
Applying Artificial Life Techniques to a Symbolic Learning Task

Applying Artificial Life
Techniques to a Symbolic

Learning Task

Murray Shanahan

Queen Mary & Westfield College,
Mile End Road,
London E1 4NS,

England.

Tel: +44 (0)171 975 5213
Email: mps@dcs.qmw.ac.uk

December 1995

Abstract

According to the popular folklore of the two fields, the classical, symbolic
paradigm of Artificial Intelligence research is incompatible with new ideas
from Artificial Life, such as behaviour-based architecture, collective
intelligence, and evolutionary computation. This paper seeks to debunk this
myth through three experiments which employ techniques from both
paradigms. These experiments all concern the acquisition of a declarative
representation of the laws of physics of a simple microworld. The first uses a
single robot which combines a behaviour-based architecture with the classical
ID3 induction algorithm. The second uses a population of such robots. And
the third uses a technique resembling a genetic algorithm to evolve a
population of robots with appropriate declarative representations.

Keywords: Artificial Life, Machine Learning.



Applying Artificial Life Techniques to a Symbolic Learning Task

1

Introduction
It cannot have escaped the notice of many researchers in AI that we are currently in
the middle of a paradigm war. The classical, symbolic approach to AI is under
attack on various fronts. Many of its recent critics ally themselves with the nascent
field of Artificial Life [Langton, 1987], and largely reject the past 40 years of
Artificial Intelligence research.

Brooks [1991], for example, advocates a behaviour-based approach to building
autonomous agents, in which traditional perception, planning and plan execution
modules are replaced by “independent and parallel activity producers which all
interface directly to the world through perception and action”. Mataric [1992]
laments the fact that “traditional AI addresses intelligence as an isolated
phenomenon” and instead suggests that “intelligent behaviour is inextricably tied to
its [social] context”. Harvey, Husbands and Cliff [1992] reject conventional AI’s
attempts to design cognitive architecture, and instead advocate the “automatic
evolution of the architecture without explicit design”.

The main aim of this paper is to show that many of the attractive ideas associated
with the AI “new wave” can be reconciled with older representational ideas.
Whatever the right approach turns out to be, the field can only be hindered by the
belief that the spectrum of methodological choices is polarised into the “old
fashioned” and the “newfangled”. In particular, the paper shows that,

• Behaviour-based control can usefully guide a symbolic learning algorithm,

• Collective behaviour can aid in the construction of symbolic
representations, and

• Evolution can be used to generate symbolic representations.

The paper describes three experiments, one to support each of these claims. These
experiments all involve the same simulated microworld, populated by one or more
robots. And they all concern the construction of the same kind of symbolic
representation, namely a set of identification trees (or decision trees) which are
intended to capture the laws governing the microworld.

The first experiment involves a single robot which is controlled by a layered
behaviour-based architecture, but which uses the classical induction algorithm ID3
to learn about the microworld. The second experiment involves a population of
robots, each controlled by a simpler behaviour-based architecture, and each
contributing to a central database, which is again processed using the ID3
algorithm. The final experiment preserves the idea of a population of robots, but
abandons induction in favour of an evolutionary technique for generating
identification trees.

1. The Microworld
The robots’ environment in all three experiments is a cellular microworld (a “grid
world”). The robot occupies a single cell, and in a single time step can move one



Applying Artificial Life Techniques to a Symbolic Learning Task

2

cell either north, east, south or west. The edges of the grid wrap around to join their
opposite edges, so the microworld is effectively a torus.

Apart from the robot, cells can be occupied by four kinds of object. These are
represented in the simulation by four colours: red, yellow, green and blue. Objects
occupy exactly one cell. Only one object may occupy a cell at any given time, with
the exception that the robot can occupy the same cell as another object. These four
kinds of object behave differently when the robot tries to push them. Their
behaviour is summarised in the following rules.

• If the robot tries to push a red object east or west, both robot and
object move in that direction.

• If the robot tries to push a red object north or south, neither of them
moves.

• If the robot tries to push a blue object north or south, both robot and
object move in that direction.

• If the robot tries to push a blue object east or west, neither of them
moves.

• If the robot tries to push a green object in any direction, the robot
moves in that direction, and the object disappears.

• If the robot tries to push a yellow object in any direction, the object
stays where it is and the robot moves on top of it.

These rules compose in a natural way. For example, if the robot pushes a blue
object north, and the next cell north of the blue object contains another blue object,
then both blue objects will move (see Figure 1). Had it been a red or a yellow object
in that cell, then nothing would have moved, because red objects don’t move north
or south, and yellow objects don’t move at all and can’t have other objects on top of
them besides the robot.

