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Abstract—A novel clustering algorithm is presented for ana-
lyzing the temporal dynamics of synchronization in networks of
coupled oscillators and applied to a model of resting-state brain
activity. Connectivity in the model is based on a human-brain
structural connectivity matrix derived from diffusion tensor
imaging tractography. We find a strong correspondence between
areas of high synchronization and highly connected “hub” nodes,
anatomical regions forming the structural core of the network
linking all areas of the brain. Such models have the potential to
increase our understanding of the constraints placed on brain
function by underlying anatomical structure.

I. INTRODUCTION

The application of graph theory to the analysis of neural

structure has led to a greater understanding of the organization

of the human brain [1]. Continued advances in non-invasive

structural imaging and tractography allow the connectivity of

the brain to mapped in ever greater detail. By viewing the

resulting set of white matter tracts between anatomical regions

as a network of nodes in a connected graph, the human brain

has been shown [2] to exhibit the small-world property [3]

prevalent in natural systems. Dense local connectivity coupled

with a small number of long-range connections results in an

energy and informationally efficient architecture combining

local functional specialization and global integration.

Applying graph theoretic measures of degree and cen-

trality further identifies some nodes within this small-world

architecture as highly connected “hub” nodes. These form

an integrated core network linking all other major neural

areas [4]. The spatial and topological centrality of anatomical

regions forming the core network is indicative of a role in

maintaining efficient global communication throughout the

brain [5].

Similar analysis has been performed on functional con-

nectivity matrices, derived from time-series data recorded

through modes of functional imaging such fMRI, MEG or

EEG. Connections between brain regions are typically based

on measures of correlation, coherence or mutual information.

Small-world properties have been observed in the topology of

both spontaneous resting-state [6] and task-related networks

[7]. Modular structure and central hub regions have also been

identified in resting-state functional networks [8], [9].

Several recent studies have examined the relationship be-

tween structural and functional connectivity [10]. It is com-

monly assumed that functional activity reflects underlying

anatomical structure, that brain regions connected by a large
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Fig. 1: Spatial representation of a 66-region human brain

structural connectivity matrix [4] with relative density of con-

nections between regions indicated by line thickness. Regions

forming the structural core of the network are shown in bold.

number of cortical projections are likely to be functionally

related. At a higher level it is suggested that the slow-changing

anatomical structure of the brain provides a framework that

constrains the state space of fast-changing functional activity

[11]. The relationship between the two is complex however,

and the extent to which the dynamical properties of the brain

are constrained by structure remains an open question [12].

A general positive correlation has been found between the

degree of structural connectivity and resting-state functional

activity [13], [14]. Several studies have also demonstrated

functional relationships between brain regions with few or no

direct cortical connections [10].

This paper presents a method of analyzing the temporal

dynamics of synchronization within networks of coupled

oscillators. We aim to both identify nodes in the network

forming synchronous clusters of activity and track changes

in cluster membership over time. There is significant evidence
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Fig. 2: a) Non-spatial representation of anatomical connectiv-

ity [4] ordered by hemisphere. Each labeled node corresponds

to a single anatomical region, and each line to a connection

between regions. b) Synchronization dynamics of a model of

brain activity [15] based on the same connectivity matrix. Each

anatomical region has been replaced by a single Kuramoto

oscillator, and each structural connection by a weighted and

delayed connection between oscillators. Each line represents

the internal synchronization of a single cluster of oscillators

(cluster membership identified by nodes of the same color).

Global synchronization of the network is shown by a black

line. The model displays metastable dynamics, where each

cluster displays transient periods of synchronized and desyn-

chronized activity.

for the functional importance of synchronous oscillation over

multiple frequency bands in the human brain [16]. Changes

in synchronization are proposed to underlie dynamic routing

of information between neural areas [17]. As such, a method

of identifying regions of synchronization within time-series

neural data is a valuable tool for examining the occurrence of

this type of potentially significant interaction. The described

method is equally applicable to models of brain activity

and data recorded from modes of functional imaging where

oscillation is observed, such as EEG and fMRI. In this paper

we apply the algorithm to a model of synchronization between

connected brain regions, and show a close correspondence

between synchronous dynamics and regions of modular struc-

tural connectivity within the model.

The rest of this paper is organized as follows. Section II

provides an overview of the proposed algorithm and model

of human brain activity. In Section III we present an analysis

of activity within the model and comparison with structural

properties of the network. Section IV concludes the paper and

discusses future work.

