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Abstract. This paper presents a programmable logic-based agent control
system that interleaves planning, plan execution and perception. In this system,
a program is a collection of logical formulae describing the agent’s relationship
to its environment. Two such programs for a mobile robot are described — one
for navigation and one for map building — that share much of their code. The
map building program incorporates a rudimentary approach to the formalisation
of epistemic fluents, knowledge goals, and knowledge producing actions.

Introduction

Contemporary work in cognitive robotics has demonstrated the viability of logic-
based high-level robot control [Lespérance, et al., 1994], [De Giacomo, et al., 1997],
[Baral & Tran, 1998], [Shanahan, 2000b]. Building on the progress reported in
[Shanahan, 2000b], this paper describes an implemented logic-based, high-level robot
control system in the cognitive robotics style. The controller is programmed directly
in logic, specifically in the event calculus, an established formalism for reasoning
about action. The controller’s underlying computational model is a sense-plan-act
cycle, in which both planning and sensor data assimilation are abductive theorem
proving tasks.

Two small application programs written in this language are described in detail,
one for navigation and one for map building. In navigation, the abductive processing
of sensor data results in knowledge of the status (open or closed) of doors, while in
map building (during which all doors are assumed to be open), it results in knowledge
of the layout of rooms and doorways.

Both these programs have been deployed and tested on a Khepera robot. The
Khepera is a miniature robotic platform with two drive wheels and a suite of eight
infra-red proximity sensors around its circumference. The robot inhabits a
miniaturised office-like environment comprising six rooms connected by doors which
can be either open or closed (Figure 1). The robot cannot distinguish a closed door
from a wall using its sensors alone, but has to use a combination of sensor data and
abductive reasoning.



High-level control of the robot is the responsibility of an off-board computer, that
communicates with the robot via an RS232 port. The high-level controller can initiate
low-level routines that are executed on-board, such as wall following, corner turning,
and so on. Upon termination, these low-level routines communicate the status of the
robot’s sensors back to the high-level controller, which then decides how to proceed.
The implementation details of the low-level actions are outside the scope of this
paper, whose aim is to present the high-level controller.

It should be noted that the aim of the paper is not to present advances in any
particular sub-area of AI, such as planning, knowledge representation, or robotics, but
rather to show how techniques from these areas can be synthesised and integrated into
an agent architecture, using logic as a representational medium and theorem proving
as a means of computation.

Figure 1: The Robot’s Environment

1 Theoretical Background

A high-level control program in our system is a set of logical formulae describing
actions and their effects, those of both the robot and other agents. The formalism used
to represent actions and their effects is the event calculus, and the frame problem is
overcome using circumscription, as set out in [Shanahan, 1997a].

The ontology of the event calculus includes fluents, actions (or events), and time
points. The standard axioms of the event calculus (whose conjunction is denoted EC)
serve to constrain the predicate HoldsAt, where HoldsAt(β,τ) represents that fluent β
holds at time τ. Here are two examples of these axioms.

HoldsAt(f,t3) ←
Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧

t2 < t3 ∧ ¬ Clipped(t1,f,t3)
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Clipped(t1,f,t4) ↔
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

Terminates(a,f,t2)]

A particular domain is described in terms of Initiates and Terminates formulae.
Initiates(α,β,τ) represents that fluent β starts to hold after action α at time τ .
Conversely, Terminates(α,β,τ) represents that β starts not to hold after action α at τ.

A particular narrative of events is described in terms of Happens and Initially
formulae. The formulae InitiallyP(β) and InitiallyN(β) respectively represent that
fluent β holds at time 0 and does not hold at time 0. Happens(α,τ1,τ2) represents that
action or event α occurs, starting at time τ1 and ending at time τ2. Happens(α,τ) is
equivalent to Happens(α,τ,τ).

