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Abstract
The class of Evolutionary Automata is formally
defined. An Evolutionary Automaton generates an
evolving population of “organisms” within a
computational medium. The organisms move
randomly around a microworld, eat, reproduce
asexually (with mutation), and die of “natural
causes”. The results of some preliminary experiments
conducted with an instance of this class are reported,
in which a parameter was varied across a small range.
The paper concludes with some speculation on the
possible significance of these results for the study of
diversity and complexity in Artificial Life.

Introduction
One of the most attractive features of the manifesto of
Artificial Life research is that it legitimises the study of any
life-like phenomenon that can be reproduced in a computer.
Artificial Life research avoids the prolific detail present in
real-life biological phenomena, but at the same time enjoys
the freedom to explore a larger space of possible
phenomena than actually arise in nature [Langton, 1987].
This wider perspective encourages the asking of deep
scientific questions, such as “What preconditions are
essential to the origin of all life-like phenomena?”

Unsurprisingly, evolution is one of the phenomena that
has attracted most attention from Artificial Life researchers.
Work on evolution currently falls into two main categories.
First, some impressive results have been obtained through
the simulation of evolutionary processes in microworlds,
some of which are deliberate attempts to model aspects of
biological reality (for example, [Yaeger, 1992]), whilst
others are unashamedly artificial (for example, [Ray,
1990]). Second, a number of computer experiments have
been conducted which are based on abstract automata, in
particular cellular automata [Packard, 1988], [Langton,
1990], and boolean networks [Kaufmann, 1992, Chapters 5
& 6]. These experiments are not so much an attempt to
model particular evolutionary phenomena in detail. Rather,
their emphasis is on deepening our theoretical
understanding of such processes in general.

This paper falls between these two categories. A class of
Evolutionary Automata is described, in which a population
of entities evolves in a microworld. This class is large — in
the sense that different instances of it can reproduce a wide
variety of effects — yet abstract enough for it to be
susceptible to simple mathematical description and tractable
formal analysis. (Holland’s Echo model [1992, Chapter 10]

is similarly motivated.) The point of studying such a class is
that it enables us to investigate deep scientific questions,
such as “Under what conditions does evolution produce
complexity and diversity?” using a tool that models
evolution with a fine enough grain of detail for complexity
and diversity actually to arise.

The first section of the paper presents the basic idea of
an Evolutionary Automaton and a formal definition. The
next two sections present some experiments with a
particular automaton, in which the effect on evolution of
varying one of the automaton’s parameters is studied. It
turns out that this parameter must be tuned to be close to a
critical value for the automaton to produce interesting
effects. The paper concludes with some discussion of the
question of the conditions that are required for complexity
and diversity to emerge from an evolutionary process. The
potential relevance of the edge of chaos to this question is
discussed, but in the light of the reported experiments its
applicability seems minimal.

1. The Class of Evolutionary Automata
After some informal characterisation, this section formally
defines the class of Evolutionary Automata (EA’s).
Essentially, an Evolutionary Automaton non-
deterministically specifies a sequence of states of a
microworld. The microworld is a square grid of locations.
Both top and bottom edges and left and right edges are
joined so that the microworld is, in effect, shaped like a
torus. An evolving population of “organisms” inhabits the
microworld. These organisms can move, eat, reproduce, and
die of “natural causes.”

Each organism occupies a number of connected
locations in the microworld. An organism’s whereabouts in
the microworld is constantly changing, but its shape (or
phenotype) remains unchanged throughout its lifetime.
Each organism has a genotype, which can be thought of as
defining the “species” to which it belongs. Its shape is a
function of its genotype. Organisms can be either alive or
dead. Dead organisms don’t move, eat or reproduce, and
can be eaten by any other organism except members of their
own species.1 Each organism has a certain energy level.
Eating increases its energy level and reproduction depletes
it. There are four kinds of microworld event.

1 Forbidding cannibalism prevents the establishment of species
which are completely independent from the rest of their
environment, and so encourages the setting up of food webs. I have
built this restriction into the definition of an EA, but it could be
relegated to the descriptions of particular automata.
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• Movements:  At each increment of the mircroworld
clock, every living organism moves a random
distance in a random direction, up to a certain
maximum distance away.

• Meals:  Under certain circumstances one organism
can eat another, thus gaining a number of units of
energy. Organisms have to be within a certain
distance from each other for one of them to eat the
other.

