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Abstract

This paper explores different techniques for
explanation within the framework of the situation
calculus, using the so-called stolen car problem as its
main example. Two approaches to explanation are
compared: the deductive approach usually found in the
literature, and a less common abductive approach.
Both approaches are studied in the context of two
different styles of representation.

Introduction
A great deal of attention has been given to the problem of
formalising prediction, that is reasoning forwards in time
from causes to effects, and in particular to the logical aspect
of the frame problem. Fewer authors, however, have studied
the converse problem of formalising temporal explanation (or
postdiction), that is reasoning backwards in time from effects
to causes. Temporal explanation is certainly as important as
prediction, as it underlies planning and diagnosis, as well as
being a fundamental mode of reasoning in its own right, so a
thorough understanding of its nature is basic to Artificial
Intelligence.

This paper explores temporal explanation in the context of
the situation calculus [McCarthy & Hayes, 1969], a
formalism which, as well as being the oldest and best-
understood logic-based formalism for representing change in
AI, has considerable expressive power [Gelfond et al., 1991],
[Lin & Shoham, 1992]. In this paper, two styles of
representation for explanation problems are compared: the
standard style used in the existing literature, and an
alternative style. In addition, two fundamentally different
approaches to explanation are explored: the deductive
approach and the abductive approach. The paper presents the
standard and alternative styles of representation first, then
looks at the deductive approach, using both styles, and
finally investigates the abductive approach.

Most attempts to formalise temporal explanation have
adopted the deductive approach [Morgenstern & Stein, 1988],
[Lifschitz & Rabinov, 1989], [Baker, 1989], [Crawford &
Etherington, 1992]. Suppose we have a formula T which
captures the timeless laws of change in a given domain, and a
formula H representing when certain time-varying facts are
true. According to the deductive approach, the explanation of
an additional such fact F will be among the logical
consequences of T ∧ H ∧ F. According to the abductive
approach [Shanahan, 1989], an explanation is a formula ∆
such that T ∧ H ∧ ∆ has F among its logical consequences.

Throughout this paper, I will use the so-called stolen car
problem (SCP) as a benchmark [Kautz, 1986]. The task is to

model the reasoning involved in the following story.
Suppose I park my car in the morning and go to work. At
lunch time, I might reasonably apply default persistence and
infer that the car is still where I left it. However, when I
return to the car park in the evening I find that it has gone.
Its disappearance requires an explanation. That is to say, we
want to reason backwards in time to the (possible) causes of
the car’s disappearance. In this case, the only reasonable
explanation for the car’s disappearance is that it was stolen
some time between morning and evening. So my previous
conclusion that the car was still there at lunch time is open
to question. The car may have been stolen any time after I
parked it and before I observed that it was gone, so I cannot
say anything about its whereabouts at lunch time.

1. Representing Explanation Problems
The ontology of the situation calculus includes situations,
actions and fluents. A situation is an instantaneous snapshot
of the world, and a fluent is anything whose value is subject
to change. I will employ variables of three sorts
corresponding to this ontology.1 I will write Result(a,s) to
denote the situation which results when action a is performed
in situation s, and Holds(f,s) to represent that fluent f holds
in situation s. If a fluent holds in a situation then it has the
value true, and if it does not hold it has the value false.
Several authors have attempted to deal with temporal
explanation within the framework of the situation calculus
[Lifschitz & Rabinov, 1989], [Baker, 1989], [Crawford &
Etherington, 1992]. But I will now argue that the style of
representation they all use is problematic.

To represent a particular domain using the situation
calculus, we write two sets of sentences, one set describing
which fluents change value as a result of performing each
action (so-called axioms of motion), and one set describing
which retain their value (so-called frame axioms). The main
concern of a great deal of research on the formal
representation of change has been the frame problem, or how
to eliminate the need to write explicit frame axioms. One of
the most successful attempts to overcome the frame problem
is Baker’s [1989].2 His solution does not suffer from the
difficulties pointed out by Hanks and McDermott [1987] and
correctly handles ramifications (derived properties). It can also

1  In what follows, variables begin with lower-case letters,
and predicate and function symbols begin with upper-case
letters. All variables are universally quantified unless otherwise
indicated. A suitable set of uniqueness-of-names axioms is
assumed.