Both planning and sensor data assimilation can be viewed as abductive tasks with
respect to the event calculus [Shanahan, 1997a], [Shanahan, 2000a]. First, we need to
construct a theory Σ of the effects of the robot’s actions on the world and the impact
of the world on the robot’s sensors. Then, roughly speaking (omitting details of the
circumscriptions), given a conjunction Γ of goals (HoldsAt formulae), and a
conjunction ∆ I  of formulae describing the initial state, a plan is a consistent
conjunction ∆P of Happens and temporal ordering formulae such that,

Σ ∧ ∆I ∧ ∆P ∧ EC � Γ.

In order to interleave planning, sensing and acting effectively, we need to carry out
hierarchical planning. The logical story for hierarchical planning is more or less the
same, with the addition to Σ of Happens formulae describing how a compound action
decomposes into its constituent actions. For more details, see [Shanahan, 2000a].

A similar abductive account of sensor data assimilation (SDA) can be constructed.
The need for such an account arises from the fact that sensors do not deliver facts
directly into the robot’s model of the world. Rather, they provide raw data from which
facts can only be inferred. Given a conjunction ∆N of Happens and temporal ordering
formulae describing the actions already carried out by the robot, and a description Γ
of the sensor data received, an explanation of that sensor data is a consistent Ψ such
that,

Σ ∧ ∆N ∧ Ψ ∧ EC � Γ.

The predicates allowed in Ψ depend on the task at hand, either map building or
navigation.

In the present system, both these abductive tasks — planning and SDA — are
implemented by a single logic programming meta-interpreter. This meta-interpreter is
sound and complete for a large class of domain theories. For more details, see
[Shanahan, 2000a].

2 Robot Programming in the Event Calculus

This section describes the robot’s control system in more detail. In essence, it is a
general purpose high-level agent control system, programmable directly in the event



calculus. Although the focus of the present discussion is on robotics, the technology is
applicable to other types of agent as well.

The system executes a sense-plan-act cycle. The execution of this cycle has the
following features.

•  Planning and sensor data assimilation are both resolution-based abductive
theorem proving processes, working on collections of event calculus formulae.
These processes conform to the logical specifications sketched in the previous
section.

•  Planning and SDA are both resource-bounded processes. They are subject to
constant suspension to allow the interleaving of sensing, planning and acting. The
abductive meta-interpreter is made resource-bounded using techniques similar to
those described in [Kowalski, 1995].

•  To permit reactivity, planning is hierarchical. This facilitates planning in
progression order, which promotes the rapid generation of a first executable
action.

• The results of sensor data assimilation can expose conflicts with the current plan,
thus precipitating replanning.

An event calculus robot program comprises the following five parts.

A. A set of Initiates and Terminates formulae describing of the effects of the robot’s
primitive, low-level actions.

B. A set of Happens formulae describing the causes of robot sensor events.

C. A set of Initiates and Terminates formulae describing the effects of high-level,
compound actions.

D. A set of Happens formulae defining high-level, compound actions in terms of
more primitive ones. These definitions can include sequence, choice, and
recursion.

E. A set of declarations, specifying, for example, which predicates are abducible.

The formulae in A to D figure in the sense-plan-act cycle in the following way.
Initially, the system has an empty plan, and is presented with a goal Γ in the form of a
HoldsAt formula. Using resolution against formulae in C, the planning process
identifies a high-level action α that will achieve Γ. (If no such action is available, the
planner uses the formulae in A to plan from first principles.) The planning process
then decomposes α using resolution against formulae in D. This decomposition may
yield any combination of the following.

• Further sub-goals to be achieved (HoldsAt formulae).

• Further sub-actions to be decomposed (Happens formulae).

• Executable, primitive actions to be added to the plan (Happens formulae).

• Negated Clipped formulae, analogous to protected links in partial-order planning,
whose validity must be preserved throughout subsequent processing.

As soon as a complete but possibly not fully decomposed plan with an executable
first action is generated, the robot can act.

Meanwhile, the SDA process is also underway. This receives incoming sensor
events in the form of Happens formulae. Using resolution against formulae in B, the



SDA process starts trying to find an explanation for these sensor events. This may
yield any combination of Happens, HoldsAt and negated Clipped formulae, which are
subject to further abductive processing through resolution against formulae in A,
taking into account the actions the robot itself has performed.