Algorithm 1

Input:

• The matrix Φ, where for N nodes and t time steps Φ(i, j)
is the phase θi of node i at time step j.

• The window length wl.

• The window step size ws.

• The synchrony threshold t.

Output:

• A set of clusters Ck each for window wk of starting

position k × ws and end position (k × ws) + wl, where

each cluster c ∈ Ck is a maximal non-overlapping subset

of N with total synchrony > t.

Method:

Stage 1:

Partition Φ into (sl − wl) /ws windows of length wl. We

denote each window wk , where wk(i) is the phase of node

i from steps k × ws to (k × ws) + wl for i ∈ N .

Stage 2:

for each wk do

Stage 1:

Calculate the matrix D, where each entry D(i, j) is the
average pairwise synchrony φc between nodes i and j
over wk for i, j ∈ N and i 6= j. Given D(i, j) = D(j, i)
we require (n− 1)! entries.

Stage 2:

while any two clusters remain where D(i, j) > t do

1) Merge the two clusters with highest

value D(i, j).

2) Recalculate average φc over wk for all

remaining clusters and the newly merged

cluster.

3) Update D.

end

end
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II. METHODS

A. Clustering Algorithm

A large number of clustering algorithms have been devel-

oped [18] and variations continue to be proposed. Our interest

is in identifying subgroups of interacting nodes within larger

networks that exhibit interesting dynamical properties. We

aim to examine how those subgroups change over time for

varying time scales. In the current model we consider changes

in synchronization within a network of coupled oscillators,

using the Kuramoto oscillator model [19] with time-delayed

coupling. The phase θi of each oscillator is given by the

equation

dθi
dt

= ω + k
∑

Ki,j sin (θj(t− τ) − θi(t)) (1)

where ω is the natural frequency of the oscillator, θi (t) is the
phase of oscillator i at time t, τ is a fixed time delay, k is

a scaling factor and Ki,j is the connection strength between

oscillators i and j.
The instantaneous synchronization between any set of os-

cillators c at time t is given by

φc (t) =

∣

∣

∣

∣

〈

eiθk(t)
〉

k∈c

∣

∣

∣

∣

(2)

where θk (t) denotes the phase of oscillator k at time t and

〈f〉k∈c denotes the average of f over all k in c. The value

ranges from [0, 1], with 0 indicating complete desynchroniza-

tion and 1 complete synchronization.

We take as input to the algorithm the combined time-series

Φ, consisting of the phase of N oscillators at each of sl time

steps of resolution r. From Φ we generate windows of length

wl and step size ws, where the kth window contains the phase

of all oscillators from starting position k × ws to position

(k × ws) + wl. Clustering is then performed individually for

each of the (sl − wl) /ws windows. We take a hierarchical

agglomerative approach to partitioning the network (Algorithm

1), where the closest two clusters are merged at every step

of the algorithm until a synchronization threshold t. The dis-

tance between any two clusters is calculated as the combined

instantaneous synchronization φc of all oscillators within both

clusters averaged over the current window k. The algorithm

completes when the combined average synchronization of any

two clusters is below the threshold value.

B. Model

We use the model of human brain activity described in [15]

for the generation of all results. A brief description of the

connectivity matrix underlying the model follows, full details

are given in [4]. The connectivity matrix covers 66 anatomical

regions partitioned according to standard cortical anatomical

landmarks. Connectivity between regions was obtained via
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Fig. 3: Applying the algorithm over a long time window (wl =
4000) identifies three clusters that maintain a constant high

level of synchrony (φc > 0.95). We label these 1, 2, and 3 and

use the same labels to indicate these clusters in all following

tables and figures. a) The anatomical connectivity within and

between each cluster. b) The instantaneous synchronization

over time of each cluster (cluster membership identified by

nodes of the same color). c) The instantaneous synchronization

of each combination of the three clusters (blue line = [1,2],

red = [1,3], green = [2,3] and black = [1,2,3]).
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Fig. 4: Applying the algorithm over a short time window (wl =
200) identifies two clusters that exhibit transient periods of

high (φc > 0.95) and low synchrony. We label these 4 and 5

are use the same labels in all following tables and figures. a)

The anatomical connectivity within and between each cluster.

b) The instantaneous synchronization over time of each cluster

(cluster membership identified by nodes of the same color). c)

The instantaneous synchronization of the combination of both

clusters.

