate representation of many of the

natural systems to which this model can be applied however. Many biological

systems are better represented by either delay-coupling, where interaction be-

tween oscillators is offset by a fixed time delay, or by a class of pulse-coupled

oscillator networks where communication is limited to the exchange of discrete

events. It is not obvious that the complex synchronization dynamics found in

phase-lagged systems should be present in equivalently structured networks of

delay or pulse-coupled oscillators. This paper presents both delay-coupled and

pulse-coupled networks that exhibit metastability and chimera states. Unsta-

ble synchronization dynamics results from a modular organization consistent

with studies of brain connectivity. We show that metastability and the for-

mation and variety of chimera states is dependent on the delay of interaction

between oscillators in both cases. Given the potential functional significance of

phase-coherence in neuronal communication, we show that increasing connectiv-

ity between modular communities is accompanied by phase-coherence between

those communities during synchrony.

I. INTRODUCTION

Synchronization is a ubiquitously observed natural phenomenon1 and the general prop-

erties of synchronization within oscillator networks has been the subject of much recent re-

search. Systems of weakly-coupled oscillators have been shown to display a diverse range of

behaviors, such as chimera states, formed when a network of identical symmetrically-coupled

oscillators spontaneously partitions into synchronized and desynchronized subsets2–8, and

metastability, characterized by the tendency of a system of oscillators to continuously mi-

grate between a variety of synchronous states9,10. The dynamics described by the transient

formation of synchronized coalitions of oscillators have been applied to both the function11,12

2



and externally observable phenomena13 of the brain, and are the prevalent dynamics among

many biological, ecological and economic processes.

The Kuramoto model14 is often used for exploring the synchronization properties of cou-

pled oscillators. Complex chimera-like synchronization behavior, involving the unstable

formation of synchronized and desynchronized coalitions of oscillators driven by transitions

between metastable states, has been demonstrated in phase-lagged Kuramoto oscillator net-

works under differing topologies15,16. While the continuous exchange of phase information

between network participants present in these models is an accurate abstraction of many

systems, the detailed operation of the mammalian brain, the all-or-nothing “action poten-

tials” sent over the synapses connecting neurons, is better described by the exchange of a

series of discrete events.

Networks of nonlinear pulse-coupled oscillators provide a similarly useful abstraction for

studying the synchronization properties of biological systems17,18. It is only recently that

the transient formation of chimera states found in the dynamics of modularly structured

Kuramoto oscillator networks has been examined in detail, and it is not obvious that the

same behavior should also be present in pulse-coupled networks of integrate-and-fire relax-

ation oscillators. If we wish to make the connection between metastable and chimera-like

behavior and the potentially functional dynamics of oscillation in neuronal and other pulse-

coupled systems, it is necessary to first demonstrate that these networks exhibit a similarly

rich repertoire of synchronous behavior.

Moreover, oscillation is prevalent in the aggregate behaviour of neuronal populations19

and is suggested to play a functionally significant role in the integration and routing of

information20,21. Networks of weakly-coupled Kuramoto oscillators provide a compelling

model of the dynamics of neural systems at this level22. Interaction of cortical or sub-

cortical structures within the brain is delayed by transmission over the fiber tracts connecting

those brain regions however. Propagation velocity and conduction delay varies widely over

axonal pathways and species, although conduction velocity can reasonably be estimated to

be in the order of 5 − 20 m/s and fast cross-brain axonal conduction delays in the order of

1− 5 ms in the mammalian brain23,24. The dynamics of these systems are more accurately

represented by accounting for transmission delay in the network model. Delay-coupled

Kuramoto oscillators arranged according to an empirically derived whole brain connectivity

matrix have been demonstrated to accurately model resting state fMRI data13, but only
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FIG. 1. Global synchrony (Φ) metastability (λ) and chimera index (χ) for community structured

networks of delay-coupled (a,b and c) and pulse-coupled (d,e and f) oscillators. Each data point

is the average value over 10 simulations, with parameters divided over a regular 101 × 101 grid.

