Incrementality

and
Logic Programming

Murray Shanahan
March 1988

Imperial College
Department of Computing,

180 Queen’s Gate,
London SW7 2BZ.

Most of the work described in this paper was done at the University of Cambridge
Computer Laboratory, whilst working on my PhD, supervised by William Clocksin.

1 Introduction

An RMS offers efficiency gains to an inference mechanism by facilitating selectiv-
ity of search and incrementality of movement in a logical structure. Selective (or
“intelligent”) backtracking mechanisms for Prolog interpreters have received some
attention in the literature (Bruynooghe and Pereira [1], Matwin and Pietrzykowski
[11], Shanahan [15]), but there has been less effort to match the incrementality of
an RMS within a logic programming framework. This paper attempts to rectify this
by describing an incremental Prolog-like theorem prover which records the structure
of a search space using data dependencies, and which can incrementally assimilate
changes to a database of clauses by propagating those changes through the recorded
dependency structures.

2 Data Dependencies

Suppose that we are concerned to reason with with a set of logical formulae T'. By
explicitly representing the formulae in T', we are tmplicitly representing the structure
of logical relationships which T' defines. What we are doing when we reason with 7' is
recovering components of this structure, and because it is only implicitly represented,
this requires some computational effort. To minimise this effort, each component
of logical structure thus recovered can be recorded, so that, as reasoning proceeds,
more and more of what was previously only implicitly represented becomes explicitly
represented. A Reason Maintenance System (Doyle [6], de Kleer [3], Reiter and de
Kleer [12]) provides facilities for building and accessing just such a record of logical
structure.

In particular, an RMS records a structure of justifications and nogoods, which are
both kinds of data dependency (Charniak et al. [2]). If one formula is shown to be
a logical consequence of a set of others then the RMS can be informed of this fact,
which it records as a justification. If a set of formulae are shown to be inconsistent,
then the RMS can be informed of this fact too, which it records as a nogood. Now,
how can this information be exploited?

One important application is to search. Suppose that the problem solving task
is to find some set of values which meet a given set of constraints. This can be
considered as the problem of finding some consistent set of assumptions A such that
T+ At G, where (& describes the set of constraints and T' describes the set of rules
for the domain in question. The problem solver must efficiently search the space of
possible A’s. The information recorded in an RMS facilitates an efficient search in
two ways — it offers incrementality and selectivity.

Recording justifications allows incrementality. The logical structure of some
T + A can have much in common with that of some T 4+ A’. Rather than redun-
dantly remaking inference steps common to both, recording justifications allows the
problem solver immediate access to logical consequences it has already discovered.
Suppose that the problem solver examines some A where P C A, and determines

that T+ P F @) and therefore that T4+ A F (). There is no need for it to duplicate

the work of making this discovery when it examines any A’ where P C A’. Record-
ing that '+ P F @) as a justification makes it possible to determine straight away
that T4+ A’ F). So, movement in the space of possible A’s is incremental in the
sense that the work done in examining one A is not wasted but is carried over to
the examination of others.

Recording nogoods allows selectivity. The problem solver does not have to ex-
plicitly examine every possible A to completely explore the search space, and clearly
the search is most efficient when the fewest A’s are examined. Suppose that the
problem solver examines some A where P C A, and determines that T'+ P - -G,
and therefore that T'+ A F —=(G. Recording and exploiting a nogood to the effect
that P is inconsistent with G prevents the problem solver from exploring any A’
such that P C A’. So exploration of the space of possible A’s is selective, in the
sense that the problem solver will not examine a new A which it has already shown
not to contribute to a solution.

A second important application is to databases. Suppose we have a database
which evolves gradually over time. By recording data dependencies, each update
can be assimilated incrementally, and the logical consequences of the information
in the modified database do not need to be recomputed from scratch. Not only
does this enable the database to answer subsequent queries more quickly, but if an
update renders the database inconsistent, data dependencies allow the source of the
inconsistency to be identified.

Data dependencies have other uses too. Another application of incrementality is
to the computational aspect of the frame problem (see Shanahan [15]). A problem
solver is more efficient if it incrementally transforms an already computed represen-
tation of a situation into the representation of a temporally nearby situation than
if it recomputes it from scratch.

