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Abstract

A calculus of events is presented in which domain constraints,
concurrent events, and events with non-deterministic effects can be
represented. The paper offers a non-monotonic solution to the frame
problem for this formalism that combines two of the techniques
developed for the situation calculus, namely causal and state-based
minimisation. A theorem is presented which guarantees that temporal
projection will not interfere with minimisation in this solution, even in
domains with ramifications, concurrency, and non-determinism.
Finally, the paper shows how the formalism can be extended to cope
with continuous change, whilst preserving the conditions for the
theorem to apply.
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Introduction

The frame problem was first described by McCarthy and Hayes in the Sixties [23],
and has occupied the thoughts of AI researchers ever since. In a nutshell, the problem is
this: if we deploy classical logic in a straightforward way to describe the effects of
actions, we have to represent explicitly which properties are not affected by each action,
as well as those that are. This is a problem because the number of properties that are not
affected by an action tends to be huge in all but the most trivial domains.1 By the early
Eighties, it was thought that the frame problem could be solved using the newly
developed techniques of formal default reasoning (McCarthy [22]). However, Hanks and
McDermott [8] demonstrated that the naïve application of these techniques could lead to
counter-intuitive results. Many authors, such as Lifschitz [13] and Shoham [37], rose to
the challenge of finding solutions that yielded correct conclusions with the examples that
had undermined earlier attempts.2

By the end of the Eighties, the emphasis of research on the frame problem had
shifted towards providing solutions which could deal with the features of complex
domains. Baker [1], for example, addressed the issue of ramifications (which arise with
domain constraints). Lin and Shoham [19], on the other hand, examined the problem of
concurrent events. A complete solution to the frame problem is perhaps now within our
grasp. However, a number of outstanding issues still need to be resolved, chief among
which are actions with non-deterministic effects, that is actions whose precise effects are
unknown, and continuous change.

Besides focussing on the features of complex domains such as concurrency, non-
determinism and continuous change, current proposals for solving the frame problem are
distinguished from their antecedents in another way. No longer is it considered
acceptable to argue for the validity of a proposed solution using only a small number of
benchmark examples, such as Hanks and McDermott’s Yale Shooting scenario.
Following Lifschitz [15], a proposal has to be mathematically justified for a substantial
class of problems (see also Sandewall [32]).

This paper offers a predicate calculus based formalism for representing and
reasoning about change, which facilitates the representation of concurrent events and
events with non-deterministic effects.3 A non-monotonic solution to the frame problem is
given for this formalism, based on the idea of minimising the extensions of certain
predicates using standard prioritised circumscription.4 The solution works for examples
involving ramifications (domain constraints) and events with non-deterministic effects. A
mathematical result is demonstrated which suggests that the solution has very general
application. Another result is presented which facilitates the construction of temporal
projection algorithms. Finally, the paper shows how to extend the formalism to cope
with continuous change, whilst preserving the conditions of applicability of these
mathematical results.

Unlike most of the work cited in this introduction, the solution to the frame
problem offered in this paper is not based on the situation calculus of McCarthy and
Hayes [23]. Although some authors have offered hints and suggestions as to how
continuous change could be formulated using the situation calculus (Gelfond, et al. [6]),
it is not yet clear how this could be done. On the other hand, work already exists which
extends the narrative-based event calculus of Kowalski and Sergot [11] to deal with
continuous change (Shanahan [35]), and this work, taken out of the framework of logic
programming and augmented with a circumscriptive approach to default reasoning, is the
basis of the formalism presented here.



2

The ontology of Kowalski and Sergot’s formalism includes event types, time
points and properties. Properties are initiated and terminated by events. In their
formalism, once a property has been initiated, negation-as-failure is used to assume that it
persists by default until an event occurs to terminate it, and this is how the frame problem
is addressed. The calculus of events presented in this paper is similar in many respects.5

However, unlike Kowalski and Sergot’s formalism, which is expressed in extended
Horn clauses and uses negation-as-failure, that presented here exploits the full expressive
power of first-order predicate calculus, and therefore negation-as-failure cannot be relied
on to supply a solution to the frame problem. The circumscriptive solution offered here
takes advantage of the insights of several previous authors, whose work I will now
briefly review.

After Hanks and McDermott [8] discovered flaws in early efforts to overcome the
frame problem, such as McCarthy’s [22], several authors developed more robust
solutions, such as Lifschitz [12], Kautz [10] and Shoham [37] who use chronological
minimisation, Haugh [9] and Lifschitz [13] who use causal minimisation, and Baker [1],
[2], Baker and Ginsberg [3] and Lifschitz [15] who use state-based minimisation. The
last two approaches, which were developed for the situation calculus, are based on the
following simple observation. The Hanks-McDermott problem does not arise if temporal
projection is independent of minimisation.6 This independence can be achieved by
designing a formalism in which the frame problem can be overcome by minimising
predicates whose extensions do not depend on the outcome of projection. In other
words, minimisation can be separated from projection if the predicates to be minimised
express timelessly true facts, rather than time-varying facts. For example, with causal
minimisation, the predicates which are minimised express timelessly true facts about the
effects of actions.

The difficulty with this approach of separating minimisation from projection is to
ensure that the formalism has sufficient expressive power to capture rich domains, whilst
preserving the principle that the only predicates to be minimised express timelessly true
facts. For example, the existing work using causal minimisation does not cope
adequately with ramifications, as shown by Baker [1]. State-based minimisation handles
ramifications much better (Baker [1]). With state-based minimisation, the predicates
which are minimised express timelessly true facts about the abnormality of certain actions
with respect to change. These facts are timelessly true because they are relativised to
states, whose existence and properties are independent of temporal projection. The
solution to the frame problem described here uses a hybrid of causal and state-based
minimisation.

The paper is organised as follows. The event calculus and the accompanying
solution to the frame problem are presented in the next two sections, followed by a
traditional Blocks World example of its use, without any proof of correctness. Then the
mathematical properties of the formalism are investigated. Two results are developed: one
which suggests that the frame problem is solved for a wide class of problems, and
another to aid the construction of temporal projection algorithms. Further examples of the
application of the formalism are then presented, which illustrate the use of these
mathematical results. These include examples with ramifications and events with non-
deterministic effects. Finally, the formalism is extended to cope with continuous change
in a way which ensures that the mathematical results still apply.

1. States

I will use a many-sorted language of first-order predicate calculus with equality,
including variables for time points (t, t1, t2, etc.), properties (p, p1, p2, q, q1, q2, etc.),
states (s, s1, s2, etc.), truth values (v, v1, v2, etc.), and truth elements (f, f1, f2, etc.).



3

The domain of truth values has two members, denoted by the constants True and False.
A pair 〈p,v〉 is a truth element. The first part of the formalism to be presented concerns
the properties of states. A state is represented as a set of truth elements. To capture this,
the predicate ∈ is defined as follows.7

s1=s2 ↔ ∀f [f  ∈ s1 ↔ f ∈ s2] (S1)

∀s1,f1 ∃s2 ∀f2 (S2)
[f2 ∈ s2 ↔ [f2 ∈ s1 ∨ f2=f1]]

∃s ∀f [¬ f ∈ s] (S3)

Axiom (S1) says that two states are equal if they have the same truth elements.
Axiom (S2) says that any truth element can be added to any state to give another state.
Axioms (S2) and (S3) guarantee that a state exists for every combination of truth
elements, and are analogous to the existence-of-situations axiom in Baker’s formulation
[1], [2]. The properties which hold in a given state are described by the predicate
HoldsIn. We have the following axioms.

HoldsIn(p,s) ← [〈p,True〉 ∈ s ∧ ¬ AbState(s)] (E1)

¬ HoldsIn(p,s) ← [〈p,False〉 ∈ s ∧ ¬ AbState(s)] (E2)

 Axioms (S1) to (S3) and (E1) and (E2) will be part of the formalisation of any
domain. If 〈p,True〉 ∈ s then the property p holds in state s. Conversely if 〈p,False〉 ∈ s
then the property p does not hold in state s. If 〈p,True〉 ∉ s and 〈p,False〉 ∉ s then, in
the absence of further information about HoldsIn, we cannot say whether or not the
property p holds in state s. However, further information of this kind may be present in
the form of domain constraints expressed as extra HoldsIn formulae. Such formulae can
be admitted without giving rise to contradiction because of the AbState conditions on
(E1) and (E2). The predicate AbState will be minimised, making Axioms (E1) and (E2)
into defaults. Abnormal states are those ruled out by domain constraints. Baker’s
approach adopts a similar tactic.

Although there is no overall partitioning of properties into primitive and derived,
the members of a set can be thought of as the primitive properties that hold/don’t hold in
the corresponding state. Domain constraints in the form of extra HoldsIn formulae can
then be thought of as yielding “derived” properties. The presence of such domain
constraints means that an event can have complicated ramifications, which must be dealt
with by any approach to the frame problem. It is because of domain constraints and
ramifications that states are represented by partial descriptions of the properties that hold
in them, and (E1) and (E2) cannot be replaced by a simple biconditional. Ramifications
will be discussed in some detail in a later section.

2. A Calculus of Events

Now the main axiom of the formalism is presented in a form which is suitable for
domains which involve only discrete change. Later, it will be modified to cater for the
continuous case. The axiom defines the predicate State. The formula State(t,s) represents
that time point t is associated with state s. Each time point is associated with a single,
characterising state s,8 such that 〈p,True〉 ∈ s if and only if the property p was initiated
by some event before t and still holds at t, and 〈p,False〉 ∈ s if and only if p was
terminated by some event before t and still does not hold at t. The axiom we require is
essentially the following.
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State(t,s) ↔
∀p[[〈p,True〉∈s ↔ Initiated(p,t)] ∧
[〈p,False〉∈s ↔ Terminated(p,t)]]

In order to make the formalism easier to use, the final form of the axiom will
facilitate the representation of the initial situation. But for now, let’s assume the above
axiom, and consider the meaning of Initiated and Terminated. The formulae Initiated(p,t)
and Terminated(p,t) are not part of the language, but are just abbreviations, which are
defined as follows.9 Several more predicates are introduced here, along with variables
for the new sort of event types (e, e1, e2, etc.).