Network connectivity was re-initialized and initial oscillator phases assigned randomly at the start

of each simulation. The region of parameter space displaying high values for both indices of

metastability and chimera index (λ and χ), indicating complex synchronization dynamics between

modular communities within the network, occurs at a transition from global synchrony to disorder

associated with increasing delay.

when the dynamics of the network are in a metastable region poised critically between order

and disorder.

In the present study we examine the synchronization dynamics of identically structured

networks of delay and pulse-coupled oscillators in the presence of modularity and delay.

While oscillator networks offer a promising method of elucidating a relationship between

connective topology and complex dynamics that appears to be fundamental to the oper-

ation of the brain, it remains unclear which properties of empirically derived connectivity

matrices are essential to the required dynamics and which are superfluous. We approach
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the problem through a systematic investigation of the conditions under which an idealized

modular network of oscillators generates metastable chimera states.

We have chosen to use networks of both community25 and small-world26 topologies. The

human brain has been shown to exhibit modular organization in both underlying structure27

and activity28. The small-world property is commonly found in the biological systems in

which we are interested29,30 and has relevance to the resulting dynamical behavior and

synchronization properties31. As such, modular networks form a natural basis for exploring

competitive behavior within these systems.

This paper is organized as follows. In Section II we introduce the model and describe

measures used to characterize the synchronization dynamics of network activity. In Sec-

tion III we explore the effect of varying connection delay and network modularity, and we

demonstrate that delay and phase-lag produce analogous changes in synchronization within

a modular network. That is, the transient formation of coalitions of synchronized subsys-

tems within the network accompanied by a transition from global synchrony to disorder. In

Section IV we present the main conclusions and summary.

II. METHODS AND MEASURES

For a network of n oscillators, the phase θi of oscillator i for the Kuramoto model with

phase-lagged coupling is governed by the equation

dθi
dt

= ωi +
n
∑

j=1

Ki,j sin (θj − θi − α) (1)

where ωi is the natural frequency of oscillator i, α is a fixed phase-lag, and Ki,j is the

connection strength between oscillators i and j. For delay-coupling we employ the following

modification. The phase of oscillator i at time t+ 1 is governed by

dθi
dt

= ωi +
n
∑

j=1

Ki,j sin (θj(t− τ)− θi(t)) (2)

where θi (t) is the phase of oscillator i at time t and τ is a fixed time delay. For either variant

of the model each connection of weight Ki,j 6= 0 represents a constant influence exerted by

oscillator j on the phase of oscillator i.

For the pulse-coupled case we use Mirollo-Strogatz type oscillators32. Phase is represented
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by the value θ, where θ ∈ [0, 1] and advances uniformly at a constant rate in the absence

of external input. The state of oscillator i is given by the smooth, monotonically increasing

function

f (θi) = y−1ln [1 + (ey − 1) θi] (3)

where f (θi) is analogous to the membrane potential used in many neuronal models. The

value y > 0 controls the extent to which the function is concave down.

Oscillators in the pulse-coupled case “fire” under the condition θ = 1 and emit a pulse

to all connected oscillators j, which is received after time delay τ . They are reset to phase

θ = 0 after firing. For purely excitatory coupling, the phase of oscillator i receiving a pulse

from a connected oscillator j is updated according to the rule

θ∗i =











1 → 0 for 1 < f (θi) + ǫji

f−1 [f (θi) + ǫji] for 0 < f (θi) + ǫji < 1
(4)

where ǫji is the weight of the connection from the firing to the receiving oscillator. The

delay assigned to each connection represents the time taken for the pulse to travel between

the two.

Our network model consists of 256 oscillators partitioned into M = 8 communities of

N = 32 oscillators each. Connectivity between oscillators is based on two commonly used

modular network topologies. We consider first the community structure described in Ref. 25.