2 To follow closely the argument of this paper, the reader
will require some familiarity with Baker’s work.
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cope with certain explanation problems. In particular, Baker
represents the stolen car scenario as follows,

¬Holds(Stolen,S0) (SR1)

S2 = Result(Wait,Result(Wait,S0)) (SR2)

Holds(Stolen,S2) (SR3)

Does this constitute a good representation of the SCP? Let
us consider exactly what knowledge we are trying to capture.
The meaning of Result(Wait,Result(Wait,S0)) is the
situation which results when two successive Wait actions are
performed in situation S0. The assertion that S2 equals this
situation means that the only two actions which occur
between S0 and S2 are the two Wait actions. It is implicit in
this assertion that nothing else happens between S0 and S2.
However, the whole point of the SCP is that we do not
know what actions take place between S0 and S2. We don’t
know what S2 equals in terms of the Result function. Since
the intended meaning of Wait is an action which has no
effect, then it doesn’t seem likely that S2 equals
Result(Wait,Result(Wait,S0)).3 However, since it is only by
default that waiting has no effect, it is still possible to
conclude that one of the wait actions is responsible for the
car’s disappearance.

Rather than half-heartedly asserting that nothing happens
between S0 and S2 and allowing default reasoning to override
this assertion to conclude that Wait actions sometimes have
strange effects, a more intuitive representation of the SCP
asserts nothing about S2 beyond the fact that it is the result
of a sequence of actions which starts in situation S0. Then
the aim of explanation is to characterise S2 in terms of the
result function, that is to characterise the sequence of actions
which starts in S0 and leads to a situation S2 in which the
car is gone. Accordingly, I suggest the following
representation of the SCP,4

Holds(Car-parked,S0) (AR1)

¬Holds(Car-parked,S2) (AR2)

Follows(S2,S0) (AR3)

where Follows is defined thus,

Follows(sc,sa) ↔ [sc=sa ∨ (AR4)
∃a,sb [sc=Result(a,sb) ∧ Follows(sb,sa)]]

and where we have the following axiom of motion,

¬Holds(Car-parked,Result(Steal,s)) (AR5)

The point being made here applies to explanation using
the situation calculus in general, and is not restricted to the
SCP. Lifschitz and Rabinov [1989], for example, use the
same style as Baker to represent a bloodless variation of the
Yale shooting problem [Hanks & McDermott, 1987], in
which the victim remains alive after the shooting. Their
approach to explanation introduces the idea of a miracle,
which is an unexpected effect of an action. Once again, in

3 In fact, the very idea of a “wait” action seems rather
strange, and the idea of a sequence of two wait actions seems
stranger still. Surely waiting is a pause between actions rather
than an action in its own right.

4 I prefer the formula Ý Holds(Car-parked,s) to Baker’s
Holds(Stolen,s), although they fulfil the same rôle.

their approach default reasoning is expected to override a
“half-hearted” assertion that nothing happens between loading
and shooting to conclude that in fact the Wait action unloads
the gun. As before, I suggest that the task of explanation is
to determine exactly what sequence of actions takes place
between loading and shooting.

In what follows, the style of representation exemplified by
[Baker, 1989] and [Lifschitz & Rabinov, 1989] will be called
the standard style, and the style which I have suggested will
be called the alternative style. I will now examine both styles
of representation in the context of the deductive approach to
explanation, and later will examine both styles in the context
of the abductive approach.

2. Deductive Approach, Standard Style
Underlying the deductive approach to explanation championed
by Morgenstern and Stein [1988], Lifschitz and Rabinov
[1989], Baker [1989], and Crawford and Etherington [1992] is
a deductive approach to the assimilation of knowledge. Let us
suppose that we have a formula T which represents an
agent’s knowledge about the world. Then, if the agent learns
that F is the case, where F is not a consequence of T, the
deductive approach to assimilating F is simply to add it to T.
The formula T ∧ F then represents the agent’s knowledge
about the world.

