
The Ramification Problem in the Event Calculus

Murray Shanahan

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,

London SW7 2BT,
England.

m.shanahan@ic.ac.uk

Abstract
Finding a solution to the frame problem that is
robust in the presence of actions with indirect effects
has proven to be a difficult task. Examples that
feature the instantaneous propagation of interacting
indirect effects are particularly taxing. This article
shows that an already widely known predicate
calculus formalism, namely the event calculus, can
handle such examples with only minor
enhancements.

Introduction
The ramification problem, that is to say the frame problem
in the context of actions with indirect effects, has attracted
considerable attention recently [McCain & Turner, 1995],
[Lin, 1995], [Gustafsson & Doherty, 1996], [Sandewall,
1996], [Shanahan, 1997], [Thielscher, 1997], [Kakas &
Miller, 1997], [Denecker, et al., 1998]. The purpose of this
paper is to demonstrate that the standard benchmark
scenarios for the ramification problem can be handled by
the event calculus, as presented in Chapter 16 of
[Shanahan, 1997], without introducing any significant new
logical machinery.

Following [Shanahan, 1997], this article presents the event
calculus in the first-order predicate calculus, augmented
with circumscription. In this form, it can be used to
represent a variety of phenomena, including concurrent
action, actions with non-deterministic effects, and
continuous change [Shanahan, 1997].

The event calculus can also be used to represent actions
with indirect effects, as shown in [Shanahan, 1997].
However, certain types of domains are problematic. These
involve the instantaneous propagation of interacting
indirect effects, as exemplified by Thielscher’s circuit
benchmark [1997]. Staying within the framework of the
event calculus, and introducing just two new predicates and
two new axioms, this article presents a general technique
for representing actions with indirect effects that
encompasses such domains.

1 Event Calculus Basics
The event calculus used in this paper is drawn directly from
Chapter 16 of [Shanahan, 1997]. Its ontology includes

actions (or events), fluents and time points. The
formalism’s basic predicates are as follows. Initiates(α,β,τ)
means fluent β starts to hold after action α at time τ,
Terminates(α,β,τ) means fluent β ceases to hold after
action α at time τ, Releases(α,β,τ) means fluent β is not
subject to inertia after action α at time τ, InitiallyP(β)
means fluent β holds from time 0, InitiallyN(β) means
fluent β does not hold from time 0, Happens(α,τ) means
action α occurs at time τ, and HoldsAt(β,τ) means fluent β
holds at time τ.

Given a collection of effect axioms, expressed as Initiates,
Terminates and Releases formulae, and a narrative of
events, expressed as Happens, InitiallyN, InitiallyP and
temporal ordering formulae, the axioms of the event
calculus yields HoldsAt formulae that tell us which fluents
hold at what time points. Here are the axioms, whose
conjunction will be denoted EC.

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t2) ← (EC2)
Happens(a,t1) ∧ Initiates(a,f,t1) ∧

t1 < t2 ∧ ¬ Clipped(t1,f,t2)

Clipped(t1,f,t3) ↔ (EC3)
∃ a,t2 [Happens(a,t2) ∧ t1 < t2 ∧ t2 < t3 ∧

[Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

¬ HoldsAt(f,t) ← (EC4)
Initially N(f) ∧ ¬ Declipped(0,f,t)

¬ HoldsAt(f,t2) ← (EC5)
Happens(a,t1) ∧ Terminates(a,f,t1) ∧

t1 < t2 ∧ ¬ Declipped(t1,f,t2)

Declipped(t1,f,t3) ↔ (EC6)
∃ a,t2 [Happens(a,t2) ∧ t1 < t2 ∧ t2 < t3 ∧

[Initiates(a,f,t2) ∨ Releases(a,f,t2)]]

The frame problem is overcome using circumscription.

Given a conjunction Σ of Initiates, Terminates and Releases
formulae, a conjunction ∆ of InitiallyP, InitiallyN, Happens
and temporal ordering formulae, and a conjunction Ω of
uniqueness-of-names axioms for actions and fluents, we’re
interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω.