A Reason Maintenance System can also provide a framework for default reason-
ing. With a system like Doyle’s ([6]), this is due to the form of the justifications
it records. In de Kleer’s system ([3]), default inferences are not recorded and the
responsibility for default reasoning lies with the problem solver. The next section
describes the work of Doyle and de Kleer in more detail.

3 Reason Maintenance

Influenced by the work of Stallman and Sussman ([16]) on dependency directed back-
tracking, Doyle developed a Reason Maintenance System ([6]), which automatically
maintains consistency in a database of formulae. Associated with each formula in
the database is a corresponding node in the RMS, and these nodes are connected
together in a web of data dependencies. Each node has a status of either in or out,
and a justification. If its justification is wvalid, then a node is in, and otherwise it is
out. In Doyle’s system, a justification has the form (< inlist >< outlist >), and
is valid if all the nodes in its inlist are in and all the nodes in its outlist are out.
The support for an in node must be well-founded, that is, circular, self-supporting
networks of justifications are not valid.

The form of the justifications permits non-monotonic inference. In other words,
the coming in of a node that was previously out can result in the going out of a
node that was previously in. This facilitates the creation of revisable assumptions
as well as non-revisable premises. For example, an assumption P and a premise ()
would be represented as follows

Ne o P (() (N2))
N, -P

Ny @ (0 0)

Note that separate nodes are used to represent P and = P. Thus, P is assumed
unless there is a valid justification for = P.

The RMS performs two basic operations on the web of dependencies: reason
maintenance and dependency directed backtracking. Reason maintenance is invoked
whenever the problem solver adds a new node or justification, and it ascertains
which nodes are in and which are out. Dependency directed backtracking is invoked
to resolve contradictions by backtracking through the thread of justification for the
contradictory node in search of an assumption which it can retract in order to restore
consistency. The propositional content of a node is transparent to the RMS, which
can only see the structure of dependencies. It is the responsibility of the problem
solver to perform inference and to indicate contradictions.

When a node is identified as a contradiction and dependency directed back-
tracking is invoked, the set of maximal assumptions supporting the contradiction
is computed, from which one assumption, the culprit, is chosen and retracted, thus
restoring consistency. An assumption is maximal if it does not itself support an-
other justification which supports the contradiction. Before the culprit is chosen, a
new node, called a nogood node, is created to record the contradiction. The culprit
is then chosen and is retracted by justifying one of the nodes which appears in its
outlist. This new justification must record the rest of the inconsistent assumptions,
in case the chosen culprit turns out to be the wrong one, and backtracking has to
try one of the alternatives.

De Kleer ([3], [4]) introduced the idea of an Assumption-Based Reason Main-
tenance System. In Doyle’s RMS, only one labelling of nodes with in or out is
considered at any one time. The problem solver can only focus on a single set of
assumptions and their consequences. In de Kleer’s system, a node is not labelled as
either in or out, but is labelled with the set of environments in which that node is
in. An environment is a set of assumptions. The problem solver can explore many
possibilities at once, and can compare solutions and potential solutions to problems.
Furthermore, the resulting mechanism obviates the need for backtracking. The dis-
covery of an inconsistency does not result in dependency directed backtracking to
restore consistency, but results in a reduction of the sets of environments labelling
some of the nodes.

The Assumption-Based RMS offers an improvement over a conventional RMS
for search problems where all or many solutions are required. When only one or a
few solutions are required, the conventional RMS is more efficient. Acknowledging

this and other deficiencies, de Kleer ([5]) presents a hybrid algorithm which he calls
assumption-based dependency directed backtracking.

The next section introduces logic programming and surveys a number of tech-
niques within logic programming which exploit similar ideas to those used in an
RMS, and which offer the same functionality.

4 Logic Programming

The Horn clause subset of the predicate calculus is used throughout the rest of this
paper. It is defined as follows.

A term is either a constant or a variable or has the form f(7}...T,), where f is
an n-ary function and Ti...T, are terms. A literal or goal has the form p(Ti...T,),
where p is an n-ary predicate and Ty...T, are terms. A definite clause has the form
Lo « Ly, Ly, ...L,, where Lg...L, are literals. If n = 0 then a definite clause may
be called a fact. If n > 0 then it may be called a rule. A goal clause has the form
— Ly...L,, where Ly...L, are literals. The goal clause « is called the empty clause.
A Horn clause is a definite clause or a goal clause.

