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Abstract

Any model of the world a robot constructs on the basis of its sensor data is
necessarily both incomplete, due to the robot’s limited window on the world, and
uncertain, due to sensor and motor noise. This paper proposes a logic-based
framework in which such models are constructed through an abductive process
whereby sensor data is explained by hypothesising the existence, locations, and
shapes of objects. Symbols appearing in the resulting explanations acquire
meaning through the theory, and yet are grounded by the robot’s interaction with
the world. The proposed framework draws on existing logic-based formalisms
for representing action, continuous change, space, and shape, but a novel
solution to the frame problem is employed. Noise is treated as a kind of non-
determinism, and is dealt with by a consistency-based form of abduction.1

Keywords: Cognitive Robotics, Common Sense Reasoning.

1 Much of the work in this article was published in two conference papers in 1996, one in the ECAI
conference [Shanahan, 1996a], where it won the Best Paper Award, and one in the AAAI conference
[Shanahan, 1996b]. Since 1996, the author has carried out further work on the topic of the article, to
which the interested reader may wish to refer, namely [Shanahan, 1997b] and [Shanahan, 1998].
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Introduction

Since the end of the Shakey project [Nilsson, 1984], an ever widening gap has opened
up between theoretical work in Knowledge Representation and the practice of robotics.
At the end of the Eighties, this trend culminated in the work of Brooks, who rejected
the assumptions underlying the Shakey project altogether [Brooks, 1986], [Brooks,
1991].

The key problem I see with [all work in the style of Shakey] is that it
relied on the assumption that a complete world model could be built
internally and then manipulated.

[Brooks, 1991a, page 577]

As Brooks points out, a complete model of the world is hard for a robot to construct
because,

The data delivered by sensors are not direct descriptions of the world
as objects and their relationships [and] commands to actuators have
very uncertain effects.

[Brooks, 1991b, page 5]

Without ignoring the lessons of the early Seventies, the nascent area of Cognitive
Robotics [Lespérance, et al., 1994] seeks to reinstate the ideals of the Shakey project,
namely the construction of robots whose architecture is based on the idea of
representing the world by sentences of formal logic and reasoning about it by
manipulating those sentences. The chief benefits of this approach are,

• that it facilitates the endowment of a robot with the capacity to perform high-
level reasoning tasks, such as planning, and

• that it makes it possible to formally account for the success (or otherwise) of a
robot by appealing to the notions of correct reasoning and correct representation.

Where Brooks and his followers see residual adherence to the ideals of the Shakey
project as a barrier to progress in AI, Cognitive Robotics laments the failure to pursue
those ideals with sufficient zeal. Contrary to ill-informed opinion, logic is eminently
suited to representing incomplete models of the world, which are the only models that
can be built on the basis of the incomplete and noisy data delivered by a robot’s
sensors.

Unlike the Shakey project, contemporary Cognitive Robotics can draw on twenty five
years of progress in the formalisation of common sense reasoning, specifically on
representing and reasoning about action, change, space, and shape, and especially on
reasoning with incomplete information. In addition, it benefits from advances in a
number of enabling technologies, including logic programming techniques, algorithms
from mainstream robotics, and low-cost mobile robotic platforms with substantial on-
board computing power.
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This paper concerns the representation of knowledge about the objects in a robot’s
environment, and how such knowledge is acquired. The main feature of this knowledge
is its incompleteness and uncertainty, placing the robot in what McCarthy calls the
common sense informatic situation [1989]. The treatment given in the paper is
rigorously logical, but has been carried through to implementation on a real robot.

The paper is organised as follows. After outlining the basic idea of abductive sensor
data assimilation, a general purpose formalism for representing action, continuous
change, space and shape is introduced. This formalism is then used to represent the
relationship between the actions of a particular (real) robot and the sensor data it
receives from the world. The abductive task of assimilating sensor data is then
straightforwardly characterised. The next topic to be considered is that of noise, which
is taken to mean uncertainty in both sensor input and motor output. Two theorems are
then developed which facilitate the design of map-building algorithms that can be
executed on the robot. Finally, the results of preliminary experimentation with the robot
are reported.

1 Assimilating Sensor Data

The key idea of this paper is to consider the process of assimilating a stream of sensor
data as abduction. Given such a stream, the abductive task is to hypothesise the
existence, shapes, and locations of objects which, given the output the robot has
supplied to its motors, would explain that sensor data [Charniak & McDermott, 1985,
page 455]. This is, in essence, the map building task for a mobile robot.

More precisely, if a stream of sensor data is represented as the conjunction Ψ of a set of
observation sentences, the task is to find an explanation of Ψ in the form of a logical
description (a map) ∆M of the initial locations and shapes of a number of objects, such
that,

ΣB ∧ ΣE ∧ ∆N ∧ ∆M ª Ψ

where,

• ΣB is a background theory, comprising axioms for change (including continuous
change), action, space, and shape,

• ΣE is a theory relating the shapes and movements of objects (including the robot
itself) to the robot’s sensor data, and

• ∆N is a logical description of the movements of objects, including the robot
itself.

The exact form of these components is described in the next three sections, which
present formalisms for representing and reasoning about action, change, space, and
shape. In practice, as we’ll see, these components will have to be split into parts for
technical reasons.
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Three major issues arise with this logical specification of the map building task: noisy
data, incomplete information, and implementation.

• ΣE does not have to assume a perfect correspondence between objects in the
world and sensor data received from them, or a perfect correspondence between
motor outputs and actual movements in the world. In practice, a noisy interface
between world and robot must be assumed. Using the expressive power of first-
order logic, the uncertainty resulting from such noise can be captured.

• Data in the common sense informatic situation is incomplete as well as noisy. In
abductive terms, there will typically be many ∆M’s that could explain any given
Ψ. For example, the robot may only receive sensor data from a small fraction of
the total surface of an object, and be unable to tell whether the object is large or
small. Again, using the expressive power of first-order logic, this
incompleteness can be captured.

• This logical specification of the map building task must be rendered into an
efficient implementation which can be executed by the on-board microprocessor
of a mobile robot.

The provision of a logic-based theoretical account brings issues like noise and
incompleteness into sharp focus, and permits their study within the same framework
used to address wider epistemological questions in knowledge representation. It also
enables the formal evaluation of algorithms for low-level motor-perception tasks by
supplying a formalism in which these tasks can be precisely specified. These topics are
discussed in detail in later sections.

2 Representing Action

The formalism used in this paper to represent action and change, including continuous
change, is adapted from the circumscriptive event calculus presented in [Shanahan,
1995b], which in turn is based loosely on the formalism of Kowalski and Sergot
[1986]. However, it employs a novel solution to the frame problem, inspired by the
work of Kartha and Lifschitz [1995]. The result is a considerable simplification of the
formalism in [Shanahan, 1995b].

Throughout the paper, the language of many-sorted first-order predicate calculus with
equality will be used, augmented with circumscription [McCarthy, 1986], [Lifschitz,
1994]. Variables in formulae begin with lower-case letters and are universally
quantified with maximum scope unless indicated otherwise.

In the event calculus, we have sorts for fluents, actions (or events), and time points.
It’s assumed that time points are interpreted by the reals, and that the usual comparative
predicates, arithmetic functions, and trigonometric functions are suitably defined. The
formula HoldsAt(f,t) says that fluent f is true at time point t. The formulae
Initiates(a,f,t) and Terminates(a,f,t) say respectively that action a makes fluent f true
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from time point t, and that a makes f false from t. The effects of actions are described
by a collection of formulae involving Initiates and Terminates.

For example, if the term Rotate(r) denotes a robot’s action of rotating r degrees about
some axis passing through its body, and the term Facing(r) is a fluent representing that
the robot is facing in a direction r degrees from North, then we might write the
following Initiates and Terminates formulae.2

Initiates(Rotate(r1),Facing(r2),t) ← HoldsAt(Facing(r3),t) ∧ r2 = r3 + r1 (2.1)

Terminates(Rotate(r1),Facing(r2),t) ← HoldsAt(Facing(r2),t) ∧ r1 ≠ 0 (2.2)

Once a fluent has been initiated or terminated by an action or event, it is subject to the
common sense law of inertia, which is captured by the event calculus axioms to be
presented shortly. This means that it retains its value (true or false) until another action
or event occurs which affects that fluent.

A narrative of actions and events is described via the predicates Happens, InitiallyP, and
InitiallyN. The formula Happens(a,t) says that an action or event of type a occurred at
time point t. Events are instantaneous. The formula InitiallyP(f) says that the fluent f is
true from time point 0, and the formula InitiallyN(f) says that the fluent f is false from
time point 0. Here’s an example narrative.

InitiallyP(Facing(0)) (2.3)

Happens(Rotate(90),10) (2.4)

Happens(Rotate(–180),20) (2.5)

A theory will also include a pair of uniqueness-of-names axioms, one for actions and
one fluents.3

UNA[Facing] (2.6)

UNA[Rotate] (2.7)

The relationship between HoldsAt, Happens, Initiates, and Terminates is constrained
by the following axioms. Note that a fluent does not hold at the time of an action or
event that initiates it, but does hold at the time of an action or event that terminates it.