Initiated(p,t2) ≡def
∃e,t1,s[Happens(e,t1) ∧ t1 < t2 ∧ State(t1,s) ∧
Initiates(e,p,s) ∧ ¬ Clipped(t1,p,t2)]

Terminated(p,t2) ≡def
∃e,t1,s[Happens(e,t1) ∧ t1 < t2 ∧ State(t1,s) ∧
Terminates(e,p,s) ∧ ¬ Declipped(t1,p,t2)]

Again, the formulae Clipped(t1,p,t2) and Declipped(t1,p,t2) are not part of the
language, but are abbreviations, which are defined as follows.

Clipped(t1,p,t3) ≡def
∃e,t2,s[Happens(e,t2) ∧ t1 < t2 ∧ t2 < t3 ∧
State(t2,s) ∧ Terminates(e,p,s)]

Declipped(t1,p,t3) ≡def
∃e,t2,s[Happens(e,t2) ∧ t1 < t2 ∧ t2 < t3 ∧
State(t2,s) ∧ Initiates(e,p,s)]

The formula Initiates(e,p,s) represents that, in state s, the property p is initiated by
an event of type e, and the formula Terminates(e,p,s) represents that, in state s, the
property p is terminated by an event of type e. The “causal” predicates Initiates and
Terminates will be minimised. The formula Happens(e,t) represents that an event of type
e happens at time t. The formula t1 < t2 represents that time t1 is before time t2. For the
discrete case, time points can be interpreted by the naturals, and I will assume that we are
considering only models in which < is interpreted accordingly.10

To make it easy to represent the initial situation (the state at time 0), the predicate
Initially is introduced. The formula Initially(p) represents that property p holds in the
initial situation. Conversely, the formula Initially(Not(p)) represents that property p does
not hold in the initial situation. Note that Initially will be minimised, although our
knowledge of the initial situation might be incomplete. The final form of the main axiom
incorporates the Initially predicate as follows. Two further abbreviations are used to
make the axiom clear.

State(t,s) ↔ (E3)
∀p[[〈p,True〉∈s ↔ TrueAt(p,t)] ∧
[〈p,False〉∈s ↔ FalseAt(p,t)]]

TrueAt(p,t) ≡def Initiated(p,t) ∨ [Initially(p) ∧ p≠Not(p') ∧ ¬Clipped(0,p,t)]

FalseAt(p,t) ≡def
Terminated(p,t) ∨ [Initially(Not(p)) ∧ ¬Declipped(0,p,t)]
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It is important to note here that the state s which characterises a time t is not the set
of all properties that hold (or don’t hold) at t. Rather, s is a subset of those properties —
the “primitive” ones. The presence of domain constraints, expressed in terms of HoldsIn,
means that further “derived” properties might hold (or not hold) at t. The last axiom of
the formalism defines the predicate HoldsAt, which takes into account this possibility.
The formula HoldsAt(p,t) represents that property p holds at time t.

HoldsAt(p,t) ↔ ∃s[State(t,s) ∧ HoldsIn(p,s)] (E4)

The HoldsAt predicate is still not a complete description of which properties hold at
what times, because there may be non-deterministic actions, or an incompletely described
initial situation. However, it takes into account all that is known about each time point. In
the rest of the paper, the conjunction of Axioms (S1) to (S3) with (E1) to (E4) will be
denoted by EC. In general, a temporal projection problem will be captured by the
conjunction of EC with a conjunction of Happens and Initially formulae representing a
history of events, and a conjunction of Initiates, Terminates and HoldsIn formulae
representing the domain. The answer to the temporal projection problem resides in the set
of HoldsAt formulae that are consequences.

The frame problem is overcome using circumscription [21]. Circumscription works
by minimising the extensions of certain predicates. To minimise the extension of a
predicate is to insist that it contains only those objects it is forced to contain by the
formula being circumscribed. The extensions of other predicates are optionally allowed to
vary to accommodate this. We write CIRC[λ ; P* ; Q*] to denote the circumscription of
λ, minimising P* and allowing Q* to vary, where P* and Q* are sets of predicates. If Q*
is empty, this is sometimes written CIRC[λ ; P*]. The circumscription of a formula is
conventionally defined by a second-order sentence, but it can be equivalently presented in
terms of minimal models. Consider two models M1 and M2. We have,

M1 
�

P*;Q* M2 if

• M1 and M2 agree on the interpretation of everything except P* and Q*.

• For all p in P*, the extension of p in M1 ⊆ its extension in M2.

Then, a model M of λ is minimal with respect to 
�

P*;Q* if there is no model M' of
lambda such that M' 

�
P*;Q* M and not M 

�
P*;Q* M'. A formula is true in CIRC[λ ; P* ;

Q*] if and only if it is true in all models of λ which are minimal with respect to 
�

P*;Q*.
This notion of circumscription can be extended to include the idea of minimising certain
predicates with a higher priority than others (Lifschitz [12]). Let P1*, P2* and Q* be sets
of predicates. We write CIRC[λ ; P1*>P2* ; Q*] to denote the circumscription of λ,
minimising P1* with a higher priority than P2*, and allowing Q* to vary. Again, the
conventional definition is via a second-order sentence, but this is equivalent to,

CIRC[λ ; P1* ; P2* ∪ Q*] ∧ CIRC[λ ; P2* ; Q*]

The exact choice of which predicates are minimised in a circumscription, the order
in which they are minimised, and which predicates are allowed to vary, is called the
circumscription policy. For a thorough review of the theory of circumscription, see
Lifschitz [16].

The circumscription policy for overcoming the frame problem, representing the
assumptions that the only domain constraints are the known domain constraints, that the
only events which occur are those which are known to occur, and that the only effects of
events are the known effects, is to minimise AbState at a high priority, and to minimise
Initially, Happens, Initiates and Terminates at a lower priority, allowing HoldsAt and
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State to vary. It is necessary to prioritise the minimisation of AbState in order to exclude
models in which a larger than necessary extension of AbState is traded for a smaller than
desired extension of Initiates or Terminates. The circumscription of a formula λ
according to this policy will be written CIRCec[λ].

3. The Blocks World

Fortunately, the foregoing machinery is mostly transparent to anyone who uses the
formalism, and descriptions of domains and histories are intuitive and elegant. In the next
section, the mathematical properties of the event calculus are investigated, and a result is
developed which supports the claim that the frame problem has been solved for a large
class of examples. But first, I will show how the formalism could be used to represent a
simple version of the Blocks World. The ontology of this world includes blocks and
locations. A new sort is introduced for these, with variables x, y and z.11 An event of
type Move(x,y) is an attempt to move block x to location or block y. The property
On(x,y) represents that block x is at location y or on block y. The domain of time points
is assumed to be the natural numbers.12 We have the following formulae.

Initiates(Move(x,y),On(x,y),s) ←
HoldsIn(Clear(x),s) ∧ HoldsIn(Clear(y),s) ∧ x ≠ y

Initiates(Move(x,y),Clear(z),s) ←
HoldsIn(Clear(x),s) ∧ HoldsIn(Clear(y),s) ∧ x ≠ y ∧
HoldsIn(On(x,z),s) ∧ y ≠ z

Terminates(Move(x,y),On(x,z),s) ←
HoldsIn(Clear(x),s) ∧ HoldsIn(Clear(y),s) ∧ x ≠ y ∧
HoldsIn(On(x,z),s) ∧ y ≠ z

Terminates(Move(x,y),Clear(y),s) ←
HoldsIn(Clear(x),s) ∧ HoldsIn(Clear(y),s) ∧ x ≠ y

The key feature of these formulae is that no mention is made of the HoldsAt
predicate. No mention is made of actual times at all. Instead, the HoldsIn predicate is
used to give access to the properties that hold when an event occurs, by referring to the
corresponding state. Because states are timeless, the formulae are timelessly true. This
style of representation permits the vital separation of minimisation from temporal
projection.

Instead of explicitly specifying the conditions under which an event initiates or
terminates the Clear property, a domain constraint could be used. This would be achieved
by writing HoldsIn formulae which related the Clear property to the On property, and
which constrained every block or location to have at most one block on it.

For each domain, a set of uniqueness-of-names axioms is required for properties
and event types. It might also be necessary to include other uniqueness-of-names
axioms, in this case for blocks and locations. I will not explicitly list these axioms in the
examples in rest of the paper, but here is the full set of uniqueness-of-names axioms for
this Blocks World domain, using Lifschitz’s UNA notation [13].

UNA[Move]

UNA[Clear, On]

UNA[A, B, C, X1, X2, X3]
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A particular sequence of events or actions is described using Happens formulae.
For example, the following formulae represent that block A is moved onto block B at
time 5, then block C is moved onto location X1 at time 8.

Happens(Move(A,B),5)

Happens(Move(C,X1),8)

Concurrent events, such as moving two blocks at the same time, are easily
represented as Happens formulae with identical time arguments, so long as the events are
independent, that is so long as their effects are not cumulative (like putting two weights
on a pair of scales at the same time) or cancelling (like trying to lift an object and pressing
down on it at the same time). In Section 8, a version of the calculus is described which
can cope with cumulative and cancelling concurrent events. Note that it is easy to write
formulae which represent events whose exact order of occurrence is not known, using
disjunctions of Happens formulae, or using Happens formulae with existentially
quantified time arguments.

Suppose blocks A, B and C are initially clear and at locations X1, X2 and X3
respectively. Then we have

Initially(On(A,X1)) Initially(Clear(A))

Initially(On(B,X2)) Initially(Clear(B))

Initially(On(C,X3)) Initially(Clear(C))

If the conjunction of all the above Initiates and Terminates formulae and
uniqueness-of-names axioms is denoted by D, and the conjunction of the Happens and
Initially formulae by H, then in all models of CIRCec[EC ∧ D ∧ H], we have, for
example, HoldsAt(On(A,B),12). I will not attempt to prove this here, but the results of
the next section will provide a basis for proving which properties hold at what times for
any domain and history.