In many tasks, such as navigation, the SDA process ultimately generates a set of
abduced Happens formulae describing external actions (actions not carried out by the
robot itself) that explain the incoming sensor data. Using resolution against formulae
in A, it can be determined whether these external events threaten the validity of the
negated Clipped formulae (protected links) recorded by the planning process. If they
do, the system replans from scratch.

In the context of this sense-plan-act cycle, the event calculus can be regarded as a
logic programming language for agents. Accordingly, event calculus programs have
both a declarative meaning, as collections of sentences of logic, and a procedural
meaning, given by the execution model outlined here. The following sections present
two robotic applications written as event calculus programs, namely navigation and
map building.

Although neither of the robot programs presented here exhibits much reactivity, the
system does facilitate the construction of highly reactive control programs. The key to
achieving reactivity is to ensure that the program includes high-level compound
actions that quickly decompose, in as many situations as possible, to a first executable
action. Although each unexpected event will precipitate replanning from scratch, this
replanning process then very rapidly results in an appropriate new action to be
executed.

3 A Navigation Program

Appendices A and C of the full paper contain (almost) the complete text of a working
event calculus program for robot navigation. This section describes the program’s
construction and operation. (Throughout the sequel, fragments of code will be written
using a Prolog-like syntax, while purely logical formulae will retain their usual
syntax.)

The robot’s environment (Figure 1) is represented in the following way. The
formula connects(D,R1,R2)  means that door D connects rooms R1 and R2,
inner(C)  means that corner C is a concave corner, door(D,C1,C2)  means
corners C1 and C2 are door D’s doorposts, and next_corner(R,C1,C2)  means
that C2 is the next corner from C1 in room R in a clockwise direction, where C1 and
C2 can each be either convex or concave. A set of such formulae (a map) describing
the room layout is a required background theory for the navigation application, but is
not given in the appendices.

The robot has a repertoire of three primitive actions: follow_wall , whereby it
proceeds along the wall to the next visible corner, turn(S) , whereby it turns a
corner in direction S (either le f t  or right ), and go_straight , whereby it
crosses a doorway. For simplicity, we’ll assume the robot only proceeds in a
clockwise direction around a room, hugging the wall to its left. The navigation



domain comprises just two fluents. The term in(R)  denotes that the robot is in room
R, while the term loc(corner(C),S)  denotes that the robot is in corner C. The S
parameter, whose value is either ahead  or behind , indicates the relative orientation
of the robot to C.

The program comprises the five parts mentioned in Section 2. To begin with, let’s
look at the formulae describing high-level, compound actions (parts C and D,
according to Section 2). Let’s consider the high-level action
go_to_room(R1,R2) . The effect of this action is given by an initiates
formula.

initiates(go_to_room(R1,R2),in(R2),T) :- (A1)
holds_at(in(R1),T).

In other words, go_to_room(R1,R2)  puts the robot in R2, assuming it was in
R1. The go_to_room  action is recursively defined in terms of go_through
actions.

happens(go_to_room(R,R),T,T). (A2)
happens(go_to_room(R1,R3),T1,T4) :- (A3)

towards(R2,R3,R1), connects(D,R1,R2),
holds_at(door_open(D),T1),
happens(go_through(D),T1,T2),
happens(go_to_room(R2,R3),T3,T4),
before(T2,T3),
not(clipped(T2,in(R2),T3)).

In other words, go_to_room(R1,R3)  has no sub-actions if R1 = R3, but
otherwise comprises a go_through  action to take the robot through door D into
room R2  followed by another go_to_room  action to take the robot from R2 to R3.
Door D must be open. The towards  predicate supplies heuristic guidance for the
selection of the door to go through.

Notice that the action is only guaranteed to have the effect described by the
initiates  formula if the room the robot is in doesn’t change between the two sub-
actions. Hence the need for the negated clipped  conjunct. The inclusion of such
negated clipped  conjuncts ensures that the sub-actions of overlapping compound
actions cannot interfere with each other.