Connections were placed between oscillators according to the following rule: for every pair

of oscillators i and j such that i 6= j, a directed edge was established from j to i with

probability pint if i and j belong to the same community (an internal connection) and with

probability pext if i and j belong to different communities (an external connection). To

obtain an average of cint internal connections and cext external connections per oscillator we

set

pint =
cint

(N − 1)
(5)

pext =
cext

N (M − 1)
(6)

We denote the average number of incoming connections (average in-degree) per oscillator

by cn = cint + cext.
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FIG. 2. Global synchrony (Φ) and coalition entropy (Hc) for a) delay-coupled and b) pulse-coupled

community structured networks. Results are shown for a series of 1000 simulations initialized with

a fixed ratio of external connectivity pext and increasing delay τ .

For every directed edge between oscillators i and j there is an associated coupling strength

ki,j, such that ki,j = kint if i and j are connected and belong to the same community, and

ki,j = kext if i and j are connected and belong to different communities. We set kint and kext

according to the equations

kint = b(a/cn) (7)

kext = (1− b)(a/cn) (8)

where a is a constant corresponding to the total input for an average oscillator and b is a

parameter governing the ratio of internal to external input.

We also consider networks with small-world connectivity. Network construction pro-

ceeded through a two-phase procedure described in Ref. 33 based on the Watts-Strogatz

method34. Local connectivity was first established by randomly connecting each oscillator i

to sn other oscillators j within the same community, where i 6= j and each connection was

directed from j to i. Inter-community connections were then established by re-wiring, where
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for each connection in the network source j was replaced by a randomly selected oscillator

within a different community with probability pr. Internal and external connection weights

were assigned similarly to community networks, using input and ratio values a and b and

equations

kint = b(a/sn) (9)

kext = (1− b)(a/sn) (10)

A series of simulations was carried out for each combination of oscillator model and

network topology, varying parameters delay τ , connection ratio b, and either cint and cext or

pr to change the total proportion of internal to external connections between communities.

Oscillator phase θ was advanced at step size 1/2π and equations updated at a resolution ω

of 0.01 steps. Connectivity was generated independently for each network at the start of

simulation and initial oscillator phases assigned randomly. Each simulation was run for 1500

steps with the first 500 discarded to remove any bias on the results from an initial network

transient. Statistics were calculated on the remaining 1000 steps.

Generation of connectivity proceeded with parameter value cn = sn = 8, resulting in an

average in the community case or total in the small-world case of 211 directed connections

per network. Connectivity between oscillators was strictly excitatory with the same weight

and delay assigned to each connection within a single network. The total input parameter a

(0.008 for delay-coupled and 0.054 for pulse-coupled networks) was selected from an initial

search through the model parameter space and used for all results. For comparison of the

results of both models we assume a natural frequency for all oscillators of 40Hz. Pulse-

coupled oscillators received parameter value y = 5.5 in all cases.

We quantify the instantaneous synchronization within a single community of oscillators

c at time t by the measure

φc (t) =

∣

∣

∣

∣

〈

eiθk(t)
〉

k∈c

∣

∣

∣

∣

(11)

where θk (t) is the phase of oscillator k at time t and 〈f〉k∈c denotes the average of f over

all k in c. The value ranges from [0, 1], with 0 indicating complete desynchronization and

1 complete synchronization. A measure of the global synchrony of the network (Φ) was
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FIG. 3. Average phase coherence between synchronous communities (ξ) for a) delay-coupled and

b) pulse-coupled community structured networks, with fixed delay and increasing level of external

connectivity pext and ratio of external connection strength b. Each data point is the average of 100

simulations.

calculated simply as the average instantaneous synchronization over time of the combined

community containing all oscillators in the network.