Intuitively, though, how has the frame problem been solved? Note that the only
predicates needed to capture the Blocks World domain and to represent a history of
events are Initiates, Terminates, HoldsIn, Happens and Initially. The circumscription
policy for overcoming the frame problem minimises only these domain and history
predicates. The results of temporal projection, on the other hand, are expressed in terms
of the predicate HoldsAt, which doesn’t appear in domain and history formulae. So,
temporal projection is independent of minimisation. This has been achieved by using
HoldsIn in the representation of the domain, a predicate indexed on states. It would have
been tempting to use HoldsAt instead, obviating the need for states altogether. But then
the extensions of Initiates and Terminates would vary according to the outcome of
temporal projection. The strong result of the next section would not then be applicable,
and the Hanks-McDermott problem would arise.

4. Some Properties of the Calculus

As Lifschitz points out [15], we would like to be able to demonstrate that an
approach to the frame problem yields correct results, not just with a single example, but
with a significant class of examples. General results of this sort have been produced for
the situation calculus by Lifschitz [15] and Lin and Shoham [18], but neither of these
papers addresses continuous change, concurrent events, or events with non-deterministic
effects. Lin and Shoham have extended their work to deal with concurrent events [19],
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but the general result they prove is built on a criterion of epistemological completeness
which apparently excludes the possibility of events with non-deterministic effects.

In this section, I present a theorem which says that any collection of domain and
history formulae of a certain form can be minimised independently from the axioms of
the event calculus. The demands on the form of domain and history formulae are very
liberal. Concurrent events are allowed, and in later sections I show that domains
involving non-deterministic events and continuous change can also be represented in the
required form. The theorem is very general, and applies not only to the calculus above,
but also to any calculus having the right form. I will write x to denote a tuple of
variables, and xi to denote the ith variable in such a tuple.

Definition 1. A formula is chronological in argument k if it has the form ∀x q(x) ↔
φ(x), where q is a predicate whose kth argument is a time point and φ(x) is a formula in
which x is free, and all occurrences of q in φ(x) are in conjunctions of the form q(z) ∧
zk < xk.

For example, Axiom (E3) is chronological in argument 1. Under certain
conditions, it is easy to work out the consequences of circumscribing the conjunction of a
formula with a chronological formula.

Theorem 1. Consider only models in which the time points are interpreted by the
naturals, and in which < is interpreted accordingly. Let P* and Q* be sets of predicates
such that Q* includes q. Let ψ = ∀x q(x) ↔ φ(x) be a formula which is chronological in
some argument. Let χ be a formula which doesn’t mention the predicate q. Then
CIRC[χ ∧ ψ ; P*; Q*] �  CIRC[χ ; P*; Q*].

The proof of Theorem 1 is given in Appendix A. Since both Axioms (E3) and (E4)
are chronological in one of their arguments, Theorem 1 ensures that any domain and
history can be minimised independently from the event calculus axioms, so long as the
domain and history formulae don’t mention HoldsAt or State. After this minimisation,
the event calculus axioms can be used classically to derive which properties hold at what
times. Appendix B contains another theorem, which facilitates the construction of
temporal projection algorithms.

It is important to see that meeting the conditions for applying Theorem 1 is not in
itself sufficient to solve the frame problem. It is still necessary to get the minimisation
right before (E3) and (E4) are added. Axioms (S1) to (S3) and (E1) and (E2) play a
crucial role in this respect. Theorem 1 simply supplies certain conditions under which
projection is guaranteed not to interfere with minimisation. This sort of interference is
what gives rise to the Hanks-McDermott problem.

In order to minimise domains and histories, two other properties of circumscription
will be useful. Theorems 2 and 3 are due to Lifschitz. They are reproduced here without
proof, but proofs can be found in Lifschitz [16]. Let λ be any formula and δ(x) be any
formula in which x is free.

Theorem 2. CIRC[λ ∧ ∀x  p(x) ← δ(x); p] is equivalent to λ ∧ ∀x  p(x) ↔ δ(x) if λ
and δ(x) are formulae containing no occurrences of the predicate p.

Theorem 3. If all occurrences of the predicates p1, p2, ..., pn in a formula λ are
positive, then CIRC[λ ; P*], where P* = {p1, p2, ..., pn}, is equivalent to

CIRC[λ ; p1] ∧ CIRC[λ ; p2] ∧ . . . ∧  CIRC[λ ; pn]
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5. The Yale Shooting Problem

With the results above, it’s easy to show that the event calculus can solve the Yale
shooting problem (Hanks & McDermott [8]). The domain comprises three types of event
— Load, Sneeze and Shoot — and two properties — Alive and Loaded. These events
and properties are represented by the following formulae, whose conjunction along with
the requisite uniqueness-of-names axioms will be denoted by D1. Note that there are no
axioms for the Sneeze event, since it doesn’t affect any property.

Initiates(Load,Loaded,s) (D1.1)

Terminates(Shoot,Alive,s) ← HoldsIn(Loaded,s) (D1.2)

The Yale shooting scenario can be represented by the following history formulae,
whose conjunction will be denoted by H1, describing three events — Load then Sneeze
then Shoot. The Sneeze event substitutes for the Wait action of the original Yale shooting
scenario. Using the event calculus, waiting is most naturally represented simply as a
pause between events, rather than as an event which has no effect. The Sneeze event here
serves the same purpose as waiting in the original formulation: it provides an opportunity
for the minimisation to go wrong.

Initially(Alive) (H1.1) Happens(Load,10) (H1.2)

Happens(Sneeze,15)(H1.3) Happens(Shoot,20) (H1.4)

Proposition 1. CIRCec[EC ∧ D1 ∧ H1] �  ¬ HoldsAt(Alive,25).

Proof. Let χ be the conjunction of D1 with H1 and EC without (E3) and (E4).
CIRCec[χ] is defined as the conjunction of,

CIRC[χ ; Initially, Happens, Initiates, Terminates ; State, HoldsAt]

with,

CIRC[χ ; AbState ; Initially, Happens, Initiates, Terminates, State, HoldsAt].

We will consider each conjunct in turn.

Take the first conjunct. Since all occurrences of Happens, Initiates and Terminates in χ
are positive,

CIRC[χ ; Initially, Happens, Initiates, Terminates]

is equivalent to,

CIRC[χ ; Initially] ∧ CIRC[χ ; Happens] ∧
CIRC[χ ; Initiates] ∧ CIRC[χ ; Terminates]

from Theorem 3. Then, by applying Theorem 2 to each conjunct in this formula, it can be
seen that the completions of Happens, Initiates and Terminates are true in all of its
models. In particular, we have the following.

Terminates(e,p,s) ↔ (1)
e=Shoot ∧ p=Alive ∧ HoldsIn(Loaded,s)
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Happens(e,t) ↔ (2)
[e=Load ∧ t=10] ∨ [e=Sneeze ∧ t=15] ∨
[e=Shoot ∧ t=20]

Since there are no occurrences of State or HoldsAt in χ, (1) and (2) are also true in all
models of CIRCec[χ], where these predicates are allowed to vary.

Now let’s look at the second conjunct of CIRCec[χ] . Without any domain constraints in
D1, the only abnormal combinations of truth elements are those which include both
〈p,False〉 and 〈p,True〉 for some p. So, in all models of CIRC[χ ; AbState ; Happens,
Initiates, Terminates] we have,

AbState(s) ↔ ∃p[〈p,False〉 ∈ s ∧ 〈p,True〉 ∈ s] (3)

Since there are no occurrences of State or HoldsAt in χ, allowing these predicates to vary
does not affect the outcome of the circumscription, so (3) is also true in all models of
CIRCec[χ].

Now, since (E3) and (E4) are chronological, by applying Theorem 1, first to add (E3)
and then to add (E4), we can show that (1), (2) and (3) are also true in all models of
CIRCec[EC ∧ D1 ∧ H1].

The combination of (3) with Axioms (S2), (S3) and (E1) ensures that every model
includes a state in which Alive and Loaded hold. Given this, along with (1), (2) and (3),
it’s easy to show classically from D1 and H1 that in all models of the circumscription we
have,

∃s[State(20,s) ∧ HoldsIn(Alive,s) ∧ HoldsIn(Loaded,s)]

and therefore,

∃s[State(25,s) ∧ ¬ HoldsIn(Alive,s)]

and ¬ HoldsAt(Alive,25). �

6. Ramifications

Domain constraints can be expressed as HoldsIn formulae. For example, the
property Dead can be defined in the following way.

HoldsIn(Dead,s) ↔ ¬ HoldsIn(Alive,s) (D1.3)

Let D1' denote the conjunction of (D1.1) to (D1.3) with the requisite uniqueness-
of-names axioms.

Proposition 2. CIRCec[EC ∧ D1' ∧ H1] �  HoldsAt(Alive,20) ∧ HoldsAt(Dead,25).

Proof. The addition of (D1.3) does not substantially affect the proof for Proposition 1.
Instead of (3) we have,
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AbState(f,s) ↔
∃p[〈p,False〉 ∈ s ∧ 〈p,True〉 ∈ s] ∨
[〈Alive,True〉 ∈ s ∧ 〈Dead,True〉 ∈ s] ∨
[〈Alive,False〉 ∈ s ∧ 〈Dead,False〉 ∈ s]

Every model still includes a state in which Alive and Loaded hold. But we also get,

∃s[State(25,s) ∧ HoldsIn(Dead,s)]

and therefore HoldsAt(Dead,25). �

Here we will only look at simple examples. But in general, a domain constraint
could be any formula involving just the HoldsIn predicate in which the only situation
term is a universally quantified variable. In addition, a domain constraint could involve
any predicate apart from HoldsAt, Initiates, Terminates, Initially, and State. For
example, to formalise a problem involving a chess board in the next section, I will
introduce two predicates Black and White to be used in domain constraints.

Note that (D1.3) doesn’t ensure that an event which initiates Dead also terminates
Alive. A property that holds because it was initiated by an event, can only be terminated
directly by an event, and not by an event which terminates a property on which it
depends. What this amounts to is that a property which is initiated by an event must be
considered as primitive until it is terminated.

This principle can be illustrated by introducing a new property Walking, and a
further constraint that if Walking holds then Alive must hold (Baker [2]).13 The obvious
way to try to represent this is with a HoldsIn formula.