• Births:  When an organism has sufficient units of
energy, it will reproduce. Reproduction is asexual,
but random mutations to the organism’s genotype can
occur.

• Natural deaths:  As an organism increases in age, it
becomes ever more likely that it will die of “natural
causes.” When this happens it becomes frozen in its
current location, and doesn’t eat or reproduce.

It will be immediately obvious that this description
includes many features we would expect to find in a
population undergoing Darwinian natural selection. To
obtain an instance of the class of Evolutionary Automaton,
a number of parameters have to be supplied. These include,
• The mapping from genotype to phenotype,
• The conditions under which one organism can eat

another,
• The mutation rate,
• The maximum distance an organism can move per

time step, and
• The probability that an organism will reproduce given

its energy level.
In addition, a particular run of an EA must be

parameterised by grid-size, and an initial state. By varying
all these parameters, a large number of effects can be
produced. Now comes the formal definition.
Preliminary definitions. A location  is a pair of integers.
The grid  of a microworld of size N is the set of locations
〈x,y〉 such that abs(x) ≤ N and abs(y) ≤ N, where abs(z) is
the absolute value of z. A cell  is a pair comprising a type
and a location (the type allows for different kinds of cell).
Two cells are said to be connected  if their corresponding
locations are adjacent or if there exists a third cell which is
connected to both of them. A phenotype  is a set of
connected cells including a distinguished cell 〈 t,〈0,0〉〉 called
the centre . Anything can be a genotype.
Definition 1. Let Org be an infinite set (the carrier set of
potential organisms) and Gen be a set of genotypes. Then a
state  of a microworld of size N is a 6-tuple 〈O,G,L,S,A,E〉,
where
• O is a subset of Org (all the extant organisms, both

alive and dead),
• G is a mapping from O to Gen (the organism’s

genotype),
• L is a mapping from O to the microworld’s grid (the

organism’s whereabouts — actually the location of its
centre),

• S is a mapping from O to True or False (whether the
organism is alive or dead),

• A is a mapping from O to the naturals {  (the
organism’s age), and

• E is a mapping from O to {  (the organism’s energy
level).

Definition 2.  Let Gen be a set of genotypes and Phe be a set
of phenotypes. An Evolutionary Automaton  is an 8-tuple
〈P,M,U,R,X,D,B,T〉 , where
• P is a mapping from Gen to Phe,
• M is a mapping from Phe × Phe to True or False

(whether an organism with a given phenotype can eat
one with another phenotype) such that if
M(X,Y)=True then M(Y,X)=False,

• U is a mapping from Gen to 2Gen (the range of
genotypes a given genotype can mutate into),

• R is a real number in the range 0..1 (the probability of
mutation),

• X is a natural number (the maximum distance an
organism can move in one time step),

• D is a function from { to reals in the range 0..1 (the
probability that an organism will die of natural causes
given its age),

• B is a function from Phe ×  { to reals in the range 0..1
(the probability that an organism of a given phenotype
will reproduce when it has a given energy level), and

• T is a natural number (how close two organisms have
to get before one can eat the other).

Let Org be an infinite set of organisms, Gen be a set of
genotypes and Phe be a set of phenotypes. Then given the
initial state 〈O,G,L,S,A,E〉 of a microworld of size N, an
Evolutionary Automaton 〈P,M,U,R,X,D,B,T〉  generates a
sequence of microworld states by repeatedly executing four
procedures — deaths, moves, meals and births — which are
specified below. Each procedure updates one or more of the
variables O, G, L, S, A, E representing the state of
microworld.

The Deaths procedure alters the status, denoted by S, of
any number of living organisms depending on their age. It
also updates the age of each living organism. The death rate
can be controlled by varying the function D. Obviously, the
longer an organism is allowed to live, the higher the
chances of the survival of its species. A low death rate
favours organisms that eat only occasionally, but eat a lot.
A high death rate favours organisms that eat little and often.