Before After Robot

Red

Figure 1: A Microworld Event

There is nothing special about this particular set of rules, and any similar set would
have served equally well. However, one notable property is that the robot cannot
always undo what it has done, since there is no way to recover green objects once
they have gone. Another notable property is that only a relatively small subset of all
possible states of the microworld is accessible from any given state. Note that it’s
possible for the robot to be completely trapped at the start of the run, if it is
surrounded by red objects north and south and blue objects in the east and west.
When this occurs, the robot is unable to learn anything.

This microworld is very simple, but can serve as a testbed for various AI
techniques, such as learning, path finding, planning, and map building. In addition,
it can be used as a laboratory for comparing different approaches to the same



Applying Artificial Life Techniques to a Symbolic Learning Task

3

problem. In the present paper, the problem studied is that of building a symbolic
representation of the microworld’s “laws of physics”, and the techniques
investigated are induction, behaviour-based control, collective behaviour, and
evolution.

2. Wandering and Learning
The first of the three experiments involves a single robot using a classical induction
algorithm. The architecture of the robot is the product of what Brooks [1991] calls a
behaviour-based decomposition. That is to say, its components are not the
functional modules of classical AI, such as perception, planning, plan execution,
etc., but rather are layers giving rise to different activities. Each such layer connects
the robot’s sensors directly to its effectors, and is responsible for a particular
behavioural tendency (see also [Agre & Chapman, 1987]). The separate layers are
usually activated by particular circumstances, and frequently have to compete with
other active layers to influence the robot’s behaviour.

The three layers in the learning robot described here are Wander, Explore and
Discover. In keeping with Brooks’s ideas, these layers reflect a hierarchy of
control. The Discover layer subsumes the Explore layer, which in turn subsumes
the Wander layer. That is to say, the Wander layer is active all the time, but if a
layer above it becomes active, that layer can override the Wander layer and take
over control of the robot.

The Wander layer simply executes a random walk around the microworld, by
randomly choosing one of the four possible directions of motion. The Explore and
Discover layers take over under special circumstances in which they can potentially
speed up the learning process. The Explore and Discover layers can each be
“unplugged” and the robot will continue to move around its world, learning as it
goes. Its learning will simply be slower than it would be with those layers working.
Unplugging the Wander layer, however, would leave the robot stationary. If other
objects in microworld moved about, a passing object might trigger the Discover
layer, but the implemented system includes only static objects.

In addition to these layers, a background learning process is continually running.
The learning algorithm used is ID3 ([Quinlan, 1986]), which constructs
identification trees for events in the robot’s field of interest.1 The robot’s field of
interest is the cell it occupies plus the next two cells along in the direction it is facing
(that is, the direction of its attempted movement) (see Figure 2). An event in the
robot’s field of interest is a pair comprising a cell (Cell 0, Cell 1 or Cell 2) and an
event type (Move, Stay or Vanish). The robot maintains a “diary” of events which
is used as input to ID3. An example of an event would be 〈Cell 1,Vanish〉,
denoting the disappearance of the object in Cell 1. This would in fact occur if Cell 1
contained a green object, and it is the task of the learning algorithm to find such
laws as this.

1 In the present implementation, ID3 is run from scratch after each of the robot’s moves, but only
on trees potentially affected by the move. It would no doubt be faster to use an incremental version
of ID3, such as that described by Utgoff [1989], which could assimilate events one by one.



Applying Artificial Life Techniques to a Symbolic Learning Task

4

Field of Interest

Field of ViewRobot

Figure 2: The Robot’s Field of Interest and Field of View

The features used to construct the identification tree are action types (attempts to
move in a particular direction, in this case) and properties of the robot’s field of
view before the action. The robot’s field of view is the next three cells along in the
direction it is facing (see Figure 2). To be more precise, a feature is a pair
comprising an attribute (Dir, Cell 1, Cell 2, or Cell 3) and a value. The possible
values for Dir (the direction of attempted movement) are North, East, South and
West. The possible values for Cells 1, 2 or 3 are Empty, Red, Yellow, Green and
Blue. An example of a feature would be 〈Dir,North〉, denoting that the robot tried to
move north.