We define the metastability of the system as the variance in individual community syn-

chrony. Let C be the set of M oscillator communities. The variance σc of φc for c ∈ C gives

an estimate of changes in synchrony for a single community over the simulation period. The

average variance 〈φc〉 over all communities provides a measure of the metastability (denoted

λ) of the system as a whole. Fixing the time and estimating the variance σchi across com-

munities gives an instantaneous estimate of how chimera-like the system is, and we use the

average variance 〈σchi〉 (denoted χ) as an index of this value over time.

Coalition entropy was introduced in Ref. 15 as a measure to describe the variety of

metastable states entered by a system of oscillators. The normalized coalition entropy HC

is given by the equation
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HC =
1

log2 |S|

∑

s∈S

p (s) log2 (p (s)) (12)

where S is the set of distinct coalitions the system can generate and p (s) is the probability

of coalition s arising at any given time. A coalition s is said to arise at time t if φc(t) > γ

for all c ∈ s for some threshold γ, the system of M communities giving rise to a possible 2M

coalitions. If all coalitions arise with equal probability then HC = 1, if the system remains

in a single synchronized state then HC = 0.

We introduce a similar measure to quantify the phase-coherence of synchronization be-

tween communities. We first calculate the instantaneous synchronization φc(t) and the value

ρc (t) = arg
(

〈

eiθk(t)
〉

k∈c

)

(13)

providing both the magnitude (φc) and angle (ρc) of the average synchronization vector

across each community c. For the set of communities S with magnitude of internal synchro-

nization φc > δ for threshold δ at time t we then calculate the value

ξ (t) =

∣

∣

∣

∣

〈

eiρk(t)
〉

k∈S

∣

∣

∣

∣

(14)

We take ξ as a measure of instantaneous coherence in the phase of oscillation between the

set of highly synchronous communities at any time t.

III. RESULTS

We first explore changes in the global synchrony and metastability of the system in re-

sponse to variation in delay and connectivity. A series of ∼ 105 simulations was carried out

for both delay-coupled and pulse-coupled oscillator models arranged in a community struc-

ture. Parameters delay τ and degree of external connectivity pext were varied over the range

[0, 6] ms and [0, 1] respectively, arranged over a 101 × 101 regular grid with each recorded

data point the average over 10 simulations. Parameters pint, cint and cext were changed ac-

cordingly to maintain average number of connections per oscillator cn = 8. The synchrony

within each community and global synchrony of the entire system comprising all oscillators

was stored at each sub-step of the simulation and used to compute the metastability, chimera

index and coalition entropy of the simulation as a whole.
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FIG. 4. Comparison of results for community structured networks (green) and randomized versions

preserving degree distribution (red). Global synchrony (Φ) is shown for a) delay-coupled and c)

pulse-coupled networks for a series of 1000 simulations of varying delay τ . Chimera index (χ) is

shown for the same b) delay-coupled and d) pulse-coupled networks.

Results are shown in Figure 1. For clarity in the following we use subscripts d and p to

indicate values corresponding to delay or pulse-coupled networks respectively. In both cases,

maximal values for metastability (λd = 0.024, λp = 0.031) and chimera index (χd = 0.082,

χp = 0.037) occur at a point of transition between global synchrony and desynchrony associ-

ated with increasing delay. Networks maintain global synchrony when delay is close to zero

for external connectivity between communities pext up to a small threshold (pext ≥ 0.05 for

delay-coupled and pext ≥ 0.01 for pulse-coupled networks). At high values of delay the global

synchrony approaches 0 in the delay-coupled case and asymptotically approaches a value of

Φ ≈ 0.07 in the pulse-coupled case. Metastability and chimera index are corresponding low
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for boundary points Φ and reach peak values when global synchrony is in the range [0.2, 0.5].

Both indices also exhibit a region of optimal modularity as determined by increasing pext.