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t2) ← (EC2)
Happens(a,t1) ∧ Initiates(a,f,t1) ∧ t1 < t2 ∧ ¬ Clipped(t1,f,t2)

¬ HoldsAt(f,t) ← InitiallyN(f) ∧ ¬ Declipped(0,f,t) (EC3)

¬ HoldsAt(f,t2) ← (EC4)
Happens(a,t1) ∧ Terminates(a,f,t1) ∧ t1 < t2 ∧ ¬ Declipped(t1,f,t2)

2 Rotation is treated as instantaneous here, and throughout the sequel. So long as the robot always
finishes turning before it moves forwards, this idealisation is acceptable.
3 The UNA notation is taken from [Baker, 1989].
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Clipped(t1,f,t2) ↔ (EC5)
∃ a,t [Happens(a,t) ∧ [Terminates(a,f,t) ∨ Releases(a,f,t)] ∧

t1 < t ∧ t < t2]

Declipped(t1,f,t2) ↔ (EC6)
∃ a,t [Happens(a,t) ∧ [Initiates(a,f,t) ∨ Releases(a,f,t)] ∧

t1 < t ∧ t < t2]

These axioms introduce a new predicate Releases [Kartha & Lifschitz, 1994]. The
formula Releases(a,f,t) says that action a exempts fluent f from the common sense law
of inertia.4 This non-inertial status is revoked as soon as the fluent is initiated or
terminated once more. The use of this predicate will be illustrated shortly in the context
of continuous change.5

Let the conjunction of (EC1) to (EC6) be denoted by EC. The circumscription policy to
overcome the frame problem is the following. Given a conjunction N of Happens,
InitiallyP, and InitiallyN formulae, a conjunction E of Initiates, Terminates and Releases
formulae, and a conjunction U of uniqueness-of-names axioms, we are interested in,

CIRC[N ; Happens] ∧ CIRC[E ; Initiates, Terminates, Releases] ∧ U ∧ EC

This formula embodies a form of the common sense law of inertia, and thereby solves
the frame problem. To see why in detail, consult [Shanahan, 1997a]. The key to the
solution is to put EC outside the scope of the circumscriptions, thus ensuring that the
Hanks-McDermott problem is avoided [Hanks & McDermott, 1987].6 In most cases,
the two circumscriptions will yield predicate completions, making the overall formula
manageable and intuitive.

For the example above, we have the following proposition. Let E be the conjunction of
(2.1) with (2.2), let N be the conjunction of (2.3) to (2.5), and let U be the conjunction
of (2.6) with (2.7).

Proposition 2.8.

CIRC[N ; Happens] ∧ CIRC[E ; Initiates, Terminates, Releases] ∧ U ∧ EC ª
HoldsAt(Facing(r),t) ←

[0 ≤ t ≤ 10 ∧ r = 0] ∨ [10 < t ≤ 20 ∧ r = 90] ∨ [20 < t ∧ r = 270].

Proof. See Appendix A. �

3 Domain Constraints and Continuous Change

Two additional features of the calculus are important: the ability to represent domain
constraints, and the ability to represent continuous change.

4 The Releases predicate is related to Sandewall’s idea of occlusion [Sandewall, 1994].
5 Formula (2.2) above can be written using Releases instead of Terminates, so long as there is a
domain constraint ensuring that the robot always has a unique orientation.
6 This is related to Sandewall’s idea of filtered preferential entailment [Sandewall, 1994].
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Domain constraints are straightforwardly dealt with in the proposed formalism. They
are simply formulated as HoldsAt formulae with a single universally quantified time
variable, and conjoined outside the scope of the circumscriptions along with EC. For
example, the following domain constraint expresses the fact that the robot can only face
in one direction at a time.

HoldsAt(Facing(r1),t) ∧ HoldsAt(Facing(r2),t) → r1 = r2

In the event calculus, domain constraints are used to determine values for fluents that
haven’t been initiated or terminated by actions or events (non-inertial fluents) given the
values of other fluents that have. (Domain constraints that attempt to constrain the
relationship between inertial fluents can lead to inconsistency.)7

The issue of continuous change has been largely neglected in the design of formalisms
for reasoning about action until recently [Sandewall, 1989], [Shanahan, 1990], [Miller,
1996], [Reiter, 1996]. In the present formalism, following [Shanahan, 1990],
continuous change is represented through the introduction of a new predicate and the
addition of an extra axiom. The formula Trajectory(f1,t,f2,d) represents that, if the
fluent f1 is initiated at time t, then after a period of time d the fluent f2 holds. We have
the following axiom.

HoldsAt(f2,t2) ← (EC7)
Happens(a,t1) ∧ Initiates(a,f1,t1) ∧ t1 < t2 ∧ t2 = t1 + d ∧

Trajectory(f1,t1,f2,d) ∧ ¬ Clipped(t1,f1,t2)

Let CEC denote EC ∧ (EC7), and U denote the conjunction of a set of uniqueness-of-
names axioms. If R is the conjunction of a set of domain constraints and T is the
conjunction of set of formulae constraining Trajectory, then we are interested in,

CIRC[N ; Happens] ∧
CIRC[E ; Initiates, Terminates, Releases] ∧

T ∧ R ∧ U ∧ CEC.

For example, suppose the robot’s repertoire of actions is expanded to include the
actions Go and Stop. The Go action initiates a period of continuous change in the
robot’s location. The Stop action terminates such a period. For the present, the robot’s
location will be represented by the fluent Location(Robot,p), where p is a pair of
Cartesian co-ordinates the form 〈x,y〉.8 A constant velocity V is assumed in the
following collection of formulae, which are intended to capture this example.

Let E be the conjunction of the following formulae.

Initiates(Go,Moving,t) (3.1)

Releases(Go,Location(Robot,p),t) (3.2)

7 Note that Initiates(a,F1,t) → Initiates(a,F2,t) does not follow from HoldsAt(F1,t) → HoldsAt(F2,t).
8 Later, the Location fluent will be replaced by a fluent which captures spatial occupancy.
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Terminates(Stop,Moving,t) (3.3)

Initiates(Stop,Location(Robot,p),t) ← HoldsAt(Location(Robot,p),t) (3.4)

Let T be the following formula.

Trajectory(Moving,t,Location(Robot,〈x2,y2〉),d) ← (3.5)
HoldsAt(Location(Robot,〈x1,y1〉),t) ∧ HoldsAt(Facing(r),t1) ∧

x2 = x1 + V.d.Sin(r) ∧ y2 = y1 + V.d.Cos(r)

Let R be the following domain constraint.

HoldsAt(Location(w,p1),t) ∧ HoldsAt(Location(w,p2),t) → p1 = p2 (3.6)

Let U be the conjunction of the following uniqueness-of-names axioms.

UNA[Location, Facing, Moving] (3.7)

UNA[Go, Stop] (3.8)

Let N be the following narrative description.

InitiallyP(Location(Robot,〈0,0〉) (3.9)

InitiallyP(Facing(90)) (3.10)

Happens(Go,10) (3.11)

Happens(Stop,20) (3.12)

Now, given that the circumscriptions of E and N yield the predicate completions of
Happens, Initiates, Terminates, and Releases, it’s a straightforward exercise to show
that the recommended circumscription yields what we would expect.

Proposition 3.13.

CIRC[N ; Happens] ∧
CIRC[E ; Initiates, Terminates, Releases] ∧ T ∧ R ∧ U ∧ CEC ª

HoldsAt(Location(Robot,〈x,y〉),t) ↔
[0 ≤ t ≤ 10 ∧ x = 0 ∧ y = 0] ∨

[10 < t ≤ 20 ∧ x = V.(t – 10) ∧ y = 0] ∨
[20 < t ∧ x = V.10 ∧ y = 0].

Proof. See Appendix A. �

Notice that we are at liberty to include formulae which describe triggered events in N.
Here’s an example of such a formula, which describes conditions under which the
robot will collide with a wall lying on an East-West line 100 units north of the origin.

Happens(Bump,t) ←
HoldsAt(Moving,t) ∧ HoldsAt(Facing(r),t) ∧

–90 < r < 90 ∧ HoldsAt(Location(Robot,〈x,90〉),t)
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4 Representing Space and Shape

The formalism used in this paper to represent space and shape is adapted from
[Shanahan, 1995a].9 Space is considered a real-valued co-ordinate system.10 For
present purposes we can take space to be the plane ~ × ~, reflecting the fact that the
robot under consideration only moves in two dimensions. A region is a subset of ~ ×
~. A point is a member of ~ × ~. I will consider only interpretations in which points
are interpreted as pairs of reals, in which regions are interpreted as sets of points, and in
which the ∈ predicate has its usual meaning.

Objects occupy open, path-connected regions. For example, the following formula
describes an open circle of radius z units centred on the origin.

p ∈ Disc(z) ↔ Distance(p,〈0,0〉) < z (Sp1)

Distance is a function yielding a positive real number, defined in the obvious way.

Distance(〈x1,y1〉,〈x2,y2〉) = √(x1–x2)2 + (y1–y2)2 (Sp2)

The function Bearing is also useful.