Variables start with an uppercase letter and may be subscripted. Constants,
function names and predicate names start with a lowercase letter and may be sub-
scripted. Meta-variables will be denoted by an uppercase letter and may be sub-
scripted.

A Prolog interpreter is a top-down Horn clause theorem prover which employs
SLD resolution (Kowalski and Kuehner [10]). Presented with a goal clause Gy and a
set of definite clauses P, it searches for refutations of Gy in the form of a sequence of
goal clauses Gy, G...GG,, where (&, is the empty clause and each GG, is obtained by
resolving (&; with some clause in P whose head unifies with the leftmost literal in G;.
Each such refutation generates a corresponding set of variable bindings, called an
answer substitution. Since there may be many clauses in P whose heads will unify
with the leftmost literal of any given (7;, the theorem prover has to search a space of
possible refutations, and for each refutation discovered it outputs the corresponding
answer substitution. Most extant Prolog interpreters use backtracking to effect a
depth-first search, choosing clauses from P in top to bottom order.

The search performed by a Prolog interpreter can be thought of as a search for A’s
such that T+ A F G, where T' is a set of definite clauses augmented with an equality
theory, GG is the goal clause and A is a set of equalities (i.e. answer substitutions).
By widening the notion of what can be contained in a A to include constraints (Jaffar
and Lassez [9]), by incorporating integrity checking (Sadri and Kowalski [13]), and
by allowing abduction (Eshghi and Kowalski [7]), a very powerful problem solving
paradigm is obtained. But can a mechanism be built for this paradigm which exploits
dependency information as effectively as it is exploited in an RMS?

The sets of assumptions manipulated by an RMS are a particular sort of logically
structured entity. Their logical structure is represented by the web of data depen-
dencies between assumptions, premises and consequences. An RMS is in essence a
system for managing data dependencies. Data dependencies facilitate easy move-

ment in a space of logically structured entities, by allowing the efficient transfor-
mation of one such entity into another, exploiting the similarities between the two
so as to prevent the redundant re-making of inference steps which are common to
them both. This is the sense in which an RMS is incremental.

Data dependencies can also be used to guide search, to permit selectivity in
backtracking. Using an RMS, a forward-reasoning problem solver conducts a search
by repeatedly adding to the web of justifications until it converges on a set of as-
sumptions A which is consistent with the required constraints for a solution, that is,
such that T'4+ A F G for some set of rules T" and constraints (. Because it records
and exploits justifications and nogoods, a problem solver using an RMS exhibits
much better backtracking behaviour than chronological backtracking.

Although it is a backward- not forward-reasoning mechanism, the backtracking
mechanism of a Prolog interpreter can also be much improved by recording and
exploiting the same kind of dependency information (see Bruynooghe and Pereira
[1], Matwin and Pietrzykowski [11], Shanahan [15]).

A Prolog interpreter searches a space of possible refutations. A possible refuta-
tion is, in a sense, a logically structured entity: it is a sequence of goal clauses, each
derived from its predecessor by a resolution step. The search performed by a Prolog
interpreter is, in a sense, incremental: it searches a tree of possible refutations, and
when it moves from one node to another on the same branch, it does not, of course,
have to perform all the resolution steps from the root to the new node all over again.

The need for incrementality does not arise only in search, but also for database
applications (and other things; see Section 2). The problem solving paradigm out-
lined above can be incorporated into a deductive database (Gallaire et al [8]). But
as 1t stands, the Prolog mechanism provides no facility for incrementally manipu-
lating sets of clauses and their consequences, so that each update to the database
demands the recomputation of answers to all queries from scratch. Similarly, each
time the database is updated, integrity constraints have to be checked from scratch,
and this can also involve redundant recomputation. In the next section I present a
Prolog-like theorem prover which is incremental in this sense.

5 An Incremental Theorem Prover

Having fully explored the search space, a non-incremental theorem prover such as
Prolog throws away all record of how each substitution was computed; what se-
quences of resolutions were tried, which were successful and which were not. Ad-
ditions and deletions of clauses are then straightforward database operations, but
every time refutations have to be found for a goal clause, the search space has to
be explored from scratch. Now, suppose that the use of the theorem prover is char-
acterised by the repeated presentation of the same set of goal clauses for a slightly
changed set of definite clauses. The search spaces explored for each slightly modified
set of definite clauses are then likely to overlap considerably. Under these circum-
stances it is economical to employ an incremental theorem prover which maintains
dependency structures showing how each set of answer substitutions is obtained.