Procedure Deaths(O,S,A)
For  all x in O such that S(x) Do

A(x) := A(x)+1
With  probability D(A(x)) Do

S(x) := False
The Moves procedure alters the location, denoted by L,

of each living organism. Two or more organisms can have
the same location. Note that the organisms have no control
over their own movement. They just float about randomly.
In fact, they have no “behaviour” at all. The only feature
they have, which determines their capacity to survive, is
their shape, which is a function of their genotype. The
maximum distance an organism can move in one time step
is controlled by the X parameter. A small value for X will
encourage the formation of localised colonies of the same
species. The greater the value of X, the faster a species will
spread around the microworld.
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Procedure Moves(O,S,L)
For  all x in O such that S(x) Do

Let θ be a random direction
Let δ be a random distance ≤ X
L(x) := L(x) translated by δ  units in direction θ

The Meals procedure, which updates the O and E
variables, is where the two vital mappings M and P come
into play. Alteration of these parameters can give rise to
completely different behaviours. This is where selection
takes place. It is important to note that the M mapping does
not supply a global measure of fitness. It does not even
have to be a transitive relation, thus allowing a
paper/scissors/stone relationship between species of the
form A eats B, B eats C but C eats A. The absence of a
global fitness function makes open-ended evolution
possibile.

Procedure Meals(O,S,E)
Let s be the set of all x,y in O such that S(x) and S(y)
and the distance between x and y < T
While  s not empty Do

Let 〈a,b〉 be a randomly chosen member of s
s := s – 〈a,b〉
If M(P(G(a),P(G(b))) or [S(b)=False and
G(a)≠G(b)] Then

O := O – b
E(a) := E(a) + E(b) + size of b

Finally, we have the Births procedure. This procedure,
whenever a new organism is born, will update all the
variables comprising the state. The genotype of a newborn
organism is liable to mutation, which will of course alter its
phenotype. Mutation can be constrained by the U parameter
to ensure that evolutionary change is gradual. The mutation
rate is controlled through the parameter R. A high mutation
rate will lead to runaway evolution, in which numerous new
species are created, only to be superseded by even newer
species before they have time to establish themselves.

Procedure Births(O,G,L,S,A,E)
For  all x in O such that S(x) Do

With  probability B(P(G(x)),E(x)) Do
Pick any y in Org not in O
O := O+y; L(y) := L(x)
S(y) := True; E(y) := 0
A(y) := 0; G(y) := G(x)
With  probability R Do

Let G(y) be any member of U(G(y))
Before moving on to a specific example, I would like to

point out a few features of this class of automata. First,
unlike the microworlds used in many previous computer
simulations of evolution, that manipulated by an EA
contains just organisms. There are no obstacles, no
landscape features, in fact no inanimate objects at all. An
organism’s environment consists entirely of other
organisms (dead or alive). Second, as already mentioned,
organisms have no behavioural characteristics. In much
previous work of this kind, species evolve with different
behavioural tendencies. In contrast, all evolution in an EA
is evolution of shape. However, the M mapping, which
determines who eats who based on their shapes, can be any

(computable) function.2 Suitable instantiations of M can
lead to very interesting evolutionary effects, which can then
be studied without having to grapple with the complexities
of behaviour.

Evolutionary Automata bear some resemblance to
genetic algorithms [Holland, 1992]. However, there are
several very important differences which it is worth
emphasising.
• There is no global measure of fitness in an EA,

whereas there is in a genetic algorithm. Rather, the M
function allows for open-ended evolution.

• Geographical effects are possible in an EA. This
limits the influence of each organism to its
neighbours. In a genetic algorithm, a single global
ranking of all members of the population is used to
decide which will survive to the next generation.

• In a genetic algorithm, unlike an EA, organisms do
not persist from one time step to the next, and there is
no concept of natural death. In a genetic algorithm,
each time step is a new generation.

• Unlike genetic algorithms, EA’s only feature asexual
reproduction. EA’s with crossover are an obvious
topic for further study.

One way to generalise the class of EA’s is to endow
each organism with an internal state which can be changed
by encounters with other organisms. The M function would
have to allow for forms of interaction other than eating.
This would permit the evolution of organisms that co-
operate in various ways through the trade of information,
with both members of their own species and members of
other species. As a special case of this, genetic material
could be stored and exchanged via the internal state, and
reproduction could be made a function of this state.
Experiments with such generalisations are a topic for future
research.

2. A Simple Evolutionary Automaton
This section and the next describe some computer
experiments carried out with a simple but non-trivial EA.
These experiments are on a very small scale, and should be
thought of as a first foray into the space of possible EA’s. In
each of these experiments, the microworld is a grid of 50 by
50 locations.