T1-weighted and diffusion spectrum MRI. The density and

length of fiber tracts were downsampled from an initial high-

resolution scan covering 998 regions-of-interest (ROIs) and

averaged over five subjects. The resulting network exhibits

a densely connected and topologically and spatially central

structural core, with a high degree of coupling between hemi-

spheres (Figures 1 and 2a).

In [15] the same connectivity matrix is used to model

BOLD fMRI resting-state activity. Each of the 66 anatomical

regions in the matrix is replaced by a single Kuramoto

oscillator, with connections between oscillators (weight matrix

K and delay τ in Equation 1) derived from the average

fiber density and length values produced in [4]. Within a

given parameter regime the authors find that the model closely

reproduces empirical observations of resting-state activity. In

particular, the parameter space producing the closest match

to empirical data results in dynamically complex behavior.

Oscillators exhibit low global synchronization combined with

the continuous and transient formation of highly synchronous

subnetworks within model activity (Figure 2b). This is well-

described by the dynamics of metastable chimera states seen

in community-structured oscillator networks [20]. In Section

III we present the results of applying hierarchical clustering on

model output, using parameters from within the same region

producing metastable behavior.

III. RESULTS

The results of applying the clustering algorithm described in

Section II-A to the output of the model of fMRI BOLD activity

described in Section II-B are shown in Figures 3 and 4. The

phase of each of the 66 oscillators in the model was recorded

at each step of a simulation of 5 seconds of activity, with

resolution r of 1.25 ms per time step. The natural frequency

ω of each oscillator was set to 40Hz and the initial phase of

each oscillator assigned randomly. The first 200 time steps of

the simulation were discarded to allow for any initial network

transient.

TABLE I: Correspondence between anatomical regions in the

structural core [4] and highly-synchronous clusters (Figure 3).

Regions in the structural core are listed by name and cluster

membership indicated by the preceding number.

left hemisphere right hemisphere

posterior cingulate cortex (1) lPC (1) rPC
precuneus (1) lPCUN (1) rPCUN
cuneus (1) lCUN (1) rCUN
paracentral lobule lPARC (1) rPARC
isthmus of the cingulate (1) lISTC (1) rISTC
banks of the superior temporal sulcus (2) lBSTS (3) rBSTS
inferior parietal cortex (2) lIP (3) rIP
superior parietal cortex (2) lSP (3) rSP

We consider first the case of oscillators that remain highly

synchronous (φc > 0.95) over the entire simulation (wl =
4000). We find three clusters within the model (Figure 3a)

located in posterior and medial cortical regions that maintain

a constant high level of internal synchronization (Figure 3b).

Synchronous activity within posterior and right medial clusters
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TABLE II: Correspondence between cortical “rich-club” re-

gions [5] and synchronous clusters (Figures 3 and 4).

left hemisphere right hemisphere

superior frontal cortex (4) lSF (5) rSF
precuneus (1) lPCUN (1) rPCUN
paracentral lobule (1) rPARC
superior parietal cortex (2) lSP (3) rSP
posterior cingulate cortex (1) lPC (1) rPC
isthmus of the cingulate (1) lISTC (1) rISTC
cuneus (1) rCUN
lingual gyrus (1) lLING (1) rLING
pericalcarine cortex (1) lPCAL (1) rPCAL
caudal anterior cingulate cortex lCAC rCAC
rostral anterior cingulate cortex (4) lRAC
caudal middle frontal cortex rCMF
entorhinal cortex lENT rENT
fusiform gyrus lFUS
parahippocampal cortex lPARH rPARH
superior temporal cortex (2) lST (3) rST

appears tightly coupled, while synchronization between these

and the left medial cluster appears metastable (Figure 3c)

displaying alternating periods of synchronization and desyn-

cronization.

The correspondence of synchronous clusters to anatomical

regions identified as falling within the structural core of the

network is given in Table I. Each of the hub nodes forming

the core of the network is contained in one of the highly-

synchronous clusters with the exception of the left paracentral

lobule (lPARC). The correspondence with cortical regions

of a later “rich-club” analysis of connectivity data [5], a

phenomenon where hub nodes within a network tend to be

more densely connected with each other than with nodes of

lower degree [21], is given in Table II. This study was based

on more detailed connectivity data that included sub-cortical

regions, we only include correspondence with regions present

in the model. It is interesting that the left paracentral lobule

is also absent from the “rich-club” network.