Then, if a small change takes place in the set of definite clauses, the consequences
of this change are propagated through the dependency structures to the set of an-
swer substitutions. It is not necessary to regenerate the answer substitutions from
scratch. The burden of computation is then shifted to the incremental modification
of these dependency structures when the set of definite clauses is modified, reducing
the search for answer substitutions to a simple lookup. Clearly, for this to be a
viable proposal, the resulting savings must outweigh the overheads of recording the
dependency structures and propagating the consequences of change. 1 will outline
the construction of an incremental top-down resolution Horn clause theorem prover,
in which the maintenance of dependency structures incurs acceptable overheads.

The mechanism T will describe performs the following operations, given a goal
clause G, a set of definite clauses P and corresponding dependency structures S:
add a clause p to P and update S, delete a clause p from P and update S, and output
corresponding substitutions for all refutations of Gy. Of course, many other sets of
operations are possible. For instance, facilities might be included for modifying
parts of clauses, and this would permit a finer grain of incremental modification of
S. The techniques described extend naturally to the incremental modification of
the dependency structures for a set of goal clauses. It is also possible to incorporate
negation-as-failure, but I will not discuss this problem here, nor will T discuss the
problem of dealing with infinite proof trees.

6 Recording Dependencies

Consider the search tree T for a goal clause GGy and a set of definite clauses P, and
suppose that exploring this tree has generated a set of answer substitutions B. Let
P’ be the same set of clauses as P but with one addition. Then, the search tree T"
for Gig and P’ will be the same as T but with a number of extra branches grafted
on, and the set of answer substitutions B’ will be a superset of B. Alternatively,
if P’ is the same set of clauses as P but with one deletion, then the search tree
T’ for G with P’ will be the same as T but with a number of branches pruned
away, and the set of answer substitutions B’ will be a subset of B. This analysis
would be more complicated if it took account of negation-as-failure or any form of
non-monotonicity, since clause deletions could then add to the search tree and clause
additions could subtract from it.

Figure 2 shows the growth which results in the tree of Figure 1 from the addition
of a new clause. The predicate stack(X,Y, 7) represents that the blocks X, Y and
7 are piled on top of one another and form a stack. In Figure 1 the tallest pile of
blocks is only two high, so there are no stacks, but in Figure 2 a new block has been
added, and a stack has been formed. Deleting the new clause again causes the tree
to shrink back to that of Figure 1.

For each operation, if a record of B and T' is maintained, then the search space
for Gy and P’ can be explored by propagating the consequences of changing P to P’
through T, thus obtaining T”, and then propagating the consequences of changing
T to T' through B, thus obtaining B’. In addition to preserving B and T, it

Figure 1: An Example Search Tree

Figure 2: An Enlarged Search Tree

is necessary to record which substitutions in B depend on which branches in T,
and which branches of T depend on which clauses in P; respectively the answer
dependencies and the clause dependencies. Then, the deletion of a clause from P
must bring about the removal of those branches in T" which depend on it, giving
T’, and each deletion of a branch in T" must bring about the deletion of those
substitutions in B which depend on it, giving B’. Also, it is necessary to record
the predicate dependencies; for each predicate in P, the set of nodes in T" at which
backtracking took place because of the exhaustion of clauses for that predicate.
Then, the addition of a clause for a predicate must bring about the restoration
of the state of computation at each node at which clauses for that predicate were
exhausted. For each such restored state, search is resumed, thus generating new
branches to be grafted onto T, giving T", and possibly producing new substitutions
to be added to B, giving B'.

The three dependency structures mentioned above must be maintained with
respect to this tree; the answer dependencies, the clause dependencies and the pred-
icate dependencies. For each leaf in the tree, a record is kept of whether the path
from the root to that leaf constitutes a refutation, and if so, the corresponding an-
swer substitution in B is indicated. For each clause in P, a list is kept of those
nodes in the tree which point to that clause. Finally, for each predicate in P, a
list is maintained of those nodes in the tree whose childrens’ root nodes all point to
clauses for that predicate. Using the same example as in Figures 1 and 2, Figures
3 and 4 illustrate the three types of dependency. Although not shown, all three
dependency structures must, of course, be maintained for both trees.