Using this approach, how is the SCP tackled within the
framework of the situation calculus? Let’s consider the
standard style of representation first. As well as (SR1) to
(SR3), we need a frame axiom. A common frame axiom is,

[Holds(f,s) ↔ Holds(f,Result(a,s))] ← ¬Ab(a,f,s) (1)

The frame problem is normally overcome by minimising
the extension of Ab in some way, using circumscription for
example. In Baker’s work [1989], this is achieved by
introducing an “existence-of-situations” axiom, then
circumscribing, minimising Ab and allowing the Result
function to vary. This avoids the problem Hanks and
McDermott encountered with McCarthy’s formulation
[McCarthy, 1986], [Hanks & McDermott, 1987]. However,
since the SCP doesn’t involve actions with preconditions, it
doesn’t run into the Hanks-McDermott problem, and
McCarthy’s formulation, which minimises Ab and allows
Holds to vary, is adequate.

Initially, we know just (SR1) and (SR2). With Wait the
only action in the domain of discourse, nothing is abnormal,
so minimising Ab using either McCarthy’s or Baker’s
technique yields simply ¬Ab(a,f,s), from which we can
conclude ¬Holds(Stolen,S2).

Using the deductive approach to explanation, when we
learn (SR3) we simply add it to (SR1), (SR2) and (1), and
derive a new set of conclusions. From (SR1) to (SR3) and
(1), Baker [1989] gets,

Ab(Wait,Stolen,S0) ∨
Ab(Wait,Stolen,Result(Wait,S0))

This seems to be the consequence we intuitively expect,
using the standard style of representation: the car is either
stolen during the first Wait action or during the second, and
we cannot say for sure which of these disjuncts is true.
Minimising Ab simply reduces the set of models to those in
which one of the disjuncts is true, the other one false, and Ab
is false for everything else. However, this consequence
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doesn’t really constitute an explanation at all. It simply says
that one of the Wait actions must have been abnormal. From
(1), it can be seen that the abnormality of a Wait action is
not sufficient to bring about a change in the value of Stolen.
It is a necessary condition of such a change, not a sufficient
one.

Furthermore, if the domain is widened a little, other
difficulties arise. Suppose the domain includes actions with
preconditions, thus necessitating a form of minimisation
different to McCarthy’s. The best-known candidates at present
are chronological minimisation (for example [Shoham,
1988]), causal minimisation (for example [Lifschitz, 1987]),
and Baker’s state-based minimisation [1989]. As Baker points
out, chronological minimisation, which postpones change
until as late as possible, will insist that the car is stolen
during the second Wait action; causal minimisation can be
modified to cope with explanation [Lifschitz & Rabinov,
1989], but has problems with ramifications (derived
properties); and his own approach, whilst adequate for the
simple version of the problem presented above, falls apart as
soon as another fluent is introduced which holds in S0.

Why should the need to tackle explanation problems
interfere with our efforts to overcome the frame problem? In
a later section, I will discuss the abductive approach to
explanation, which doesn’t interfere with minimisation in
any way, but first I will examine the deductive approach
applied to the alternative style of representation suggested in
Section 1.

3. Deductive Approach, Alternative Style
What happens when the deductive approach to explanation is
used with the alternative style of representation? From (AR1)
to (AR4) and (1), we have,

∃a,sa,sb [Ab(a,Car-parked,sa) ∧ sb=Result(a,sa) ∧
Follows(sa,S0) ∧ Follows(S2,sb)]

From (AR5) and (1), minimising Ab using either
McCarthy’s or Baker’s appraoch, we have,

Ab(a,f,s) ↔
[a=Steal ∧ f=Car-parked ∧ Holds(Car-parked,s)]

and therefore,

∃sa,sb [sb=Result(Steal,sa) ∧ Follows(sa,S0) ∧
Follows(S2,sb)]

In other words, there is a Steal action between situations
S0 and S2, which is the intuitively correct explanation. To
simplify sentences of the above form, I introduce a new
predicate. The formula Between(a,s1,s2) represents that an
action a occurs between situations s1 and s2, and is defined as
follows.