Bearing(〈x1,y1〉,〈x2,y2〉) = r ← (Sp3)
z = Distance(〈x1,y1〉,〈x2,y2〉) ∧ z ≠ 0 ∧

Sin(r) = 
x2–x1

z   ∧ Cos(r) = 
y2–y1

z

Using Distance and Bearing we can define a straight line as follows. The term
Line(p1,p2) denotes the straight line segment whose end points are p1 and p2. The Line
function is useful in defining shapes with straight line boundaries.

p ∈ Line(p1,p2) ↔ (Sp4)
Bearing(p1,p) = Bearing(p1,p2) ∧ Distance(p1,p) ≤ Distance(p1,p2)

Spatial occupancy is represented by the fluent Occupies. The term Occupies(w,g)
denotes that object w occupies region g. No object can occupy two regions at the same
time. This implies, for example, that if an object occupies a region g, it doesn’t occupy
any subset of g nor any superset of g. We have the following domain constraints.

HoldsAt(Occupies(w,g1),t) ∧ HoldsAt(Occupies(w,g2),t) → g1 = g2 (Sp5)

HoldsAt(Occupies(w1,g1),t) ∧ (Sp6)
HoldsAt(Occupies(w2,g2),t) ∧ w1 ≠ w2 →

¬ ∃ p [p ∈ g1 ∧ p ∈ g2]

The first of these axioms captures the uniqueness of an object’s region of occupancy,
and the second insists that no two objects overlap.

9 The Location fluent and Shape function from [Shanahan, 1995a] have been dispensed with.
10 This decision does not in any way rule out the adoption of qualitative approaches to spatial
reasoning, in the spirit of the Naive Physics Manifesto [Hayes, 1985]. The real-valued co-ordinate
system can be thought of as underpinning these approaches.
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The term Displace(g,〈x,y〉) denotes the result of displacing the region g by x units east
and y units north.

〈x1,y1〉 ∈ Displace(g,〈x2,y2〉) ↔ 〈x1–x2,y1–y2〉 ∈ g (Sp7)

The Displace function is primarily used to describe motion: if an object moves, the
region it occupies is displaced. But it can also be used to combine regions by taking
their union (via disjunction). The following formula defines a shape a little like the field
of view through a pair of binoculars, formed from two overlapping circles.

p ∈ TwoDiscs(x) ↔ p ∈ Displace(Disc(x),〈–x
2
 ,0〉) ∨ p ∈ Displace(Disc(x),〈x

2
 ,0〉)

The final component of the framework is a means of default reasoning about spatial
occupancy [Shanahan, 1995a]. Shortly, a theory of continuous motion will be
described. This theory insists that, in order for an object to follow a trajectory in space,
that trajectory must be clear. Accordingly, as well as capturing which regions of space
are occupied, our theory of space and shape must capture which regions are
unoccupied.

A suitable strategy is to make space empty by default. It’s sufficient to apply this default
just to the situation at time 0 — the common sense law of inertia will effectively carry it
over to later times. The following axiom is required, which can be thought of as a
common sense law of spatial occupancy.

AbSpace(w) ← ∃ g [¬ InitiallyN(Occupies(w,g))] (Sp8)

The predicate AbSpace needs to be minimised, with InitiallyP and InitiallyN allowed to
vary. (Note that, from the event calculus axioms, for any w and g,
InitiallyN(Occupies(w,g)) implies ¬ InitiallyP(Occupies(w,g)).)

Where previously we were interested in CIRC[N ; Happens], it’s now convenient to
split this circumscription into two. Given,

• the conjunction O of Axioms (Sp1) to (Sp8),

• a conjunction M of InitiallyP and InitiallyN formulae which mention only the
fluent Occupies, and

• a conjunction N of Happens formulae and InitiallyP and InitiallyN formulae
which don’t mention the fluent Occupies, and

• conjunctions E, T, R, U, and CEC as described in the last section,

we are now interested in,

CIRC [O ∧ M ; AbSpace ; InitiallyP, InitiallyN] ∧ CIRC[N ; Happens] ∧
CIRC[E ; Initiates, Terminates, Releases] ∧

T ∧ R ∧ U ∧ CEC.
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5 Sensors and Motors: The Theory SE

We now have the logical apparatus required to construct a formal theory of the
relationship between a robot’s motor activity, the world, and the robot’s sensor data.
For now we will assume perfect motors and perfect sensors. The issue of noise is dealt
with in Section 7.

The robot used as an example throughout the rest of the paper is one of the simplest and
cheapest commercially available mobile robotic platforms at the time of writing, namely
the Rug Warrior described by Jones and Flynn [1993] (Figure 5a). This is a small
(approximately 20cm diameter), wheeled robot with a 68000 series microprocessor plus
32K RAM on board. It has a very simple collection of sensors. These include three
bump switches arranged around its circumference, which will be our main concern
here. In particular, we will confine our attention to the two forward bump switches,
which, in combination, can deliver three possible values for the direction of a collision.

Wheel Wheel

Switch1 Switch2

Caster

Switch3

Figure 5a: The Rug Warrior Robot from Above

Needless to say, each different kind of sensor gives rise to its own particular set of
problems when it comes to constructing ΣE. The question of noise is largely irrelevant
when it comes to bump sensors. With infra-red proximity detectors, noise plays a small
part. With sonar, the significance of noise is much greater. The use of cameras gives
rise to a whole set of issues which are beyond the scope of this paper.

The central idea of this paper is the assimilation of sensor data through abduction. This
is in accordance with the principle, “prediction is deduction but explanation is
abduction” [Shanahan, 1989]. To begin with, we’ll be looking at the predictive
capabilities of the framework described. The conjunction of our general theory of
action, change, space, and shape with the theory ΣE, along with a description of the
initial locations and shapes of objects in the world and a description of the robot’s
actions, should yield a description of the robot’s expected sensory input. If prediction
works properly using deduction in this way, the reverse operation of explaining a given
stream of sensor data by hypothesising the locations and shapes of objects in the world
is already defined. It is simply abduction using the same logical framework.
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In the caricature of the task of assimilating sensor data presented in Section 1, the
relationship between motor activity and sensor data was described by ΣE. In practice,
this theory is split into parts and distributed across different circumscriptions (see
Section 3).

First, we have a collection of formulae which are outside the scope of any
circumscription. Let B be the conjunction of CEC with Axioms (B1) to (B6) below.
The robot is assumed to travel at a velocity of one unit of distance per unit of time.

UNA[Occupies, Facing, Moving, Blocked, Touching] (B1)

UNA[Rotate, Go, Stop, Bump, Switch1, Switch2] (B2)

Trajectory(Moving,t,Occupies(Robot,g2),d) ← (B3)
HoldsAt(Occupies(Robot,g1),t) ∧ HoldsAt(Facing(r),t) ∧

g2 = Displace(g1,〈d.Sin(r),d.Cos(r)〉)

HoldsAt(Facing(r1),t) ∧ HoldsAt(Facing(r2),t) → r1 = r2 (B4)

HoldsAt(Blocked(w1,w2,r),t) ↔ (B5)
∃ g1,g2 [HoldsAt(Occupies(w1,g1),t) ∧ HoldsAt(Occupies(w2,g2),t) ∧

w1 ≠ w2 ∧ ∃ z1 [z1 > 0 ∧ ∀ z2 [z2 ≤ z1 →
∃ p [p ∈ g2 ∧ p ∈ Displace(g1,〈z2.Sin(r),z2.Cos(r)〉)]]]

HoldsAt(Touching(w1,w2,p),t) ↔ (B6)
∃ g1,g2 [HoldsAt(Occupies(w1,g1),t) ∧ HoldsAt(Occupies(w2,g2),t) ∧

w1 ≠ w2 ∧ ∃ p1, p2 [p ∈ Line(p1,p2) ∧ p ≠ p1 ∧ p ≠ p2 ∧
∀ p3 [[p3 ∈ Line(p1,p) ∧ p3 ≠ p] → p3 ∈ g1] ∧

∀ p3 [[p3 ∈ Line(p,p2) ∧ p3 ≠ p] → p3 ∈ g2]]]

The fluent Blocked(w1,w2,r) holds if object w1 cannot move any distance at all in
direction r without overlapping with another object, namely w2. The fluent
Touching(w1,w2,p) holds if w1 and w2 are touching at point p. This is true if a
straight line exists from p1 to p2 at a bearing r which includes a point p3 such that every
point between p1 and p3 apart from p3 itself is in g1 and every point from p2 to p3
apart from p3 itself is in g2.

Next we have a collection of Initiates, Terminates, and Releases formulae. Let E be the
conjunction of the following axioms (E1) to (E6). A Bump event occurs when the robot
collides with something.