The cost of building the dependency structures during search is two list inser-
tions, of the kind that do not require search (see below), for each resolution step
performed. The time savings are obtained at the expense of a storage overhead
which will be directly proportional to the complexity of the search space.

The deletion of a clause €' proceeds as follows. For each node N in the clause
dependencies for (', the tree from N downwards is removed. The removal of a node
requires that all references to that node are deleted from the dependency structures.
So that this does not involve search, the clause and predicate dependencies can be
threaded through the tree in doubly linked circular lists with dummy first elements,
and the removal of a node is then preceded by the deletion of its entries in those
lists. Whenever a leaf is reached, if that leaf is at the end of a refutation then
the corresponding answer substitution is deleted from B. So, the cost of deleting a
clause is directly proportional to the total amount of search subspace whose existence
depends on it. If this is a small proportion of the overall search space then the savings
resulting from adopting the incremental approach are correspondingly large. If it is
a large proportion of the overall search space then the savings will be negligible and
the extra cost will be of the same order as the cost of the original search.

The addition of a clause (' proceeds like this. For each node N in the predicate
dependencies of (', the state of computation at N is restored and the search is
resumed, causing the new branches to grow from N, until an area of search space is
reached which has already been explored (i.e. until the theorem prover backtracks

past N).

Figure 3: An Example Search Space and its Dependency Structures

Figure 4: An Enlarged Search Space and its Dependency Structures

10

There are two ways that the state of computation at a given node in the search
tree can be restored. The first incurs a greater time overhead and a smaller storage
overhead. The only information recorded about the structure of the search is held
in a tree whose shape is isomorphic to that of the search tree, but each of its nodes
contains only a record of the clause its parent was resolved with to obtain that node.
Then, the state represented by a node is restored by tracing back from that node
to the root of the tree, forming a list L of the nodes on that path (in root to node
order), and, starting with the goal clause Gy, generating the sequence of goal clauses
G1...G,, by resolving each G; with the (7 + 1) member of L to obtain (.

Instead of reconstructing the state, further time savings can be made, at the
expense of further storage overheads, by recording the whole structure of the search
tree, including variable bindings. The state of computation at a given node in the
tree is restored simply by a few pointer assignments. With this method, it must be
possible to recover the pending goals at a given node, along with the corresponding
bindings for their variables at that node, independently of any bindings that may
have been made subsequently by any of the node’s children. In a normal Prolog
interpreter, a record is kept of the bindings made by each resolution step, and these
bindings are undone on backtracking. But restoring the state of computation here
is not the same as backtracking. A complete record of every node in the search tree
must be maintained, so when a variable is bound by a resolution step, it must be
copied into the corresponding new node of the search tree.

Whichever method is used, since all the new search subspaces explored have
to be explored anyway, the only overhead of adopting the incremental approach
to clause addition is the initial cost of storing the dependency structures, which is
negligible. As with deletion, the savings obtained will depend on the proportion of
newly explored search space to overall search space.

7 Refinements of the Mechanism

The incremental mechanism described so far is capable of making savings when the
effects of additions to and deletions from the set of definite clauses are confined
to the outermost parts of the tree, near the leaves, or when they are confined to
only a few branches and the tree is wide. The mechanism will also prove useful for
clause replacements (the deletion of a clause followed by the addition of a clause
for the same predicate). Replacements are an important kind of modification. For
instance, a change in location of a block in the Blocks World of the previous section
is represented by the deletion of one on clause and the addition of another. It is
often the case that the effects of a replacement are confined to a region near the root
of the tree, leaving the peripheral foliage untouched. A finer grain of incrementality
would be obtained if the mechanism avoided duplicating the work done below the
affected area.

A complete solution to this problem is very difficult and is beyond the scope of
this paper. The mechanism must remove those parts of the tree that are depen-
dent on the replaced clause whilst saving the branches below. New nodes are grown

11

to replace the removed sections, using the new clause, and the saved branches are
grafted back onto each new section that did not lead to a failure. As a result of
growing a new section, some variables may change their bindings, and the conse-
quences of these changes must be propagated through the rest of the tree. This can
involve a similar pruning, growing and grafting process to that already described,
since some clauses that failed to match before will match now, whilst others that
did match before will fail to now. Again, sections of the tree will have to be lifted
out and replaced, but this time a new section can have more offshoots than the one
it replaces, so that when all the available saved branches have been grafted on, new
ones have to be grown for any offshoots that are still incomplete.