Between(a,sa,sd) ↔ (AR6)
∃sb,sc [sc=Result(a,sb) ∧ Follows(sb,sa) ∧
Follows(sd,sc)]

Then, the above explanation of the car’s disappearance can
be abbreviated to,

Between(Steal,S0,S2)

So the deductive approach to the SCP seems to work
using the alternative representation. Unlike the standard

representation, the alternative representation doesn’t
encounter difficulties with explanation problems in richer
domains. Suppose that we employ Baker’s approach to
minimisation — the Result function is allowed to vary, and
there is an axiom asserting, for all possible combinations of
fluents, the existence of a situation in which that
combination holds. The problem that Baker reports [1989]
using the standard representation is that the assertion that the
car is not in the car park in S2 forces a new abnormality.
There is a variety of choices for this abnormality, each of
which satisfies Axiom (1) whilst allowing the car to
disappear. Unfortunately, in a domain of any complexity,
some of them are both counter-intuitive and minimal.

With the alternative representation, using Baker’s approach
to minimisation, this problem simply doesn’t arise. The
assertion that the car is not in the car park in S2 does not
force a new abnormality. Rather, it forces a Steal action to
occur between S0 and S2, and Steal actions are abnormal
with respect to Car-parked anyway. So the minimisation of
Ab is unaffected.

However, the approach described here is not complete
without further minimisation. In the absence of (AR2), the
explicit assertion that the car is not in the car park in S2, we
wanted to be able to assume by default that it still was. From
(AR1) and (AR3) to (AR6), knowing nothing about the
theft, we wanted to be able to conclude Holds(Car-parked,S2).
Unfortunately, (AR3) is too weak to allow this conclusion.
It simply says that there is some sequence of actions between
S0 and S2, and does not disallow the possibility of a Steal
action occurring.

The alternative style of representation for explanation
problems presupposes a framework which can cope with
sequences of actions about which not everything is known.
In the SCP, for example, we don’t know what actions have
taken place between S0 and S2. However, we would like to
assume by default that nothing happens we don’t know
about.

There are several ways to achieve this. The approach I will
sketch here is based on the work of Pinto and Reiter [1993].
The formula Actual(s) represents that the situation s is part
of an actual narrative of events, about which we may have
incomplete information. So we have, in the SCP example,

Actual(S0) Actual(S2)

The actual narrative of events corresponds to one path
through the tree of situations defined by the Result function.
The following three axioms guarantee this, following Pinto
and Reiter [1993].

Actual(Result(a,s)) → Actual(s)

[Actual(Result(a1,s)) ∧ Actual(Result(a2,s))] → a1=a2

Result(a1,s1) = Result(a2,s2) → [a1=a2 ∧ s1=s2]

A fourth axiom5 is required to ensure that Baker's
approach continues to work in the presence of the last of the
above axioms.

[∀f1[Holds(f1,s1) ↔ Holds(f1,s2)] ∧ Ab(a,f

 

2

 

,s1)] →
Ab(a,f

 

2

 

,s2)

5 Thanks to Vladimir Lifschitz for suggesting this axiom.
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Now Actual is minimised with a lower priority than Ab,
and situation constants are allowed to vary, along with the
Result function and the predicates Between and Follows.
From now on, I will assume this new circumscription policy
whenever I use the alternative style of representation. For
further details the reader is referred to Pinto and Reiter [1993].
An alternative method for dealing with incomplete narratives,
which could also be used here, is presented in [Miller &
Shanahan, 1993].6

4. Preconditions
To complete the picture for the deductive approach with the
alternative style, I will briefly investigate its application to
an explanation problem involving preconditions. Consider
(AR1) to (AR4) and (AR6), but suppose that it is a
precondition of a successful theft that the car park is
unguarded. So instead of (AR5) we have,

¬Holds(Car-parked,Result(Steal,s)) ← (AR7)
¬Holds(Guarded,s)

Initially the car park is guarded. But if a lazy security
guard comes on duty, he immediately falls asleep, leaving the
car park vulnerable to theft. We also know that Fred is a lazy
security guard. To represent this, the action Guard(x) is
introduced, denoting that security guard x comes on duty,
along with the unary predicate Lazy.