Initiates(Rotate(r1),Facing(r1+r2),t) ← HoldsAt(Facing(r2),t) (E1)

Releases(Rotate(r1),Facing(r2),t) ← HoldsAt(Facing(r2),t) ∧ r1 ≠ 0 (E2)

Initiates(Go,Moving,t) (E3)

Releases(Go,Occupies(Robot,g),t) (E4)

Terminates(a,Moving,t) ← a = Stop ∨ a = Bump ∨ a = Rotate(r) (E5)
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Initiates(a,Occupies(Robot,g),t) ← (E6)
[a = Stop ∨ a = Bump] ∧ HoldsAt(Occupies(Robot,g),t)

Now we have a collection of formulae concerning the narrative of actions and events
we’re interested in. This collection has two parts. Let N be N1 ∧ N2. The first
component part concerns triggered events. The events Switch1 and Switch2 occur
when the robot’s forward bump switches are tripped (see Figure 5a). Let N1 be the
conjunction of Axioms (H1) to (H3) below.11

Happens(Bump,t) ← (H1)
[HoldsAt(Moving,t) ∨ Happens(Go,t)] ∧

HoldsAt(Facing(r),t) ∧ HoldsAt(Blocked(Robot,w,r),t)

Happens(Switch1,t) ← (H2)
Happens(Bump,t) ∧ HoldsAt(Facing(r),t) ∧

HoldsAt(Occupies(Robot,Displace(Disc(z),p1)),t) ∧
HoldsAt(Touching(Robot,w,p2),t) ∧

r–90 ≤ Bearing(p1,p2) < r+12

Happens(Switch2,t) ← (H3)
Happens(Bump,t) ∧ HoldsAt(Facing(r),t) ∧

HoldsAt(Occupies(Robot,Displace(Disc(z),p1)),t) ∧
HoldsAt(Touching(Robot,w,p2),t) ∧

r–12 ≤ Bearing(p1,p2) < r+90

The term Occupies(Robot,Displace(Disc(z),p1)) is employed in Axioms (H2) and (H3)
to obtain the centre p1 of the region occupied by the robot, which can be thought of as
its location. Note that Axiom (H1) caters for occasions on which the robot attempts to
move when it is already blocked, as well as for occasions on which the robot’s motion
causes it to collide with something. In the former case, an immediate Bump event
occurs, and the robot accordingly moves no distance at all.

For present purposes, the Bump event is somewhat redundant. In Axioms (E5) and
(E6) it could be replaced by Switch1 and Switch2 events, and in Axioms (H2) and (H3)
it could be simplified away. One reason not to abolish the Bump event is that, in
principle, a collision could occur without the attendant sensor event — if one of the
bump switches were broken, say. Similarly, a sensor event could occur without a
collision as its cause — if a rain drop were to momentarily short a connection, for
example.

Another reason is that abolishing the Bump event would violate a basic principle of the
present approach, according to which the assumption of an external world governed by
certain physical laws, a world to which its sensors have imperfect access, is built in to
the robot. The robot’s task is to do its best to explain its sensor data in terms of a model

11 Both forward bump switches are tripped if the collision point is within approximately 12° of the
robot’s bearing. This range was determined empirically.
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of the physics governing that world. In any such model, incoming sensor data is the
end of the line, causally speaking. In the physical world, it’s not a sensor event that
stops the robot but a collision with a solid object.

The second component of N is a description of the robot’s actions. Suppose the robot
behaves as illustrated in Figure 5b. Let N2 be the conjunction of the following
formulae, which represent the robot’s actions up to the moment when it bumps into
obstacle A.

A

Robot

0

1

2

3

0 1 2 3 4

4

Figure 5b: A Sequence of Robot Actions

Happens(Go,0) (5.1)

Happens(Stop,2·8) (5.2)

Happens(Rotate(–90),3·3) (5.3)

Happens(Go,3·8) (5.4)

The final component of our theory is O ∧ M, where M is a map of the robot’s world
and O is the conjunction of Axioms (Sp1) to (Sp8). Like N, M is conveniently divided
into two parts. Let M be M1 ∧ M2, where M1 is a description of the initial locations,
shapes, and orientations (where applicable) of known objects, including the robot itself.
For the example of Figure 5b, M1 would be the conjunction of the following formulae.

InitiallyP(Facing(80)) (5.5)

InitiallyP(Occupies(Robot,Displace(Disc(0·5),〈1,1〉))) (5.6)

The form of M2 is the same as that of M1. However, when assimilating sensor data,
M2 is supplied by abduction. For now though, let’s look at the predictive capabilities of
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this framework, and supply M2 directly. Let M2 be the following formula, which
describes the obstacle in Figure 5b.

∃ g [InitiallyP(Occupies(A,g)) ∧ (5.7)
∀ x,y [〈x,y〉 ∈ g ↔ 1 < x < 3 ∧ 3·5 < y < 4·5]]

The following proposition says that, according to the formalisation, both bump
switches are tripped at approximately time 5·5 (owing to a collision with obstacle A),
and that the bump switches are not tripped at any other time.

Proposition 5.8.

CIRC [O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B ª
Happens(Switch1,Tbump) ∧ Happens(Switch2,Tbump) ∧

[[Happens(Switch1,t) ∨ Happens(Switch2,t)] → t = Tbump]

where Tbump = 
2·5 + 2·8.Cos(80)

Cos(–10)   + 3·8.

Proof. See Appendix A. �

The process of assimilating sensor data is the reverse of that of predicting sensor data.
As outlined in Section 1, the task is to postulate the existence, location, and shape of a
collection of objects which would explain the robot’s sensor data, given its motor
activity.12

Let Ψ be the conjunction of a set of formulae of the form Happens(Switch1,τ) or
Happens(Switch2,τ) where τ is a time point. What we want to explain is the partial
completion of this formula, for reasons that will be made clear shortly. The only-if half
of this completion is defined as follows.

Definition 5.9.

COMP[Ψ] ≡def

[Happens(a,t) ∧ [a = Switch1 ∨ a = Switch2]] →    ∨ 
〈α,τ〉∈Γ

 [a = α ∧ t = τ]

where Γ = {〈α,τ〉 | Happens(α,τ) ∈ Ψ}. �

Given Ψ, we’re interested in finding conjunctions M2 of formulae in which each
conjunct has the form,

∃ g [InitiallyP(Occupies(ω,g)) ∧ ∀ p [p ∈ g ↔ Π]]

where ω is an object constant and Π is any formula in which p is free, such that O ∧
M1 ∧ M2 is consistent and,

12 In the present paper, it is assumed that all sensor data require explanation. However, to take account
of glitches (as opposed to just noise), this requirement can be relaxed.
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CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B ª Ψ ∧ COMP[Ψ].

The partially completed form of the Happens formula on the right-hand-side of the
turnstile eliminates anomalous explanations in which, for example, the robot encounters
a phantom extra obstacle before the time of the first event in Ψ. If Ψ on its own were
used instead of this partially completed formula, it would be possible to construct such
explanations by shifting all the obstacles that appear in a proper explanation into new
positions which take account of the premature interruption in the robot’s path caused by
the phantom obstacle.

Clearly, from Proposition 5.8, if Ψ is,

Happens(Switch1,Tbump) ∧ Happens(Switch2,Tbump)

then (5.7) is an explanation that meets this specification.13 Note that the symbol A in
(5.7) (or rather its computational counterpart in the actual robot), when generated
through the abductive assimilation of sensor data, is grounded in Harnad’s sense of the
term [Harnad, 1990], at the same time as acquiring meaning through the theory.
Furthermore, the theoretical framework within which such explanations are understood,

• Links the symbols that appear in them directly to a level of representation at
which high-level reasoning tasks can be performed, and

• Licenses an account of the robot’s success (or otherwise) at performing its tasks
which appeals to the correctness of its representations and its reasoning
processes.

However, (5.7) is just one among infinitely many possible explanations of this Ψ of the
required form. An alternative explanation might involve the existence of an object of an
entirely different shape. A bizarre example of an alternative explanation would be that
the whole of space was occupied by a single object with a tunnel bored in it whose
shape exactly matched that of the robot’s path up to time Tbump.

In the specification of an abductive task like this, the set of explanations of the required
form will be referred to as the hypothesis space. It’s clear, in the present case, that
some constraints must be imposed on the hypothesis space to eliminate bizarre
explanations. Furthermore, even at a general mathematical level, the set of all
explanations of the suggested form for a given stream of sensor data is hard to reason
about, and computing a useful representation of such a set is infeasible. The general
problem of the extravagant nature of the hypothesis space proposed above is tackled in
the next section.

13 It is assumed that the language includes an arbitrarily large set of unused constant symbols, from
which ω is drawn. A similar assumption will apply throughout the sequel.
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6 Boundaries

Many spatial representation techniques could be adapted for the purpose of rendering
the hypothesis space more manageable (see [Davis, 1990, Chapter 6]). The one chosen
here is based on the idea that a shape’s boundary can be approximated to an arbitrary
degree of precision by a series of straight lines.

The definition of a region’s boundary is in terms of expansions of that region, defined
as follows. The term Expand(g,d) denotes the region obtained by expanding g in all
directions by a distance d.

p1 ∈ Expand(g,d) ↔ ∃ p2 [p2 ∈ g ∧ Distance(p1,p2) ≤ d] (Bo1)

A set of points is a boundary of a region if it is outside that region, but any expansion
of the region would engulf it. Note that this definition applies to any portion of the
whole boundary, as well as to the whole boundary itself. The formula Boundary(l,g)
denotes that l is a portion of the boundary of g.

Boundary(g,l) ↔ (Bo2)
∀ p [p ∈ l → [p ∉ g ∧ ∀ d [d > 0 → p ∈ Expand(g,d)]]]

The boundary of a shape will be described by a list of straight lines. The standard list
functions Nil and Cons are introduced, and defined as follows.

