Reasoning about Discontinuities in the Event Calculus

Rob Miller
Department of Computing,

Imperial College of Science, Technology & Medicine,

180 Queen’s Gate, London SW7 2BZ, U.K.
rsm@doc.ic.ac.uk
http://www.doc.ic.ac.uk/ " rsm/

This paper appears in the proceedings
of KR’96, but without Appendix B.

Abstract

This paper describes a logic-based formalism which com-
bines techniques for reasoning about actions with standard
mathematical techniques for modelling dynamic systems
using the differential calculus. The formalism inherits a
robust solution to the frame problem which can handle con-
currency, non-determinism, domain constraints and narra-
tive. It also incorporates a mechanism for reasoning about
the boundary conditions associated with systems of differ-
ential equations defined over various intervals. This mech-
anism overcomes a number of drawbacks of previous sys-
tems.

1 INTRODUCTION

Solutions to the frame problem now exist which can
handle a variety of phenomena, such as narrative,
concurrent action and non-deterministic action (see
(Shanahan 1997) for a general discussion). However,
the topic of continuous change has received relatively
little attention in the Reasoning about Action litera-
ture. In particular, a satisfactory general framework
has yet to be developed which reconciles logic-based
techniques for reasoning about action with the stan-
dard mathematical approach to modelling dynamic
systems, using differential calculus.

Some previous logic-based approaches to reasoning
about action do allow limited types of mathematical
expressions involving continuously varying parameters
to be embedded within domain descriptions. For ex-
ample, Shanahan (1990) presents a logic programming
approach to representing continuous change, based on
the event calculus of Kowalski and Sergot (1986). Fur-
ther work along these lines has been done by Van
Belleghem et al. (1994), whose treatment allows a

Murray Shanahan
Department of Computer Science,
Queen Mary & Westfield College,

Mile End Road, London E1 4NS, U.K.
mps@des.gqmw.ac.uk
http://www.des. qmw. ac.uk/ “mps/

wider class of mathematical expressions, by Shanahan
(1995), where a full predicate calculus version using
circumscription is presented, and by Herrmann and
Thielscher (1996), whose notion of a process generalises
Shanahan’s notion of a trajectory. However, none of
these frameworks incorporates the notion of a deriva-
tive function. Hence any differential equations repre-
senting the domain have to be solved before they can

be added to the model.

In contrast, Sandewall (1989a, 1989b) presents an ap-
proach to continuous change which combines logic
and differential equations. Sandewall identifies the
need to incorporate mechanisms within such frame-
works to deal with the boundary conditions usually
assoclated with sets of such equations. He advocates
a default reasoning method, based on Shoham’s no-
tion of chronological minimisation (Shoham 1988), to
generate new boundary conditions when an action or
event transforms one mathematical model into an-
other. However, as shown by Rayner (1991), Sande-
wall’s approach leaves open the possibility of anoma-
lous models. Miller (1996) introduces techniques for
incorporating differential equations within a circum-
scribed situation calculus. He avoids Rayner’s anoma-
lous models through the use of a (minimised) Breaks
predicate, which describes when actions cause discon-
tinuities in particular parameters.

This paper draws on the techniques of (Miller 1996) in
order to construct an event calculus resembling that
of (Shanahan 1997, Ch. 16), but which allows continu-
ous change to be described using arbitrary systems of
differential equations. Unlike existing versions of the
situation calculus which can handle continuous change,
such as (Miller 1996) and (Reiter 1996), this calculus
inherits the ability to handle domain constraints, con-
current actions, and actions with non-deterministic ef-
fects from the event calculus (Shanahan 1997, Ch. 16).

2 TWO EXAMPLES

Both the examples below help to illustrate how ar-
bitrary systems of simultaneous differential equations
can be incorporated within an axiomatic description
of a given domain. The first, adapted from (Shana-
han 1996), concerns the movement of a mobile robot,
which will stop whenever 1t bumps against an object
(in this case, a wall). Tt thus shows how the formalism
represents actions (events) which are “triggered” when
certain conditions occur. The second is a modifica-
tion of the “water tanks” example from (Miller 1996).
It shows how the formalism supports reasoning about
concurrently performed actions (a tap is opened, and
some water is simultaneously scooped from a tank).
A key feature of both these examples is that, as 1s
usual in the mathematical modelling of dynamic sys-
tems, the continuously changing aspects of the domain
are represented as a system of (possibly simultaneous
or coupled) differential equations, together with one
or more sets of boundary conditions (or indtial condi-
tions). In such models, the complete set of boundary
conditions may not be listed — some conditions are im-
plicit in the accompanying physical description of the
domain, or are “common sense” .

In this section we concentrate on showing how both
examples can be modelled “conventionally” using dif-
ferential calculus, highlighting some of the reasoning
processes involved in obtaining explicit mathemati-
cal expressions for parameters’ behaviours over time.
In both cases we go into some mathematical detail,
primarily in order to analyse why and how specific
values are assigned to arbitrary constants of integra-
tion during the mathematical modelling process. This
analysis 1s central to the understanding of the rest of
the paper. As we shall see, these value assignments
are based partly on “common sense”, and it was in-
complete modelling of this implicit assignment process
which lead to problems with anomalous models in the

work of Sandewall (1989a, 1989b).

In both examples, dashes () are used to refer to deriva-
tives of parameters — for example, P’ refers to the first
derivative with respect to time of P.

2.1 THE MOBILE ROBOT EXAMPLE

The robot in this example can start (and stop) moving
at any constant speed in the direction it is facing (its
“bearing”). Tt can also (continuously) vary its bear-
ing by turning at any constant angular velocity, pos-
sibly while moving. It can therefore follow any path
consisting of a series of circle fragments and straight
lines. It has sensors which will cause it to stop if it

bumps against any object. We will represent the fol-
lowing scenario. At time 0 the robot is stationary at
the point (0,0), facing east, and has angular velocity
0. At time T} it starts moving forward (east) at speed
St. At time 75 it also starts to turn in a anticlockwise
direction with angular speed At. Some time later it
bumps into the only other object in the domain — a
wall (of “infinite length”) running east-west, at a dis-
tance Dy due north from the origin.

DONNNNNN Wall \\\\\}\

Dw
0,0 Robot’s path
(8
T1 g T2

By idealising the robot as a moving point and the
wall as a fixed line, a mathematical model of this do-
main can be formulated in a simple way, using the
parameters (real-valued functions of time) Bearing,
NSP (“North-South-Position”), and EFWP (“East-
West-Position”). We can write down the following
mathematical constraints between these parameters
using the “constants” S (forward speed) and A (angu-
lar speed), whose values are determined directly and
instantaneously by the robot’s actions, or by the event
of bumping into the wall.

EWP'(t) = S. cos(Bearing(t))
NSP'(t) = S.sin(Bearing(t))
Bearing’(t)=A

—_

AA/_\
W N
e

Let Tp be the time that the robot bumps against
the wall. We know that EFWP(0) = NSP(0) =
Bearing(0) = 0, that NSP(Tg) = Dw, and that, be-
cause of the robot’s actions and the effect of bumping
into the wall,

for 0 <t < Ty:

for Ty <t < Ty:
for Th <t < Tg:
for T < t:

A=0and S=0 (
A=0and S=5* (
A=At and § =51 (
A=0and S=0 (

The formalism described in this paper allows us to
include equations (1)—(3) directly in the domain-
dependent axiomatisation, rather than first having to
solve them to determine an explicit or stratified set of
expressions for EWP | NSP and Bearing, asin (Shana-
han 1990) and related approaches. Tt also allows us
to infer (4)—(7) from more general knowledge, both
about the effects and timings of the robot’s actions,
and about the general hypothetical circumstances un-

der which the robot will bump into the wall.