Holds(Guarded,S0) (AR8)

Holds(Guarded,Result(Guard(x),s)) ↔ (AR9)
¬Lazy(x)

Lazy(Fred) (AR10)

Now what can we conclude from the fact that the car is not
parked in S2? The only plausible explanation, given the
knowledge we have, is that Fred came on duty and fell asleep,
leaving the car park unguarded. Then the car was stolen.
Minimising Ab according to Baker’s approach, we get,

∃sa,sb [sb=Result(Steal,sa) ∧ Follows(sa,S0) ∧
Follows(S2,sb) ∧ ¬Holds(Guarded,sa)]

Then, working on the Holds conjunct of this formula, we
can show,

∃sa,sb,sc,sd,x [sb=Result(Steal,sa) ∧ Follows(sa,S0) ∧
Follows(S2,sb) ∧ sd=Result(Guard(x),sc) ∧
Follows(sc,S0) ∧ Follows(sa,sd) ∧ Lazy(x)]

which simplifies to,

∃s,x [Between(Guard(x),S0,s) ∧
Between(Steal,s,S2) ∧ Lazy(x)]

In other words, a lazy security guard comes on duty and
then the car is stolen. This is very nearly the desired result,
but not quite because no mention is made of Fred, the only
lazy security guard we know of. Of course, in a sense, this is
quite correct, since nowhere have we said explicitly that Fred
is the only lazy guard. On the other hand, if it was Fred that

6 The issue of narratives is orthogonal to the main point of
the paper. The sketch given here is only offered as evidence that
a working technique can be found.

came on duty, that would explain the fact that the car park
was unguarded at the wrong time.

To see that this could be a serious shortcoming, let’s
introduce a further complication to the story. In addition to
the car park’s being unguarded, there is another precondition
to a successful theft. The alarm mustn’t be on. Instead of
(AR5) or (AR7), we have,

¬Holds(Car-parked,Result(Steal,s)) ← (AR11)
¬Holds(Guarded,s) ∧ ¬Holds(Alarm,s)

Initially the alarm is indeed off, but if Fred comes on duty
he always turns it on, knowing he’s likely to fall asleep.
However, if the thief smashes the alarm, it isn’t on.

¬Holds(Alarm,S0) (AR12)

Holds(Alarm,Result(Guard(Fred),s)) (AR13)

¬Holds(Alarm,Result(Smash,s)) (AR14)

The deductive approach cannot supply a more detailed
explanation, in the light of these extra facts, than the one
already given — a lazy security guard came on duty and then
the car was stolen. Since it cannot be concluded that Fred was
the lazy security guard who came on duty, using the
deductive approach, we completely miss the subtlety that if it
was Fred who came on duty, then the thief must have
smashed the alarm.

Of course, it’s true that “explanations come to an end
somewhere,” but this seems a little premature. We would
like to find an approach to explanation that tells us that the
following sequence of actions explains the car’s disappearance
— Fred came on duty, the alarm was smashed, and the car
was stolen.

5. The Abductive Approach
Abduction is widely considered to be a mode of reasoning
fundamental to AI, and it has a diverse range of applications,
including diagnosis, planning, plan recognition, natural
language interpretation, default reasoning, and of course
temporal explanation. According to the abductive approach to
explanation in the situation calculus, given a theory T
comprising axioms of motion and the frame axiom (and any
other necessary general axioms, such as Baker’s “existence of
situations”), and a history H representing that certain fluents
hold in certain situations, to explain a new fact F
representing that a fluent holds in a given situation we need
to find a formula ∆ such that T ∧ H ∧ ∆ has F among its
logical consequences.

In order to avoid trivial or weak explanations, a certain set
of predicates are distinguished as abducible. Explanations
have to be in terms of abducible predicates. Furthermore, to
overcome the frame problem, some form of minimisation
will be required. So more precisely, we say that, given T and
H as above, a formula ∆ is an explanation of a fact F if it
mentions only abducible predicates, and CIRC[T ∧ H ∧ ∆;
P*; Q*] |= F,7 where P* and Q* are sets of predicates
corresponding to a suitable circumscription policy to
overcome the frame problem. Of course, there may be many
such ∆’s to explain any given fact. It is also convenient to

7 CIRC[y ; P*; Q*] denotes the circumscription of the
formula y minimising P* and allowing Q* to vary.
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avoid explanations which are subsumed by other
explanations. So we say that, given T and H, an explanation
∆ of F is minimal if there is no explanation of F which is a
subset of ∆.