An identification tree for an event is a tree whose non-leaf nodes are attributes,
whose leaf nodes are either YES or NO, and whose arcs are labelled by values.
Each non-leaf node for an attribute A has a number of sub-trees, each
corresponding to a possible value of A. Figure 3 shows an identification tree for the
(nearly correct) rule that an object in the next cell along from the robot will move if
it is red and is pushed east or west, or if it is blue and is pushed north or south.2

Directions are abbreviated to N, E, S and W.

Cell 1

Empty
Red

Yellow
Green

Blue

NO Dir NO DirNO

N E S W N E S W

NO YES NONO NOYES YES YES

Figure 3: An Identification Tree for the Event 〈Cell 1,Move〉

A semantics for these identification trees is conveniently provided by the Situation
Calculus [McCarthy & Hayes, 1969]. I won’t present the translation here, but it
should be easy to reconstruct for anyone familiar with the Situation Calculus
formalism. There is one action, Move(d) where d is one of the four directions in
which the robot can move, and two fluents: Occupied(x,y,c) representing that cell
〈x,y〉 is occupied by an object whose colour is c, and Robot(x,y) representing that

2 The robots in the present implementation cannot learn rules that depend on hidden states such as
the contents of cells outside their fields of view.



Applying Artificial Life Techniques to a Symbolic Learning Task

5

the robot is in cell 〈x,y〉, where x and y are cartesian co-ordinates in the
microworld.

3. Exploring
The robot’s current collection of identification trees enables it to make predictions
about the outcome of possible actions, based on the state of its field of view. This
gives it a capacity for lookahead, which is exploited by both the Explore and
Discover layers. Both these layers exist to speed up the learning process, by
improving on the simple random walk strategy of the Wander layer whenever
certain opportunities arise to do so.

Let’s consider the Explore layer first. If the robot spends all its time in one corner
of the microworld, it will never encounter phenomena which are unique to
configurations of objects only to be found elsewhere in the microworld. The
Explore layer tries to prevent this from happening. The microworld is divided up
into nine square regions, and the robot maintains a record of how many moves it
has attempted in each region. When the robot finds itself near the boundary of a
region, the Explore layer becomes active.

If the neighbouring region is relatively unexplored — that is, if the number of
moves attempted in that region is less than a certain proportion of those attempted in
the present region — then the Wander layer is inhibited and the robot tries to move
towards it. If it has the chance to cross over into such a region, then it will. If the
robot is in a position where many actions provide such opportunities, such as in the
corner cell of a region, then it chooses one at random.

Initially, when the robot has an empty set of rules, the Explore layer is ineffectual,
because it relies on the predictive power of these rules to determine which actions
will successfully take it towards an unexplored region. For example, if there is a
blue cell immediately to the east in an unexplored region, then the laws of the
microworld dictate that moving to the east will have no effect. Because of such
possibilities, the robot will only try to move towards an unexplored region when its
current set of rules suggests that the attempt will be successful. The rules may still
be wrong, of course, in which case an attempt to move towards an unexplored
region may be unsuccessful even when they suggest otherwise.

The currently implemented version of the Explore layer needs some development. It
can cause the robot to oscillate back and forth across region borders, since it only
encourages the robot into an unexplored area and does nothing to keep it there.
There are some obvious ways around this problem. But for present purposes, the
Wander layer is mainly there in case a two layer behaviour-based architecture seems
too trivial to justify the claims of the paper.

4. Discovering
Both the Wander layer and the Explore layer are subsumed by the Discover layer,
which is activated when the robot has an opportunity to check one of its less well-
established rules. Such an opportunity arises whenever the robot’s field of view in



Applying Artificial Life Techniques to a Symbolic Learning Task

6

some direction matches the antecedent of one of these rules. The robot will take the
best of any such opportunities that arise, and will try to move in the corresponding
direction. The meaning of a “well-established rule” and “the best opportunity” will
be made precise below.

In addition, if no such opportunities immediately present themselves, the robot uses
its current set of rules to look one move ahead. If, according to those rules, it can
perform an action which will result in its field of view matching one of its less well-
established rules, and which will therefore provide it with a good opportunity to
check the rule, then it will go ahead and perform that action. So the feedback from
the current set of rules back into the rule learning process is along two paths. First,
the current set of rules biases the choice of which action to perform towards those
which have the best chance of disconfirming a rule. And second, when there is no
chance of a disconfirmation, the predictive power of the current set of rules can
guide the robot into a position where there is such a chance.