Member(l1,c1) ↔ (Bo3)
[c1 = Cons(l2,c2) ∧ [l1 = l2 ∨ Member(l1,c2)]]

UNA[Cons, Nil] (Bo4)

Every point on a boundary of the shape denoted by the term Connect(c) is also on one
of the straight lines in the list c. So the term Connect(c) denotes the largest polygon
enclosed by the lines in c. If the lines in c don’t form a closed curve then Connect(c) is
the empty set.

p1 ∈ Connect(c) ↔ (Bo5)
∃ g [p1 ∈ g ∧ ∀ p2,l [[Boundary(g,l) ∧ p2 ∈ l] ↔

∃ p3,p4 [Member(Line(p3,p4),c) ∧ p2 ∈ Line(p3,p4)]] ∧
∃ p2,z ∀ p3 [p2 ∈ g → p2 ∈ Displace(Disc(z),p3)]]

The last line of Axiom (Bo5) ensures that g is bounded, in the sense that a circle can be
found which encloses it. This constrains g to be the inside of the shape described by c,
and not the outside.

Given,

• the conjunction B of CEC with Axioms (B1) to (B6),

• the conjunction E of Axioms (E1) to (E6),

• the conjunction O of Axioms (Sp1) to (Sp8) with Axioms (Bo1) to (Bo5),
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• a conjunction M1 of InitiallyP and InitiallyN formulae describing the initial
locations, shapes, and orientations of known objects, including the robot itself,

• the conjunction N1 of Axioms (H1) to (H3),

• a conjunction N2 of Happens formulae describing the robot’s actions, and

• a conjunction Ψ  of formulae of the form Happens(Switch1,τ ) or
Happens(Switch2,τ),

we’re now interested in finding conjunctions M2 of formulae in which each conjunct
has the form,

InitiallyP(Occupies(ω,Connect(λ)))

where ω is an object constant, and λ is a term of the form,

Cons(Line(ρ1,ρ2),Cons(Line(ρ2,ρ3), . . . Cons(Line(ρn,ρ1),Nil) . . . )

where n ≥ 3 and ρi ≠ ρj for all i ≠ j, such that O ∧ M1 ∧ M2 is consistent, and,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B ª Ψ ∧ COMP[Ψ].

Now, returning to the example of Figure 5b, if we let M1 and N2 be the same formula
as in the previous section, and let M2 be,

InitiallyP(Occupies(A, (6.1)
Connect(Cons(Line(〈1·0,4·5〉,〈3·0,4·5〉),

Cons(Line(〈3·0,4·5〉,〈3·0,3·5〉),
Cons(Line(〈3·0,3·5〉,〈1·0,3·5〉),

Cons(Line(〈1·0,3·5〉,〈1·0,4·5〉))))))))

then the following proposition is true.

Proposition 6.2.

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B ª
Happens(Switch1,Tbump) ∧ Happens(Switch2,Tbump) ∧

[[Happens(Switch1,t) ∨ Happens(Switch2,t)] → t = Tbump]

where Tbump = 
2·5 + 2·8.Cos(80)

Cos(–10)   + 3·8.

Proof. See Appendix A. �

From Proposition 6.2, we see that (6.1) is an explanation of the sensor data which
meets the above specification.

We now have a specification of the abductive task of explaining sensor data which is
susceptible to both implementation and formal analysis. In addition, this theoretical
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framework enables us to bring formal techniques to bear on issues such as the
uncertainty resulting from noise, which is addressed in the next section.

7 Noise

The hallmark of the common sense informatic situation for a mobile robot is incomplete
and uncertain knowledge of a world of spatio-temporally located objects.
Incompleteness is a consequence of the robot’s limited window on the world, and
uncertainty results from noise in its sensors and actuators. This section deals with
noise.

Both noisy sensors and noisy actuators can be captured using non-determinism. (An
alternative is to use probability [Bacchus, et al., 1995]). Here we’ll only look at the
uncertainty in the robot’s location that results from its noisy motors. The robot’s motors
are “noisy” for various reasons. For example, the two wheels might rotate at slightly
different speeds when the robot is trying to travel in a straight line, or the robot might
be moving on a slope or a slippery surface.14 Motor noise of this kind can be captured
using a non-deterministic Trajectory formula, such as the following replacement for
Axiom (B3).15

∃ p [Trajectory(Moving,t,Occupies(Robot,Displace(g,p)),d) ∧ (B7)
Distance(p,〈d.Sin(r),d.Cos(r)〉) ≤ d.ε] ←

HoldsAt(Occupies(Robot,g),t) ∧ HoldsAt(Facing(r),t)

In effect, Axiom (B7) constrains the robot’s location (the centre of the region it
occupies) to be within an ever-expanding circle of uncertainty centred on the location it
would be in if its motors weren’t noisy.16 The constant ε determines the rate at which
this circle grows. Axiom (B8) below ensures that there are no discontinuities in the
robot’s trajectory. Without this axiom the robot would be able to leap over any obstacle
which didn’t completely cover the circle of uncertainty for its location. The term Abs(d)
denotes the absolute value of d.

Trajectory(f,t,Occupies(x,Displace(g,p1)),d1) → (B8)
∀ z [z > 0 → ∃ d ∀ d2,p2  [[d2 > 0 ∧ Abs(d2–d1) < d ∧

Trajectory(f,t,Occupies(x,Displace(g,p2)),d2)] →
Distance(p1,p2) < z]]

Figure 7a shows the robot exploring the corner of an obstacle. Figure 7b shows the
evolution of the corresponding circle of uncertainty, highlighting the points where the
robot changes direction.

14 The Rug Warrior’s wheels are fitted with shaft encoders, which can be used to reduce the non-
determinism in the robot’s movements. These are ignored in the present analysis.
15 The Rotate action could also be made non-deterministic, yielding only a range of possible values for
the robot’s subsequent orientation.
16 Note that, while objects occupy open subsets of ~2, regions of uncertainty are closed.
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Figure 7a: The Robot Explores a Corner

Figure 7b is somewhat misleading, however. Consider Figure 7c. On the left, the
evolution of the circle of uncertainty for the robot’s location is shown. In the middle,
three potential locations are shown for the three changes of direction. Although these
locations all fall within the relevant circles of uncertainty, the robot could never get to
the third location from the second. This is because, as depicted on the right of the
figure, in any given model the circle of uncertainty for the robot’s location at the end of
a period of continuous motion can only be defined relative to its actual location at the
start of that period. This can be verified by inspecting Axioms (B7) and (B8).

Figure 7b: The Evolution of the Circle of Uncertainty

The relative nature of the evolution of the circle of uncertainty means that the robot can
acquire a detailed knowledge of some area A1 of its environment, then move to another
area A2 which is some distance from A1, and acquire an equally detailed knowledge of
A2. The accumulated uncertainty entails only that the robot is uncertain of where A1 is
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relative to A2. This natural feature of the formalisation conforms with what we would
intuitively expect given the robot’s informatic situation.

Figure 7c: The Circle of Uncertainty is Relative Not Absolute

Non-determinism is a potential source of difficulty for the abductive approach to
explanation. Even with a precise and complete description of the initial state of the
world, including all its objects and their shapes, a non-deterministic theory
incorporating a formula like (B7) will not yield the exact times at which collision events
occur. Yet the sensor data to be assimilated has precise times attached to it. Fortunately
we can recast the task of assimilating sensor data as a form of weak abduction so that it
yields the required results. Intuitively what we want to capture is the fact that without
the hypothesised objects, the sensor data could not have been received. This is
analogous to the consistency-based approach to diagnosis proposed by Reiter [1987].

Definition 7.1. Given,

• the conjunction B of CEC with Axioms (B1), (B2), and (B4) to (B8),

• the conjunction E of Axioms (E1) to (E6),

• the conjunction O of Axioms (Sp1) to (Sp8) with Axioms (Bo1) to (Bo5),

• a conjunction M1 of InitiallyP and InitiallyN formulae describing the initial
locations, shapes, and orientations of known objects, including the robot itself,

• the conjunction N1 of Axioms (H1) to (H3),

• a conjunction N2 of Happens formulae describing the robot’s actions, and

• a conjunction Ψ  of formulae of the form Happens(Switch1,τ ) or
Happens(Switch2,τ),

an explanation of Ψ is a conjunction M2 of formulae in which each conjunct has the
form,
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InitiallyP(Occupies(ω,Connect(λ)))

where ω is an object constant, and λ is a term of the form,

Cons(Line(ρ1,ρ2),Cons(Line(ρ2,ρ3), . . . Cons(Line(ρn,ρ1),Nil) . . . ))

where n ≥ 3 and ρi ≠ ρj for all i ≠ j, such that O ∧ M1 ∧ M2 is consistent, and,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B Ω ¬ [Ψ ∧ COMP[Ψ]]. �

To illustrate the new definition, suppose the robot behaves as illustrated in Figure 7d.
Let N2 be the conjunction of the following formulae, which represent the robot’s
actions up to and including the time it bumps into obstacle A.