It 1s important to note, however, that from a strictly
mathematical point of view, expressions (1)-(7) do not
contain enough information to uniquely determine the
position of the robot at a given time T (even when
considered together with information about the values
of each parameter at time 0). An assumption also
has to be made that FWP, NSP and Bearing are
continuous at times 77, 75 and Tg. The simultaneous
solution to (1)—(3) for any given value of S and A
(obtained by integrating (3), substituting the answer
in (1) and (2), and integrating again) is

EWP(t) = Ssin(At + C1) + O
NSP(t) = _TS cos(At + C1) + Cs
Bearing(t) = At + C4

where C1, Cy and C5 are arbitrary constants of inte-
gration. In the time interval [0, 7] (when S = A = 0),
the values of these constants can be computed using
knowledge about the initial values of the three parame-
ters, but in the intervals (71, T3], (T4, 7] and (Tg, o),
C1, C5 and C5 can only be given specific numerical val-
ues by making continuity assumptions. Fortunately,
it i1s “common sense” that the robot cannot instanta-
neously shift its own position or bearing. However, it
is not difficult to imagine another scenario where some
external action (such as giving the robot a good shove
from behind) does cause an instantaneous shift in po-
sition (at least at the level of detail at which we wish
to model the domain).

The formalism described below provides a general pur-
pose default reasoning mechanism which allows us to
infer the extra common sense information that the pa-
rameters FWP, NSP and Bearing are continuous at
times Tp, Ty and T (when particular actions or events
cause discontinuities in some or all of their deriva-
tives, or in other unrelated parameters), without for-
bidding, in principle, the existence of other actions or
events that could potentially cause discontinuities in
the robot’s position or orientation. Putting all this to-
gether, it allows us to infer the explicit values of FWP,

NSP and Bearing at any time ¢, and (assuming that

Dw < ZAS—:, so that the robot doesn’t turn in a full

circle and miss the wall) it allows us to infer that

T =T+ Al—+ arccos(1l — A+S'£)W)

The formalism 1s “elaboration tolerant” in the sense
that, at some later date, we can represent new knowl-
edge about other effects of the robot’s actions, or
about other occurrences of actions or events at specific
times, simply by adding to the existing set of domain-
dependent axioms.

2.2 THE WATER TANK EXAMPLE

This example involves an open-top water tank. In the
bottom of the tank are two taps, T'apC' and TapD,
both of which (when open) discharge water out of the
tank at a rate proportional to the level of water in
it (i.e. at a rate proportional to the water pressure at
the bottom of the tank). Initially, both taps are closed,
and the level of water in the tank 1s L. At time T},
half the water is (instantaneously) scooped out of the
tank, and, simultaneously, T'apC' is opened. At time
Ty, TapD is also opened.

Tl

TapC
opened
&
water TapD
scooped| |opened
| Y Y -
0 T T

A mathematical model of this domain can be formu-
Level(t) is the func-
tion representing the level of water in the tank, and
FlowC(t) and FlowD(t) represent the water flow
through TapC' and TapD respectively. Let K be the
constant of proportionality between the level of water
and the flow through either of the taps when open.

lated using three parameters.

The following equations are each applicable in the cir-
cumstances indicated

Always: Level (t) = (8)
—(FlowC(t) + FlowD(t))

TapC closed: FlowC(t) =0 (9)

TapC open: FlowC(t) = K.Level(t) (10)

TapD closed: FlowD(t) =0 11)

TapD open: FlowD(t) = K.Level(t) (12)

In the interval [0,7}] the relevant equations are (8),
(9) and (11). Their simultaneous solution is

Level(t) = Cy (S1)
FlowC(t)=0 (S2)
FlowD(t) =0 (S3)

where (4 is an arbitrary constant of integration. In
fact, since we have also been given the initial condition
Level(0) = L, we know that Cy = L.

At time T7, TapC' is opened, so that in the interval
(T1,T>] the equations to solve are (8), (10) and (11).
Their simultaneous solution is

Level(t) = Cs.e~ !
FlowC(t) = C5.Ke Kt
FlowD(t) =0

where Cf is an arbitrary constant of integration. We
also know that the water level in the tank is instanta-
neously decreased from L to % at 71 by a “scoop” ac-
tion. Hence, with a little algebra, it 1s easy to see that

Cy = %eKTl. So the overall solution for ¢ € (71, T5] is

Level(t) = %e‘K(t_Tl) (S4)
FlowC(t) = %e‘K(t_Tl) (Sh)
FlowD(t) =0 (S6)

In the interval (7%, 00), both TapC and TapD are
open, and the equations to solve are (8), (10) and (12).
Their simultaneous solution is

Level(t) = Cg.e™ 2K
FlowC(t) = Cg.Ke™2K?
FlowD(t) = Cs. Ke™ 2!

where again Cg is an arbitrary real valued constant.

What value should Cjs take? FEveryday knowledge
about taps and tanks tells us that Lewvel(t) is con-
tinuous at 75. In other words, we know that by itself
the action of turning on TapD will only cause wa-
ter to disappear from the tank gradually, not instan-
taneously. (Although, at the level of physical detail
we have chosen to incorporate in our mathematical
model, the action of scooping water from the tank
does cause the water level to drop instantaneously.)
Hence Cs = %eK(Tl‘l'R), and the overall solution for
t € (Ta,00) is

Level(t) = %eK(T1+T2—2t) (s7)
FlowC(t) = %eK(T1+T2—2t) (S8)
FlowD(t) = %QK(Tl‘l'Tz—Zt) (59)

Notice that, if instead we had wished to keep FlowD
and its derivatives continuous at T, we could have
made the assignment Cs = 0. Alternatively, if we
had wished to keep the first derivatives Level’ and
FlowC" continuous, we could have made the assign-
ment Cs = %eK(Tl‘l'R). The important general point

here is that in many mathematical models, 1t 1s possi-
ble to trade discontinuities in some parameters for dis-
continuities in others, using alternative assignments of
values to (arbitrary) constants of integration. Tt is only
common sense, or extra knowledge about the physical
reality of the domain being modelled, that allows us
to pick the right assignments from the different sets of
possibilities.

The formalism described below allows us to include
equations (8)—(12), along with their conditions of ap-
plicability, directly in the domain-dependent axioma-
tisation. The default reasoning method it incorporates
allows us to infer that there 1s a discontinuity in Level
at Ty (an instantaneous change from the value I to
the value % caused by the action of scooping water
from the tank), but that Lewvel is continuous at Ty
(although its derivatives are not). In doing so, it cor-
rectly eliminates the anomalous models of the domain
(which would otherwise be sanctioned by (8)—(12)) in
which all (or half) the remaining water in the tank
instantaneously disappears at T, thus illegally “trad-
ing” the discontinuity in FlowD (or the discontinu-
ities in Level’ and FlowC") at Ty for discontinuities
in Level and FlowC'. Hence it allows us to correctly
infer the values of Level, FlowC, FlowD and their

derivatives at any time .

3 AN EXTENDED EVENT
CALCULUS

The event calculus presented in this section is writ-
ten in a sorted predicate calculus, with sorts as sum-
marised in the following table.

NAME OF SORT SYMBOL VARIABLES
Actions A a,ay,dg, ...
Fluents F i fifay ...
Times T t,ty,ta, ...

Parameters P P, P1, P2, - - -
Reals R P, P, ..
Domain objects X X, L1, L, ...