In all the cases we’re interested in, Σ and ∆ are in a form
which, according to a theorem of Lifschitz, guarantees that

these circumscriptions are equivalent to the predicate
completions of Initiates, Terminates, Releases and
Happens.

2 State Constraints
The ramification problem is the frame problem for actions
with indirect effects, that is to say actions with effects
beyond those described explicitly by their associated effect
axioms. Although it’s always possible to encode these
indirect effects as direct effects instead, the use of
constraints describing indirect effects ensures a modular
representation and can dramatically shorten an
axiomatisation. One way to represent actions with indirect
effects is through state constraints, the focus of this
section. These express logical relationships that have to
hold between fluents at all times.

In the event calculus, state constraints are HoldsAt
formulae with a universally quantified time argument.
Here’s an example, whose intended meaning should be
obvious.

HoldsAt(Happy(x),t) ↔ (H1.1)
¬ HoldsAt(Hungry(x),t) ∧ ¬ HoldsAt(Cold(x),t)

Note that this formula incorporates fluents with arguments.
Actions may also be parameterised, as in the following
effect axioms.

Terminates(Feed(x),Hungry(x),t) (H2.1)

Terminates(Clothe(x),Cold(x),t) (H2.2)

Here’s a narrative for this example.

Initially P(Hungry(Fred)) (H3.1)

Initially N(Cold(Fred)) (H3.2)

Happens(Feed(Fred),10) (H3.3)

Finally we need some uniqueness-of-names axioms.

UNA[Feed, Clothe] (H4.1)

UNA[Hungry, Cold] (H4.2)

The incorporation of state constraints has negligible impact
on the solution to the frame problem already presented.
However, state constraints must be conjoined to the theory
outside the scope of any of the circumscriptions. Given a
conjunction Σ of Initiates, Terminates and Releases
formulae, a conjunction ∆ of InitiallyP, InitiallyN, Happens
and temporal ordering formulae, a conjunction Ψ of state
constraints, and a conjunction Ω of uniqueness-of-names
axioms for actions and fluents, we’re interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ψ ∧ Ω.

For the current example, if we let Σ be the conjunction of
(H2.1) and (H2.2), ∆ be the conjunction of (H3.1) to
(H3.3), Ψ be (H1.1), and Ω be the conjunction of (H4.1)
and (H4.2), we have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ψ ∧ Ω

�

HoldsAt(Happy(Fred),11).

State constraints must be used with caution. As can be seen
by inspection, Axioms (EC1) to (EC6) enforce the

following principle: a fluent that has been
initiated/terminated directly through an effect axiom cannot
then be terminated/initiated indirectly through a state
constraint, unless it is released beforehand. Similarly, a
fluent that holds at time 0 because of an InitiallyP formula
cannot then be terminated indirectly through a state
constraint, unless it’s released beforehand, and a fluent that
does not hold at time 0 because of an InitiallyN formula
cannot then be initiated indirectly through a state
constraint, unless it’s released beforehand.

Suppose, in the present example, we introduced an
Upset(x) event whose effect is to terminate Happy(x). Then
the addition of Happens(Upset(Fred),12) would lead to
contradict ion. Simi lar ly , the addi t ion of
Initially N(Happy(Fred)) would lead to contradiction.

State constraints are most useful when there is a clear
division of fluents into primitive and derived. Effect axioms
are used to describe the dynamics of the primitive fluents
and state constraints are used to describe the derived fluents
in terms of the primitive ones.

3 Effect Constraints
State constraints aren’t the only way to represent actions
with indirect effects, and often they aren’t the right way, as
emphasised by Lin [1995] and McCain and Turner [1995].
To see this, we’ll take a look at the so-called “walking
turkey shoot”, a variation of the Yale shooting problem in
which the Shoot action, as well as directly terminating the
Alive fluent, indirectly terminates a fluent Walking.

The effect axioms are inherited from the Yale shooting
problem.

Initiates(Load,Loaded,t) (W1.1)

Terminates(Shoot,Alive,t) ← HoldsAt(Loaded,t) (W1.2)

The narrative of events is as follows.