Figure 4 shows the robot disconfirming a rule. In Stage 1, the robot employs a
well-established rule in its current rules set, “Cell 1 Vanishes if Cell 1 is Green,” to
predict that by trying to move north it will end up with a red object to its east. This
anticipated situation would match the antecedent of one of its not so well-
established rules, “Cell 1 Moves if Cell 1 is Red and Dir is East.” So the robot goes
for it. Indeed it does end up where it thought it would in Stage 2, giving it the
opportunity to check the rule by moving east, which it does. Contrary to the rule,
nothing happens. The object in Cell 1 doesn’t move because it is jammed up against
a blue object. This new event (or rather non-event), which will be recorded in the
robot’s diary, will force the robot’s rules into better shape when ID3 is run.

Stage 1 Stage 2 Stage 3 Robot
Green

Red

Blue

Figure 4: The Robot Disconfirms a Rule

It seems clear, intuitively, that this discovery strategy is subject to the law of
diminishing returns. The more often the robot checks a current rule, modifying it
when necessary to take account of disconfirmations, the better that rule will get at
predicting events. Eventually a rule will become very well-established, reflecting
the fact that it is close to perfect, and there will be little to gain in continuing to
check it. When this happens, it would be better if the Wander layer retained control,
maximising the chances that something new is discovered.

How is this law of diminishing returns reflected in the implementation? Before each
action performed by the robot, the Discover layer gives a score to each possible
move3 — the lower the score the better the move — and if the score for any move
is below a certain threshold (the robot’s “boredom threshold”), the Discover layer

3 In fact, in a situation identical to one it has encountered before, the robot ignores moves it has
already tried in that situation.



Applying Artificial Life Techniques to a Symbolic Learning Task

7

becomes active and takes control of the robot, executing the move with the lowest
score.

To calculate this score, the robot records, for each event for which it has a rule, the
number of occurrences of that event. With ID3 running continually, the
corresponding rule will be correct for each such occurrence, so this number will
reflect the degree of confirmation of the rule. In the implementation, to yield a
number between 0 and 1, the calculated score is (1–1/(N+1)), where N is the
number of occurrences of the event.

5. Some Empirical Results
The microworld and robot were implemented in LPA MacProlog on an Apple
Power Macintosh 6100. Although little attempt was made to optimise the code, the
system runs fast enough to make quite entertaining real-time viewing. For instance,
because the robot (rightly) has no way of knowing which of several equally
parsimonious rules (according to ID3) is the right one, its arbitrary choice is
sometimes rather bizarre when it has had few training instances.

It might, for example, decide that the rule “Cell 1 vanishes if Cell 2 is Blue” is a
good explanation for the disappearance of a green object which just happened to be
next to a blue one. It will then attempt to make every object it comes across which is
next to a blue object disappear, until ID3 takes into account its inevitable failures
and supplies an improved rule. Obviously, any attempt to avoid this sort of
behaviour by imposing appropriate heuristics would be to cheat by tailoring the
robot for this particular microworld’s physics.

A number of experiments were peformed to assess the effect of combining the
Wander layer with the Discover layer. In these experiments, the Explore layer was
disconnected.4 Thirty 15 by 15 microworlds each containing 25 objects were
randomly generated. First, a robot with just a Wander layer was let loose in each of
these microworlds. At the end of each run, the identification trees produced by the
robot were tested. Then the same process was repeated, on the same set of
microworlds, but using a robot with both Wander and Discover layers.

To test a set of identification trees, the following procedure was used. The set of
trees was tested against each possible combination of up to two objects of any
colour in the field of view, in each of the four directions. There are 244 such
combinations — 61 in each direction. For every correct prediction yielded by the
trees, one point was awarded, and for every incorrect prediction one point was
taken away. No points are awarded or deducted when the trees yield no prediction
at all. The mean score over all 244 combinations was recorded for each run. The
maximum possible mean score, which would result from a perfect set of rules, is
2.77. Conversely, the worst possible mean score is -2.77.

The tables in Figure 5 summarise a pairwise comparison of the means of the
resulting mean scores, with and without the Discover layer, for runs of 20, 40 and
60 moves, and for two values of the boredom threshold (b.t.). The leftmost table

4 Collecting empirical data about an improved Wander layer is on the agenda.



Applying Artificial Life Techniques to a Symbolic Learning Task

8

shows the mean of mean scores x
_
 without the Discover layer. The next two tables

are comparative. The first columns show the mean of mean scores x
_
 with the

Discover layer. The mean difference d
_
 between the mean scores with and without

the Discover layer, and the standard deviation of the differences sd
2 are shown.