A

Robot

0

1

2

3

4

0 1 2 3 4

Figure 7d: The Robot Collides with an Obstacle

Happens(Go,0) (7.2)

Happens(Stop,2·1) (7.3)

Let M1 be the conjunction of the following formulae.

InitiallyP(Facing(0)) (7.4)

InitiallyP(Occupies(Robot,Displace(Disc(0·5),〈2,1〉))) (7.5)

Let M2 be the following formula.

InitiallyP(Occupies(A, (7.6)
Connect(Cons(Line(〈1·0,4·5〉,〈3·0,4·5〉),

Cons(Line(〈3·0,4·5〉,〈3·0,3·5〉),
Cons(Line(〈3·0,3·5〉,〈1·0,3·5〉),

Cons(Line(〈1·0,3·5〉,〈1·0,4·5〉))))))))
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In the noise-free case, the robot would collide with A at time 2·0. However, let’s
assume the collision takes place at time 2·1. Let Ψ be the conjunction of the following
formulae.

Happens(Switch1,2·1) (7.7)

Happens(Switch2,2·1) (7.8)

Let ε be 0·25. The following proposition says that M2 is indeed an explanation of Ψ
according to the new definition.

Proposition 7.9.

CIRC [O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B Ω ¬ [Ψ ∧ COMP[Ψ]].

Proof. See Appendix A. �

There will, naturally, be many explanations for any given Ψ which meet Definition 7.1.
For the example above, an explanation which postulated an object of the same shape but
0·1 units of distance further north would have sufficed. A standard way to treat multiple
explanations in abductive knowledge assimilation is to adopt their disjunction
[Shanahan, 1997a, Chapter 17]. This has the effect of smothering any explanations
which are stronger than necessary, such as those which postulate superfluous
obstacles. The disjunction of all explanations of Ψ is the cautious explanation of Ψ.

A variety of preference relations over explanations can also be introduced, which
make the abductive process more selective. For example, it might be reasonable to
assume that nearby collision points indicate the presence of a single object. This is
captured in the following definitions.

Definition 7.10. Two objects are separated by x units if there is a line of length x
which has points in common with the boundaries of both objects, and there is no
shorter such line. �

Definition 7.11. An explanation M1 is preferable to an explanation M2 if the
number of objects in M1 which are separated from another object by less than MIN
units is less than the number of such objects in M2. �

A preferred explanation is one for which no preferable explanation exists. Such
preference relations are a topic for further study, and will not feature in the rest of the
paper.

The following theorem establishes that the above definition of an explanation is
equivalent to the deterministic specification offered in the last section when ε is 0. Let
Bdet be the conjunction of CEC with Axioms (B1) to (B6).

Definition 7.12. A formula M is a complete spatial description if the region
occupied by each object mentioned in M is the same in every model of,
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CIRC[O ∧ M ; AbSpace ; InitiallyP, InitiallyN]. �

Theorem 7.13. If ε = 0 and M1 is a complete spatial description, then M2 is an
explanation of Ψ if and only if O ∧ M1 ∧ M2 is consistent and,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ Bdet ª Ψ ∧ COMP[Ψ].

Proof. See Appendix B. �

Note that, as illustrated in Figure 7e, while the location of the robot at any time falls
within a circle of uncertainty, the corresponding region of uncertainty for a collision
point is kidney-shaped, since the collision point could be anywhere along a portion of
the circumference of the robot. (Recall that the forward bump switches deliver three
possible values for the direction of a collision.)

Robot

Circle of uncertainty
for location of robot

Region of uncertainty
for collision point is
shape swept out
between these two
circles

Figure 7e: The Region of Uncertainty for a Collision Point

In the next section, two results are established which support the claim that the
abductive specification of the task of sensor data assimilation offered here gives the
results we would expect, and which also make the task of building algorithms based on
this specification straightforward.

8 Two Theorems

The two theorems in this section are an attempt to characterise the abductive
explanations defined in the previous section in terms which appeal more directly to the
information available to any map-building algorithm which might be executed on board
the robot. This is done by picking out the regions of uncertainty within which the
collision points corresponding to a stream of switch events must lie.

Let B be the conjunction of CEC with Axioms (B1), (B2), and (B4) to (B8). Let E be
the conjunction of axioms (E1) to (E6). Let O be the conjunction of Axioms (Sp1) to
(Sp8) with Axioms (Bo1) to (Bo5). Let M1 be a conjunction of InitiallyP and InitiallyN
formulae describing the initial locations, shapes, and orientations of known objects,
including the robot itself. Let N1 be the conjunction of Axioms (H1) to (H3).

Let N2 be a conjunction of Happens formulae describing the robot’s actions which is
equivalent to the formula,
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φ1 ∧ φ2 ∧ . . . ∧ φn

where each φi has the form Happens(αi,τi), and,

• for all i < n, τi ≤ τi+1 if αi is Go and αi+1 is Stop,

• for all i < n, τi < τi+1 if αi is not Go or αi+1 is not Stop,

• α1 is Go, and

• for all i < n, αi+1 is  
 

Stop if α i  is Go,
Rotate(θ) if α i is Stop,
Go if α i is Rotate(θ).

N2 describes a finite sequence of actions of the form,

Go, Stop, Rotate, Go, Stop, Rotate, Go, . . .

The ith action in N2 occurs before the i+1th action, unless the ith action is a Go and the
i+1th is a Stop, in which case they can occur simultaneously. (A Go and a Stop will
occur simultaneously if the robot tries to move when it is already pressed up against an
obstacle.) Let Ψ be a conjunction of the form,

ψ1 ∧ ψ2 ∧ . . . ∧ ψm

where each ψi is either a type 1 datum of the form,

Happens(Switch1,τi)

or a type 2 datum of the form,

Happens(Switch2,τi)

or a type 3 datum of the form,

Happens(Switch1,τi) ∧ Happens(Switch2,τi)

such that for all i < m, τi < τi+1.

Definition 8.1. N2 tracks Ψ if for every occurrence in Ψ of a formula of the form,

Happens(α,τ)

where α is either Switch1 or Switch2, there is a corresponding occurrence in N2 of the
formula,

Happens(Stop,τ). �

We will assume that N2 tracks Ψ.17 This is the case if the robot’s control mechanism
ensures that it stops moving immediately when it bumps into something. This makes
the theorems below much easier to state and prove, since it enables us to ignore the
possibility of the robot’s wheels spinning while it is pressed up against an obstacle.

17 In practice, of course, there’s always a small delay between the Bump event and the Stop event. This
delay is so small it can safely be ignored.
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Let Tgo(i) and Tstop(i) be respectively the times of the ith Go action in N2 and the ith

Stop action in N2. Where no such action exists, these functions are undefined.

The MT function, defined below, yields the amount of time the robot has been in
motion between the jth and the kth Stop actions. The radius of the circle of uncertainty
for the robot’s location at the time of the kth Stop action relative to its location at the
time of the jth Stop action is proportional to this value.

Definition 8.2. The function MT (for Motion Time) is defined as follows.

MT(j,k) =   Σ 
j<i≤k

(Tstop(i) – Tgo(i)). �

Note that MT(0,k) is the amount of time the robot has been in motion up to the time of
the kth Stop action.

The RO function, defined below, yields the orientation of the robot at a given time.

Definition 8.3. The function RO (for Robot Orientation) is defined as follows.

RO(τ) = θ0 + Σ 
i≤R

(θi)

where R is the number of Rotate actions in N2 before τ, the ith Rotate action in N2 is
Happens(Rotate(θi),τi), and θ0 is the robot’s initial orientation according to M1. �

The RL function, defined below, yields the centre of the circle of uncertainty for the
robot’s location at the time of the kth Stop action given that its location is ρ at the time
of the jth Stop action.

Definition 8.4. The function RL (for Robot Location) is defined as follows.

RL(ρ,j,k) = ρ +   Σ 
j<i≤k

 ρi

where,

• ρi is 〈δi.Sin(θi),δi.Cos(θi)〉,

• δi is Tstop(i) – Tgo(i), and

• θi is RO(Tgo(i)). �

Note that, if ρ is the robot’s initial location, RL(ρ,0,k) is the centre of the circle of
uncertainty for the robot’s location at the time of the kth Stop action.

The BD function, defined below, yields the direction of the centre of the region of
uncertainty for a collision (see Figure 7d).

Definition 8.5. The functions BDmin and BDmax (for minimum and maximum Bump
Direction) are defined as follows.

BDmin(n,θ) = 
 

 θ  – 90 i f  n = 1
θ  +  12 i f  n  = 2
θ  –  12 i f  n  = 3
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BDmax(n,θ) = 
 

θ  – 12 i f  n = 1

θ  +  90 i f  n  = 2
θ  +  12 i f  n  = 3 �

Let ηi be the type of datum ψi and let τi be the time of that datum. A bump trail,
defined formally below, is a sequence of points, one for each collision featured in Ψ.
The ith point in this sequence ρi is a possible location, according to N2 and the axioms
constraining the robot’s motion, for the robot at the time of the ith collision, given that
the robot was at ρi–1 at the time of the i–1th collision (see Figure 7d).