A variety of P’s and M’s were tried, apart from those
I’m about to describe. These included a mapping from
genotype to phenotype which was very similar to the
recursively defined mapping used by Dawkins [1987] in his
“biomorphs” program. Using this mapping, with a suitable
instantiation of M, evolution can produce spectacular
results in a few hundred time steps. But much of the
apparent complexity in the resulting organisms is inherent
in the recursive nature of the mapping. Because I wanted to
study the production of complexity and diversity by

2 It’s a straightforward exercise, for example, to construct an EA
that evolves an improving population of noughts and crosses (tick-
tack-toe) playing organisms. An organism’s body is a look-up
table, mapping board positions to moves. The M function plays
two organisms against each other, reading off each organism’s
moves from this look-up table. The winner eats the looser.
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selection alone, the main experiment described in this
section uses a simpler mapping.

Three cell types are used: red, white and blue. A
genotype has an infinitely extendable tree structure,
recursively defined as follows.
• A colour is either red, white or blue.
• A gene  is either,

• A pair 〈c,n〉, where c is a colour and n is a natural
number, or

• A list [〈c,n〉, g1, g2, g3], where c is a colour, n is a
natural number, and g1 to g3 are genes.

• A direction is either north, south, east or west.
• A genotype is a pair 〈d,g〉, where d is a direction and g

is a gene.
For example, 〈east, [〈white,2〉 , 〈red,1〉, [ 〈blue,2〉, 〈red,1〉,

〈blue,0〉, 〈red,0〉], 〈red,1〉] 〉 is a genotype. The corresponding
phenotype is shown in Figure 1. Informally, to form the
phenotype for the genotype 〈d,[〈c,n〉, g1, g2, g3]〉, you begin
at 〈0,0〉 and add n cells of colour c in direction d, then rotate
90° anticlockwise and add the cells for g1, move back to
direction d and add the cells for g2, then finally rotate 90°
clockwise and add the cells for g3. More precisely,
• P(〈d,g〉) = 〈0,0〉 ∪ Grow(g,d,〈0,0〉), where

Grow(〈c,n〉, d, 〈x,y〉) = the next n cells (with colour
c) in direction d starting from 〈x,y〉

Grow([〈c,n〉, g1, g2, g3], d, 〈x,y〉) = Grow(g1,d-
90°,〈x ' , y ' 〉 ) ∪ Grow(g2,d,〈 x ' , y ' 〉 ) ∪
Grow(g3,d+90°,〈x',y' 〉) ∪ Grow(〈c,n〉,d,〈x,y〉),
where 〈x',y' 〉 is n units from 〈x,y〉  in direction d

Red

Blue

Figure 1: An Example Phenotype
The rule that determines whether one organism eats

another (the mapping M) works by awarding points to the
two organisms. An organism gets two points for every one
of its cells that covers and beats one of its opponent cells.
The “beats” relation is not transitive. A red cell beats a
white cell, a white cell beats a blue cell, and a blue cell
beats a red cell. In addition, an organism gets a point for
every one of its cells that is not covered by any of its
opponent’s cells. If one organism is awarded more points
than the other, then it eats the other. Let Points(p1,p2) be
the number of points awarded to p1 against p2, according to
the above description. Then we have,
• M(p1,p2) = True if Points(p1,p2) > Points(p2,p1)

M(p1,p2) = False if Points(p1,p2) ≤ Points(p2,p1)
The rest of the parameters of the EA are instantiated as

follows. The crucial parameter for the suite of experiments I
will discuss is the penultimate one, B. This will be varied,
by varying the value of θ, to give different effects, as we’ll
see shortly.
• U( 〈d,g〉) = the set of all genotypes obtainable either,

1) By replacing the direction d by d±90°, or
2) By replacing any gene 〈c,n〉 in g where n≤1 by

〈c,n+1〉, or
3) By replacing any gene 〈c,n〉 in g where n>1 by

〈c,n±1〉, or

4) By replacing any gene 〈c,n〉 in g by [〈c,n〉, g1,
g2, g3], where each gi has the form 〈 ci ,ni〉
where ci  is a colour and some ni=1 whilst the
other two ni=0

• R = 0.1667 (1 in 6)
• X = 5

• D(n) =  
n3
125

 or 1, whichever is smaller

• B(p,e) = 

 

0 if e < s

 e

sθ if s ≤ e < sθ

1 if e > sθ
where s = size of p

• T = 5
As should be clear, the mapping U is designed to ensure

that (almost) any genotype can evolve from any other, but
in small steps. But what is the rationale behind the
apparantly arbitrary choice of the other parameter values?
Many of these values, although they are the result of
experimentation to find values which give interesting
behaviour, would tolerate quite a lot of variation. The
mutation rate (R) must be neither so small as to arrest
evolution altogether, nor so large as to prevent species from
establishing themselves. The ratio of the amount of
movement allowed per time step (X) to the maximum
distance at which organisms can eat each other (T)3 must be
neither so small as to prevent organisms from finding food
before they die of natural causes, nor so large as to negate
geographical effects altogether. The function D guarantees
that no organism can live longer than five time steps, whilst
ensuring that the probability of dying of natural causes is
small for young organisms and grows rapidly towards age
five.