Models will be considered only in which terms of sort
R and 7T are interpreted as real and non-negative real
numbers respectively. The sorting of the predicate
symbols! in the language can be understood from their

! As mentioned previously, this formalism builds on sev-
eral previous axiomatisations. However, some predicate
and function names have been changed for the sake of
clarity. InitialisedTrue and Initialised False correspond
to Initiallyp and Initiallyy in (Shanahan 1997), and
BreaksTo and Value are analogous to InstantEffect and
Function in (Miller 1996).

arguments in the axioms below, in which all variables
are assumed to be universally quantified with max-
imum scope unless otherwise stated. The function
symbols Value : P x T — R and 6 : P — P are
also introduced. The term Value(6(P),T) represents
the numerical value of the first derivative of parameter
P at time T

The six core event calculus axioms (EC1)—-(EC6) be-
low, which do not directly concern continuous change,
are domain-independent, i.e. included in every theory.
For the sake of generality, this part of the axiomati-
sation includes a mechanism, inspired by Kartha and
Lifschitz’s work (1994) and Sandewall’s notion of oc-
clusion (Sandewall 1994), for dynamically adding flu-
ents to (and removing fluents from) the “frame” (i.e.
the set of fluents subject to the “commonsense law of
inertia”). Tt was first introduced into the event cal-
culus by Shanahan (1995). At time 0, exactly those
fluents which have been initialised true or initialised
false belong to the frame. These mechanisms are use-
ful, for example, in dealing with domain constraints
and non-deterministic actions (Shanahan 1995). How-
ever, in the example domains used in this paper, all
fluents are permanently subject to the commonsense
law of inertia, so that the (universally quantified) sen-
tences [InitialisedTrue(f) V InitialisedFalse(f)] and
—Releases(a, f,t) may safely be assumed or added to
the axiomatisation. Hence axioms (EC1)-(EC6) sim-
ply express the following: (1) Fluents which initially
hold, or which have been initiated by an occurrence of
an action, continue to hold until an occurrence of an
action which terminates them. (2) Fluents which do
not 1nitially hold, or which have been terminated by
an occurrence of an action, continue not to hold until
an occurrence of an action which initiates them.

HoldsAt(f,t) — (EC1)
[InitialisedTrue(f) A =Clipped(0, f,1)]
- Holds At(f,t) — (EC2)

[InitialisedFalse(f) N —Declipped(0, f,1)]

HoldsAt(f,t2) — (EC3)
[Happens(a,t1) N Initiates(a, f,t1)
Aty <ty A =Clipped(ty, f,t2)]

- HoldsAt(f,t2) — (EC4)

[Happens(a,t1) A Terminates(a, f, 1) A
t1 <ty A —Declipped(ty, f,t2)]

Clipped(ty, f,t2) —
Ja, t[Happens(a,t) A 11 <t <ty A
[Terminates(a, f,t) V Releases(a, f,1)]]

(EC5)

Declipped(ty, f,12) —
Ja, t[Happens(a,t
[Initiates(a, f,1)

(EC6)
ANt <t<itsg A

V' Releases(a, f,1)]]

This basic event calculus can be extended to deal with
continuous change as follows. To respect the conven-
tion that actions take effect immediately after they
occur, it is necessary to axiomatise the mathematical
constraint that, at every time-point (including those
at which actions occur), the function associated with
each parameter is left-hand continuous:

LeftContinuous(p,t) (ECT)

To describe instantaneous changes in the values of pa-
rameters at times when actions occur, and discontinu-
ities in their corresponding functions of time, the pred-
icates BreaksTo and Breaks are introduced. Both are
minimised. BreaksTo(A, P, T, R) should be read as ‘at
time T', an occurrence of action A will cause parameter
P to instantaneously take on value R’. More precisely,
Axiom (EC10) below states that if A also happens at
time T, then R is the value of the right-hand limit of
P at T. BreaksTo is used, for example, to describe
the effects of a “scoop” action on the parameter Level
in the water tank example. Breaks(A, P,T) can be
read as ‘at time T', action A potentially causes a dis-
continuity in parameter P’. The following domain-
independent axioms make direct use of BreaksTo and
Breaks. Axioms (EC8) and (EC9) can be likened to
‘frame axioms’ for parameters. Axiom (EC12) states
the relationship between BreaksTo and Breaks, and
Axiom (ECI12) states that if an action potentially
causes a discontinuity in a given parameter, 1t also
potentially causes discontinuities in its higher deriva-
tives.

—[Happens(a,t) A Breaks(a,p,t)] (ECS8)
— Continuous(p,t)

—[Happens(a,t) A Breaks(a, é(p),t)] (EC9)
— Differentiable(p,t)

[BreaksTo(a,p,t,r) A Happens(a,t)] (EC10)

— RightLimit(p,t,r)

BreaksTo(a,p,t,r) — Breaks(a,p,t) (EC11)

Breaks(a,p,t) — Breaks(a,§(p),t) (EC12)

For any given time point 7', it is useful to be able to
refer to the next point after T" at which an action oc-
curs, if there is such a point. Axioms (EC13), (EC14)
and (EC15) state that if any action occurs at any time
point after 7', then the term Next(T) refers to the least
such time point. (Such points are somewhat analogous
to the “least natural time points” discussed in (Reiter

1996).)

t < Nexi(t) (EC13)
[t<t1 A ty<Next(t)] — —Happens(a,ty) (ECI14)
[Happens(ai,t1) A t<ti] (EC15)

— Ja.Happens(a, Next(t))

Finally, the standard mathematical definitions of
Continuous, Differentiable, IeftContinuous and
Right Limit are straightforwardly axiomatised using
the function symbols Value and é:

Continuous(p,t) — (A1)
VrEIt1Vt2[[|t — t2| <t A0 < 7“]
— |Value(p,t) — Value(p, t2)| < 7]
Differentiable(p,t) — (A2)

VrEItNtz[[O < |t — t2| <t A0 < 7“] —

|(Value(p’t2:y2alue(p’t2)) — Value(6(p),t)] < 7]

LeftContinuous(p,t) — (A3)
VrEIt1Vt2[[t2 <tA (t — tz) <t AND < 7“] —
|Value(p,t) — Value(p, ta)| < 7]
Right Limit(p,t,r) — (A4)

Vr13t1Vt2[[t <ty A (tz — t) <t ANOK 7“1]
— |Value(p, ta) — r| < r1]

4 DOMAIN-DEPENDENT AXIOMS

4.1 AN AXIOMATISATION OF THE
ROBOT EXAMPLE

The robot described in Section 2 can start to move
forward or start to turn at any speed, so that two pa-

rameterised action symbols are needed, ChangeSpeed :
R — A and StartTurn : R — A, where, for example,
ChangeSpeed(S) signifies the action of “changing the
forward speed to S”. We can describe the properties
that these actions actions initiate and terminate using
the parameterised fluent symbols Moving : R — F
and Turning : R — F, as follows

Initiates(ChangeSpeed(r), Moving(r),t)
Initiates(StartTurn(r), Turning(r),t)
Terminates(ChangeSpeed(ry), Moving(rs),)
— r ;é o
Terminates(StartTurn(ry), Turning(rs),)
— r ;é o

(R1)
(R2)
(R3)

(R4)

The following axioms express the fact that a
ChangeSpeed action can cause discontinuities in the
first derivatives of the parameters NSP and EWP,
whereas a StartTurn action can cause discontinuities
in the first derivatives of all three parameters in the
domain:

Breaks(ChangeSpeed(r), §(NSP), 1)
Breaks(StartTurn(r), §(NSP),)
Breaks(ChangeSpeed(r), §(EWP), 1)
Breaks(StartTurn(r), §(EWP), 1)
Breaks(StartTurn(r), §(Bearing),t)
The constraints (1)—(3) of Section 2 can now be ax-
iomatised as follows:

Value(§(EWP),t) = r. cos(Value(Bearing,t)) (R10)
— HoldsAt(Moving(r),t)

Value(6(NSP),t) = r.sin(Value(Bearing,t)) (R11)
— HoldsAt(Moving(r),t)
Value(é6(Bearing),t)=r (R12)

— HoldsAt(Turning(r),t)

Happens can be used to state that the robot changes
speed at time 77, starts to turn at time 75, and stops
moving whenever it hits the wall:

Happens(ChangeSpeed(S™), T1) (R13)
Happens(StartTurn(A1), T) (R14)
[Happens(ChangeSpeed(0),1) (R15)

A Happens(StartTurn(0),1)] —
[Value(NSP, t) = Dy
A Value(86(NSP), 1) >0]

Finally, axioms are needed stating various initial

conditions, and expressing uniqueness-of-names prop-
erties (using the “UNAL.]” notation from (Baker
1991)) for all action, fluent and parameter symbols.