The go_through  action itself decomposes further into fol low_wall ,
go_straight  and turn  actions that the robot can execute directly (see Appendix
A).

Now let’s consider the formulae describing the effects of these primitive
executable actions (part A of the program, according to Section 2). The full set of
these formulae is to be found in Appendix C. Here are the formulae describing the
follow_wall  action.

initiates(follow_wall, (S1)
loc(corner(C2),ahead),T) :-

holds_at(loc(corner(C1),behind),T),
next_visible_corner(C1,C2,left,T).

terminates(follow_wall, (S2)
loc(corner(C),behind),T).



A follow_wall  action takes the robot to the next visible corner in the room,
where the next visible corner is the next one that is not part of a doorway whose door
is closed. The effects of go_straight  and turn  are similarly described. The
formulae in Appendix C also cover the fluents facing  and pos  which are used for
map building but not for navigation.

Next we’ll take a look at the formulae describing the causes of sensor events,
which figure prominently in sensor data assimilation (part B of the program,
according to Section 2). Three kinds of sensor event can occur: left_and_front ,
left_gap  and left .

The left_and_front  event occurs when the robot’s left sensors are already
high and its front sensors go high, such as when it’s following a wall and meets a
concave corner. The left_gap  event occurs when its left sensors go low, such as
when it is following a corner and meets a convex corner such as a doorway. The
left  event occurs when its front and left sensors are high and the front sensors go
low, such as when it turns right in a concave corner.

In the formulae of Appendix C, each of these sensor events has a single parameter,
which indicates the distance the robot thinks it has travelled since the last sensor
event, according to its on-board odometry. This parameter is used for map building
and can be ignored for the present. Here’s the formula for left_and_front .

happens(left_and_front(X),T,T) :- (S3)
happens(follow_wall,T,T),
holds_at(co_ords(P1),T),
holds_at(facing(W),T),
holds_at(loc(corner(C1),behind),T),
next_visible_corner(C1,C2,left,T),
inner(C2),
displace(P1,X,W,P2), pos(C2,P2).

The second, third, and final conjuncts on the right-hand-side of this formula are
again the concern of map building, so we can ignore them for now. The rest of the
formula says that a left_and_front  event will occur if the robot starts off in
corner C1, then follows the wall to a concave corner C2. Similar formulae
characterise the occurrence of left  and left_gap  events (see Appendix C).

4 A Worked Example of Navigation

These formulae, along with their companions in Appendices A and C, are employed
by the sense-plan-act cycle in the way described in Section 2. To see this, let’s
consider an example. The system starts off with an empty plan, and is presented with
the initial goal to get to room r6.

holds_at(in(r6),T)

The planning process resolves this goal against clause (A1), yielding a complete,
but not fully decomposed plan, comprising a single go_to_room(r3,r6)  action.
Resolving against clause (A3), this plan is decomposed into a go_through(d4)
action followed by a go_to_room(r4,r6)  action. Further decomposition of the



go_through  action yields the plan: follow_wall , go_through(d4) , then
go_to_room(r4,r6) . In addition, a number of protected links (negated
clipped  formulae) are recorded for later re-checking, including a formula of the
form,

not(clipped( τ1,door_open(d4), τ2)) .

The system now possesses a complete, though still not fully decomposed, plan,
with an executable first action, namely follow_wall . So it proceeds to execute the
follow_wall  action, while continuing to work on the plan. When the
follow_wall  action finishes, a left_and_front  sensor event occurs, and the
SDA process is brought to life. In this case, the sensor event has an empty explanation
— it is just what would be expected to occur given the robot’s actions.

Similar processing brings about the subsequent execution of a turn(right)
action then another follow_wall  action. At the end of this second follow_wall
action, a left_and_front  sensor event occurs. This means that a formula of the
form,

happens(left_and_front( δ), τ)

needs to be explained, where τ is the time of execution of the follow_wall  action.
The SDA process sets about explaining the event in the usual way, which is to resolve
this formula against clause (S3). This time, though, an empty explanation will not
suffice. Since door d4 was initially open, a left_gap  event should have occurred
instead of a left_and_front  event.