The function B, which determines the probability that an
organism will reproduce, is intended to give some
advantage to smaller organisms to counteract the
disadvantage they are given by the mapping M, thus
encouraging the setting up of food webs. The larger an
organism, the more it has to eat to have a reasonable chance
of reproducing. The degree of this advantage is controlled
by the internal parameter θ. A large θ accentuates the
advantage of being small.

3. Experimental Results
Each of the parameters of the EA described above, in
particular R, X, D, B and T, could be varied experimentally
in order to gain an understanding of the workings of the
family of EA’s with similar genotype to phenotype
mappings and similar rules for eating, hopefully thus
improving our understanding of evolutionary processes in
general. In the small suite of experiments whose results I
will now present, the value of θ  (internal to the parameter
B) was varied from 1 to 3. Each run involved an initial
population of 150 organisms, randomly placed in the
microworld. Each organism in the initial state was given a

3 For efficiency regions, in the actual implementation the
microworld was divided into five by five regions, and two
organisms were deemed to be within eating distance of each other
if any parts of their bodies were in the same region.
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File: Exp(2)0.ana
Version: 9
Seed: 5714314
Max movement:5
Mutation rate: 6
Initial pop: 150
Max age: 5
θ: 2

Time

Species

0 200
0

80

Time

Mean
Size

0 200
0

10

Time

Population

0 200
0

400

Figure 3: θ = 2

randomly generated genotype of the form 〈d,〈c,n〉〉 , where
n≤3.

Twenty experiments of 200 time steps were conducted
for each of θ =1, θ =2 and θ=3. The experiments were
perfomed with an Apple Macintosh Quadra, and were
implemented in LPA MacProlog. Particular attention was
given to the behaviour of three variables throughout each
run: the total number of different species, the mean size of
organism, and the total population. Two organisms belong
to different species if they have different genotypes. The
number of species in the microworld at any given time is
the number of different genotypes having two or more
exemplars. In other words, unique mutations that never
reproduce are not considered to have inaugurated a new
species.

A CB
Figure 2: Graph Shapes

When the variables mentioned above are plotted against
time, several distinct graph shapes are to be found, three of
which are denoted A, B, and C in Figure 2. There was a
strong correlation between population and number of

species. In all twenty experiments with θ=1, population and
number of species produced graphs with approximately
shape B, whilst mean size produced a graph with
approximately shape A. In other words, with such a low θ,
successful predators emerge very quickly. These predators
rapidly eat all available food, and soon become extinct.

With θ=3, all twenty experiments generated graphs for
population and number of species with approximately shape
A. The mean size of organism, however, remained constant
and low (close to one), reflecting the fact that predators find
it very hard to establish themselves with such a high θ. In

other words, an exploding population of single-celled
organisms was generated In general, the dominant species
in the population was alternately red, white then blue, then
red again, with increasing colonies of one colour often
chasing declining colonies of another across the
microworld.

The most interesting results were obtained with the
intermediate value for θ. With θ=2, there was considerable
variation in the shapes of the graphs from one run to
another. Examples of both the above extremes of behaviour
were obtained. But in most of the runs, the population and
number of species produced graphs of shape C, whilst mean
organism size produced a graph of shape A. The upturn in
mean organism size corresponded with the decline in
population. This last kind of behaviour corresponds to an
initial phase during which small organisms thoroughly
establish themselves, supporting a small population of
moderately successful predators, followed by the
emergence of one or more super-predators which are so
successful that they eat all available food, resulting
ultimately in mass extinction. Graphs for an actual run with
θ=2 are shown in Figure 3.