[InitialisedTrue(Moving(0)) A (R16)
InitialisedTrue(Turning(0))]

[Initialised False(Moving(r)) A (R17)
Initialised False(Turning(r))] — r#0

Value(NSP,0)=0 A Value(EWP,0)=0 (R18)
A Value(Bearing,0)=0

UNA[ChangeSpeed, StartTurn] (R19)

UNA[Moving, Turning] (R20)

UNA[Bearing, NSP, EWP, §] (R21)

4.2 AN AXTIOMATISATION OF THE
WATER TANK EXAMPLE

The following constant symbols will be used to axioma-
tise the water tanks example. TurnOnC, TurnOnD
and Scoop of sort A, OpenC and OpenD of sort F,
and Level, FlowC and FlowD of sort P. The (direct)
effects of turning on either tap can be described as fol-
lows:

Initiates(TurnOnC, OpenC,t) (T1)
Initiates(TurnOnD, OpenD,t) (T2)

The action of scooping water from the tank has no ef-
fect on the fluents in the domain, but instantaneously
effects the parameter Level. If the level in the tank
is greater than or equal to %, a Scoop action reduces
the level by % For the purpose of illustration, we will
further suppose that if the level in the tank is less than

%, a scoop action removes all the water from the tank:
BreaksTo(Scoop, Level, t, Value(Level t) — %) (T3)
— Value(Level t)> %
BreaksTo(Scoop, Level t,0)
— Value(Level t) <

(T4)

Nl

As well as causing a discontinuity in F'low(C' the action
TurnOnC causes a discontinuity in the first derivative
Level’, and, if TapD is open, in the first derivative
FlowD'. The effects of TurnOnD are analogous:

Breaks(TurnOnC, FlowC|t) (T5)
Breaks(TurnOnC, §(Level), t) (T6)
Breaks(TurnOnC, §(FlowD),) (TT7)
— HoldsAt(OpenD,t)
Breaks(TurnOnD, FlowD,t) (T8)

Breaks(TurnOnD, §(Level), t)
Breaks(TurnOnD, 6(Flow(C),t)
— HoldsAt(OpenC\,t)

(T9)
(T10)

Constraints (8)—(12) of Section 2 are axiomatised as
follows:

Value(é(Level),t) = (T11)
—(Value(FlowC,t) + Value(FlowD,t))
Holds At(OpenCt) — (T12)

Value(FlowC, t) = K. Value(Level 1)
- Holds At(OpenC',t) — Value(FlowC,t) =0 (T13)
Holds At(OpenD,t) — (T14)
Value(FlowD,t) = K.Value(Level)
—Holds At(OpenD,t) — Value(FlowD,t) = 0 (T15)

The action occurrences are:

Happens(Scoop, Th) (T16)
Happens(TurnOnC, Th) (T17)
Happens(TurnOnD, Ty) (T18)

Finally, the initial conditions and uniqueness-of-names
axioms are:

T19
T20
T21
T22
T23
T24

Initialised False(OpenC')
Initialised False(OpenD)
Value(Level,0) = L
UNA[TurnOnC, TurnOnD, Scoop)
UNA[OpenC, OpenD)]

UNA[Level, FlowC, FlowD, §]

AAA/_\/_\/_\
NP AN s

5 THE CIRCUMSCRIPTION
POLICY CIRCcgc

By themselves, the axioms in Section 4.1 are not suf-
ficient to infer the robot’s trajectory. In general, a de-
fault reasoning mechanism will also be required which
models various default assumptions about such do-
mains. The circumscription policy used here is in-
spired by a solution to the frame problem described by
Kartha and Lifschitz (1995), which is related to Sande-
wall’s idea of filter preferential entailment (Sandewall
1989b). This has been adapted for use with the event
calculus, and extended so that it also models the as-
sumptions that by default a given action does not oc-
cur at a given time point, and that by default a given
action occurrence does not result in a discontinuity
for a given parameter. Given a collection of domain-
dependent axioms D similar to those in the previous

section, the circumscription policy is:

CIRC[Nar(D) ; Happens]
A CTRC[Eff(D) ; Initiates, Terminates, Releases]

A CTRC[(Inst(D) A (EC11) A (EC12)) ;
Breaks ; BreaksTo)
A Con(D) A Una(D) A [(EC1)A...A(EC15))

We will abbreviate this to CIRCecge[D]. In
CIRCcgc[D], the term “Nar(D)” stands for (the con-
junction of) those domain-specific axioms describing
the “narrative” (e.g. Happens facts and statements
about the initial values of fluents or parameters),
“Eff(D)” stands for those axioms describing the ef-
fects of actions on fluents (using Initiates, Terminates
and Releases), “Inst(D)” stands for those axioms de-
scribing the instantaneous effects of actions on param-
eters (using Breaks and BreaksTo), “Con(D)” stands
for axioms describing mathematical constraints be-
tween parameters during different circumstances (e.g.
when a tap is open, its flow is proportional to the wa-
ter level in the tank), and “Una(D)” stands for the
uniqueness-of-names axioms. So, if Dg is the set of
axioms describing the robot,

Nar(Dr) = [(R13) A ... A (R18)]
Eff(Dr) = [(R1) A .. A (RA)]
Inst(Dr) = [(RB) A ... A (R9)]
Con(Dr) = [(RI0O) A ... A (R12)]
Una(Dgr) = [(R19) A (R21)]

and if Dp is the set of axioms describing the water
tank example,

Nar(Dr) = [(T16) A ... A (T21)]
Eff(Dr) =[(T1) A (T2)]
Inst(Dr) = [(T3) A ... A (T10)]
Con(Dr) = [(TI1) A...A(T15)]
Una(Dr) = [(T22) A ... A (T24)]

Whenever Nar(D), Eff(D) and Inst(D) are of a cer-
tain general form, we can prove general properties of
CIRC¢rc[D] which allow its consequences to be com-
puted using classical deduction. The three proposi-
tions below are applicable to a wide class of domains
which includes both Dg and Dp. (Strictly speaking,
to fit the conditions of the propositions, some of the
domain-dependent axioms in Dr and D7y must be re-
written in a slightly different form. For example, (T3)
is re-written as

BreaksTo(a,p,t,r) —
[Value(Level, t) > % A a=Scoop
A p=Level N r=Value(Level t) — %]

(T3)

and similar syntactic transformations are applied
to the other clauses partially defining Initiates,
Terminates, Happens, Breaks or BreaksTo.)