HoldsIn(Walking,s) → HoldsIn(Alive,s) (D1.4)

However, this formula only yields intuitive conclusions under certain
circumstances. With the addition of (D1.4), we can show ¬ HoldsAt(Walking,25). But
suppose we add a new event type Walk and the following additional domain and history
axioms.

Initiates(Walk,Walking,s) (D1.5)

Happens(Walk,5) (H1.5)

Let D1'' be the conjunction of (D1.1), (D1.2), (D1.4) and (D1.5) with the requisite
uniqueness-of-names axioms. Let H1' be H1 ∧  (H1.5). Do we still have
¬ HoldsAt(Walking,25) in all models of CIRCec[EC ∧ D1'' ∧ H1']? From Axiom
(E3), we get,

State(25,s) → [〈Alive,False〉 ∈ s ∧ 〈Walking,True〉 ∈ s]

Therefore, from (D1.4), (E1) and (E2), we have,

State(25,s) → AbState(s)

So we can no longer deduce anything interesting about time 25. A better way to
represent a domain constraint like (D1.4) is to use Initiates and Terminates. This
preserves the principle that a property which is initiated directly by an event must also be
terminated directly by an event.
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Terminates(e,Walking,s) ← Terminates(e,Alive,s) (D1.6)

Both (D1.4) and (D1.6) can be present in the same domain theory. Axiom (D1.4)
would be used to deduce that Alive holds when Walking holds, given an event that
initiates Walking but none that initiates Alive, and Axiom (D1.6) would be used to
deduce that Walking does not hold after an event that terminates Alive. Let D1''' be the
conjunction of (D1.1), (D1.2), (D1.5) and (D1.6) with the requisite uniqueness-of-
names axioms.

Proposition 3. CIRCec[λ] �  ¬ HoldsAt(Walking,25), where λ is EC ∧ D1''' ∧ H1'.

Proof. Theorem 1 is applied in the usual way. CIRCec[λ] yields (3) as in the proof of
Proposition 1, but instead of (1) and (2), CIRCec[λ] now gives,

Terminates(e,p,s) ↔ (4)
[e=Shoot ∧ p=Alive ∧ HoldsIn(Loaded,s)] ∨
[e=Shoot ∧ p=Walking ∧ HoldsIn(Loaded,s)]

Happens(e,t) ↔ (5)
[e=Walk ∧ t=5] ∨ [e=Load ∧ t=10] ∨
[e=Sneeze ∧ t=15] ∨ [e=Shoot ∧ t=20]

From (3), (4) and (5), it’s easy to show classically that ¬ HoldsAt(Walking,25). �

7. Non-Deterministic Effects

The separation of temporal projection and minimisation permitted by Theorem 1
allows us to represent events whose effects are non-deterministic, knowing that this will
not precipitate problems with temporal projection. Examples of events with non-
deterministic effects are those which initiate a disjunction of properties or a property
which is existentially quantified. Consider the following problem, due to Ray Reiter.14

The action of moving an object onto a chess board either initiates the property that the
object is on black, or the property that it is on white, or both properties at once (if it
straddles two squares).

Can the effects of such an action be represented in the event calculus, whilst
preserving the conditions for applying Theorem 1? There is a danger that minimising the
effects of moving an object onto the board will exclude the possibility of moving it to a
position where it is on both black and white, since such an action would initiate two
properties when it could have initiated only one. The circumscription should allow at
least one model in which such an action initiates both properties. Also, it is important to
exclude models in which the object, once moved onto the board, flickers between black
and white. If it is moved onto a particular location on the board, then it should stay there
until it is moved again.

Events with non-deterministic effects, such as the one in this problem, can often be
represented as initiating an intermediate property, which has non-deterministic
ramifications. This is the approach taken in the following solution. The variable c is
introduced for locations. A location is either black, white or mixed. There is one event
type Move. The property Loc(c) represents that the object is at location c. There are two
other properties: OnBlack and OnWhite.

∀s ∃c [Initiates(Move,Loc(c),s)] (D2.1)

∀c [Black(c) ∨ White(c) ∨ Mixed(c)] (D2.2)
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Black(c) ↔ (D2.3)
∀s [HoldsIn(Loc(c),s) →

HoldsIn(OnBlack,s) ∧ ¬ HoldsIn(OnWhite,s)]

White(c) ↔ (D2.4)
∀s [HoldsIn(Loc(c),s) →

HoldsIn(OnWhite,s) ∧ ¬ HoldsIn(OnBlack,s)]

Mixed(c) ↔ (D2.5)
∀s [HoldsIn(Loc(c),s) →

HoldsIn(OnWhite,s) ∧ HoldsIn(OnBlack,s)]

It is easy to see that minimising Initiates does not affect HoldsIn, since HoldsIn is
held fixed. Nor is HoldsIn affected by temporal projection (Lemma 9 in Appendix A
guarantees that if there is a model of (D2.1) to (D2.5) in which there is a state s such that
HoldsIn(OnBlack,s) ∧ HoldsIn(OnWhite,s), then there will be such a model of EC
conjoined with (D2.1) to (D2.5)). So, without further domain constraints, it will not be
possible to show that ¬ HoldsAt(OnBlack,t) ∨ ¬ HoldsAt(OnWhite,t) for any time t
after a Move event, unless there is another event between the Move event and t which
terminates Loc(c). In other words, there will always be a model in which the object is
both on black and on white after it is put on the chess board, which is the result we
require.

8. Concurrent Events

A simple modification to the event calculus axioms, which I will describe in this
section, permits the representation of concurrent events whose effects are cumulative or
cancelling. Two or more events are cumulative if their simultaneous occurrence has
effects that none of them has on its own. One event cancels the effect of another if their
simultaneous occurrence prevents the second event from having an effect which it does
have if it occurs on its own. It should be noted that, as with the suggestions in the
previous section, none of the amendments I propose affects the applicability of
Theorem 1, as Axioms (E3) and (E4) will remain chronological.

With the present axioms, it is possible to represent the simultaneous occurrence of
two events, but not the fact that their effects are in any way dependent on each other.
Let’s see this with an example. Suppose we want to formalise the following. If we push
a supermarket trolley then it will move forwards. If we pull on it it will go backwards.
But if we push on it at the same time as pulling on it, then it will spin around. The first
two facts are easily represented by the following event calculus formulae.

Initiates(Push,Forwards,s)

Terminates(Push,Backwards,s)

Initiates(Pull,Backwards,s)

Terminates(Pull,Forwards,s)

Suppose we push the trolley at time 5 and then pull it at time 10.

Happens(Push,5)

Happens(Pull,10)
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If the conjunction of the above Initiates and Terminates formulae with the requisite
uniqueness-of-names axioms is denoted by D3, and the conjunction of the Happens
formulae by H3, then in all models of CIRCec[EC ∧ D3 ∧ H3] we have, for example,
HoldsAt(Forwards,7) and HoldsAt(Backwards,12). Now consider what happens if we
try to represent the additional information that we pull the trolley at time 5 as well as
pushing it, and that we push the trolley at time 10 as well as pulling it.

Happens(Pull,5)

Happens(Push,10)

If we denote the conjunction of H3 with these formulae by H3', then in all models
of CIRCec[EC ∧  D3 ∧  H3'], we still have HoldsAt(Forwards,7) and
HoldsAt(Backwards,12). How can we represent the fact that simultaneously pushing and
pulling on the trolley makes it spin around instead of moving either forwards or
backwards? Two steps are required. First, we need to be able to write Initiates and
Terminates formulae which describe the effect of two or more events occurring together.
Then we need to be able to express the fact that one event can cancel the effect of another
occurring at the same time. To achieve the first aim, an extra axiom is introduced, along
with the infix function + which maps a pair of event types onto a third event type. A
compound event of type e1 + e2 happens if events of type e1 and e2 happen
concurrently.

Happens(e1 + e2,t) ← (E5)
Happens(e1,t) ∧ Happens(e2,t) ∧ e1≠e2

Note that this axiom will accumulate any number of concurrent events into a single
event type.15 Now, to represent the cumulative effect of two concurrent events, it is only
necessary to write the appropriate Initiates and Terminates formulae in the usual manner.
For the supermarket trolley example, the following extra Initiates and Terminates
formulae will suffice.

Initiates(Push + Pull,Spinning,s)

Terminates(Push + Pull,Forwards,s)

Terminates(Push + Pull,Backwards,s)

For completeness there should be two further formulae representing the fact that
Push and Pull each terminate Spinning. Now we will get the desired cumulative effect of
both events, but we will still retain the unwanted previous conclusions about their
individual effects. To overcome this problem, following Gelfond et al. [6] and Lin and
Shoham [19], I will introduce a new predicate Cancels. The formula Cancels(e1,e2)
represents that if an event of type e1 occurs then it cancels the effects of any event of type
e2 occurring at the same time. Now we have to modify the definitions of Initiated and
Terminated to take account of Cancels.

Initiated(p,t2) ≡def
∃e,t1,s[Happens(e,t1) ∧ t1 < t2 ∧ State(t1,s) ∧
Initiates(e,p,s) ∧ ¬ Clipped(t1,p,t2) ∧ ¬ Cancelled(e,t1)]
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Terminated(p,t2) ≡def
∃e,t1,s[Happens(e,t1) ∧ t1 < t2 ∧ State(t1,s) ∧
Terminates(e,p,s) ∧ ¬ Declipped(t1,p,t2) ∧
¬ Cancelled(e,t1)]

Cancelled(e1,t) ≡def ∃e2[Happens(e2,t) ∧ Cancels(e2,e1)]

Similar modifications are required for Clipped and Declipped.

Clipped(t1,p,t3) ≡def
∃e,t2,s[Happens(e,t2) ∧ t1 < t2 ∧ t2 < t3 ∧
State(t2,s) ∧ Terminates(e,p,s) ∧ ¬ Cancelled(e,t2)]

Declipped(t1,p,t3) ≡def
∃e,t2,s[Happens(e,t2) ∧ t1 < t2 ∧ t2 < t3 ∧
State(t2,s) ∧ Initiates(e,p,s) ∧ ¬ Cancelled(e,t2)]

Finally, Cancels must be minimised at the same priority as Happens, Initiates and
Terminates, representing the assumption that events don’t cancel each other’s effects
unless they are known to. It is interesting to note that there is no need for an axiom to
ensure that a compound event inherits the effects of its component events, as required in
the approach of Lin and Shoham [19]. Instead, a history of events is described entirely in
terms of the separate occurrences of individual events, even if they are concurrent.
Cancellation formulae may now be included in the description of a domain. To complete
the supermarket trolley example, we have to add the following.