Recall that the sample size is thirty, corresponding to the number of randomly
generated microworlds tried.

20

40

60

M
ov

es

x

20

40

60

x d sd
2

0.55

0.62

0.61

0.68

0.52 0.05

0.06

0.05

0.02

0.05

0.10

b.t. = 0.666666No Discover layer

20

40

60

x d sd
2

0.62

0.53 0.06

0.07

0.03

0.08

b.t. = 0.75

0.47

0.68 0.06 0.09

Figure 5: Empirical Evaluation of the Discover Layer

A pairwise t-test applied to these results reveals that the difference between the
scores is statistically significant at the five percent level for 20 moves for both
values of the boredom threshold. This suggests that the incorporation of the
Discover layer improves the robot’s learning performance to a worthwhile degree.
However, the statistical significance of the results decreases as the number of
moves increases. A more thorough set of tests would be required to firmly establish
and quantify the utility of the technique. This is not the purpose of the present
paper.

6. Collective Learning
The second experiment also uses induction to construct identification trees, but the
microworld is inhabited by many robots. The robots are autonomous and
independent, without any central control, but they communicate with a central
database. Each robot has a Wander layer, which has the same role as in the single
robot version, and an Avoid layer that keeps the robots apart from each other. A
robot’s Avoid layer comes into play when one or more other robots come within the
robot’s field of view in any direction. Other robots are like repellent forces, and the
Avoid layer resolves these forces to determine possible directions in which to try to
move. To implement this, each robot’s repertoire of actions has to be extended to
include a DoNothing action for the case when it is completely surrounded by other
robots. As well as an object, each cell can now be occupied by another robot, and
the set of possible events is correspondingly expanded.

Each robot contributes its separate record of events to a central knowledge base,
and ID3 is run on this collective record. This parallelism, in the spirit of
suggestions in [Brooks & Flynn, 1989], speeds up the learning process
considerably. The experimental results below suggest that this speed up is, on
average, even better than n-times for n robots. This is no doubt due to the
geographical spread of the robots. A single robot wastes much of its time exploring
parts of the microworld too familiar to yield any further improvement to its rules.
With robots distributed all over the microworld, this isn’t a source of inefficiency.



Applying Artificial Life Techniques to a Symbolic Learning Task

9

The tables in Figure 6 summarise the results of an experiment with five robots. The
same collection of thirty microworlds was used as in the previous experiment. The
robots were run for 4, 8 and 12 moves each, giving total numbers of 20, 40 and 60
moves, as in the previous experiment. This permitted a comparison with the results
previously obtained for the single robot with no Discover layer. The comparison is
summarised in the right-hand table. The left-hand table is copied straight from
Figure 5. A pairwise t-test again showed that the difference is statistically
significant at the five percent level for 20 moves, but that the significance decreases
as the number of moves increases.

20

40

60

M
ov

es

x

4

8

12

x d sd
2

0.55

0.62

0.60

0.67

0.56 0.09

0.05

0.05

0.07

0.12

0.17

One Robot

0.47

5 Robots

Figure 6: Empirical Evaluation of the Multi-Robot Version

7. Evolution Instead of Induction
The third and final experiment departs from induction, and instead employs
evolution to generate identification trees. Two techniques were tried: A and B.
Technique A is very similar to a genetic algorithm [Holland, 1992], but with
unconventional crossover and mutation operations. Technique A works on a
population of collections of identification trees, and does not directly involve robots
or the microworld. Technique B uses the same crossover and mutation operations,
but it works on a population of robots, and is less like a genetic algorithm because
members of the population inhabit a common microworld and interact with each
other. With Technique A, evolution has the advantage of working directly with the
cost function used to evaluate its end products.

Using Technique A, we start with a randomly generated population of collections of
identification trees. Each such collection includes exactly one randomly generated
tree (see below), for a randomly chosen concept. (For the purposes of this paper, a
concept is an event.) Each collection of trees is assessed according to the scoring
method used in previous experiments, and the high scoring collections are crossed
and mutated to produce a new generation of collections. The process is then
repeated.

In Technique B, the standard scoring method is not coded into the evolutionary
loop as it is in Technique A. Initially, a randomly generated microworld is
populated by robots with randomly generated collections of identification trees. The
robots, which are controlled by the same two layer architecture as in the previous
experiment, then make a certain number of moves each. As they go, they use their
identification trees to bet on the outcomes of the actions they perform. They are
awarded one mark for each correct prediction and lose one mark for each faulty
prediction.