Proposition 1 Let S be the conjunction of (EC11)
and (EC12) with the following sentences:

Breaks(a,p,t) — ®1(a,p,t) (S1)
Breaks(a,p,t) — ®(a,p,t) (Sk)
BreaksTo(a,p,t,r) — ®py1(a,p,t,r) (Sk+1)
BreaksTo(a,p,t,r) — ®p(a,p,t,r) (Sm)

where a, p and ¢ are the only variables which ap-
pear free in the formulae ®q(a,p,t),..., ®p(a,p,t),
where a, p, t and r are the only variables
which appear free in the formulae ®p41(a,p,t,r),

o ®m(a,p,t,r), and where none of ®(a,p,t),..
Sp(a,p,t) or Ppipi(a,p,t,r),...,Ppm(a,p,t,r) men-
tion the predicates Breaks or BreaksTo. Then
CIRC|S ; Breaks ; BreaksTo] entails the following
sentence S:omp:

)

Breaks(a,p,t) <
[Bpi[p=46(p1) A Breaks(a,pi,t)]V
Dy (a,p,t) V...V Pp(a,p,t)V
Ir[@py1(a,p,t,r) V...V Pp(a,p,t,7)]]

Proof: (Notation: Let T be the tuple of free variables
in the formula ®(Z). Then in the following proof, ®
refers to the predicate expression AT.®(T) (see (Lifs-
chitz 1995) for definition). Hence, given a model M
and an appropriately sorted tuple of domain objects
X, the statement ¥ € M[®] signifies that Mv |- ®(7)
for all variable assignments v such that v(Z)=%.)

The if half of S.omp follows directly from S. It remains
to prove the only-if half. Suppose there is some model
M of S which does not satisfy the only-if half of Scomp.
Then there must be some {«, p, 7) € M[Breaks] such
that:

(i) there is no p' such that p = M[é](p/) and
{a, p',7) € M[Breaks]
7) & M[®;]

P T
(iii) for all & < @ < m, there is no 7 such that
(o, p,7,m) € M[®i]

(i1) for all i<k, (o

Furthermore, since M is a model of S, it follows that
for each parameter p” such that p = M[8]"(p") for
some n > 1:

(iv) {(«,p", 1) & M[Breaks]
(v) for all i<k, (a,p", 1) & M[®;]

(vi) for all & < i < m, there is no 7 such that
<aap“a7—a 7T> S M[[q)z]]

(Otherwise, we could put g/ = M[§]"""(p”) and (i)
would not be satisfied.) Hence we can construct a
smaller model than M by removing {(a,p,) from
M Breaks]. Tn order to satisfy (E13), this neces-
sitates the additional removal of all tuples of the form
(o, p, 7, 7wy from M| BreaksTo]. More precisely, let M’
be an interpretation obtained from M in the following
way:

e M’ agrees with M on the interpretation of all
predicate, constant and function symbols except
Breaks and BreaksTo.

€ M'[Breaks]
€ M]J[Breaks] and (a/,p/ 1) #

o (o p T if and only if

O/’pla T/>

(
(

o (o p 7' 7) € M'[BreaksTo] if and only if
(o, p', 7' 7wy € M[BreaksTo] and (o', p/, 7"} #
()

It is easily verified that M’ is also a model of S.
Since M'[Breaks] is a strict subset of M[Breaks],
M is preferable to M according to the circumscrip-
tion policy. Therefore M cannot be a model of
CIRC|[S ; Breaks ; BreaksTo], and the proposition
holds. a

Proposition 2 Let S be the conjunction of the fol-
lowing sentences:

Happens(a,t) — ®1(a,t) (S1)

Happens(a,t) — ®p(a,t) (Sn)
where a and ¢ are the only variables which (possibly)
appear free in the formulae ®4(a,t),...,®,(a,t), and
where none of ®;(a,t),...,P,(a,t) mention the pred-
icate Happens. Then CTRC[S ; Happens] entails the
following sentence:

Happens(a,t) — [®1(a,t) V...V Py(a,t)]

Proof: The proposition follows directly from Propo-
sition 3.1.1 in (Lifschitz 1995). ad

Proposition 3 Let S be the conjunction of the fol-
lowing sentences:

Initiates(a, f,1) — ®1(a, f,1) (S1)
Initiates(a,f;t) — Dy(a, f,1) (Sk)
Terminates(a, f,t) — ®ri1(a, f,1) (Sk+1)
Terminates(c.l,f,t) — Pp(a, f1) (Sm)
Releases(a, f,1) — Ppii(a, f,t) (Sm+1)
Releases(a,f,t) — ®,(a, f,1t) (Sn)

where a, f and ¢ are the only variables which (possibly)
appear free in the formulae ®4(a, f,1),..., ®u(a, f,1),
and where none of ®y(a, f,t),...,®,(a, f,1) mention
the predicates Initiates, Terminates or Releases.

Then CIRC[S ; Initiates, Terminates, Releases] en-
tails the following three sentences:

Initiates(a, f,t) — [®1(a, f,t) V...V O(a, f,1)]

Terminates(a, f,t) —

[Brt1(a, f,t) V...V By(a, f,1)]

Releases(a, f,1) — [®mii(a, fit) V...V $py(a, f,1)]

Proof: The proposition follows directly from Propo-
sitions 3.1.1 and 7.1.1 in (Lifschitz 1995). ad

Using these results, it is not hard to generate classi-
cal derivations of sentences of the form Holds At(F,T),
Happens(A,T) and Value(P,T)=R as required. For
example, an outline derivation of the sentence

Happens(Change Speed(0), To+ 5 arccos(1 — A+S'EW))

from CIRC¢cpc[Dr] is given in Appendix B.

6 SUMMARY AND DISCUSSION

A logical formalism for representing both discrete and
continuous change has been presented which over-
comes a number of drawbacks in existing logic-based
formalisms. It permits the use of arbitrary formulae of
the differential calculus without giving rise to anoma-
lous models. In addition, it incorporates a solution
to the frame problem which is robust in the presence
of narrative, concurrent actions, non-deterministic ac-
tions, and domain constraints.

It 1s important to incorporate the notion of a deriva-
tive function in any comprehensive formalism for mod-

elling domains with continuous change. Differential

calculus is the primary tool for mathematical mod-
elling in mainstream science and engineering. When a
reasonably complex dynamic system is represented as
a set of differential equations it is often not possible
to obtain an analytical solution. Instead, numerical
methods may be used, and the present formalism 1s
a step towards integrating such computational tech-
niques with systems for automated reasoning about
actions. Furthermore, the information about the con-
tinuously varying aspects of a domain may be incom-
plete, in which case it may be more appropriate to
use computational methods from Qualitative Reason-
ing (Weld 1990) (Kuipers 1994). Again, the notion of
a derivative function is fundamental to the semantics
of such systems.

The mechanisms incorporated in the formalism for rea-
soning about boundary conditions, using the predi-
cates Breaks and BreaksTo, are similar to those intro-
duced in (Miller 1996). However, whereas the discus-
sion in (Miller 1996) was restricted to a particular case
study, Propositions 1, 2 and 3 have allowed the effects
of the circumscription policy C'IRC¢cgc to be charac-
terised for a wide class of domains. Moreover, they
allow the use of standard, first-order proof-theoretic
techniques (as opposed to the model-theoretic argu-
ments of (Miller 1996), (Sandewall 1989a) or (Sande-
wall 1989b)) to ascertain logical consequences of a
given domain description. Indeed, the overall struc-
ture of the example derivation given in Appendix B
points towards a particular approach to designing algo-
rithms for temporal projection, which would be sound
with respect to the logical specification presented here.
Such algorithms would compute forward in time in al-
ternating “steps”, each step being either a single time
point identified by the Neat function (see Section 3),
or an open interval between such time points.