Cancels(Push,Pull)

Cancels(Pull,Push)

If we denote the conjunction of the modified event calculus axioms by EC' and the
conjunction of D3 with the extra domain formulae by D3', then in all models of  the
circumscription of EC' ∧  D3' ∧  H3' according to the above policy, we have
¬  HoldsAt(Forwards,7) and ¬ HoldsAt(Backwards,12) as well as
HoldsAt(Spinning,7) and HoldsAt(Spinning,12).

9. Continuous Change

This section extends the event calculus of Section 2 to deal with continuous as well
as discrete change, as in Shanahan [35]. This is achieved through the introduction of two
new predicates. Variables for elapsed time are introduced (a, a1, a2, etc.). The formula
Trajectory(q,s,p,a) represents that, if the discrete property q is initiated in state s, then
after a period of time a the continuous property p holds. For example, property q could
be that a ball is moving at a certain velocity and property p could be that the ball has
travelled a certain distance from its starting point.

The Trajectory predicate facilitates the representation of continuous change, such as
the height of a falling object or the level of liquid in a filling vessel, but doesn’t supply
any means of representing that events occur when certain continuous properties hold. For
example, when the level of liquid in a vessel reaches the vessel’s rim, then an overflow
event occurs. A second new predicate is introduced for this purpose. The formula
Triggers(s,e) represents that an event of type e happens in the state s.

There are now two ways in which a property can be caused directly by an event. I
will write Initiatedd(p,t) to represent that the discrete property p holds at time t and was
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initiated by an event, and Initiatedc(p,t) to represent that the continuously varying
property p holds at time t and was initiated by an event. The same property can be
continuous at some times and discrete at others. The location of a ball, for instance, can
be considered continuous while the ball is moving but discrete while it’s stationary. We
have the following replacement definitions for Initiated.

Initiatedd(p,t2) ≡def
∃t1,e,s[t1 < t2 ∧ State(t1,s) ∧ [Happens(e,t1) ∨ Triggers(s,e)] ∧
Initiates(e,p,s) ∧ ¬ Clipped(t1,p,t2)]

Initiatedc(p,t2) ≡def
∃t1,e,s,q[t1 < t2 ∧ State(t1,s) ∧
[Happens(e,t1) ∨ Triggers(s,e)] ∧
Initiates(e,q,s) ∧ ¬ Clipped(t1,q,t2) ∧
a = t2–t1 ∧ Trajectory(q,s,p,a)]

Initiated(p,t) ≡def Initiatedd(p,t) ∨ Initiatedc(p,t)

The rest of the definitions of Section 2 are modified to cope with Triggers, but are
otherwise the same as before.

Clipped(t1,p,t3) ≡def
∃e,t2,s[t1 < t2 ∧ t2 < t3 ∧ State(t2,s) ∧ Terminates(e,p,s) ∧
[Happens(e,t1) ∨ Triggers(s,e)]]

Declipped(t1,p,t3) ≡def
∃e,t2,s[t1 < t2 < t3 ∧ State(t2,s) ∧ Initiates(e,p,s) ∧
[Happens(e,t1) ∨ Triggers(s,e)]]

Terminated(p,t2) ≡def
∃e,t1,s[t1 < t2 ∧ State(t1,s) ∧ [Happens(e,t1) ∨ Triggers(s,e)] ∧
Terminates(e,p,s) ∧ ¬ Declipped(t1,p,t2)]

Apart from these modifications, the axioms of EC are retained from Section 2. The
circumscription policy to overcome the frame problem is to minimise AbState with high
priority, then Trajectory, Triggers, Initially, Happens, Initiates and Terminates, allowing
HoldsAt and State to vary. Given a formula λ, I will write CIRCcec[λ] to denote its
circumscription according to this policy.

The statement of Theorem 1 and its proof in Appendix A assume that time points
are interpreted by the natural numbers. To accommodate genuinely continuous change,
time points need to be interpreted by the reals. A variant of Theorem 1 can be proved
when time points are interpreted by the reals, but the proof is more complicated than that
for the naturals. Also, a certain condition must hold. Intuitively, this condition states that
it must be possible to map the real time line onto a well-founded structure (known as a
marker set) in such a way that the recursive formula ∀x q(x) ↔  φ(x) is also well-
founded with respect to that structure. In the case of the event calculus axioms, this
structure is the set of time points at which events occur. This condition clearly holds, for
example, if there is a finite number of events.

Shortly I will illustrate the use of the axioms presented above with an example, but
first I will present the extended version of Theorem 1.

Definition 2. A marker set is a subset S of �  such that, for all T1 in � , the set of T2 in
S such that T2<T1 is finite.
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From the definition, a marker set can be finite or infinite, but must be countable.
Furthermore, the definition ensures that we can speak of the nth element of a marker set
and that this will be less than the n+1th element.

Definition 3. A formula ψ is real-chronological in argument k with respect to a formula
χ and a marker set S if

a) It has the form ∀x q(x) ↔ φ(x), where q is a predicate whose kth argument is a
time point and φ(x) is a formula in which x is free, and

b) All occurrences of q in φ(x) are in conjunctions of the form q(z) ∧ zk < xk ∧ θ,
where χ ∧ ψ �  ¬ θ if zk ∉ S.

Under the right conditions, Axiom (E3) will be real-chronological in argument 1
with respect to a conjunction of domain and history formulae and a marker set
corresponding to the set of time points at which events (including triggered events)
occur.

Theorem 4. Consider only models in which the time points are interpreted by the reals,
and in which < is interpreted accordingly. Let P* and Q* be sets of predicates such that
Q* includes q. Let ψ = ∀x q(x) ↔ φ(x) be a formula which is real-chronological in some
argument with respect to a formula χ which doesn’t mention the predicate q, and a
marker set S. Then CIRC[χ ∧ ψ ; P*; Q*] �  CIRC[χ ; P*; Q*].

The proof of Theorem 4 is given in Appendix C. Now let χ be the conjunction of a
domain formula and a history formula with EC, but without (E3) and (E4). Let S be the
set of time points at which events occur according to (E3) ∧ χ. It can be seen that (E3) is
real-chronological in argument 1 with respect to χ and S, so long as S is a marker set. So
Theorem 4 can be used in exactly the same way as Theorem 1 to add (E3) and (E4) to a
circumscribed χ without affecting the minimisation.

Under what circumstances does S constitute a marker set? Here are some
examples. It is clear that S is a marker set if there is a finite number of events. It can
easily be shown that it is also a marker set if there exists a smallest non-zero interval size
between any two non-concurrent events. On the other hand, S is clearly not a marker set
if an event occurs at every time point in the infinite series 0, 1/2, 1/4, 1/8, 1/16, and so
on. Examples of this kind actually do arise, as in the idealised description of a bouncing
ball (see Davis [5]), and the proof might be generalised to cope with these cases using
transfinite induction.

To illustrate this approach to the representation of continuous change, I will
formalise Sandewall’s “ball and shaft” example (Sandewall [29]). A ball is moving
horizontally along a surface towards a vertical shaft. When it reaches the shaft, it starts to
fall, bouncing back and forth between the walls of the shaft, until it reaches the bottom
where it comes to rest.

The “ball and shaft” can be represented as follows. New sorts are introduced for
velocities, distances and heights, and I will consider only interpretations in which these
sorts are interpreted by the reals.16 There are four types of event: Propel(v), Drop,
Bounce and Stop. A Propel(v) event sets the ball in motion with velocity v. A Drop
event, which occurs when the ball is no longer supported, starts the ball falling. A
Bounce event, which occurs when the ball hits a vertical surface, reverses the ball’s
direction of motion. A Stop event occurs when the ball comes to rest. The property
Moving(v) represents that the ball is moving horizontally with velocity v, Falling
represents that the ball is in freefall, Distance(d) represents that the ball is distance d from
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its starting point which is assumed to be 0, and Height(h) represents that the ball is at
height h. The horizontal surface is assumed to be at height 0. The near wall of the shaft is
at distance A, the far wall is at distance B and the bottom is at height C. I will consider
only interpretations in which the arithmetic functions have their usual meanings.

Initiates(Propel(v),Moving(v),s) (D4.1)

Trajectory(Moving(v),s,Distance(d),a) ← d = v*a (D4.2)

Triggers(s,Drop) ← (D4.3)
HoldsIn(Distance(d),s) ∧ d = A ∧
HoldsIn(Moving(v),s) ∧ v > 0

Initiates(Drop,Falling,s) (D4.4)

Trajectory(Falling,s,Height(h),a) ← h = –4.9*a 2 (D4.5)

Triggers(s,Bounce) ← (D4.6)
HoldsIn(Distance(d),s) ∧ HoldsIn(Moving(v),s) ∧
[d=B ∧ v > 0] ∨ [d=A ∧ v < 0]

Initiates(Bounce,Moving(v2),s) ← (D4.7)
HoldsIn(Moving(v1),s) ∧ v1 = –v2

Terminates(Bounce,Moving(v),s) (D4.8)

Triggers(s,Stop) ← (D4.9)
HoldsIn(Height(h),s) ∧ h = C ∧ HoldsIn(Falling,s)

Terminates(Stop,Moving(v),s) (D4.10)

Terminates(Stop,Falling,s) (D4.11)

Eleven domain axioms are required, as in Sandewall’s formulation [29]. Their
conjunction along with the requisite uniqueness-of-names axioms will be denoted by D4.
Now consider the following event.

Happens(Propel(5),0) (H4.1)

Proposition 4. CIRCcec[EC ∧  D4 ∧ (H4.1)] �  ∃t[Happens(Stop,t) ∧ t > 0]. In other
words, the ball eventually reaches the bottom of the shaft.