Definition 8.6. A sequence of points ρ1 to ρm is a bump trail if,

• the distance from ρ1 to the point RL(ρ0,0,k) is less than or equal to ε.MT(0,k),
where Tstop(k) is τ1 and ρ0 is the robot’s initial location according to M1, and

• for any i, 0 < i < m, the distance from ρi+1 to the point RL(ρi,j,k) is less than or
equal to ε.MT(j,k), where Tstop(j) is τi and Tstop(k) is τi+1. �

Now we define the relation OTR, which is used to state two theorems which
characterise the set of explanations of a given stream of sensor data directly in terms of
the robot’s actions, and which justify the map building algorithm presented in the next
section.

Definition 8.7. The relation OTR (for Obstacle Touches Robot) is defined as
follows.

OTR(p1,r1,r2) ≡def

∃ p2 [r1 ≤ Bearing(p1,p2) < r2 ∧ Distance(p1,p2) = 0·5 ∧
∃ w,g [InitiallyP(Occupies(w,g)) ∧ w ≠ Robot ∧

p2 ∈ Boundary(g) ∧ ¬ ∃ p [p ∈ Line(p1,p2) ∧ p ∈ g]]] �

Less formally, OTR(p1,r1,r2) is true if there is a line from p1 to p2 such that,

• p2 is at a bearing of between r1 and r2 degrees from p1 and 0·5 units away from
p1,

• p2 is on the boundary of an object, and

• no point on the line from p1 to p2 is inside that object.

OTR(p,r1,r2) is true if there is an object with a boundary which would touch the
robot’s circumference at a suitable point if the robot were located at p. The last of the
above conditions ensures that the robot touches the outside of the object rather than the
inside. The first theorem using the OTR relation sets out a necessary condition for M2
to be an explanation.

Theorem 8.8. If M2 is an explanation of Ψ then there exists a bump trail ρ1 to ρm

such that, for any i, 0 < i ≤ m,

O ∧ M1 ∧ M2 ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi))).
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Proof. See Appendix B. �

The second theorem partially defines the sufficient conditions for M2 to be an
explanation. Only a partial characterisation is possible using OTR alone. A complete
characterisation would have to take account of the constraints imposed on the spatial
occupancy of hypothesised objects by the path along which the robot has moved
without bumping into anything.

Theorem 8.9. M2 is an explanation of Ψ if O ∧ M1 ∧ M2 is consistent, there exists a
bump trail ρ1 to ρm such that, for any i, 0 < i ≤ m,

O ∧ M1 ∧ M2 ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi)))

and,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B Ω ¬ COMP[Ψ].

Proof. See Appendix B. �

A similar proof to that of Theorem 8.9 establishes the following consistency result.

Theorem 8.10. If O ∧ M1 ∧ M2 is consistent then so is,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B.

Proof. See Appendix B. �

9 An Algorithm for Sensor Data Assimilation

One approach to building an implementation based on the the logical framework
presented in this paper would be to isolate a fragment of the theory which could be
executed as a logic program. A body of techniques for abductive logic programming
has been developed, and these could be used to implement the abductive approach to
sensor data assimilation [Kakas, Kowalski & Toni, 1993]. Taking a logic programming
approach would make clear the sense in which the logical account given above supplies
the meaning of the representations employed by the robot.

An alternative approach is to tailor-make algorithms for specific tasks, such as sensor
data assimilation, whose correctness with respect to the logical account can be
demonstrated. This is the methodology I will adopt here, and the logic programming
approach is left for further research.

In both approaches, the products of the abductive process should be considered as
general purpose knowledge with a declarative meaning. Theorem proving techniques,
such as those employed in logic programming, are still applicable to the subsequent
processing of this knowledge, in order to construct plans or to answer queries, for
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example. A tailor-made algorithm for sensor data assimilation, in so far as it can be
validated in terms of the theoretical framework supplied, can be thought of as an
efficient but highly specialised theorem prover.

The two theorems in the previous section can be used to justify a variety of algorithms
for constructing a map of the robot’s environment given a stream of sensor data. The
algorithm described in this section works with a grid of squares superimposed on
~+ × ~+.18 Each square is denoted by a pair of co-ordinates, each of which is a
natural number. This grid is represented in a two-dimensional occupancy array M (see
[Davis, 1990, Section 6.2.1]). If M[x,y] = c, where c is either Black, White or Grey,
then the square 〈x,y〉 is coloured c. Here is the main algorithm.

1. Procedure ColourMap
2. Let every element of M be Grey
3. P[0] := the robot’s initial location according to M1
4. j := 0
5. For i = 1 to m
6. Find k such that the kth Stop action in N2 occurs at τi

7. PlotPath(P[i–1],q,j,k)
8. p := RL(q,k–1,k)
9. e := ε.MT(k–1,k)
10. b1 := BDmin(ηi,RO(τi)); b2 := BDmax(ηi,RO(τi))
11. Choose P[i], x, and y such that PossSquare(P[i],p,b1,b2,e,x,y)
12. ColourPath(q,P[i])
13. If M[x,y] = White
14. Then Exit
15. Else M[x,y] := Black
16. j := k
17. End For
18. Output M

This non-deterministic procedure colours every square either black, white or grey,
where black represents that the corresponding square region of ~+ × ~+ is occupied
by some object and white represents that it is empty. A boundary between two black
squares is considered occupied while a boundary between a black and a white square is
considered unoccupied, although in the algorithm description, a square region is
assumed to include its boundaries (so a boundary is included in two squares and a
corner is included in four). Let µ be the the length of the sides of a square.

Definition 9.1. The point 〈a,b〉 is included in the square 〈x,y〉 if and only if x.µ ≤ a
≤ (x+1).µ and y.µ ≤ b ≤ (y+1).µ. �

18 Without loss of generality, we can work in one quadrant of the plane.
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Let Ψ, N2, and M1 be defined as in the previous section, along with τi, ηi, and the
functions RL, MT, BDmin and BDmax.

Some explanation of the algorithm is in order. To begin with all squares are coloured
grey. The outer loop works through each of the m collisions in Ψ in the order in which
they occurred, assigning a location to the robot for each one. This sequence of locations
corresponds to a bump trail, as defined in the previous section, and is recorded in the
array P. For each collision, a suitable path is first plotted which takes the robot up to the
site of its last turn before that collision (Line 7).

The procedure PlotPath is defined as follows. This procedure non-deterministically
plots a path from point p1, which is robot’s location at the time of the jth Stop action, to
p2, which is its location at the time of the k–1th Stop action. The intermediate Stop
actions are those which don’t correspond to collisions.

1. Procedure PlotPath(p1,p2,j,k)
2. For l = j+1 to k–1
3. p := RL(p1,l–1,l)
4. e := ε.MT(l–1,l)
5. Choose any p2 whose distance from p is less than or equal to ε.MT(j,k)
6. ColourPath(p1,p2)
7. p1 := p2
8. End For

The path computed by PlotPath cuts through a region of space which is big enough for
the robot to pass through. This region has to be coloured white, so that no attempt is
made to place object inside it. This is the purpose of the procedure ColourPath, which
is defined as follows.

1. Procedure ColourPath(p1,p2)
2. For each x and y such that Covered(x,y,p1,p2)
3. If M[x,y] = black
4. Then Exit
5. Else M[x,y] := white
6. End For

Covered(x,y,p1,p2) is true if and only if the square 〈x,y〉 includes a point less than ζ
units of distance from any point on the straight line from p1 to p2, where ζ is the radius
of the robot.

Returning to the main procedure, the robot has now been taken up to the site of its last
change of direction before a collision. Next, a point is chosen for its location at the time
of the collision such that the robot will abut a square (Line 11). This square can then be
coloured black. The boolean function PossSquare(p1,p2,b1,b2,e,x,y), which picks out
candidate squares, returns True if,
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• the distance from p1 to p2 is less than or equal to e,

• a straight line emanating from p1 at a bearing b, where b1 ≤ b < b2 crosses a
boundary and enters the square 〈x,y〉 at a distance of 0·5 units, and

• M[x,y] ≠ White

and returns False otherwise.

If ColourMap terminates with output M, any squares in M that are still grey can be
coloured either black or white, possibly to conform with some preference relation over
explanations such as the example in Section 7. If ColourMap exits via Line 14 or via
Line 4 of ColourPath, then its non-deterministic choices have not led to a consistent
colouring of M. By augmenting the algorithm with a suitable search strategy, alternative
choices can be explored.19

The following theorems relate this algorithm to the abductive characterisation of sensor
data assimilation offered in the preceding sections. First we need to be able to convert
the output of ColourMap to a logical form.

Definition 9.2. If M is an occupancy array, let Exp*(M) denote the set of all
conjunctions of formulae in which each conjunct has the form,

InitiallyP(Occupies(ω,Connect(λ)))

where ω is an object constant, and λ is a term of the form,

Cons(Line(ρ1,ρ2),Cons(Line(ρ2,ρ3), . . . Cons(Line(ρn,ρ1),Nil) . . . ))

where n ≥ 3 and ρi ≠ ρj for all i ≠ j, such that the term Line(ρi,ρi+1) occurs in Exp*(M)
if and only if the line from ρi and ρi+1 is a boundary shared by one black square and
one grey or white square according to M. �

Clearly the members of Exp*(M) are all logically equivalent, modulo changes in the
names of objects. Accordingly, let’s suppose the existence of some standard ordering
over the members of any given Exp*(M), and let Exp(M) denote the first in this
ordering.