After a certain amount of work, this particular explanation task boils down to the
search for an explanation of the formula,

next_visible_corner(c2,C, τ), inner(C)

(The C is implicitly existentially quantified.) The explanation found by the SDA
process has the following form.

happens(close_door(d4), τ'), before( τ', τ)

In other words, an external close_door  action occurred some time before the
robot’s follow_wall  action. Since this close_door  action terminates the fluent
door_open(d4) , there is a violation of one of the protected links recorded by the
planner (see above). The violation of this protected link causes the system to replan,
this time producing a plan to go via doors d2  and d3,  which executes successfully.

5 Map Building with Epistemic Fluents

The focus of the rest of this paper is map building. Map building is a more
sophisticated task than navigation, and throws up a number of interesting issues,
including how to represent and reason with knowledge producing actions and actions
with knowledge preconditions, the subject of this section.

During navigation, explanations of sensor data are constructed in terms of open
door and close door events, but for map building we require explanations in terms of
the relationships between corners and the connectivity of rooms. So the first step in



turning our navigation program into a map building program is to declare a different
set of abducibles (part E of a robot program, according to Section 2). The abducibles
will now include the predicates next_corner , inner , door , and connects .
Map building then becomes a side effect of the SDA process.

But how are the effects of the robot’s actions on its knowledge of these predicates
to be represented and reasoned with? The relationship between knowledge and action
has received a fair amount of attention in the reasoning about action literature
([Levesque, 1996] is a recent example). All of this work investigates the relationship
between knowledge and action on the assumption that knowledge has a privileged
role to play in the logic.

In the present paper, the logical difficulties consequent on embarking on such an
investigation are to some degree sidestepped by according epistemic fluents, that is to
say fluents that concern the state of the robot’s knowledge, exactly the same status as
other fluents. What follows is in no way intended as a contribution to the literature on
the subject of reasoning about knowledge. But it’s enough to get us off the ground
with logic-based map building.

Before discussing implementation, let’s take a closer look at this issue from a
logical point of view. To begin with, we’ll introduce a generic epistemic fluent
Knows. The formula HoldsAt(Knows(φ),τ) represents that the formula φ follows from
the robot’s knowledge (or, strictly speaking, from the robot’s beliefs) at time τ. (More
precisely, to distinguish object- from meta-level, the formula named by φ follows from
the robot’s knowledge. To simplify matters, we’ll assume every formula is its own
name.)

Using epistemic fluents, we can formalise the knowledge producing effects of the
robot’s repertoire of actions. In the present domain, for example, we have the
following.

∃ r,c2 [Initiates(FollowWall,
Knows(NextCorner(r,c1,c2)),t)] ←

HoldsAt(Loc(Corner(c1),Behind),t)

In other words, following a wall gives the robot knowledge of the next corner
along. This formula is true, given the right set of abducibles, thanks to the abductive
treatment of sensor data via clause (S3). In practise, the abductive SDA process gives
a new name to that corner, if it’s one it hasn’t visited before, and records whether or
not it’s an inner corner.

Similar formulae account for the epistemic effects of the robot’s other actions.
Then, all we need is to describe the initial state of the robot’s knowledge, using the
InitiallyN and InitiallyP predicates, and the axioms of the event calculus will take care
of the rest, yielding the state of the robot’s knowledge at any time.

Epistemic fluents, as well as featuring in the descriptions of the knowledge
producing effects of actions, also appear in knowledge goals. In the present example,
the overall goal is to know the layout of corners, doors and rooms. Accordingly, a
new epistemic fluent KnowsMap is defined as follows.



HoldsAt(KnowsMap,t) ←
[Door(d,c1,c2) →

∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t)]] ∧
[Pos(c1,p) →

∃ c2 [HoldsAt(Knows(NextCorner(r,c1,c2)),t)]]

Note the difference between

∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t)]]

and

∃ r2 [Connects(d,r1,r2)].