Proof. Let χ be the conjunction of EC without (E3) and (E4) with D4 ∧ (H4.1). The
proof is similar to the proof of Proposition 1. Applying Theorem 3 then Theorem 2 to χ
yields the completions of the predicates minimised by CIRCcec. Then, since (E3) and
(E4) are still chronological with the new definitions, Theorem 4 can be applied, first to
add (E3) to χ then to add (E4), to show that these completions are true in all models of
CIRCcec[EC ∧  D4 ∧ (H4.1)]. There are no domain constraints, so CIRCcec yields (3)
as in the proof of Proposition 1. It is straightforward to show classically from these
completions and the event calculus axioms that the proposition is true. �

The same example is formalised by Sandewall [29] using a form of chronological
minimisation extended to cope with continuous change, in which discontinuities are
postponed until as late as possible. Sandewall’s formulation, although it has the same
number of axioms, is more concise. It uses temporal modalities and doesn’t introduce
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events where there are discontinuities. It is arguable whether this succinctness is achieved
at the expense of expressive power. Indeed, when Sandewall does try to combine
reasoning about action with reasoning about continuous change, a much more complex
formalisation results [30]. One drawback to chronological minimisation, as noted by
Kautz [10], is that it does not cope well with explanation problems. However, Sandewall
has recently attempted to address this problem [31], [32]. A more thorough comparison
of Sandewall’s approach with that presented here would be useful.

Concluding Remarks

Arguably, the most pleasing solutions to default reasoning problems are modular.
First, we represent in classical, monotonic logic what we know about the world — the
propositions of which we are certain and from which we can draw definite conclusions.
Then, we formalise the apparatus for jumping to reasonable, but defeasible, conclusions
whose validity we cannot absolutely guarantee. The solution presented in this paper does
not seem to conform to this ideal, since states were introduced into the ontology solely to
facilitate the formalisation of default persistence by allowing domain and history formulae
to be safely circumscribed separately from the axioms of the event calculus. It is tempting
to conclude that there is a flaw in the solution, since it has forced the ontology of the
formalism. On the other hand, it could be argued that the exercise of formalising default
persistence has simply brought to light the desirability, independently of the need for
default persistence, of an ontology which includes states.

This paper does not address the issue of explanation, that is reasoning from effects
to causes. A number of temporal reasoning problems have an explanation component,
such as the bloodless variation of the Yale shooting scenario (in which the victim is alive
after the shot has been fired), and Kautz’s stolen car problem [10]. In terms of the
circumscriptive event calculus, a HoldsAt fact might be given, demanding an explanation
in terms of Happens formulae. This conforms to a representational principle underlying
the event calculus — that properties hold because events initiate them, whilst events
themselves are “first causes”.

There are two approaches to explanation with the event calculus: deductive and
abductive. In the deductive approach, HoldsAt facts requiring explanation are conjoined
with the domain, history and event calculus formulae, and explanations are expected to
be among the logical consequences. This approach, using other formalisms, is common
in the literature (Morgenstern & Stein [26], Lifschitz & Rabinov [17], Baker [1], [2]). In
the abductive approach, which is less common (Shanahan [34], [35]), explanations are
Happens formulae which, when conjoined with the domain and history formulae and
event calculus axioms, yield the facts to be explained as logical consequences.

The abductive approach seems to fit better the above-mentioned representational
principle. Furthermore, no extra representational apparatus is required to solve
explanation problems using abduction. Only the reasoning mode changes. The deductive
approach to explanation, on the other hand, violates the conditions for applying
Theorems 1 and 4. If extra HoldsAt formulae are conjoined to Axiom (E4), the results of
minimisation become unpredictable.

An interesting topic for further research is the relationship between the calculus of
events presented here and the situation calculus of McCarthy and Hayes [23]. The two
formalisms can be compared with respect to their ontologies, the set of basic relations
they represent, and their treatment of persistence. I will briefly discuss each of these in
turn. The ontologies of the two formalisms are similar — both include properties (or
fluents) and event types (or actions). The event calculus also includes states — which
strongly resemble situations — and time points, which featured in McCarthy and
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Hayes’s 1969 paper, although they have rarely been employed in subsequent work using
the situation calculus (but see Miller & Shanahan, [25]).

One of the main motivations of this paper was to extend approaches to the frame
problem to deal with continuous change, a subject which has been almost entirely
neglected in the situation calculus literature. It is not clear, at first glance, that the
ontology of the situation calculus is adequate for representing continuous change, since it
is centred on instantaneous snapshots of the world which are organised into a tree
structure via the Result function. Gelfond et al. [6] argue that continuous change could be
represented in the situation calculus through the introduction of infinitely divisible
actions. Unfortunately, they do not explore this suggestion very far. It is particularly
difficult to see how triggered events, which are needed to represent all but the simplest
examples of continuous change, could be captured with an ontology that lacks real-
valued narrative time.

How do the basic relations represented in the event calculus compare with those in
the situation calculus? The event calculus relates properties to time points, whilst the
situation calculus relates them to situations. Since situations are hypothetical whilst time
points are actual, this leads to an emphasis in the event calculus on an actual narrative of
events, whilst the situation calculus concentrates on hypothetical sequences of events.
However, the event calculus of this paper includes states, which are hypothetical like
situations, so there is no fundamental reason why it could not match the situation calculus
in representing hypothetical sequences of events. Similarly, the situation calculus can
incorporate predicates which distinguish actual from hypothetical situations (Pinto &
Reiter [27]), or which map situations onto a narrative time line (Miller & Shanahan [25]).
So, with respect to their ontologies and the basic relations they represent, it seems to be
possible to extend both formalisms until they merge into each other.

Perhaps the most significant difference between the two formalisms is in the
treatment of persistence. Frame axioms in the situation calculus literature usually relate
the properties which hold in a situation to those which hold in the preceding situation,
whilst the event calculus persistence axiom (E3) relates the properties which hold at a
time point to earlier events. This has two important consequences. First, situation
calculus frame axioms are usually bidirectional — persistence works backwards as well
as forwards. Persistence in the event calculus works forwards only.17 Second,
properties only persist in the event calculus if they are initiated by events. Other
properties are not “caught” by the persistence axiom. In the situation calculus literature,
however, the frame axiom usually applies to all fluents, although in Lifschitz [14], [15]
its application is restricted to a subset of the fluents known as the frame fluents.

Hopefully further insight into the relationship between the two formalisms can be
gained in the future. Ultimately, what we would like to develop is a deeper understanding
of the space of possible formalisms for representing change. Such an understanding
would map out the possible ontologies, sets of basic relations, and approaches to
persistence, and would highlight the implications of each choice. In the light of such an
understanding, the apparent boundaries between particular formalisms would disappear
altogether.
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Appendix A: Proof of Theorem 1

First we have some preliminary definitions.

Definition 4. A J-indexed set S is a set, every member of which is associated with
exactly one element of the set J (its index). I will write Sj to denote the set of all s ∈ S
such that j is the index of s.

Consider a many-sorted language L of first-order predicate calculus with a set S of
sorts, an S

 

*

 

×

 

S

 

-indexed set F of function symbols and an S

 

*-indexed set P of predicate
symbols.18

Definition 5. A pre-interpretation of L is a pair 〈D,Fn〉, where D is an S

 

-indexed set of
objects, and for every n-ary function f ∈  Fs1,...,sn,s, Fn(f) is a mapping from
Ds1×...×Dsn to Ds.

Definition 6. A partial interpretation of L is a pair 〈〈D,Fn〉,Pr〉, where 〈D,Fn〉 is a pre-
interpretation of L, and for every n-ary predicate P ∈ Ps1,...,sn, Pr(P) is a partial
mapping from Ds1×...×Dsn to TRUE or FALSE.

Definition 7. An interpretation of L is a partial interpretation 〈Ip,Pr〉 of L such that for
every predicate P ∈ P, Pr(P) is a total mapping.

Definition 8. A model of a formula ψ of language L is an interpretation of L in which
ψ is true, where truth in an interpretation is defined in terms of Pr and Fn in the standard
way for predicate calculus.

Definition 9. If 〈Ip,Pr1〉 is a partial interpretation of L and 〈Ip,Pr2〉 is an interpretation
of L, then 〈Ip,Pr2〉 fills out 〈Ip,Pr1〉 for L if for all P ∈ Ps1,...,sn and for all Xi ∈ Dsi,
Pr1(P)(X1,...,Xn) = V implies Pr2(P)(X1,...,Xn) = V.

Definition 10. A formula of L has the truth value TRUE in a partial interpretation I of
L if it is true in every interpretation that fills out I for L, and has the truth value FALSE in
I if it is false in every interpretation that fills out I for L. Otherwise, its truth value is not
defined in I.

Definition 11. The n-ary predicate P ∈  Ps1,...,sn is uninterpreted in a partial
interpretation I of L if for all Xi ∈ Dsi, the truth value of P(X1,...,Xn) is not defined in
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I. Conversely, the predicate P is fully interpreted in I if for all Xi ∈ Dsi, the truth value
of P(X1,...,Xn) is defined in I.

Now let the set S of sorts include the sorts s1...st...sm, where st is the sort of time
points. Let the set P of predicates include < ∈ P

 

st,st and q ∈ Ps1,...,st,...,sm. Consider
only interpretations of L in which the time points are interpreted by the natural numbers,
that is Dst = � , and in which < has its usual meaning. Let Ip = 〈D ,Fn〉 be a pre-
interpretation of L. Let 〈Ip,Pr〉 be a partial interpretation of L in which q is uninterpreted,
but in which every other predicate in P is fully interpreted. Finally, let ψ = ∀x q(x) ↔
φ(x) be a formula of L which is chronological in argument t.

Definition 12. A q-map is a partial mapping from Ds1×...×Dsm to TRUE or FALSE.

A q-map can be used to extend an interpretation in which q is uninterpreted to one
in which it is fully interpreted.

Definition 13. A q-map M is total below T ∈ �  if for all X i ∈ Dsi where Xt < T,
M(X 1,...,Xm) is defined.

The proof of the theorem relies on several lemmas, which I will now prove.

Definition 14. Let M be a q-map and P ∈ P be an n-ary predicate. The function �  is
defined as follows.