Initially P(Alive) (W2.1)

Initially P(Loaded) (W2.2)

Initially P(Walking) (W2.3)

Happens(Shoot,T1) (W2.4)

T1 < T2 (W2.5)

We have two uniqueness-of-names axioms.

UNA[Load, Shoot] (W3.1)

UNA[Loaded, Alive, Walking] (W3.2)

Now, how do we represent the dependency between the
Walking and Alive fluents so as to get the required indirect
effect of a Shoot action? The obvious, but incorrect, way is
to use a state constraint.

HoldsAt(Alive,t) ← HoldsAt(Walking,t)

The addition of this state constraint to the above
formalisation would yield inconsistency, because it violates
the rule that a fluent, in this case Walking, that holds
directly through an InitiallyP formula cannot be terminated
indirectly through a state constraint. (The same problem
would arise if the Walking fluent had been initiated directly
by an action.)

A better way to represent the relationship between the
Walking fluent and the Alive fluent in the walking turkey
shoot is through an effect constraint. Effect constraints are
Initiates and Terminates formulae with a single universally
quantified action variable. The constraint we require for
this example is the following.

Terminates(a,Walking,t) ← Terminates(a,Alive,t)(W4.1)

Notice that effect constraints are weaker than state
constraints: the possibility of resurrecting a corpse by
making it walk, inherent in the faulty state constraint, is not
inherent in this formula.

Let Σ be the conjunction of (W1.1), (W1.2) and (W4.1). Let
∆ be the conjunction of (W2.1) to (W2.5), and Ω be the
conjunction of (W3.1) and (W3.2). We have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω

�

¬ HoldsAt(Walking,T2).

Effect constraints are adequate for the representation of
many actions with indirect effects. But there is still a class
of examples for which they don’t work. Consider the
following benchmark problem due to Thielscher [1997]. A
circuit comprising a battery, three switches, a relay, and a
light bulb is wired up as in Figure 1.

Switch1

Relay

Switch3

Switch2

Light

¬

¬

¬

Figure 1: Thielscher’s Circuit

Five fluents represent the state of each component in the
circuit: Switch1, Switch2, Switch3, Relay, and Light. Their
initial configuration is as in Figure 1. There are various
dependencies among the fluents. The light is on if switches
one and two are closed. Switch two is open if the relay is
on. Finally, the relay is on if switches 1 and 3 are closed.
When switch 1 is closed, the relay becomes activated,
switch 2 will open, and the light stays off. The awkward
nature of this example derives from the fact that closing
switch 1 has one indirect effect (closing the relay, which
opens switch 2) that disables another indirect effect (the
light coming on).

A first, naive attempt to formalise this example might
include an effect constraint like the following.

Initiates(a,Light,t) ←
Initiates(a,Switch1,t) ∧ HoldsAt(Switch2,t)

But this formula is obviously a false start, because in this
scenario, initiating Switch1 also indirectly terminates
Switch2, and the event calculus axioms entail that Switch2

still holds at the instant of termination. A better attempt
would be the following effect constraint.

Initiates(a,Light,t) ←
Initiates(a,Switch1,t) ∧ HoldsAt(Switch2,t) ∧

¬ Terminates(a,Switch2,t)

This formula is adequate for this particular scenario, but
doesn’t fully capture the dependency between the fluents.
Suppose, for example, that switch 1 is initially closed,
while switch 2 and switch 3 are initially open. Then closing
switch 2 causes the light to go on, something not captured
by this constraint. We need a counterpart to the above
formula for this case.

Initiates(a,Light,t) ←
Initiates(a,Switch2,t) ∧ HoldsAt(Switch1,t) ∧

¬ Terminates(a,Switch1,t)

Once again, while this is adequate for the present example,
it’s not a general solution. In particular, neither of these
formulae accounts for the possibility of independent but
concurrent switch events.

In the following section, a method for representing the
indirect effects of actions is presented whose generality is
comparable to that of other recently published solutions to
the ramification problem, but which doesn’t require the
development of significantly more logical machinery than
is already present in the event calculus defined above.