Applying Artificial Life Techniques to a Symbolic Learning Task

10

After they have peformed a fixed number of moves, the robots with the fewest
marks are removed. The trees of randomly chosen pairs of successful robots —
those with most marks — are then crossed and mutated to produce a new
generation of robots, and the process is repeated. After each generation, a new
microworld is generated randomly.

What is mean by a “randomly generated tree” here? To randomly generate a tree, an
attribute is selected at random for the root. Each attribute has an equal chance of
being selected. Then, a random subset of possible values for that attribute is
chosen. Any given value will be included in such a subset with probability 0.5. The
root is then extended with leaf nodes corresponding to each value in this subset.
Each of these leaf nodes will be either YES or NO with equal probability.

Genetic algorithms manipulate a population of bit strings, for which mutation and
crossover operations are easily defined: crossover involves swapping segments of
bit strings, and mutation involves flipping bits. In genetic programming [Koza,
1992], crossover is defined for Lisp S-expressions, and involves swapping sub-
expressions (which can be thought of as swapping sub-trees).

For identification trees, these operations are necessarily more complicated, because
swapping arbitrary sub-trees of two parents is not guaranteed to produce a useful
identification tree. For example, it’s pointless for a node labelled with attribute A to
have sub-trees which also mention attribute A. The recursive algorithm in the next
section gets around this problem by rearranging one of the parent trees so that both
trees have the same attribute at the root.

8. Crossover and Mutation
The function Cross, defined below, takes two collections of identification trees and
crosses them, returning the result. Collections of identification trees are represented
as sets of pairs 〈C,T〉, where C is a concept and T is an identification tree. The
algorithm only has to cross trees when both parents have a tree for the same
concept. If only one parent has a tree for a concept, then the child simply inherits
that tree for that concept.

Function Cross(M,F)
NewTrees := {}
For each concept C for which one parent has a tree T but for which the
other parent has no tree

NewTrees := NewTrees ∪ { 〈C,T〉}
For each concept C for which M has tree T1 and F has tree T2

NewTrees := NewTrees ∪ { 〈C,CrossTrees(T1,T2)〉}
Return NewTrees

Crossing two trees is a recursively defined operation. In the base case, at least one
of the parent trees is a leaf node, and the function randomly chooses one of the
parents (possibly the one that is just a leaf node) and returns it. Otherwise, before
the recursive application of the algorithm, one of the parents may have to be
rearranged so that they both have the same attribute at the root. Given a tree whose



Applying Artificial Life Techniques to a Symbolic Learning Task

11

root attribute is A, one of whose possible values is V, SubTree(T,V) denotes the
sub-tree of the root for value V.

Function CrossTrees(T1,T2)
If T1 or T2 is a leaf node
Then NewTree := either T1 or T2
Else If root attribute of T1 ≠ root attribute A of T2
Then T1 := Rearrange(T1,T2)
Let A be root attribute of NewTree
For each value V of A

SubTree(NewTree,V) := CrossTrees(SubTree(T1,V),SubTree(T2,V))
Simplify(NewTree)
Return NewTree

The function Simplify removes the redundant foliage in branches whose leaf-nodes
are all YES or all NO. To rearrange a tree T so that it has attribute A at the root
involves making a tree whose root is A, and whose sub-trees are modified copies of
T, one for each value V of A. These modified copies are simplified by taking into
account the fact that A must be V within that sub-tree, so any A nodes can be
removed.

Function Rearrange(T1,T2)
Let Tree have the root attribute A of T2
For each value V of A for which T2 has a sub-tree

T' := T1
Replace all nodes N in T' labelled with attribute A by SubTree(N,V)
SubTree(Tree,V) := T'

Return Tree

An example of a crossover operation is given in Figure 7. The result shown is, of
course, just one of several possible outcomes of crossing the trees T1 and T2.

Mutation, in the present implementation, is defined in terms of crossover. To
mutate a tree, it is simply crossed with a randomly generated tree. This can result in
a more dramatic change to a tree than is normally expected from a mutation
operation. Alternative mutation algorithms are under investigation.

9. Empirical Results for Evolution
The evolutionary techniques described were implemented in LPA MacProlog on an
Apple Power Macintosh 6100. For both Technique A and Technique B,
populations of twenty robots were used (which is relatively small for an
evolutionary algorithm of this kind). With both techniques, the top ten robots from
each generation were retained for the next generation, and these were crossed and
mutated to produce ten new robots to replenish the population, two of which,
chosen at random, were subjected to mutation.