Considerable variation was present even within the set
of runs displaying the last kind of behaviour described. In
one of the twenty runs, although conforming to the same
overall pattern, the population went through a sequence of

peaks and troughs coinciding with troughs and peaks in
mean organism size. This is just the sort of cyclical pattern
often taken to indicate the presence of a homeostatic
relationship between predator and prey. Had evolution been
arrested before the advent of the first super-predator, this
homeostasis might have persisted indefinitely. In addition,
not all of the runs ended with total extinction, and it would
have been interesting to continue beyond 200 time steps to
see when, if ever, the whole population would die out.
Clearly, much further experimentation is required with θ=2
to see just what is going on.
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Discussion
Langton [1990] asks, “Under what conditions can we
expect a dynamics of information to emerge spontaneously
and come to dominate the behaviour of a physical system?”
The answer, he suggests, is that “living systems . . . must
have learned to steer a delicate course between too much
order and too much chaos,” and “evolution can be viewed
as the process of gaining control over more and more
‘parameters’ affecting a system’s relationship to the vital
phase transition [between order and chaos].”

So, according to Langton, life exists at the edge of
chaos, in other words in the “complex regime” to be found
in the vicinity of the phase transition between order and
chaos. But even if we accept this as the basis of the answer
to Langton’s question, we cannot stop there. With the
complex regime already established, how is it that evolution
has been creative enough to produce the diversity and
complexity4 we find in life on Earth? Without this diversity
and complexity, we surely wouldn’t exist. So, within the
complex regime, what happens? Let’s zoom in on the
complex regime, and ask ourselves, “Within a physical
system whose behaviour has come to be dominated by a
dynamics of information, under what conditions can we
expect diversity and complexity to evolve?”

We might expect the idea of the edge of chaos to apply
to this question too. As well as its products, the
evolutionary process itself, we might speculate, has to steer
a course between too much order and too much chaos. For
evolution to be frozen in the ordered regime is for it to lack
the creative power to produce enough variation to support
diversity or complexity. On the other hand, for evolution to
be in the chaotic regime is for it to produce too much
variation, enough variation to overwhelm the forces of
cumulative selection, preventing the establishment of the
sort of stable ecosystem in which we find ourselves.

However, even the preliminary exploration of the world
of EA’s presented in this paper suggests that the truth is
much more complicated than this. Section 2 defined a
simple EA, and Section 3 presented some experimental
results based on this automaton. In these experiments, the
number of species is a crude measure of diversity, whilst
the mean organism size is a crude measure of complexity.
Although based on a small sample, these experiments have
shown that, with this EA, the conditions necessary for
complexity and diversity to arise are extremely fragile. The
parameter θ must be close to 2 for there to be a realistic
chance of diversity and complexity arising. If θ is too high,
we get a degree of diversity but without complexity. If it is
too low, we get complexity at the expense of stability.
Experiments with a much larger population would probably
reveal a more consistent pattern of behaviour with θ set at
this critical value.5

It would be nice to be able to report the discovery of
something at the edge of something else, especially

4 Two different notions of complexity are being used here. The
first applies to organisms and the second applies to a kind of
computation. Precise definitions of both concepts are still pending.
5 Imperial College has recently taken delivery of a Fujitsu AP1000
parallel machine, on which it is hoped to test this hypothesis.

something important at the edge of something poetic.
However, the results in Section 3 don’t support any grand
conclusions. The region in which θ is just right isn’t the
edge of chaos. But it is crucially important. And we might
expect similar results with many other parameters. Reading
the Artificial Life literature, it’s easy to be misled into
thinking that a whole range of spectacular evolutionary
effects arise inevitably when evolution is simulated in an
artificial microworld. Researchers rarely dwell on the hours
of tinkering (or sheer good fortune) required to achieve
these effects. But it’s just this tinkering that’s most
interesting when it comes to answering the big questions.
How did nature achieve the tuning of all these parameters
without the aid of a scientist’s intervention?

On a more specific level, the results in Section 3
emphasise the fact that it is possible for a species to be too
successful. In this artificial microworld, if a species evolves
which is part of a complicated food web but which is highly
successful at the expense of that food web, then it places the
whole ecosystem in danger. (To what extent, if any, this
phenomenon mirrors a possibility present in the evolution
of life on Earth, I cannot say.) If the θ parameter itself were
made part of an organism’s genotype then, with a large
population, we might see this parameter being tuned by
evolution. It might then be appropriate to speak of the
“second-order” selection of whole ecosystems or food
webs, in which parameters are spontaneously tuned to
support a degree of stability. (See [Kaufmann, 1993,
Chapter 6] for ideas along similar lines.)

This suggests a promising project for the future, which
is to answer the following question. What is the simplest
instance of the smallest generalisation of the class of EA’s,
which generates stable ecosystems supporting diversity and
complexity, and which spontaneously tunes its parameters
to the critical values required to do this?
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