4 Causal Constraints
Following a common practise in recent literature on the
ramification problem, let’s introduce some shorthand
notation for expressing dependencies between fluents.

Definition 4.1. A fluent symbol is any string of characters
starting with an upper-case letter. �
Definition 4.2. Any fluent symbol is also a fluent formula.
If φ and ψ are fluent formulae, then so are ¬ φ, φ ∧ ψ, φ ∨
ψ, φ ← ψ, φ → ψ and φ ↔ ψ. �
Definition 4.3. Following the notation of [Denecker, et al.,
1998], a causal constraint is a formula of the form,

 initiating Π causes β
or,

 initiating Π causes ¬ β
where Π is a fluent formula and β is a fluent symbol. �
Here’s a subset of the fluent dependencies in Thielscher’s
circuit expressed using this notation.

 initiating Switch1 ∧ Switch2 causes Light

 initiating Relay causes ¬ Switch2

 initiating Switch1 ∧ Switch3 causes Relay

There are other dependencies in the circuit. For example,
this set of dependencies neglects to specify the conditions
under which the light goes off. But these can be ignored for
the example narrative we’re interested in here.

Formulae like these are intended to have an intuitive
meaning. The translation into the event calculus detailed
below could be thought of as one attempt to give them a
precise semantics. Alternatively, these formulae can be

thought of simply as syntactic sugar for more long-winded
event calculus formulae of the particular form defined
below.

4.1 Causal Constraints in the Event Calculus
The key to correctly representing causal constraints in the
event calculus is first to introduce new events that update
each fluent whose value is dependent on other fluents, and
second to write formulae ensuring that these events are
triggered whenever those influencing fluents attain the
appropriate values. (A related proposal is made by Pinto
[1998] in the context of the situation calculus.)

To guarantee the instantaneous propagation of the effects of
such events, they must be triggered not just when the
influencing fluents already have their appropriate values,
but also when they are about to get those values thanks to
other events occurring at the same time. This motivates the
introduction of four new predicates, Started, Stopped,
Initiated and Terminated. The formula Started(β,τ) means
that either β already holds at τ or an event occurs at τ that
initiates β. Conversely, the formula Stopped(β,τ) means
that either β already does not hold at τ or an event occurs at
τ that terminates β. The predicates Started and Stopped are
defined by the following axioms.

Started(f,t) ↔ (CC1)
HoldsAt(f,t) ∨

∃ a [Happens(a,t) ∧ Initiates(a,f,t)]

Stopped(f,t) ↔ (CC2)
¬ HoldsAt(f,t) ∨

∃ a [Happens(a,t) ∧ Terminates(a,f,t)]

Note that at the instant of a fluent’s transition from one
value to another, we have both Stopped and Started at the
same time.

The formula Initiated(β,τ) means that β has been “started”
at τ in the above sense, and furthermore no event occurs at
τ that terminates β. Likewise, the formula Terminated(β,τ)
means that β has been “stopped” at τ in the above sense,
and no event occurs at τ that initiates β. The predicates
Initiated and Terminated are defined by the following
axioms.

Initiated(f,t) ↔ (CC3)
Started(f,t) ∧

¬ ∃ a [Happens(a,t) ∧ Terminates(a,f,t)]

Terminated(f,t) ↔ (CC4)
Stopped(f,t) ∧

¬ ∃ a [Happens(a,t) ∧ Initiates(a,f,t)]

To represent the causal constraints in Thielscher’s circuit
example, we introduce three events, LightOn, Open2 and
CloseRelay, which are triggered under conditions described
by the following formulae.

Happens(LightOn,t) ← (L1.1)
Stopped(Light,t) ∧ Initiated(Switch1,t) ∧

Initiated(Switch2,t)

Happens(Open2,t) ← (L1.2)
Started(Switch2,t) ∧ Initiated(Relay,t)

Happens(CloseRelay,t) ← (L1.3)
Stopped(Relay,t) ∧ Initiated(Switch1,t) ∧

Initiated(Switch3,t)

These triggered events govern the transition of fluents from
one value to another when certain conditions come about,
as prescribed by the corresponding causal constraints.
Hence the need for the Stopped and Started conditions in
the above formulae. These ensure that an event occurs only
at the time of the transition in question. The effects of
these events are as follows. A Close1 event is also
introduced.