The coalition entropy for a series of 1000 simulations of increasing delay is shown in

Figure 2. The ratio of external connectivity pext was chosen in each case (pext = 0.5 for

delay-coupled and pext = 0.21 for pulse-coupled networks) from the optimal region shown in

Figure 1. Results exhibit a similar dependence on delay and global synchrony, with maximum

coalition entropy HC occurring during transition to the desynchronized state. The sensitivity

to connection delay is similar to the dependence on phase-lag seen in community structured

Kuramoto oscillator networks15. A resemblance to thermodynamic phase transition, where

fluctuation in synchronization follows from the balance between attracting and repelling

forces characterizing ordered and disordered regimes, has been noted previously14.

When we consider the effect of connectivity on the behaviour of the system it is interest-

ing to note that results in Figure 1 show high regions for both metastability and chimera

index near pext = 0, where there are few or no connections between communities. In Figure 3

we show the phase coherence ξ between the synchronous communities with varying pext for

fixed delay. Although the networks display metastability for all shown values of pext, there

is a clear difference in dynamical behaviour as the level of external connectivity is increased.

At low values of pext variance in synchrony is driven entirely by internal connectivity within

each community, and phase coherence between communities remains small. Phase coherence

between synchronous communities then increases with external connectivity until complete

coherence during synchronization ξ = 1 occurs for values pext approximately in the range

[0.2, 0.5] for both delay and pulse-coupled networks. The ratio of internal to external con-

nection strength b shows a corresponding effect on phase coherence, with increased b leading

to faster convergence on the phase-coherent state.

It is not evident from these results that the metastable synchronization dynamics we

observe in modular networks should be stable over time, or should not be present in equiva-

lently structured oscillator networks lacking modularity. We address the effect of modularity

on the synchronization dynamics by comparing against results derived using randomized ver-

sions of the same networks. Surrogate networks were generated using edge-swapping35 to

preserve degree sequence while randomizing connectivity. Results are shown in Figure 4.

Global synchrony displays a transition from high to low values with similar delay profile in

both unchanged and randomized networks (Figures 4a and 4c) while values for other indices
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FIG. 5. Long-term behaviour of the system from a series of 100 simulations of 106 steps each.

Minimum, maximum and average values are given for a) global synchrony (Φ) b) metastability (λ)

and c) chimera index (χ) calculated over a 1000 step window. Results for delay-coupled networks

are shown in red and pulse-coupled in green.

are significantly reduced (Figures 4b and 4d). We note that, although used in several pre-

vious studies, normalization by a random graph of the same degree sequence can produce

spurious results if the properties under study scale differently in the randomized version of

the network36.

Pulse-coupled networks have previously been shown to exhibit long chaotic transients37,38

resulting in a stable state and an underlying chaotic attractor structure39,40. Results for a

series of 100 long-term simulations of 106 steps for the present network are shown in Figure 5.

Minimum, maximum and average global synchrony and metastability are given, with values

calculated over a 1000 step window. Global synchrony and metastability in all simulations
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FIG. 6. Results for small-world structured networks. a) Metastability, c) chimera index and

e) coalition entropy for 1000 simulations of small-world structured delay-coupled networks for

increasing delay and fixed level of external connectivity. b) Metastability, d) chimera index and f)

coalition entropy for small-world structured pulse-coupled networks. Phase-coherence ξ is shown

for varying delay τ and external connection strength b for g) delay-coupled and h) pulse-coupled

small-world networks.

remained confined to the ranges [0.07, 0.72] and [0.004, 0.053] in the delay-coupled case and

[0.15, 0.73] and [0.006, 0.049] in the pulse-coupled case. None were observed to enter a stable

state.

Results repeated using a second modular network topology widely observed in biologi-

cal systems, the small-world structure, are shown in Figure 6. Network connectivity was

initialized in all cases with re-wiring parameter pr = 0.42, chosen to maximize indices for

both delay and pulse-coupled networks. Although the regions of the parameter space where

each index exhibits high values differ between community and small-world networks, both

display analogous dynamics. They both exhibit a dependence of global synchrony on delay,

with optimal regions for metastability, chimera index and coalition entropy at the transi-

tion between the globally synchronous and disordered states (Figures 6a-6f) and a similar
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dependence of phase synchrony on external connectivity (Figures 6g and 6h).