Another refinement of the basic mechanism would be to make incrementality
lazy. Suppose that a cache of search trees is recorded for the last n goal clauses
for which the incremental mechanism was asked to find refutations. There is no
point in expending effort propagating the consequences of subsequent modifications
through all n search trees if only a few of them are ever going to be consulted again.
Accordingly, it might be better to queue up the modifications to be propagated
through a search tree until that tree is required again. If the queue becomes too long,
it will no longer be any more economical to propagate the modifications through
the stored tree than to start from scratch, and the tree can be discarded.

Finally, it may be desirable to use Prolog as a meta-level problem solver as well as
for an object-level representation formalism. Built-in predicates add and demo could
be provided which, respectively add/delete clauses to a theory and demonstrate the
consequences of a theory, both using the incremental mechanism. The following
extension to the mechanism may then be necessary. Consider the solution of a goal
add(T1,C,T2). Tt would be inefficient to keep entirely distinct copies of T'1 and
T2, since then the expense of copying T'1 when a clause is added would obviate
the advantages of the incremental approach. The same problem arises for deletion.
Rather, what is required is a single structure which represents both theories. This
could be obtained by labelling some of the nodes in the tree with the contexts (sets
of axioms) in which those nodes (and their children) are to be considered part of
the tree (de Kleer [3]; see Section 1). Detailed investigation of this and the other
refinements is a subject for further research.

References

1. Bruynooghe M. and Periera ..M., Deduction Revision by Intelligent Back-
tracking, in Implementations of Prolog, ed Campbell J.A., FEllis Horwood
(1984), p194.

2. Charniak E., Riesbeck C.K., McDermott D.V. and Meehan J.R., Artificial

Intelligence Programming, Lawrence Erlbaum (1987).

3. de Kleer J., Choices Without Backtracking, Proceedings American Association
for Artificial Intelligence Conference 1984, p79.

12

10.

11.

12.

13.

14.

15.

16.

de Kleer J., An Assumption-Based TMS, Artificial Intelligence, vol 28 (1986),
pl27.

de Kleer J., Back to Backtracking: Controlling the ATMS, Proceedings Amer-
ican Association for Artificial Intelligence Conference 1986, p910.

Doyle J.; A Truth Maintenance System, Artificial Intelligence, vol 12 (1979),
p231.

Eshghi K. and Kowalski R.A., Abduction through Deduction, Technical Re-
port, Imperial College, London (1988).

Gallaire H., Minker J. and Nicolas J-M., Logic and Databases: A Deductive
Approach, Computing Surveys, vol 16 (1984), no 2, p153.

Jaffar J. and Lassez J-L., Constraint Logic Programming, Proceedings 14th
ACM POPL Conference 1987.

Kowalski R.A. and Kuehner D., Linear Resolution with Selection Function,

Artificial Intelligence, vol 2 (1971), p227.

Matwin S. and Pietrzykowski T., Intelligent Backtracking in Plan-Based De-
duction, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol 7 (1985), no 6, p682.

Reiter R. and de Kleer J., Foundations of Assumption-Based Truth Mainte-
nance Systems, Proceedings American Association for Artificial Intelligence

Conference 1987, p183.
Sadri F. and Kowalski R.A., A Theorem-Proving Approach to Database In-

tegrity, in Foundations of Deductive Databases and Logic Programming, ed

Minker J., Morgan Kaufmann (1988).

Shanahan M.P., An Incremental Theorem Prover, Proceedings International
Joint Conference on Artificial Intelligence 1987, p98T.

Shanahan M.P., Exploiting Dependencies in Search and Inference Mechanisms,
PhD Thesis, University of Cambridge Computer Laboratory
(1987).

Stallman R.M. and Sussman G.J., Forward Reasoning and Dependency Di-
rected Backtracking in a System for Computer-Aided Circuit Analysis, Artifi-
cial Intelligence, vol 9 (1977), p135.

13