Initiates(LightOn,Light,t) (L2.1)

Terminates(Open2,Switch2,t) (L2.2)

Initiates(CloseRelay,Relay,t) (L2.3)

Initiates(Close1,Switch1,t) (L2.4)

The circuit’s initial configuration, as shown in Figure 1, is
as follows.

Initially N(Switch1) (L3.1)

Initially P(Switch2) (L3.2)

Initially P(Switch3) (L3.3)

Initially N(Relay) (L3.4)

Initially N(Light) (L3.5)

The only event that occurs is a Close1 event, at time 10.

Happens(Close1,10) (L3.6)

Two uniqueness-of-names axioms are required.

UNA[LightOn, Close1, Open2, CloseRelay] (L4.1)

UNA[Switch1, Switch2, Switch3, Relay, Light] (L4.2)

As the following proposition shows, this formalisation of
Thielscher’s circuit yields the required logical
consequences. In particular, the relay is activated when
switch 1 is closed, causing switch 2 to open, and the light
does not come on.

Proposition 4.4. Let Σ be the conjunction of (L2.1) to
(L2.4), ∆ be the conjunction of (L1.1) to (L1.3) with (L3.1)
to (L3.6), Ψ be the conjunction of (CC1) to (CC4), and Ω
be the conjunction of (L4.1) and (L4.2). We have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ψ ∧ Ω

�

HoldsAt(Relay,20) ∧ ¬ HoldsAt(Switch2,20) ∧
¬ HoldsAt(Light,20).

Proof. From CIRC[Σ ; Initiates, Terminates, Releases] we
get the completions of Initiates, Terminates and Releases.
From CIRC[∆ ; Happens] we get the completion of
Happens, namely,

Happens(a,t) ↔ [4.5]
[a = Close1 ∧ t = 10] ∨
[a = LightOn ∧ Stopped(Light,t) ∧

Initiated(Switch1,t) ∧ Initiated(Switch2,t)] ∨
[a = Open2 ∧ Started(Switch2,t) ∧ Initiated(Relay,t)] ∨
[a = CloseRelay ∧ Stopped(Relay,t) ∧

Initiated(Switch1,t) ∧ Initiated(Switch3,t)].

At the time of the first event, the fluents Switch2 and
Switch3 hold and the fluents Switch1, Relay and Light
don’t hold.

First we prove that the Close1 event at time 10 is the first
event. Consider any t < 10. There can’t be a Close1 event at
t, since, from [4.5], the only Close1 event is at 10. Since we
have ¬ HoldsAt(Switch1,t) and only a Close1 event can
initiate Switch1, we have ¬ Initiated(Switch1,t), so, from
[4.5], there can’t be a LightOn or CloseRelay event at t.
Since we have ¬ HoldsAt(Relay,t) and there can’t be a
CloseRelay event at t, we have ¬ Initiated(Relay,t), and
therefore, from [4.5], there can’t be an Open2 event at t.
From [4.5], this exhausts all the possible types of event, so
there can’t be any event occurrence at time t. So the Close1
event at time 10 is the first event.

Now we prove that a Close1 event, a CloseRelay event and
an Open2 event all occur at time 10, but that no LightOn
event occurs at time 10. We know directly from [4.5] that a
Close1 event occurs at 10. Therefore, since there is no type
of event that can terminate Switch1, we have
Initiated(Switch1,10), given (L2.4). We know that
Stopped(Relay,10) since we have ¬ HoldsAt(Relay,10),
and since we have HoldsAt(Switch3,10), we also have
Initiated(Switch3,10). So, from [4.5], we know that a
CloseRelay event occurs at 10. Since a CloseRelay event
occurs at 10 and there is no type of event that can initiate
Relay, we have Initiated(Relay,10), given (L2.3). We also
know that HoldsAt(Switch2,10) and therefore
Started(Switch2,10). So, from [4.5], we know that an
Open2 event occurs at time 10. Since there is an Open2
event at 10, which, from (L2.2), terminates Switch2, we
have ¬ Initiated(Switch2,10), and therefore, from [4.5]
there cannot be a LightOn event at 10.