IV. DISCUSSION

The findings presented in this paper demonstrate the relevance of metastability and

chimera-like behavior to the greater understanding of the dynamical properties of delay-

coupled and pulse-coupled oscillator networks. Our particular interest lies in theories of

neural behavior that posit the importance of episodes of synchronization and desynchroniza-

tion within given frequency ranges in communication between different areas of the brain.

Differences in phase-coherence are suggested to underlie neuronal communication21,41,42 and

oscillators that are both highly synchronous and phase-coherent may represent important

functional subgroups within a single synchronous population. The modular structure and

small-world properties commonly found in biological networks are duplicated in the cur-

rent model, although the results are likely applicable to any modular network of delay or

pulse-coupled oscillators where chimera-like states may underlie system behavior.

Metastable chimera states are a plausible model of neural dynamics, where they repre-

sent the outcome of a competitive process in which a synchronized coalition of oscillators

forms while excluding its desynchronized rivals. Phenomena such as binocular rivalry43 and

inattentional blindness44 attest to the competitive nature of these neuronal processes. Most

investigations of chimera-like states to date have focused on the stable condition wherein

the chimera state is an attractor, but in neurodynamics a stable chimera state would be

pathological. The ever-changing state of the biological brain is better modeled in terms

of criticality and metastability45. With its underlying dynamics poised between order and

disorder, synchronized coalitions of brain processes arise and linger for a while, but then

dissolve to be supplanted by new coalitions.

We have shown both delay and pulse-coupled networks to exhibit analogous behaviour

to networks of phase-lagged Kuramoto oscillators when delay is treated similarly to the

lag parameter in previous studies. Metastability and chimera-states occur in the transition

from a fully synchronous to disordered state associated with increasing delay. Additionally

we observe a dependence between the degree of modularity of the network and phase co-

herence between synchronous communities, where a minimum level of external connectivity

is required to establish phase-coherent synchrony between communities dependent on con-
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nection strength. Unstable synchronization consisting of a series of completely synchronized

and desynchronized states has previously been shown in a pulse-coupled network in the pres-

ence of noise39. In the current model the transition between partially synchronized states

results from network structure and delay, the model is absent of stochastic input beyond ini-

tialization. That analogous dynamics are replicated over two commonly observed modular

network topologies and are significantly reduced by randomization of networks preserving

degree sequence supports the validity of the results.

The current model brings the authors closer to a neurologically detailed model exhibit-

ing the high-level formation of coherent oscillating assemblies from the individual activity of

spiking neurons, and an understanding of the dynamics generated by the aggregate behaviour

of oscillating neuronal populations. It exhibits both the small-world modular organization

observed in brain networks29, and a range of delay values for generating complex metastable

dynamics (within [2.5, 5.5] ms for delay-coupled and [0.5, 3.6] ms for pulse-coupled net-

works across values pext) that fall within plausible limits of axonal conduction delay24. The

dependence on modular structure also suggests the optimal ratio of local and long-range

connectivity required to produce complex metastable behavior (approximately in the range

[0.3, 0.5] in the current model) as a measurable property of neural and other natural delay

and pulse-coupled networks.

While tempting to interpret the parameter values of the current model as indicative of

synaptic properties required to produce similarly complex neuronal dynamics, demonstra-

tion of metastable behavior in biophysical models of large-scale neuronal dynamics46 will be

required to establish correspondence with the biological properties of the mammalian brain.

We aim to gain insight into the competitive processes underlying observable brain function

through an understanding of the irregular pattern of synchronization present in these net-

works and corresponding complex dynamical behavior. It remains of great importance to

establish a theoretical understanding of the nature of the phenomena described in this and

earlier papers.
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