A great deal of work has already been done on al-
gorithms which perform this kind of computation in
the Qualitative Reasoning community (Weld 1990)
(Kuipers 1994). Tn the terminology of qualitative
reasoning, time points identified by the Next func-
tion may often coincide with distinguished or landmark
time-points with respect to some continuously vary-
ing parameter. Algorithms for reasoning about land-
mark time-points and the associated landmark values
of particular parameters are embedded in, for example,
QSIM (Kuipers 1986), and in systems based on Qual-
itative Process Theory (Forbus 1984). Furthermore,
qualitative process theory incorporates the ability to
handle actions (Forbus 1989). Although some effort
has been made to reconcile logic-based work in Rea-
soning about Action with that in Qualitative Reason-
ing (Crawford & Etherington 1992) (van Belleghem et

al 1994), the two fields have yet to be properly inte-
grated. Attempts to axiomatise qualitative reasoning
are valuable here (Davis 1992), and it is hoped that the
present paper can serve to further work in this vein.

Of course, the emphasis in Qualitative Reasoning is
on reasoning with incomplete or qualitative informa-
tion about relationships between parameters. In the
present formalism, such information would manifest
itself in the use of the inequality predicate and exis-
tentially quantified numerical variables in constraints
between parameters, or in the use of appropriately
defined “qualitative predicates”. This is discussed
further in Appendix A. Domain dependent qualita-
tive constraints would appear in axioms analogous to
(R10)—(R12) in the “Con” part of the theory (see Sec-
tion 5). The fact that Con(D) is outside the scope
of any circumscription indicates that the minimisa-
tion policy is equally applicable to either qualitative
or quantitative domain descriptions. It is therefore
hoped that, as well as integrating the notions of dis-
crete and continuous change, the present formalism is
a step towards providing a unifying conceptual frame-
work for qualitative, semi-qualitative and quantitative
reasoning about continuous change. But further work
needs to be done in order to substantiate this claim.

Acknowledgement

This research was funded by the U.K. Engineering and
Physical Sciences Research Council (EPSRC).

References

A. Baker (1991), Nonmonotonic Reasoning in the
Framework of the Sttuation Calculus, A.1. vol. 49, page
5, Elsevier Science Publishers.

J. Crawford and D. Etherington (1992), Formalizing
Reasoning about Change: A Qualitative Reasoning Ap-
proach, Proceedings AAAT’92, pages 577-583.

E. Davis (1992a), Aziomatising Qualitative Process
Theory, Proceedings KR’92, Morgan Kaufmann, pages
177-188.

E. Davis (1992b), Infinite Loops in Finite Time: Some
Observations, Proceedings KR’92, Morgan Kaufmann.

K. Forbus (1984), Qualitative Process Theory, in Ar-
tificial Intelligence 24, reprinted in Weld and de Kleer
(eds.), Readings in Qualitative Reasoning about Phys-
ical Systems, Morgan Kaufmann (1990), 1984.

K. Forbus (1989), Introducing Actions into Qualitative
Simulation, Proceedings IJCAT'89, pages 1273-1278.

C. Herrmann and M. Thielscher (1996), Reasoning

about Continuous Processes, Proceedings AAAT’96.

G.N. Kartha and V. Lifschitz (1994), Actions with
Indirect Effects (Preliminary Report), Proceedings
KR’94, pages 341-350.

G.N. Kartha and V. Lifschitz (1995), A Simple For-
malization of Actions Using Circumscription, Pro-

ceedings IJCAT’95, pages 1970-1975.
R. Kowalski and M. Sergot (1986), A Logic-Based Cal-

culus of Fvents, New Generation Computing, vol. 4,
page 267.

B. Kuipers (1986), Qualitative Simulation, A.1. vol. 29,
pages 289-338, Elsevier Science Publishers.

B. Kuipers (1994), Qualitative Reasoning: Model-
g and Simulation with Incomplete Knowledge, MIT
Press.

V. Lifschitz (1995), Circumscription, in Handbook of
Logic in Artificial Intelligence, ed.s D. Gabbay, C. Hog-
ger and J.A. Robinson, Oxford University Press, pages
297-352.

R. Miller (1995), Situation Calculus Specifications for
FEvent Calculus Logic Programs, in Proceedings of the
Third International Conference on Logic Programming
and Non-monotonic Reasoning, Lexington, KY, USA,
pub. Springer Verlag.

R. Miller (1996), A Case Study in Reasoning about Ac-
tions and Continuous Change, Proceedings ECAT’'96,
pub. John Wiley & Sons, Ltd.

R. Miller and M. Shanahan (1994), Narratives in the
Sttuation Calculus, in Journal of Logic and Computa-
tion, Special Issue on Actions and Processes, vol. 4 no.
5, Oxford University Press.

R. Miller and M. Shanahan (1996), Reasoning about
Discontinuities in the Event Calculus (Fxtended Ver-
sion), http://www-lp.doc.ic.ac.uk/UserPages/
staff/rsm/abstracti12.html.

J. Pinto (1994), Temporal Reasoning in the Situation
Calculus, PhD. Thesis, University of Toronto.

M. Rayner (1991), On the Applicability of Nonmono-
tonic Logic to Formal Reasoning in Continuous Time,
AT vol. 49, pages 345-360, Elsevier Science.

R. Reiter (1991), The Frame Problem in the Situation
Calculus: a Simple Solution (Sometimes) and a Com-
pleteness Result for Goal Regression, in Artificial In-
telligence and Mathematical Theory of Computation:
Papers in Honour of John McCarthy, ed. V. Lifschitz,
Academic Press, page 418.

R. Reiter (1996), Natural Actions, Concurrency and

Continuous Time in the Situation Calculus, Proceed-
ings KR’96 (this proceedings), Morgan Kaufmann.

E. Sandewall (1989a), Combining Logic and Differ-
ential Fquations for Describing Real World Systems,
Proceedings KR’89, Morgan Kaufman.

FE. Sandewall (1989b), Filter Preferential Entailment
for the Logic of Action in Almost Continuous Worlds,
Proceedings IJCAT’89, pages 894-899.

E. Sandewall (1994), Features and Fluents, Oxford
University Press.

M. Shanahan (1990), Representing Continuous Change
m the Fvent Calculus, Proceedings ECAT’90, pages
598-603.

M. Shanahan (1995), A Circumscriptive Calculus of
Fvents, AL vol. 77, pages 249-284, Elsevier Science.

M. Shanahan (1996), Robotics and the Common Sense
Informatic Situation, in Proceedings ECAT’96, pub.
John Wiley & Sons, Ltd.

M. Shanahan (1997), Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law
of Inertia, MTT Press, (to appear).

Y. Shoham (1988), Reasoning About Change: Time
and Causation from the Standpoint of Artificial Intel-
ligence, MIT Press.

K. Van Belleghem, M. Deneker and D. De Schreye
(1994), Representing Continuous Change in the Ab-
ductive Fvent Calculus, in Proceedings 1994 Interna-
tional Conference on Logic Programming, ed. P. Van
Hentenrijck, pages 225-240.

D. Weld and J. de Kleer (editors) (1990), Qualitative

Reasoning about Physical Systems, Morgan Kaufmann.

APPENDIX A - REPRESENTING
QUALITATVE INFORMATION
ABOUT PARAMETER BEHAVIOUR

This appendix outlines some preliminary ideas for in-
corporating qualitative information about parameter
behaviour in domain descriptions, along the lines of
(Kuipers 1986) and (Kuipers 1994). The discussion
here is speculative — a more thorough investigation is
needed to fully integrate the notions and ontologies of
QR with those of action based logical formalisms.