Using a similar argument to the paragraph before last, we
can show that no events occur after time 10. Given the
events that occur at time 10, it’s then straightforward to
prove, from Axioms (EC2) and (EC5), that the fluent Relay
holds at time 20, but the fluents Switch2 and Light do not.�
Let’s briefly consider a couple of minor variations on this
example. First, suppose we augment the formalisation with
a Close2 action which initiates Switch2. Then the addition
of the formula Happens(Close2,15) will give rise to a
contradiction, since we would have both a Close2 event at
time 15 and, from (L1.2), an Open2 event, enabling us to
prove, for any time t after 15, both HoldsAt(Switch2,t) and
¬ HoldsAt(Switch2,15). In other words, switch 2 cannot be
manually closed while switches 1 and 3 are closed, thanks
to the relay.

Now consider the original narrative of events, but with a
different initial situation, one in which switch 3 is open,
then, as desired, we get a different result: the relay isn’t
activated, switch 2 doesn’t open, so the light does come on.

Initially N(Switch1) (L5.1)

Initially P(Switch2) (L5.2)

Initially N(Switch3) (L5.3)

Initially N(Relay) (L5.4)

Initially N(Light) (L5.5)

Proposition 4.6. Retaining Σ, ∆, Ψ and Ω as above, let ∆
be the conjunction of (L5.1) to (L5.5) with (L3.5). Then we
have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ψ ∧ Ω

�

HoldsAt(Light,20).

Proof. The proof is similar to that of Proposition 4.4. �

5 From Causal Constraints to Event Calculus
This section presents a general translation from the
shorthand notation for causal constraints presented above
into the event calculus, along the lines suggested by the
preceding example.

Definition 5.1. A negated fluent symbol is a fluent formula
of the form ¬ β where β is a fluent symbol. �
First we define the function Tc, which translates a single
causal constraint into a pair of event calculus formulae.

Definition 5.2. Let ψ be a causal constraint of the form,

 initiating Π causes γ
where Π is a fluent formula and γ is either a fluent symbol
or a negated fluent symbol. The translation Tc(ψ) of ψ with
new action name α is the pair 〈σ,δ〉, where δ and σ are
defined as follows. Let Π' be Π with every negated fluent
symbol ¬ β replaced by Terminated(β,t) and every other
fluent symbol β replaced by Initiated(β,t). If γ is a negated
fluent symbol ¬ β, then σ is,

Terminates(α,β,t)

and δ is,

Happens(α,t) ← Started(β,t) ∧ Π'.

Otherwise σ is,

Initiates(α,γ,t)

and δ is,

Happens(α,t) ← Stopped(γ,t) ∧ Π'. �
Next we define the function Tc*, which translates a set of
causal constraints into a pair of conjunctions of event
calculus formulae.

Definition 5.3 . Let Φ be a finite set of causal constraints
{ ψ1, ..., ψn}. The translation Tc*(Φ) of Φ with new action
names α1 to αn is the pair 〈Σ,∆〉, where Σ is σ1 ∧ ... ∧ σn
and ∆ is δ1 ∧ ... ∧ δn, given that for any 1 ≤ i ≤ n, Tc(ψi)
with new action name αi is 〈σi,δi〉. �

5.1 Limitations: The Gear Wheels Example
Although the technique described here can represent the
indirect effects of many different types of actions, it does
not work well in scenarios involving mutually dependent
fluents, such as the following example, which is taken from
[Denecker, et al., 1998]. There are two interlocking gear
wheels. If one is turning, the other must be turning, and if
one is stationary, the other must be stationary. The example
is formalised using two fluents, Turning1 and Turning2.

 initiating Turning1 causes Turning2

 initiating Turning2 causes Turning1

 initiating ¬ Turning1 causes ¬ Turning2

 initiating ¬ Turning2 causes ¬ Turning1

The proposed event calculus translation of these causal
constraints does not yield the desired conclusions, as it
cannot rule out phantom self-starting events that cause the
wheel to turn. (Note, however, that this example can be
correctly formalised using the state constraints of
Section 2.) As illustrated in the next section, other
examples with cycles of dependencies are handled more
satisfactorily.