 M if P is q
(Pr �  M)(P) = 

Pr(P) otherwise

Lemma 1. For any T ∈ � , and any q-map M which is total below T, for all Xi ∈ Dsi
where Xt ≤ T, the truth value of φ(X1,...,Xm) is defined in 〈Ip,Pr �  M〉.

Proof. Since ψ is chronological, the only occurrences of q in φ(X1,...,Xm) are in
conjunctions of the form q(Z1,...,Zm) ∧ Zt < Xt. If M is total below T and Xt ≤ T, then
the truth value of q(Z1,...,Zm) ∧ Zt < Xt is defined in 〈Ip,Pr �  M〉. Consequently, the
truth value of φ(X1,...,Xm) is defined in 〈Ip,Pr �  M 〉, because Pr �  M is a total
mapping for all predicates occurring in φ apart from q. �

Definition 15. The q-map Mα is defined for any α ∈ �  as follows.

V if α > 0 and φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mα−1〉
M α(X1,...,Xm) = 

undefined otherwise

Note that M0 is undefined everywhere. The mapping Mα will facilitate the
definition of a q-map that extends a partial interpretation in which q is uninterpreted to a
model of the chronological formula ψ. First I will prove some properties of Mα which
will be required later.

Lemma 2. For any α ∈ � , Mα is total below α.

Proof. The proof is by induction. Clearly the proposition is true for the base case where
α is 0. For the inductive case, consider any β and suppose that Mβ is total below β. Then
from Lemma 1, for all Xi ∈ Dsi where Xt ≤ β, the truth value of φ(X1,...,Xm) is
defined in 〈Ip,Pr �  Mβ〉. So from Definition 13,  Mβ+1 is total below β+1. �
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Lemma 3. For any α ∈ �  and all Xi  ∈  D si , if Mα (X 1, . . . ,Xm ) = V then
M α+1(X1,...,Xm) = V.

Proof. The proof is by induction. Clearly the proposition is true for the base case where
α is 0. For the inductive case, consider any β, and suppose that for all Xi ∈ Dsi, if
Mβ(X1,...,Xm) = V then Mβ+1(X1,...,Xm) = V. From this hypothesis, for all Xi ∈ Dsi,
if the truth value of φ(X1,...,Xm) is defined in 〈Ip,Pr �  Mβ〉, then it has the same truth
value in 〈Ip,Pr �  Mβ+1〉. Therefore, from Definition 15, if Mβ+1(X1,...,Xm) = V then
Mβ+2(X1,...,Xm) = V. �

Note that Lemma 3 doesn’t imply that Mα is the same as Mα+1, because Mα is
only a partial interpretation.

Lemma 4. For any α ∈ � , and all Xi ∈ Dsi where Xt < α, if q(X1,...,Xm) has truth
value V in 〈Ip,Pr �  Mα〉 then φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mα〉.

Proof .  Clearly, if q(X1, . . . ,Xm ) has truth value V in 〈 Ip,Pr �  M α 〉  then
Mα(X1,...,Xm) = V, because q is uninterpreted in 〈Ip,Pr〉. But if Mα(X1,...,Xm) = V
then, from Definition 15, φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mα−1〉. Therefore,
from Lemma 3, φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mα〉. �

Definition 16. The q-map Mω is defined as follows.

Mω(X1,...,Xm) = V if there is some α ∈ �  such that Mα(X1,...,Xm) = V

Lemma 3 ensures that Mω is a well-defined function. The mapping Mω extends a
partial interpretation in which q is uninterpreted to a model of the chronological formula
ψ, as I will now show.

Lemma 5. Mω is a total mapping from Ds1×...×Dsm to TRUE or FALSE.

Proof. Consider any T ∈ � . From Lemma 2, MT+1 is total below T+1. That is, for all
X i ∈ Dsi where Xt ≤ T, MT+1(X1,...,Xm) is defined. From Definition 16, for all Xi ∈
Dsi, if MT+1(X1,...,Xm) is defined then Mω(X1,...,Xm) is defined. Therefore Mω is a
total mapping from Ds1×...×Dsm to TRUE or FALSE. �

Lemma 6. For all Xi ∈ Dsi, if q(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mω〉 then
φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mω〉.

Proof. Since q is uninterpreted in 〈Ip,Pr〉, if q(X1,...,Xm) has truth value V in 〈Ip,Pr �
Mω〉 then Mω(X1,...,Xm) = V. From Definition 16, this implies that there is some α
such that Mα(X1,...,Xm) = V. Then from Definition 14 and Lemma 4, φ(X1,...,Xm) has
truth value V in 〈Ip,Pr �  Mα〉. From  Definitions 14 and 16, this implies that
φ(X1,...,Xm) has truth value V in 〈Ip,Pr �  Mω〉. �

Lemma 7. 〈Ip,Pr �  Mω〉 is an interpretation of L.

Proof. From Lemma 5, Mω is a total mapping for q. Therefore, since Pr(P) is a total
mapping for every predicate P ∈ P except q, (Pr �  Mω)(P) is a total mapping for every
predicate P ∈ P. �

Lemma 8. 〈Ip,Pr �  Mω〉 is a model of ψ = ∀x q(x) ↔ φ(x).

Proof. The proposition follows directly from Lemmas 6 and 7. �
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Now, I can show that circumscribing the conjunction of a formula with a
chronological formula is easy, under the right conditions. Let L- be the same language as
L, but without the predicate q. Let χ be a formula of L-. Note that since 〈Ip,Pr〉 is a
partial interpretation of L, it is also a partial interpretation of L-, and recall that q is
uninterpreted in 〈Ip,Pr〉.

Lemma 9. If 〈Ip,Pr〉 is a model of χ, then 〈Ip,Pr �  Mω〉 is a model of χ ∧ ψ.

Proof. From Lemma 8, 〈Ip,Pr �  Mω〉 is a model of ψ. If 〈Ip,Pr〉 is a model of χ then,
since χ doesn’t mention q, 〈Ip,Pr �  Mω〉 is also a model of χ. �

Let P* and Q* be subsets of P such that Q* includes q.

Lemma 10. All models of CIRC[χ ∧ ψ ; P*; Q*] have the form 〈Ip,Pr' �  M 〉 where
〈Ip,Pr' 〉 is a model of CIRC[χ ; P*; Q*], and M is a q-map.

Proof. Any model 〈Ip,Pr'' 〉 of CIRC[χ ∧ ψ ; P*; Q*] can be written in the form
〈Ip,Pr' �  M〉, where M is the q-map Pr''(q), q is uninterpreted in 〈Ip,Pr' 〉, and Pr'(P)
is Pr''(P) for every predicate P ∈ P except q. Then it remains to show that 〈Ip,Pr' 〉 is a
model of CIRC[χ ; P*; Q*].

Suppose 〈Ip,Pr' 〉 is not a model of CIRC[χ ; P*; Q*]. Clearly 〈Ip,Pr' 〉 is a model of χ,
since 〈Ip,Pr' �  M〉 is a model of χ and M interprets only q which isn’t mentioned in χ.
So there must be some model 〈Ip,Pr''' 〉 of χ which is smaller in P*, with Q* allowed to
vary, than 〈Ip,Pr' 〉. Then, from Lemma 9, 〈Ip,Pr''' �  Mω〉 is a model of χ ∧ ψ. With q
allowed to vary, 〈Ip,Pr''' �  M ω〉 must be smaller in P* than 〈Ip,Pr' �  M〉, because
(Pr'' ' �  M ω )(P) = Pr'''(P) for every predicate P ∈  P  except q. Therefore
〈Ip,Pr' �  M〉 is not a model of CIRC[χ ∧ ψ ; P*; Q*], which is a contradiction. �

Lemma 11. Every formula which is true in all models of CIRC[χ ; P*; Q*] is also true
in all models of CIRC[χ ∧ ψ ; P*; Q*].

Proof. Consider any model of CIRC[χ ∧ ψ ; P*; Q*]. From Lemma 10, it has the form
〈Ip,Pr' �  M 〉 where 〈Ip,Pr' 〉 is a model of CIRC[χ ; P*; Q*], and M is a q-map. The
theorem then follows from the fact that any formula which is true in 〈Ip,Pr' 〉 is also true
in 〈Ip,Pr' �  M〉. �

Theorem 1 follows from directly from Lemma 11.

Appendix B: Temporal Projection Algorithms

Theorem 5, presented here, facilitates the construction of algorithms for temporal
projection. Recall Definitions 4 to 14 and the corresponding assumptions from
Appendix A.

Definition 17. The q-map Cα is defined for any α ∈ �  as follows.

V if α > 0, and for all models 〈Ip,Pr' 〉 of CIRC[χ ; P*; Q*],
Cα(X1,...,Xm) =   φ(X1,...,Xm) has truth value V in 〈Ip,Pr' �  Cα−1〉

undefined otherwise

Lemma 12. For any α ∈ �  and for all Xi  ∈  D si , if Cα(X 1,...,Xm) = V then
q(X1,...,Xm) has truth value V in all models of CIRC[χ ∧ ψ ; P*; Q*].
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Proof. The proof is by induction. The proposition is trivially true for the base case
where α = 0. Consider any β > 0. Suppose Cβ(X1,...,Xm) = V implies q(X1,...,Xm)
has truth value V in all models of CIRC[χ ∧ ψ ; P*; Q*].

From Definition 17, Cβ+1(X1,...,Xm) = V implies φ(X1,...,Xm) has truth value V in
every partial interpretation of the form 〈Ip,Pr' �  Cβ〉, where 〈Ip,Pr' 〉 is a model of
CIRC[χ ; P*; Q*], which by definition means it has truth value V in every interpretation
that fills out such a partial interpretation. But every model of CIRC[χ ∧ ψ ; P*; Q*] fills
out such a partial interpretation (see below), so φ(X1,...,Xm) has truth value V in all
models of CIRC[χ ∧ ψ ; P*; Q*]. If φ(X1,...,Xm) has truth value V in all models of
CIRC[χ ∧ ψ ; P*; Q*] then so does q(X1,...,Xm).