In these abductive terms, what is the general form of an
explanation problem expressed in the situation calculus? We
are usually required to explain a conjunction of positive or
negative Holds literals. Let’s consider the SCP, using the
standard style of representation first. We want to explain
(SR3), and we require explanations in terms of previously
unsuspected abnormalities. So the obvious policy is to make
Ab abducible.

Let T be (1) and H be (SR1) ∧  (SR2). Let ∆  be
Ab(Wait,Stolen,S0), and assume either McCarthy’s or
Baker’s circumscription policy. As pointed out in Section 2,
the abnormality of one of the Wait actions is a necessary but
not a sufficient condition for the car to be stolen.
Appropriately then, ∆ is not an explanation of (SR3) at all
according to the abductive approach. Similarly, if we let ∆ be
Ab(Wait,Stolen,Result(Wait,S0)), then it is still no
explanation. In fact, given the standard representation and the
abductive approach with Ab made abducible, the
disappearance of the car literally defies explanation.
Furthermore, since it incorporates no knowledge of Steal
actions, the standard representation doesn’t permit any
explanation of the car’s disappearance without the inclusion
in ∆ of new axioms of motion.

Now let’s consider the alternative style. The explanations
we require are in terms of the sequence of actions which takes
place between two situations. So the obvious abduction
policy is to make Between abducible. In the SCP, we want
to explain (AR2). Let T be the conjunction of (1) and (AR4)
to (AR6), and let H be (AR1) ∧  (AR3). Suppose we
minimise abnormality according to either McCarthy’s or
Baker’s approach, and we also minimise Actual. Consider
∆ =Between(Steal,S0,S2). Does this constitute an
explanation?

Minimising Actual yields S2=Result(Steal,S0). Then,
applying (AR5), we have ¬Holds(Car-parked,S2). So ∆ is
indeed an explanation. There are other explanations too, but
each of these involves a sequence of Steal actions. It is easy
to see that ∆  subsumes all of these explanations, and
therefore all minimal explanations will be equivalent to ∆.
This approach bears a strong similarity to that of Green
[1969] and Kowalski [1979, Chapter 6] to plan formation in
the situation calculus, in which resolution generates a
binding of the form s=Result(a1,Result(a2,...)) to solve a
goal of the form Holds(f,s). This binding conforms exactly to
the abductive idea of an explanation with the alternative style
of representation, where equality is made abducible.

Note that if we asserted that another action, say going to
lunch, occurred between S0 and S2, then this ∆ would still
constitute an explanation, and would furthermore be neutral
about the relative order of lunch time and the car’s theft. So
it would not be possible to conclude, in the presence of ∆,
that the car was still in the car park at lunch time.

Next, we’ll examine how the abductive approach fares
with the alternative style of representation with
preconditions. Recall the variant of the SCP with Fred, the
lazy security guard who switches on the alarm when he
comes on duty. Once again, we want to explain (AR2). This
time, assume Baker’s minimisation technique, to ensure that

the precondition is properly treated. Let T be the conjunction
of an existence of situations axiom with (1), (AR4), (AR6),
(AR9) to (AR11), (AR13) and (AR14). Let H be the
conjunction of (AR1), (AR3), (AR8) and (AR12). Let ∆ be,

∃sa,sb [Between(Guard(Fred),S0,sa) ∧
Between(Smash,sa,sb) ∧ Between(Steal,sb,S2)]

Let S = Result(Smash,Result(Guard(Fred),S0)). The
minimisation of Actual now gives S2 = Result(Steal,S).
Applying (AR9) and (AR10), we get ¬Holds(Guarded,S). We
get Holds(Alarm,Result(Guard(Fred),S0)) by applying
(AR13), but by applying (AR14) we get ¬Holds(Alarm,S).
Finally, applying (AR11) we get ¬Holds(Car-parked,S2). So
∆ is an explanation. Again there are other explanations,
involving sequences of Steal, Guard and Smash actions, and
again these are all subsumed by ∆ , so any minimal
explanation will be equivalent to ∆.

By way of contrast, the closest thing to an explanation
supplied by the deductive approach, namely

∃s,x [Between(Guard(x),S0,s) ∧
Between(Steal,s,S2) ∧ Lazy(x)]

doesn’t constitute an explanation at all according to the
abductive approach, even if we make Lazy abducible. This is
because it ignores the possibility that the lazy security guard
is Fred, who will turn the alarm on, thus preventing the
Steal action from being successful.