The second formula says that there is a room through door d, while the first
formula says that the robot knows what that room is. The robot’s knowledge might
include the second formula while not including the first. Indeed, if badly
programmed, the robot’s knowledge could include the first formula while not
including the second. (There’s no analogue to modal logic’s axiom schema T
(reflexivity).)

The top-level goal presented to the system will be HoldsAt(KnowsMap,t). Now
suppose we have a high-level action Explore, whose effect is to make KnowsMap
hold.

Initiates(Explore,KnowsMap,t)

Given the top-level goal HoldsAt(KnowsMap,t), the initial top-level plan the
system will come up with comprises the single action Explore. The definition of
Explore is, in effect, the description of a map building algorithm. Here’s an example
formula.

Happens(Explore,t1,t4) ← (L1)
HoldsAt(In(r1),t) ∧ HoldsAt(Loc(Corner(c1),s),t1) ∧
∃ c2 [HoldsAt(Knows(NextCorner(r1,c1,c2)),t1)] ∧
∃ d, c2, c3 [Door(d,c2,c3) ∧

¬ ∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]] ∧
Happens(GoThrough(d),t1,t2) ∧
Happens(Explore,t3,t4) ∧ Before(t2,t3)

This formula tells the robot to proceed through door d if it’s in a corner it already
knows about, where d is a door leading to an unknown room. Note the use of
epistemic fluents in the third and fourth lines. A number of similar formulae cater for
the decomposition of Explore under different circumstances.

6 A Map Building Program

Appendices B and C of the full paper present (almost) the full text of a working event
calculus program for map building. This section outlines how it works. The three
novel issues that set this program apart from the navigation program already
discussed are,

1. the use of epistemic fluents,



2. the need for integrity constraints, and

3. the need for techniques similar to those used in constraint logic programming
(CLP).

The first issue was addressed in the previous section. The second two issues, as
we’ll see shortly, arise from the robot’s need to recognise when it’s in a corner it has
already visited. First, though, let’s see how the predicate calculus definition of the
Explore action translates into a clause in the actual implementation. Here’s the
implemented version of formula (L1) at the end of the previous section.

happens(explore,T1,T4) :- (B1)
holds_at(loc(corner(C1),S),T1),
not(unexplored_corner(C1,T1)),
unexplored_door(D,T1),
happens(go_through(D),T1,T2),
happens(explore,T3,T4), before(T2,T3).

Instead of using epistemic fluents explicitly, this clause appeals to two new
predicates unexplored_corner  and unexplored_door . These are defined as
follows.

unexplored_corner(C1,T) :- (B2)
pos(C1,P), not(next_corner(R,C1,C2)).

unexplored_door(D,T) :- (B3)
door(D,C1,C2), not(connects(D,R1,R2)).

The formula pos(C,P)  represents that corner C is in position P, where P is a co-
ordinate range (see below).

By defining these two predicates, we can simulate the effect of the existential
quantifiers in formula (L1) using negation-as-failure. Furthermore, we can use
negation-as-failure as a substitute for keeping track of the Knows fluent. (This trick
renders the predicates’ temporal arguments superfluous, but they’re retained for
elegance.) Operationally, the formula,

not(next_corner(R,C1,C2))

serves the same purpose as the predicate calculus formula,

¬ ∃ r2 [HoldsAt(Knows(Connects(d,r1,r2)),t1)]].

The first formula uses negation-as-failure to determine what is provable from the
robot’s knowledge, while the second formula assumes that what is provable is
recorded explicitly through the Knows fluent.

The final issue to discuss is how, during its exploration of a room, the robot
recognises that it’s back in a corner it has already visited, so as to prevent the SDA
process from postulating redundant new corners.