6 Vicious Cycles
Consider the modification of Thielscher’s circuit depicted
in Figure 2. This circuit incorporates a potentially vicious
cycle of fluent dependencies. If switch 1 is closed, the relay
is activated, opening switch 2, which prevents the relay
from being activated. Given Axioms (CC1) to (CC4) in
their present form, the formalisation of this scenario using
causal constraints will yield inconsistency.

Here are the causal constraints Φ.

 initiating Relay causes ¬ Switch2

 initiating Switch1 ∧ Switch2 ∧ Switch3 causes Relay

Switch1

Relay
Switch3

Switch2

¬

¬

Figure 2: A Modification of Thielscher’s Circuit

Let 〈Σ,∆〉 be Tc*(Φ) with new action names Open2 and
CloseRelay. Then ∆ is the conjunction of the following
Happens formulae, and Σ is the conjunction of the
following Initiates and Terminates formulae.

Happens(Open2,t) ← (V1.1)
Started(Switch2,t) ∧ Initiated(Relay,t)

Happens(CloseRelay,t) ← (V1.2)
Stopped(Relay,t) ∧ Initiated(Switch1,t) ∧

Initiated(Switch2,t) ∧ Initiated(Switch3,t)

Terminates(Open2,Switch2,t) (V2.1)

Initiates(CloseRelay,Relay,t) (V2.2)

Initiates(Close1,Switch1,t) (V2.3)

The circuit’s initial configuration is as follows.

Initially N(Switch1) (V3.1)

Initially P(Switch2) (V3.2)

Initially P(Switch3) (V3.3)

Initially N(Relay) (V3.4)

The only event that occurs is a Close1 event, at time 10.

Happens(Close1,10) (V3.5)

Here are the customary uniqueness-of-names axioms.

UNA[Close1, Open2, CloseRelay] (V4.1)

UNA[Switch1, Switch2, Switch3, Relay] (V4.2)

Proposition 6.1. Let Σ be the conjunction of (V1.1) and
(V1.2), ∆ be the conjunction of (V1.1) and (V1.2) with
(V3.1) to (V3.5), Ψ be the conjunction of (CC1) to (CC4),
and Ω be the conjunction of (V4.1) and (V4.2). The
following formula is inconsistent.

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ψ ∧ Ω.

Proof. From CIRC[∆ ; Happens] we get,

Happens(a,t) ↔ [6.2]
[a = Close1 ∧ t = 10] ∨
[a = Open2 ∧ Started(Switch2,t) ∧ Initiated(Relay,t)] ∨
[a = CloseRelay ∧ Stopped(Relay,t) ∧

Initiated(Switch1,t) ∧ Initiated(Switch2,t) ∧
Initiated(Switch3,t)].

Using the techniques of the proof of Proposition 4.4, we
can show that the formula entails that the first event occurs
at time 10. At time 10, Switch2 and Switch3 hold, but
Switch1 and Relay do not hold. We know that a Close1
event occurs at 10. Now suppose no Open2 event occurs at
10. Then, since Open2 is the only event type that can
terminate Switch2, we have Initiated(Switch2,10), which,
since we have Stopped(Relay,10), Initiated(Switch1,10)
and Initiated(Switch3,10), entails that a CloseRelay event
occurs at 10 from [6.2]. But if a CloseRelay event occurs at
10, then we have Initiated(Relay,10) and, from [6.2], an
Open2 event also occurs at 10, which contradicts out initial
assumption.

So an Open2 event must occur at 10. But then, from [6.2],
we must have Initiated(Relay,10). From (CC3) and [6.2],
this entails that a CloseRelay event must occur at 10. From
[6.2], this gives us Initiated(Switch2,10). But since an
Open2 event occurs at 10, which terminates Switch2, this
contradicts (CC3). Therefore the formula has no models.�
Note that the cycle in this example is only “dangerous” if
switch 3 is initially closed. If switch 3 is initially open, the
correspondingly modified theory is consistent, and yields
the expected conclusion that the relay remains inactive after
the Close1 event.