Discussion
This paper is intended to be a critical study of various
approaches to explanation within the framework of the
situation calculus. The analysis would seem to recommend
the abductive approach with the alternative style of
representation. However, a number of issues remain to be
discussed.

To begin with, the paper has adopted the situation
calculus, with circumscription as a means of default
reasoning, and has employed Baker’s approach to the frame
problem. There are, of course, many alternatives. However, I
conjecture that the lessons learned here will apply to other
formalisms, other forms of default reasoning, and other
approaches to the frame problem (see [Shanahan, 1989], for
example).

The impression given in this paper is that abduction and
deduction are competing approaches to explanation. But it
could be argued that  abduction isn’t a particular approach to
explanation, it is the nature of explanation. A particular
approach to explanation might perform abduction directly, or
it might simulate it through deduction, so long as the
explanations it produced conformed to the abductive
definition. Under this interpretation, there is no need to show
the adequacy of the abductive approach, because it supplies
the very criterion of adequacy.

A related issue which merits some discussion is that of
knowledge assimilation. A problem like the stolen car
problem can be thought of simply as a reasoning problem —
what are the possible explanations of the car’s disappearance.
Alternatively, it can be thought of as a knowledge
assimilation problem — how is the fact of the car’s
disappearance to be assimilated. The abductive and deductive
approaches to explanation imply different views of
knowledge assimilation. Suppose that we have a knowledge
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base in the form of a formula T. Under a classical, deductive
view of knowledge assimilation, new facts are always added
directly to T. With an abductive view of knowledge
assimilation, not every fact is eligible for direct addition to
T. Sometimes the assimilation of a new fact F demands the
addition of a formula ∆ of a certain form to T such that T ∧
∆ |= F [Kowalski, 1979, Chapter 13]. That is, new facts
sometimes have to be explained through abduction.

Using abduction with the situation calculus, assimilating
a new Holds fact, such as the fact that my car is not in the
car park in the evening, demands the addition of a formula
representing that certain actions take place, so that the new
fact becomes a logical consequence of the knowledge base.
With the stolen car problem, there is a unique minimal
explanation, but this not necessarily the case. One approach
to dealing with multiple explanations is to add the
disjunction of all minimal explanations to the knowledge
base, but this issue is beyond the scope of this paper.

Two important questions come to mind here. Why do
some facts demand explanation when others do not? And why
are some predicates abducible when others are not? In so far
as a problem like the SCP is viewed simply as a reasoning
problem, these questions are not very important, since the
answers have to be written into the specification of the
problem. But taking the wider, knowledge assimilation view,
the questions become more pressing. A simple answer is that
anything which can be considered a first cause doesn’t require
explanation, whereas anything which cannot be considered a
first cause does require explanation. For example, we might
decide to consider the occurrence of an action as a first cause,
but not the effects of an action. This is a partial justification
for making Between abducible, and insisting that Holds facts,
except those about the initial situation, must be explained.
Clearly though, these issues merit further study.

Finally, an important question is the relationship between
abduction and deduction [Console et al., 1991], [Konolige,
1992]. When do they coincide? Or, if abduction is adopted as
the specification of explanation as suggested above, when
does deduction conform to that specification? And why does
abduction work in some cases when deduction doesn’t? In
essence, abduction finds sufficient conditions for a fact to
hold, whilst deduction only finds necessary conditions. In
certain circumstances, necessary conditions are also sufficient
conditions. This is the case when the knowledge involved is
expressed in terms of biconditionals. The frame axiom (1),
for example, makes it a necessary and sufficient condition for
a fluent to hold in Result(a,s) that the fluent holds in s,
given that a isn’t abnormal in this context. Furthermore,
one-way implications can sometimes behave like
biconditionals in this way when minimisation is involved,
because minimisation often has the effect of “completing”
the implication, that is turning it into a biconditional. This
was the case with Ab in the SCP. However, there is no
reason to suppose that necessary and sufficient conditions
will always coincide, even in the presence of minimisation,
as we saw with extended SCP, in which deduction failed
because the predicate Lazy was not completed.
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