To see that every model of CIRC[χ ∧ ψ ; P*; Q*] fills out a partial interpretation of the
form 〈Ip,Pr' �  Cβ〉, where 〈Ip,Pr' 〉 is a model of CIRC[χ ; P*; Q*], recall Lemma 10.
From Lemma 10, every model of CIRC[χ ∧ ψ ; P*; Q*] has the form 〈Ip,Pr' �  M〉
where 〈Ip,Pr' 〉 is a model of CIRC[χ ; P*; Q*] and M is a q-map. From the induction
hypothesis, Cβ(X1,...,Xm) = V implies M(X1,...,Xm) = V. So 〈Ip,Pr' �  M〉 fills out
〈Ip,Pr' �  Cβ〉. �

Lemma 13. For any α ∈ � , Cα is total below α.

Proof. The proof is the same as for Lemma 2. �

Theorem 5. For any α ∈ �  and all Xi ∈ Dsi where Xt < α, CIRC[χ ∧ ψ ; P*; Q*] �
q(X1,...,Xm) if and only if Cα(X1,...,Xm) = TRUE.

Proof. The lemma follows directly from Lemmas 12 and 13. �

Theorem 5 facilitates the construction of algorithms for deciding whether
q(X1,...,Xm) is true (or false) in all models of CIRC[χ ∧ ψ ; P*; Q*], given any Xi ∈
Dsi. Let α be Xt. An algorithm built according to the following schema will compute the
set SP of all tuples 〈Y1,...,Ym〉 such that Cα(Y1,...,Ym) = TRUE, and the set SN of all
tuples 〈Y1,...,Ym〉 such that Cα(Y1,...,Ym) = FALSE. From Theorem 5, to check
whether q(X1,...,Xm) is true (or false) in all models of CIRC[χ ∧ ψ ; P*; Q*], it is
simply necessary to check for membership of SP (or SN).

SP := {}
SN := {}
FOR Yt := 0 TO α

SP := SP ∪ { 〈Y1,...,Ym〉 | TRUE(Y1,...,Ym)}
SN := SN ∪ { 〈Y1,...,Ym〉 | FALSE(Y1,...,Ym)}

TRUE(Y1,...,Ym) is shorthand for “φ(Y1,...,Ym) is true in all models of CIRC[χ ;
P*; Q*]”, and FALSE(Y1,...,Ym) is shorthand for “φ(Y1,...,Ym) is false in all models
of CIRC[χ  ; P*; Q*]”. Another algorithm is required for computing the sets
{ 〈Y 1,...,Ym〉 | TRUE(Y1,...,Ym)} and {〈Y 1,...,Ym〉 | FALSE(Y1,...,Ym)} at each
iteration. The details of this second algorithm depend on χ and φ, but it can exploit the
fact that all occurrences of q in φ(Y 1,...,Ym) are in conjunctions of the form
q(Z1,...,Zm) ∧ Zt < Yt. On any given iteration of the algorithm, a conjunction of that
form is true in all models of CIRC[χ ; P*; Q*] if and only if 〈Z1,...,Zm〉 ∈ SP, and is
false if and only if 〈Z1,...,Zm〉 ∈ SN. In the case of (E3), since the definitions of Initiated
and Terminated are clausal, resolution theorem proving techniques could be used to
compute the required sets, and negation-as-failure could be used to minimise Horn clause
fragments of the domain and history formulae.
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There is nothing surprising about this algorithm schema, of course. It simply
works forwards in time in the way we might expect. The purpose of Theorem 5 is to
endorse the use of the obvious algorithm. Effectively, Theorem 5 allows us to forget
about ψ computationally, in the same way that Theorems 1 and 4 allow us to forget about
it from the point of view of minimisation.

Appendix C: Proof of Theorem 4

 Consider the same language L as in Appendix A. Consider only interpretations of
L in which time points are interpreted by the reals, that is Dst = � , and in which < has its
usual meaning for real numbers. Let ψ = ∀x q(x) ↔ φ(x) be a formula of L which is
real-chronological in argument t with respect to a formula χ of L and a marker set S. Let
Ip = 〈D,Fn〉 be a pre-interpretation of L. Let 〈Ip,Pr〉 be a partial interpretation of L in
which q is uninterpreted, but in which every other predicate in P is fully interpreted.
Recall the definitions of a q-map, of Mα, and of Mω from Appendix A.

Definition 18. A q-map M is total up to T ∈ �  if for all X i ∈ Dsi where Xt ≤ T,
M(X 1,...,Xm) is defined.

Lemma 14. For any α ∈ �  where α > 0, if S has α or more elements then Mα is total
up to any T ∈ �  such that T ≤ αth element of S.

Proof. The proof is by induction. Clearly the proposition is true for the base case where
α is 1. For the inductive case, consider any β, and suppose that Mβ is total up to any
T ∈ �  such that T ≤ βth element of S. Then, from the definition of Mα, we have to
show that for all Xi  ∈  Dsi  where Xt ≤ β+1th element of S, the truth value of
φ(X1,...,Xm) is defined in 〈Ip,Pr �  Mβ〉.

By hypothesis, φ(X1,...,Xm) is defined for all Xi ∈ Dsi where Xt ≤ βth  element of S.
So consider any Xt ≤ β+1th element of S such that Xt > βth element of S. Now, since ψ
is real-chronological, it can be seen that the only occurrences of q in φ(X1,...,Xm) are in
conjunctions of the form q(Z) ∧ Zt < Xt ∧ θ which are false. To see this, consider Zt.
Clearly the conjunction is false if Zt ≥ Xt. On the other hand, if Zt < Xt then, since Xt is
strictly between the βth and β+1th elements of S, Zt is not in S, and θ is therefore false
from the definition of real-chronological. �

Lemma 15. For any α ∈ � , if S has fewer than α elements then Mα is total up to any
T ∈ � .

Proof. From Lemma 14, Mα is total up to the last element of S. So, from the definition
of Mα, we have to show that for all Xi ∈ Dsi where Xt > the last element of S, the truth
value of φ(X1,...,Xm) is defined in 〈Ip,Pr �  Mα-1〉. From the definition of real-
chronological, the only occurrences of q in φ(X1,...,Xm) are in conjunctions of the form
q(z) ∧ θ, where θ is false if Xt > the last element of S. Therefore the truth value of
φ(X1,...,Xm) is always defined if Xt > the last element of S. So φ(X1,...,Xm) is defined
for any Xi ∈ Dsi, and Mα is total up to any T ∈ � . �

The proofs of Lemmas 3 and 4 are unchanged from Appendix A.

Lemma 16. Mω is a total mapping from Ds1×...×Dsm to TRUE or FALSE.

Proof. It is easy to show that for all Xi  ∈  D si  there exists some α  such that
Mα(X1,...,Xm) is defined. To see this, consider Xt. If there is no T ∈ S before Xt, then
M1(X1,...,Xm) is defined, from Lemma 15. Otherwise, if there is no T ∈ S after Xt,
then from Lemma 14, Mα(X1,...,Xm) is defined, where α is the number of elements in
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S. Finally, if there is some T ∈ S after or equal to Xt and some T ' ∈ S before Xt, then
from Lemma 14, Mα(X1,...,Xm) is defined, where the smallest T ∈ S after or equal to
Xt is the αth element of S. The fact that S is a marker set ensures that these three cases
are exhaustive. From the definition of Mω , if Mα(X 1,...,Xm) is defined then
M ω(X1,...,Xm) is defined. Therefore Mω is a total mapping from Ds1×...×Dsm to
TRUE or FALSE. �

The rest of the proof is the same as the proof of Theorem 1 in Appendix A,
yielding Theorem 4 in the same way, but under the assumption that ψ  is real-
chronological in some argument with respect to the formula χ and some marker set.
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1 A particularly clear description of the frame problem is to be found in McDermott [24].
2 Hanks and McDermott’s celebrated example has become known as the Yale shooting scenario. Some
authors, such as Loui [20], questioned the assumptions underlying Hanks and McDermott’s analysis of
this example. The task I set myself in the present paper is to address the frame problem. I will use the
Yale shooting scenario simply as an example of where the frame problem arises. I am not interested in
representing the Yale shooting scenario per se.
3 I will not distinguish actions from events in this paper.
4 A number of authors, notably Haas [7], Schubert [33], and Reiter [28], have proposed monotonic
solutions to the frame problem for the situation calculus. Arguably, these solutions do not offer
“elaboration-tolerance” (John McCarthy’s term), because the acquisition of new knowledge about the
domain necessitates the complete reconstruction of the domain theory. The present paper supplies an
elaboration-tolerant solution, in which new knowledge is automatically absorbed into the existing theory.
5 In what follows, I will use the term “event calculus” to refer to the formalism presented here, not to
Kowalski and Sergot’s formalism.
6 This separation is also the basis of the more recent approach of Crawford and Etherington [4].
7 Throughout the paper, all variables are universally quantified unless otherwise indicated.
8 In fact, this is not quite true. The improper use of domain constraints can lead to time points for which
no corresponding state exists. Thus, State is a predicate rather than a function.
9 Because Initiated, Terminated, Clipped and Declipped don’t have the status of predicates, we don’t have
to worry about them when designing circumscription policies.
10 I will make several assumptions like this in the paper. The legitimacy of these manoeuvres depends on
our ability, in principle, to fill the resulting gap between model theory and proof theory to our
satisfaction. For example, a second-order axiomatisation of the “<” predicate could be provided. From the
point of view of computation, the existence of numerical algorithms and the possibility of procedural
attachment is a source of comfort.
11 Blocks and locations should really have different sorts, but this would complicate the example.
12 The axioms of the event calculus do not depend on this assumption, and in Section 9 on continuous
change, I will consider the case in which time points are interpreted by the reals.
13 This variant of the Yale shooting scenario is sometimes called the “walking turkey shoot.”
14 Personal communication.
15 Axioms for the associativity and commutativity of the “+” operator are unnecessary.
16 The set of fluents is now as large as the reals. However, note that Axioms (S1) to (S3) only insist on
the existence of states with countably many fluents. In practice, only states with finitely many fluents
will usually arise.
17 This was not true in the original event calculus of Kowalski and Sergot [11].
18 S
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