Arguably, inconsistency is not the most desirable response
to an example with a vicious cycle. A formalisation that
yielded non-determinism instead would at least permit
other useful conclusions to be drawn. Moreover, suppose
the initial state of switch 3 is unknown, and (V3.3) is
omitted. Then, the threat of inconsistency ensures that
Initially N(Switch3) follows from the theory, even though
no InitiallyN formula to that effect is included. This seems
a little counter-intuitive.

On the other hand, the aim of formalisation should be to
avoid inconsistency. The fact that inconsistency can result
here simply from selecting an inappropriate initial state for
switch 3 indicates that the wrong level of abstraction has
been chosen for representing this particular domain. If we
want to represent it in earnest (not just for illustrative

purposes), a level of abstraction should be chosen in which
every possible narrative that is itself consistent results in a
consistent theory. (In the present case, this would demand
the inclusion of explicit delays in the model.)

Concluding Remarks
The works of Lin [1995], of Gustafsson and Doherty
[1996], and of Thielscher [1997] all share an important
feature with the present paper. In each case, an existing
predicate calculus-based action formalism, respectively the
situation calculus, the fluent calculus, and PMON, is
extended to handle actions with indirect effects. Moreover,
in [Lin, 1995] and [Gustaffson & Doherty, 1996], as in the
present article, circumscription policies are deployed which
minimise parts of the theory separately.

The solution to the ramification problem offered in the
present article is also based on an existing predicate
calculus action formalism, namely the event calculus. As
such, it doesn’t demand the introduction of any new
semantic machinery. Moreover, the proposal is
conservative in the sense that it only adds to the existing
calculus, the extension comprising four new axioms and
four new predicates. With these axioms in place, the
proposed solution is little more than a novel style of writing
certain event calculus formulae.

No formal assessment has yet been undertaken of the range
of applicability of the proposed solution to the ramification
problem, as recommended by [Sandewall, 1996]. This,
along with a more formal comparison with other
approaches, would be a good topic for future research.

Acknowledgments
Thanks to Patrick Doherty, Rob Miller, Michael Thielscher,
Kristof Van Belleghem and Mark Witkowski for
discussions related to the topic of this paper. Thanks also to
the anonymous referees who spotted flaws in an earlier
version of the paper.

References
[Denecker, et al., 1998] M.Denecker, D.Theseider Dupré

and K.Van Belleghem, An Inductive Definition
Approach to Ramifications, Electronic Transactions on
Artificial Intelligence, to appear.

[Gustafsson & Doherty, 1996] J.Gustafsson and P.Doherty,
Embracing Occlusion in Specifying the Indirect Effects
of Actions, Proceedings 1996 Knowledge Representation
Conference (KR 96), pp. 87–98.

[Kakas & Miller, 1997] A.Kakas and R.S.Miller,
Reasoning about Actions, Narrative and Ramification,
Electronic Transactions on Artificial Intelligence, vol. 1
(1997), pp. 39–72.

[Lin, 1995] F.Lin, Embracing Causality in Specifying the
Indirect Effects of Actions, Proceedings IJCAI 95, pp.
1985–1991.

[McCain & Turner, 1995] N.McCain and H.Turner, A
Causal Theory of Ramifications and Qualifications,
Proceedings IJCAI 95, pp. 1978–1984.

[Pinto, 1998] J.Pinto, Concurrent Actions and Interacting
Effects, Proceedings 1998 Knowledge Representation
Conference (KR 98), pp. 292–303.

[Sandewall, 1996] E.Sandewall, Assessments of
Ramification Methods that Use Static Domain
Constraints, Proceedings 1996 Knowledge
Representation Conference (KR 96), pp. 99–110.

[Shanahan, 1997] M.P.Shanahan, Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia, MIT Press, 1997.

[Thielscher, 1997] M.Thielscher, Ramification and
Causality, Artificial Intelligence, vol. 89 (1997), pp.
317–364.