Kuipers lists seven qualitative relationships between
parameters as being particularly important as regards
the qualitative description of a system’s behaviour.
These relationships are add, mult, minus, d/dt, con-
stant, M+ (monotonically increasing) and M~ (mono-

tonically decreasing). These notions can be included
in the present framework by appropriately extending

the axiom set (A1)-(A4):

Add(plaPZap3at) — (Ql)
Value(py,t)+Value(pa,t) = Value(ps, t)

MUIt(plaPZap3at) — (QQ)
Value(py,t).Value(pa,) =Value(ps, 1)

Minus(py, pa,t) — (Q3)
Value(py,t)=—Value(pa, 1)

Derivative(py, pa, t) — (Q4)
Value(é(p1),t) = Value(pa, t)

Constant(p,t) — Value(6(p),t)=0 (Qb)

MonIne(py, pa,t) — (Q6)
[[Value(6(p1),t) >0 — Value(é(p2),t)>0] A
[Value(8(p1),t) <0 — Value(8(p2),t) < 0]]

(QT)

[[Value(8(p1),t) >0 — Value(é(p2),t) <0] A

MonDec(p1, pa,t) —
1 at
[Value(8(p1),t) <0 < Value(8(p2),t) > 0]]

With such extra definitions, it is easy to include qual-
itative constraints in domain descriptions. For exam-
ple, in the water tank example we might replace axiom
(T12) with the sentence

Holds At(OpenC,t) — MonInc(FlowC| Level)

to reflect the fact that, although we know that the flow
through tap C' decreases as the water level decreases,
we do not know the exact mathematical relationship
between the two parameters in this circumstance.

Another notion central to QR is that of a landmark
value (w.r.t. a particular parameter). A landmark
value, or simply “landmark”, is a particular “quali-
tatively important” value for some parameter, typi-
cally where the first derivative changes sign. Symbolic
names may be used for landmarks, since their exact
numerical values may be unknown. In the present con-
text, landmarks can be represented by extra constant
or function symbols, along with suitable sets of order-
ing declarations. For example, qualitatively important
values for the parameter Level in the water tank exam-
ple are 0 and the top of the tank. Hence the “quantity
space” for Level can be described by the sentence

0 < Top

where Top is an extra constant symbol of sort R. In the
terminology of QSIM, this quantity space gives rise to
15 possible qualitative values for the parameter Level,
each of the form (gmayg, qdir), where gmag is chosen
from the set {(—o0,0),0, (0, Top), Top, (Top, o)}, and
qdir is chosen from the set {Ine, Std, Dec} (“increas-
ing”, “steady” or “decreasing”). Qualitative values
can be represented as fluents within the present frame-
work by incorporating (6) domain independent axioms
of the following form:

Holds At(QV (p, {(r1,72), Ine)),t) — (Q8)
[r1 < Value(p,t) <ra A Value(6(p),t)>0]
Holds At(QV (p, {r, Inc)),t) — (Q9)

[Value(p,t)=r A Value(6(p),t)> 0]

The fluent QV (Level, {(0,Top), Inc)) is not included
in the “frame”. Conceptually, its truth value at any
instant of time is instead determined by the values of
Level and §(Level). With such notation, axiom (T21)
stating the initial value of Level could be replaced with
an assertion such as

Holds At(QV (Lewvel, {(0, Top), Std}), 0)
or

x. Holds At(QV (Level, {(0, Top), z}),0)

Similarly, we could describe when triggered events
such as as an “overflow” occur with axioms of the form

Happens(Overflow,t) —
Holds At(QV (Lewvel, {Top, Inc)),t)

Computationally, for domains involving both discrete
and continuous change a hybrid system seems feasible,
in which an event calculus style mechanism (perhaps
using logic programming) determines the instanta-
neous changes in system configuration at times (iden-
tified by the Next function) when actions (events) oc-
cur, and where a QSIM style algorithm determines the
possible evolutions of the continuously varying aspects
of the domain between such time points. The interac-
tion between these two components would be in both
directions — actions could impose new and remove ex-
isting qualitative constraints between parameters, and
achievement of landmark values by particular param-
eters could trigger particular action occurrences.

APPENDIX B - AN EXAMPLE
OUTLINE DERIVATION FROM
C]RCCEc[DR]

This appendix gives an outline derivation of the sen-
tence

Happens(ChangeSpeed(0), Tz—i—ALJr arccos(1— A+S£)W)).

from CIRC¢cgc[Dg] — in other words, a derivation of
the fact that the robot stops moving (because it bumps
into the wall) at time Tp.

The derivation is given in several stages. Sentences
given parenthesised () labels are (domain-independent
or domain-dependent) axioms or are direct conse-
quences of Propositions 1, 2 or 3, whereas sentences
given square-bracketed [] labels are derived.

As regards the topic of this paper, the key steps in
the derivation below are [iii] to [iv], [xii] to [xiii], [xvi]
to [xvii], [ii(a)] to [iii(a)], and [xxvi] to [xxvii]. These
are inferences of expressions of the form “t € I —
Value(P,t) = [f(t)dt” from expressions of the form
“t € I — Value(6(P),t) = f(t)”. Such derivation
steps are only legitimate if it is first shown (using ax-
iom (EC9)) that P is differentiable over the time in-
terval I in question. It is only in this case that axiom
(A2) ensures that “6(P)” is the “derivative of P” in
the standard mathematical sense (as well as purely
syntactically).

In derivation steps [iv], [xiii], [xvii], [iii(a)] and [xxvii],
terms of the form “[f(¢)dt” are written after they
have been symbolically integrated?, and so contain ex-
istentially quantified variables representing “arbitrary
constants of integration”. These are assigned specific
values in steps [v], [xv], [xix], [v(a)] and [xxix], using
information about the particular parameters’ values at
the greatest lower bounds of the intervals in question,
together with the information (derived using (ECS))
that these parameters are continuous at these greatest
lower bounds.

Steps [ii], [xi], [xii], [ii(a)] and [xxvi] are derived using
the “basic” event calculus of axioms (EC1)—-(EC6), and
so details are omitted.

*More precisely, “t €I — Value(P,1) :ff(t)dt” can
be written

tt €1 — Value(P,t) = Value(P, 1) + [} f(1)dt

Tt is the lack of information about the exact numerical value
of “Value(P,t1)” for any t; € I that leads to “arbitrary
constants of integration” when such “indefinite integrals”
are symbolically integrated.

In the first stage of the derivation, “completion” sen-
tences are listed for the predicates Breaks, Happens,
Initiates, Terminates and Releases.

Stage 1: Completions of Breaks, Happens,
Initiates, Terminates and Releases

By Proposition 1 and the definition of CIRCcgre[DPr]:

Breaks(a,p,t) — (CB)
[Ap1lp=46(p1) A Breaks(a,p1,t)]V
Ar[a=ChangeSpeed(r) A p=456(NSP)] Vv
Ar[a= StartTurn(r) A p=§(NSP)] v
Ar[a=ChangeSpeed(r) A p=6(EWP)] V
Ar[a= StartTurn(r) A p=§(EWP)] v
Ar[a= StartTurn(r) A p==§(Bearing)]]

By Proposition 2 and the definition of CIRCcgre[DPr]:

Happens(a,t) (CH)
[[a=ChangeSpeed(St) A t=T1] Vv
la=StartTurn(AT) A t=Ts]V
[a=ChangeSpeed(0) A Value(NSP,t)=Dw
A Value(§(NSP), t)> 0] v
[a=StartTurn(0) A Value(NSP,t)=Dw
A Value(§(NSP), t) > 0]]

By Proposition 3 and the definition of CIRCcgrc[Dr]:

Initiates(a, f,t) — (Cn)
[Ar[a=ChangeSpeed(r) A f=Moving(r)] Vv
Arfa= StartTurn(r) A f=Turning(r)]]

Terminates(a, f,t) — (CT)
[Ari,rala=ChangeSpeed(ry) A
f=Moving(ra) A ri#ra] Vv
Aryrofa= StartTurn(ry) A f=Turning(r2) A ri#r2]]