Ten runs of Technique A were performed, starting from random trees, and each
time seeding the random number generator with a different value. These runs
suggest that Technique A is quite effective at producing collections of trees of ever



Applying Artificial Life Techniques to a Symbolic Learning Task

12

increasing quality. The table in Figure 7 summarises the ten runs. A number n in
row x and column y indicates that, in run x, generation n was the first in which the
best robot achieved a score greater than y.

Dir

North East

Cell1 N

Green Red

Y N

Dir

North East

Cell1

N

Green Red

N

Y

×

Cell1

Dir

North East

NY

Dir

North East

NN

Green Red

T1 T2

Rearrange T1

Cell1

Dir

North East

NY

Green Red

Dir

North East

NY

Cross

Figure 7: An Example of Crossover



Applying Artificial Life Techniques to a Symbolic Learning Task

13

Run

0.4

0.5

0.6
0.7

1 2 3 4 5 6 7 8 9 10

B
es

t S
co

re 2

6

8
11

1 2 10 3 8 5 1 4 1

3 3 16 9 9 2 6 310

4 3 18 9 11 92 18 14 12
18 14 2118 24 22 14 14 110

Figure 8: Empirical Evaluation of Technique A

For Technique B, a 25 by 25 grid was used for the microworld. Each randomly
generated microworld included 120 randomly placed and coloured objects. Each
generation lasted 20 moves. Ten runs of Technique B were performed. The trees of
each generation’s best robot were evaluated, using the same scoring scheme as
before. The most successful robot in each of generation 20, 30, 40 and 50 was
evaluated according to the standard scoring method. The results are summarised in
Figure 8.

Run

20

30

40
50

1 2 3 4 5 6 7 8 9 10

G
en

er
at

io
n 0.29 0.40 0.12 0.36 0.00 0.19 0.25 0.72 –0.07 0.24

0.25 0.18 0.12 0.32 0.47 0.30 0.24 0.64 –0.24

0.07 0.27 0.16 0.24 0.31 0.30 0.50 0.67 –0.23 0.24
0.27 0.15 0.21 0.22 0.30 0.40 0.47 –0.23 0.14–0.46

–0.23

Figure 9: Empirical Evaluation of Technique B

As Figure 8 shows, Technique B does not tend to evolve ever better collections of
trees, unlike Technique A. Perhaps this is unsurprising, since in Technique B the
criterion according to which the resulting trees are evaluated is different from the
cost function used in the algorithm. However, the induction algorithm in the
previous experiments was similarly disadvantaged. The power of inductive learning
is that it can reach beyond a few examples towards a set of general rules. These
experiments suggest that evolutionary techniques might be less able to do this.
However, these results are preliminary, and much work needs to be done, varying
the parameters of the experiment, to get a clearer picture.

10. Discussion
Three experiments have been presented that draw on ideas both from classical,
symbolic Artificial Intelligence, and from the new field of Artificial Life. The
experiments have shown that, contrary to AI and A-Life folklore, neither approach
excludes the other. It’s not the aim of the work reported here to match the
achievements of either paradigm, but simply to highlight the possible benefits of a
reconciliation. The empirical results obtained, whilst preliminary, do suggest that
the combination of paradigms is potentially fruitful.



Applying Artificial Life Techniques to a Symbolic Learning Task

14

To my knowledge, no similar work to that reported here has been done on
mechanisms which evolve declarative representations of knowledge. On the other
hand, there’s a considerable amount of related work on situated learning and
learning in microworlds.

Brooks, for example, has investigated learning in the context of behaviour-based
robotics with his celebrated walking robots [Maes & Brooks, 1990]. These robots
have to deal with the messy complexities of the real world, whilst the microworld
described in this paper is very clean and simple. As in most systems that use
reinforcement learning [Sutton, 1990], the task for Brooks’s robots is to learn how
to perform a task rather than to learn that certain facts are true. By contrast, classical
symbolic learning has been largely concerned with learning that, in other words
with acquiring declarative knowledge, whose purpose is not necessarily known at
the time of learning.

But classical learning has placed little emphasis on situatedness. Exceptions include
recent work on learning declarative knowledge from a microworld by Drescher
[1991] and Shen [1993]. Both employ declarative representation, Shen in a more
classical sense than Drescher. Mitchell [1990] describes a robot architecture which
employs (but does not learn) declarative representations of the world in order to
learn reactive stimulus response rules for performing tasks.