The result of searching for highly synchronous clusters

(φc > 0.95) over a shorter temporal window (wl = 200,
ws = 5) is shown in Figure 4. In addition to the three

synchronous clusters found previously, we identify two clus-

ters (Figure 4a) occupying frontal cortical regions that dis-

play metastable synchronization dynamics (Figure 4b). The

combined synchronization of both frontal clusters is shown in

Figure 4c.

The authors of [4] also identify modular structure within

the network through the application of spectral community

detection [22]. The optimal partitioning of anatomical regions

according to the connectivity matrix results in six modular

regions. We find a strong correspondence between the mod-

ules identified within the network structure and clusters of

synchronous activity in the model (Table III). The four frontal

and medial clusters are a subset of each of four different

modules, with the posterior cluster a subset of the remaining

two modules. The spatial distribution of nodes within each

cluster is given in Figure 5.
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Fig. 5: Spatial representation of synchronous regions found

through clustering. The spatial distribution of nodes within

synchronous clusters shows a strong correspondence to mod-

ularity of the connectivity matrix, with each module containing

oscillators from a single synchronous cluster.

IV. CONCLUSION

This paper presents a method for analyzing the temporal

dynamics of synchronization between networks of coupled os-

cillators. The proposed algorithm applies hierarchical agglom-

erative clustering to the windowed time-series consisting of

the phase of each interacting oscillator. The distance between

clusters is based on a measure of instantaneous synchroniza-

tion of all oscillators in the combined cluster. The method

provides different views into cluster membership over time,

and hence the dynamics of synchronization within the network,

by varying the cut-off threshold for cluster membership and

the window length and step size.

We demonstrate the relevance of the algorithm to the analy-

sis of biological networks by applying it to an existing model

of resting-state brain activity. The strong correspondence be-

tween synchronous clusters identified in model activity and

the properties of the connectivity matrix on which the model

is based is indicative of dynamical constraints placed on the

activity within the network by underlying anatomical structure.

Central hub nodes with a high degree of connectivity to other

nodes in the network and to each other show significant over-

lap with nodes forming highly synchronous clusters. When we

include clusters that display transient periods of high internal

synchronization, we find an additional tendency for nodes in

structural modules to synchronize with each other. There is

much recent evidence of a functional role for synchronization

in information transfer and integration between functionally

segregated neural areas. It is interesting that synchronization
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TABLE III: Correspondence between modular [4] and syn-

chronous (Figures 3 and 4) clusters.

left hemisphere right hemisphere

Module 1 (1) lCUN (1) rCUN
(1) lLING (1) rLING

lPARH
(1) lPCAL (1) rPCAL
(1) lPCUN

Module 2 lCAC rCAC
(1) lISTC (1) rISTC

lPARC (1) rPARC
(1) lPC (1) rPC

(1) rPCUN

Module 3 (2) lBSTS Module 4 (3) rBSTS
lENT rENT
lFUS rFUS

(2) lIP (3) rIP
lIT rIT
lLOCC (3) rLOCC

(2) lMT (3) rMT
lPSTC rPSTC

(2) lSP (3) rSP
(2) lST (3) rST

lSMAR (3) rSMAR
lTP rTP

(2) lTT (3) rTT
rPARH

Module 5 lCMF Module 6 rCMF
(4) lFP (5) rFP

lLOF rLOF
(4) lMOF (5) rMOF

lPOPE rPOPE
lPORB rPORB

(4) lTRI (5) rTRI
lPREC rPREC

(4) lRAC (5) rRAC
(4) lRMF (5) rRMF
(4) lSF (5) rSF

of activity in the model appears related to both the degree

and centrality of nodes and the distribution of spatially and

topographically modular regions in network structure.

There are several avenues for further work. The method

described in this paper would extend easily to other dynamical

measures beyond the instantaneous synchronization of coupled

oscillators. Considering the relative phase of synchroniza-

tion between clusters may also produce interesting results

for neural data, as would extending the method to include

information theoretic measures such as transfer entropy [23]

or causal density [24]. It would also be interesting to consider

the response of the model to input simulating an external

stimulus, and to apply the method to time-series data produced

by modes of functional imaging such as EEG or fMRI.

Finally, further investigation is required in the current model

into the relationship between connectivity within and between

structural modules and synchronization between nodes.
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