- Releases(a, f, 1) (CR)

Stage 2: Derivation of Next(0)=T; and Values
of Parameters, etc. at T}

By (CH) and (R18):
—Happens(a,0) [i]
By (R16), (EC1), (EC5), (EC14) and [i]:

[0<t A t< Next(0)] — [i1]
[Holds At(Moving(0),t) A Holds At(Turning(0),t)]

By [ii], (R10), (R11) and (R12):

[0<t A t< Next(0)] — [Value(§(NSP),t)=0A [iii]
Value(§(EWP),t)=0 A Value(§(Bearing),t)=0]

By (EC14), (EC9) [i], [iii] and integration:

Ary, ra, raVi[[0<t A t< Next(0)] — [Value(NSP,t)=r, [iv]
A Value(EWP,t)=r2 A Value(Bearing,t)=rs]]

By (R18) and [iv]:

[0<t A t< Next(0)] — [Value(NSP,t)=0 A [v]
Value(EWP,t)=0 A Value(Bearing, t)=0]

By [v] and (ECT):

[Value(NSP, Next(0))=0 A [vi]
Value(EWP, Next(0)) =0 A Value(Bearing, Next(0))=0]

By (CH) and (EC15):

da.Happens(a, Next(0)) [vii]
By (EC14), [vii] and (CH):

Next(0)=T, [viii]
By [viii] and [vi]:

[Value(NSP, T1)=0 A Value(EWP,T1)=0 [ix]
AValue(Bearing, Ty)=0]

By [ix] and (CH):
Happens(a,T1) « a=ChangeSpeed(ST) [x]

Stage 3: Derivation of Next(T))=
of Parameters, etc. at T,

T> and Values

By (R1), (R10), (R11), (EC3), (EC5), (CT), (CR) and [X]:

[Ty <t A t< Next(T1)] — [xi]
[Value(§(EWP), t)=S%. cos(Value(Bearing, t)) A
Value(§(NSP), t)= 51 sin(Value(Bearing, t))]

By (R16), (EC1), (EC5), (EC14) and [x]:

[Ty <t A t< Next(T1)] — Value(§(Bearing),t)=0 [xii]
By (EC14), (EC9), [xii] and integration:

ArVi[[T1 <t A t< Next(T:)] — Value(Bearing, t)=r] [xiii]
By (CB) and (R21):

—~Breaks(ChangeSpeed(ST), Bearing, T1) [xiv]
By (EC8), [xiv], [x], [xiii] and [ix]:

[Ty <t A t< Next(T1)] — Value(Bearing,t)=0 [xv]
By [xv] and [xi]:

[T1 <t A t< Newt(T1)] — [Value(§(EWP),t)=5% A [xvi]
Value(§(NSP), t)=0]

By (EC14), (EC9), [xvi] and integration:

ArVi[[T1 <t A t< Next(Ty)] — [xvii]
A [Value(EWP, t) =St t4+r A Value(NSP, t)=r5]]

By (CB) and (R21):

—~Breaks(ChangeSpeed(ST), NSP, T1) A [xviii]
-~ Breaks(ChangeSpeed(St), EWP, T;)

By (EC8), [xviii], [x], [xvii] and [ix]:

[Ty <t A t< Next(T1)] — [xix]
[Value(EWP, t)=S*(t=T1) A Value(NSP,1)=0]

By (ECT), [xix] and [xv]:

Value(EWP, Next(Ty)) = ST (Next(T1)—T1) A [xx]
Value(NSP, Next(T1))=0 A Value(Bearing, Next(T1))=0

By (CH) and (EC15):

da.Happens(a, Next(Ty)) [xxi]
By (EC14), [xxi] and (CH):

Next(T,)=T> [xxii]
By [xx] and [xxii]:

Value(EWP, Ty)=S1(To—T1) A [xxiii]
Value(NSP, T2)=0 A Value(Bearing, T2)=0

By [xxiii] and (CH):

Happens(a,T1) ~ a=StartTurn(St) [xxiv]

Stage 4: Derivation (by contradiction) of
Ja, t{Happens(a,t) N Ta <]

** beginning of sub-derivation **
Assumption:
—-3a, t{Happens(a,t) A Ta<] (a)
By (EC8), (EC9) and (a):
To<t — [Continuous(p,t) A Differentiable(p,t)] [i(a)]

By (R10), (R11), (R12), (EC3), (EC5), (CI), (CT), (CR), [xxiv] and
[x]:

To<t — [ii(a)]
[Value(§(EWP), t)= ST cos(Value(Bearing, t)) A
Value(§(NSP), t) =St sin(Value(Bearing, t)) A
Value(§(Bearing),t)=AT]

y [i(a)], [ii(a)] and integration:

Arq, ro, raVi[Ta<t — [iii(a)]
[Value(EWP, t)— ST s1n(A+t+7'1)+7‘2 A
Value(NSP, t) = = 7 + cos(A+t+7'1)+7'3 A
Value((Bearing, t)= A%t 4r]]

By (CB) and (R21):

mBreaks(a, NSP, T2) A - Breaks(a, EWP,T5) [iv(a)]
- Breaks(a, Bearing, T2)
By [iv(a)], [ili(a)], [xxiii] and (EC8):
To<t — [v(a)]

[Value(EWP, t)=

A Value(NSP, t)_
A Value((Bearing, t)

s1n(A+ t—ATT)4+ 5T (T2 —T1)
+ cos(A+ t—A+T2)+
Att—atTy]

y [v(a)], [ii(a)] and (CH):

Happens(ChangeSpeed(0), T2 + ﬁ arccos(1l — At DW) [vi(a)]
By (a) and [vi(a)]:

L [vii(a)]

** end of sub-derivation **
By sub-derivation leading from (a) to [vii(a)] above:

Ja, t[Happens(a,t) N Ta<t] [xxv]

Stage 5: Derivation of
Happens(ChangeSpeed(0), Ty + 4 arccos(1— A SEW))

By (R10), (R11), (R12), (EC3), (EC5), (CI), (CT), (CR), [xxiv] and
[x]:

[T2<t A t< Next(T2)] —
[Value(§(EWP), t)=5SY cos(Value(Bearing, t)) A
Value(§(NSP), t)= St sin(Value(Bearing,t)) A
Value(§(Bearing),t)= A7)

[xxvi]

By (EC9), (EC14), [xxvi] and integration:

Arq, ro, raVi[[Ta<t A t<Next(T2)
[Value(EWP, t)= —s1n(A+t+7'1)+7'2 A
Value(NSP, t)= A: cos(A+.t+7‘1)+7'3 A
Value((Bearing, t)= A%t 4r]]

[xxvii]

By (CB) and (R21):

- Breaks(a, NSP, T2) A - Breaks(a, EWP,T5)
A nBreaks(a, Bearing, T2)

[xxviii]

By [xxviii], [xxvii], [xxiii] and (EC8):

[T2<t A t< Next(T2)] — [xxix]
[Value(EWP, t)= S% sin(At.t— A+ T) 45+ (T5~Ty)
A Value(NSP, t)= —A++ cos(Att— AT Ty) 4 51
A Value((Bearing, t)= At.t— ATT;]

By [xxv], (EC15) and (CH):

Happens(ChangeSpeed(0), Next(T2))

[xxx]

By [xxix] and (ECT):

Value(NSP, Next(T2))=

By [xxx] and (CH):
Value(NSP, Next(T2))=Dw

By [xxx], [xxxi] and [xxxii]:

Happens(ChangeSpeed(0), To+ ﬁ arccos(l —

+
S+ cos(A+.Next(T2) — A+.T2) + i—+

Atowy) |

[xxxi]

[xxxii]

xxxiii]