With present day robotics technology, learning declarative knowledge is hard to
study using an embodied system in the real world. From the point of view of
robotics, there is a strong argument for abandoning the study of the learning of
declarative representations. The real world, so the argument goes, is far too messy
and complicated to be described by declarative representations. So why bother to
study techniques for acquiring them? If you want to build robots that actually do
something in a realistic environment, the world is its own best model [Brooks,
1991]. Following this line of reasoning, learning how to perform tasks seems to be
the only useful kind of learning.

People find this argument persuasive because the success of traditional AI
techniques in toy microworlds contrasted so sharply with their failure in the real
world, a failure highlighted by work in robotics. But the traditional approach was
“thrown in at the deep end.” There simply didn’t exist anything intermediate
between the Blocks World and the real world. This is where Artificial Life, despite
itself, can come to the rescue of symbolic representation.

The manifesto of the field of Artificial Life advocates the synthesis and simulation
of life-like phenomena, including intelligence, in non-physical media, such as
computers [Langton, 1987]. These non-physical media are, at present, much less
messy and complicated than the real world. It is possible to see research in Artificial
Life as a source of microworld environments of ever increasing complexity (see
Wilson [1990]).5 The gradual nature of this increase in complexity might allow the
development, at a similarly gradual pace, of hybrid AI systems, employing both A-
Life inspired techniques and classical AI technology.

5 Computer games might serve a similar purpose.



Applying Artificial Life Techniques to a Symbolic Learning Task

15

Acknowledgements
Thanks to Pat Langley and Stewart Wilson for advice and encouragement. The
author is supported by an EPSRC Advanced Research Fellowship.

References
[Agre & Chapman, 1987] P.E.Agre and D.Chapman, Pengi: An Implementation of

a Theory of Activity, Proceedings AAAI 87, pages 268-272.

[Brooks, 1991] R.A.Brooks, Intelligence Without Representation, Artificial
Intelligence, vol 47 (1991), pages 139-159.

[Brooks & Flynn, 1989] R.A.Brooks and A.M.Flynn, Fast, Cheap and Out of
Control: A Robot Invasion of the Solar System, Journal of the British
Interplanetary Society, vol 42 (1989), pages 478-485.

[Drescher, 1991] G.L.Drescher, Made-Up Minds: A Constructivist Appproach to
Artificial Intelligence, MIT Press, 1991.

[Harvey, Husbands & Cliff, 1992] I.Harvey, P.Husbands and D.Cliff, Issues in
Evolutionary Robotics, Proceedings 2nd International Conference on the
Simulation of Adaptive Behavior, 1992, pages 364-373.

[Holland, 1992] J.H.Holland, Adaptation in Natural and Artificial Systems (2nd
edition), MIT Press (1992).

[Koza, 1992] J.Koza, Genetic Programming, MIT Press (1992).

[Langton, 1987] C.G.Langton, Artificial Life, Proceedings Artificial Life I, pages
1-47.

[McCarthy & Hayes, 1969] J.McCarthy and P.J.Hayes, Some Philosophical
Problems from the Standpoint of Artificial Intelligence, in Machine Intelligence
4, ed D.Michie and B.Meltzer, Edinburgh University Press (1969).

[Maes & Brooks, 1990] P.Maes and R.A.Brooks, Learning to Coordinate
Behaviors, Proceedings AAAI 90, pages 796-802.

[Mataric, 1992] M.Mataric, Designing Emergent Behaviors: From Local
Interactions to Collective Intelligence, Proceedings 2nd International Conference
on the Simulation of Adaptive Behavior, 1992, pages 432-441.

[Mitchell, 1990] T.Mitchell, Becoming Increasingly Reactive, Proceedings AAAI
90, pages 1051-1058.

[Quinlan, 1986] J.R.Quinlan, Induction of Decision Trees, Machine Learning,
vol 1 (1986), pages 81-106.

[Shen, 1993] W.M.Shen, Discovery as Autonomous Learning from the
Environment, Machine Learning, vol 10 (1993), pages 143-166.

[Sutton, 1990] R.S.Sutton, Reinforcement Learning Architectures for Animats,
Proceedings 1st International Conference on the Simulation of Adaptive
Behavior, 1990, pages 288-296.

[Utgoff, 1989] P.Utgoff, Incremental Induction of Decision Trees, Machine
Learning, vol 4 (1989), pages 161-186.

[Wilson, 1990] S.W.Wilson, The Animat Path to AI, Proceedings 1st International
Conference on the Simulation of Adaptive Behavior, 1990, pages 15-21.