Recall that each sensor event has a single argument, which is the estimated
distance the robot has travelled since the last sensor event. Using this argument, the
robot can keep track of its approximate position. Accordingly, the program includes a
suitable set of initiates  and terminates  clauses for the co_ords  fluent,
where co_ords(P)  denotes that P is the robot’s current position. A position is
actually a list [X1,X2,Y1,Y2] , representing a rectangle, bounded by X1 and X2 on
the x-axis and Y1 and Y2 on the y-axis, within which an object’s precise co-ordinates
are known to fall.



Using this fluent, explanations of sensor data that postulate redundant new corners
can be ruled out using an integrity constraint. (In abductive logic programming, the
use of integrity constraints to eliminate possible explanations is a standard technique.)
Logically speaking, an integrity constraint is a formula of the form,

¬ [P1 ∧ P2 ∧ . . . ∧ Pn]

where each Pi is an atomic formula. Any abductive explanation must be consistent
with this formula. In meta-interpreter syntax, the predicate inconsistent  is used
to represent integrity constraints, and the abductive procedure needs to be modified to
take them into account. In the present case, we need the following integrity constraint.

inconsistent([pos(C1,P1), pos(C2,P2), (B4)
same_pos(P1,P2),
room_of(C1,R), room_of(C2,R),
diff(C1,C2)]).

The formula same_pos(P1,P2)  checks whether the maximum possible
distance between P 1  and P2 is less than a predefined threshold. The formula
diff(X,Y)  represents that X ≠  Y . If the meta-interpreter is trying to prove
not(diff(X,Y)) , it can do so by renaming X to Y. (Terms that can be renamed in
this way have to be declared.) In particular, to preserve consistency in the presence of
this integrity constraint, the SDA process will sometimes equate a new corner with an
old one, and rename it accordingly.

Having determined, via (B4), that two apparently distinct corners are in fact one
and the same, the robot may have two overlapping positions for the same corner.
These can be subsumed by a single, more narrowly constrained position combining
the range bounds of the two older positions.

This motivates the addition of the final component of the system, namely a
rudimentary constraint reduction mechanism along the lines of those found in
constraint logic programming languages. This permits the programmer to define
simple constraint reduction rules whereby two formulae are replaced by a single
formula that implies them both. In the present example, we have the following rule.

common_antecedent(pos(C,[X1,X2,Y1,Y2]),
pos(C,[X3,X4,Y3,Y4]),
pos(C,[X5,X6,Y5,Y6) :-

max(X1,X3,X5), min(X2,X4,X6),
max(Y1,Y3,Y5), min(Y2,Y4,Y6).

The formula common_antecedent(P1,P2,P3)  represents that P3 implies
both P1  and P2, and that any explanation containing both P1 and P2 can be
simplified by replacing P1 and P2 by P3.

Concluding Remarks

The work reported in this paper and its companion [Shanahan, 2000b] is part of an
ongoing attempt to develop robot architectures in which logic is the medium of
representation, and theorem proving is the means of computation. The hope is that
such architectures, having a deliberative component at their core, are a step closer to



robots that can reason, act, and communicate in a way that mimics more closely
human high-level cognition [Shanahan, 1999]. The preliminary results reported here
are promising. In particular, it’s encouraging to see that event calculus programs for
navigation and map building can be written and deployed on real robots that are each
less than 100 lines long and, moreover, that share more than half their code.

However, the work presented has many shortcomings that need to be addressed in
future work. Most important is the issue of scaling up. The robot environment used in
the experiments described here is simple, highly engineered (compared to a real
office) and static, and the robots themselves have extremely simple sensors. It
remains to be seen, for example, what new representational techniques will be
required to accommodate the proposed theory of sensor data assimilation to complex,
dynamic environments and rich sensors, such as vision.

In addition, a number of logical issues remain outstanding. First, as reported in
[Shanahan, 2000a], the formal properties of the event calculus with compound actions
are poorly understood. Second, the topic of knowledge producing actions in the event
calculus needs to be properly addressed, and the limitations of the naive approach
employed here need to be assessed.
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This paper has three appendices, which are available electronically from,
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Look under the “Robotics” heading.