As usual, let B be the conjunction of CEC with Axioms (B1), (B2), and (B4) to (B8).
Let E be the conjunction of axioms (E1) to (E6). Let O be the conjunction of Axioms
(Sp1) to (Sp8) with Axioms (Bo1) to (Bo5). And let N1 be the conjunction of Axioms
(H1) to (H3).

The following theorem expresses the soundness of the algorithm.

Theorem 9.3. If ColourMap terminates with output M then Exp(M) is an explanation
of Ψ.

19 Although each non-deterministic choice of a location in the algorithm has uncountably many
possibilities, there are only finitely many squares that each location can fall within. So an algorithm
that explores the whole search space in finite time may be possible.
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Proof. See Appendix B. �

The ColourPath procedure above assumes that the robot always travels in a straight line
(although the bearing of that line and how far the robot travels in a given time is
uncertain). The algorithm misses explanations which depend crucially on the
possibility, allowed by Axioms (B7) and (B8), of the robot curving around an obstacle
to avoid it. The following formula, which is a strengthening of Axiom (B8), reflects
this limitation, and permits us to state a theorem expressing the extent to which the
algorithm is complete.

∃ p2,p3 ∀ d [Trajectory(f,t,Occupies(x,Displace(g,p1)),d) → (B9)
p1 ∈ Line(p2,p3)]

Definition 9.4. An explanation M2 of Ψ is curve-free if,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B ∧ (B9) Ω ¬ COMP[Ψ] �

Theorem 9.5. For every occupancy array M such that Exp(M) is a curve-free
explanation of Ψ, M is output by some execution of ColourMap.

Proof. See Appendix B. �

The final question, to be briefly considered here, is which explanations are excluded by
the demands on the form of an explanation made by Theorem 9.5. Clearly, for a given
square-size µ, explanations for Ψ can exist which are not of the form Exp(M) for any
M. Any explanation which postulated the existence of a triangular object would be an
example. On the other hand, it’s also clear that there’s a sense in which, by making µ
small enough, any object’s shape can be approximated to any desired degree of
accuracy.

But the value of µ isn’t the only consideration here. The radius of the robot and the
value of ε, the uncertainty factor in the robot’s location, are also crucial. To see this,
suppose ε is zero, and let the radius of the robot be µ

10 . Now suppose the robot collides
with an obstacle, rotates 180° moves forward µ

2
  units and collides with another

obstacle. Clearly no explanation of the required form exists for these collisions, because
no suitable pair of squares can exist with boundaries sufficiently close together. Given
the radius of the robot, even the uncertainty in the whereabouts on the robot’s
circumference of the collision point doesn’t permit a suitable square to be found. An
appropriate choice of µ for a given ε should render such cases pathological, but the
mathematical basis for this claim remains to be worked out.

10 Experiments with the Robot

This section reports the results of some preliminary experimentation with the Rug
Warrior robot based on the algorithm described in the preceding section. The
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implementation is rather crude, and should be regarded as nothing more than a
demonstration of the feasibility of robotics research in the advocated style.

Control of the robot was achieved with a simple two-layered Brooks-style behaviour-
based architecture [Brooks, 1986]. A Wander behaviour and an Avoid behaviour were
implemented. The Wander behaviour executes a random walk around the environment.
When this behaviour is active, the robot moves forwards for a certain distance, subject
to random variation, then rotates a certain amount, also subject to random variation,
then moves forwards again, and so on.

The Avoid behaviour is triggered when one or more of the forward bump switches is
tripped. When the Avoid behaviour is active, after backing a small distance away from
the (presumed) obstacle, the robot rotates a certain amount, subject again to random
variation. Control is then relinquished, and the Wander behaviour becomes active once
more.

In the background, a process is run continuously which records the robot’s actions and
the sensor events that occur. This data is subsequently processed by a program which
incorporates the sensor data assimilation algorithm proposed in the previous section,
and which generates an occupancy array. In the present implementation, this processing
is done off-board, although this purely for convenience in program development and
debugging. Both components — the behaviour-based control module and the sensor
data assimilation module — are written in C, the former in a dialect which includes
multi-tasking features which facilitate the construction of behaviour-based control
systems. The control component comprises about 300 lines of code, and the
assimilation program about 900 lines.

The present implementation of the sensor data assimilation algorithm performs a
negligible amount of search, and is accordingly not always successful at explaining a
given set of sensor data. It always chooses the centre of the circle of uncertainty for the
robot’s location when finding a path from one collision site to the next. Only when
choosing the robot’s location at the time of a collision does the algorithm exploit the
existence of the circle of uncertainty by nudging the robot’s location so that it abuts a
square. The point on the robot’s circumference which touches this square depends on
whether the collision in question involved just Switch 1, just Switch 2, or both
switches. In the first two cases, the chosen point is respectively –45° and 45° from the
robot’s bearing. In the third case, the chosen point is directly ahead of the robot in the
direction in which it is facing.

A small amount of search is carried out to determine the choice of abutting squares. If,
because of occupancy data already present in the array, a location for the robot cannot
be found which is within the square in which the centre of the circle of uncertainty for
its location lies, then the surrounding four squares — north, east, south, and west —
are also tried.
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1.

3.

2.

4.

Figure 10a: The Evolution of the Occupancy Array

Figure 10a shows the evolution of the occupancy array generated by a sample run of the
robot as it moving about inside a pen made up from four box files. The array is 40
squares by 40 squares, and each square is 0·25 units of distance on each side. (Recall
that one robot radius is the unit of distance.) The value of ε was 1·0. The dots denote
grey squares (neither occupied nor unoccupied), the crosses denote black squares, and
the blank area comprises white squares. The robot’s actual environment is depicted in
Figure 10b, which is a scale drawing traced from an aerial photograph. As Figure 10a
illustrates dramatically, with only a few collisions to go on, the robot will acquire more
knowledge about empty space than about occupied space. However, given the severe
limitations of the robot’s perceptual apparatus, this is unsurprising.

The sample run shown is rather unimpressive since, although thirty actions were
performed, only five Bump events took place. By allowing the implementation to
perform more search, it is anticipated that much longer runs will be feasible, and more
detailed maps will be produced. But the issue of future improvements in the
implementation, though important, is a distraction from the real point here, which is that
the occupancy array depicted has a logical interpretation according to which it is an
explanation, in the formal sense defined in the foregoing sections, of the robot’s sensor
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data given its actions. The benefits of this are twofold. First, the relationship between
the robot’s model of the world and the world itself is precisely defined. Second, a
wealth of techniques and results from the field of Knowledge Representation is made
available for the robot’s further development.

20 40 600
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0

cm.

cm.

Figure 10b: An Aerial View of the Robot

Concluding Remarks

In the paper accompanying his 1991 Computers and Thought Award Lecture, Brooks
remarked that,

[The field of Knowledge Representation] concentrates much of its
energies on anomalies within formal systems which are never used
for any practical task.

[Brooks, 1991a, page 578]

This paper should be construed as an answer to Brooks. According to the logical
account given in this paper, a robot’s incoming sensor data is filtered through an
abductive process based on a framework of innate concepts, namely space, time, and
causality.20 The development of a rigorous, formal account of this process bridges the
gap between theoretical work in Knowledge Representation and practical work in
robotics, and opens up a great many possibilities for further research. The following
issues, in ascending order of importance, are particularly pressing.

20 This is somewhat reminiscent of Kant, according to whom, “the natural world as we know it, the
whole content of our experience, is thoroughly conditioned by [certain] features: our experience is
essentially experience of a spatio-temporal world of law-governed objects conceived of as distinct from
our temporally successive experiences of them” [Strawson, 1966, page 21].
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• The development of a more qualitative approach to spatial representation,
possibly using a framework like that described by Randell et al. [1992], but
augmented with the ability to handle certain kinds of metric information.

• The assimilation of sensor data from moving objects, such as humans, animals,
or other robots. Movable obstacles should also be on the agenda.

• The assimilation of richer sensor data than that supplied by the Rug Warrior’s
simple bump switches.

• The control of the robot via the model of the world it acquires through
abduction.

The last of these issues, namely robot control, deserves some comment. Although
there’s nothing particularly remarkable about the map-building capabilities of the Rug
Warrior implementation described in Section 10, which serves mainly to illustrate the
theoretical and methodological ideas whose promotion is the paper’s main purpose, its
design does suggest a sharply bipartite architecture which differs markedly from those
hinted at in most current work in the Cognitive Robotics vein [Lespérance, et al.,
1994], [Kowalski, 1995], [Poole, 1995].

The architecture of the Rug Warrior implementation is behaviour-based in the purest
sense, and yet serves the purpose of building a symbolic model of the world for which
a rigorous denotational account can be supplied. In a sense, this architecture
accommodates two extremes in robot design — the behaviour-based approach and the
Cognitive Robotics approach — but makes no concessions to do so. At present, the
world model constructed by the robot is a passive by-product of its activity. But the
purity of this bipartite architecture can be maintained when the model plays a more
active role.

This is accomplished by using the model to inform the decisions of a rational core
which attempts to orchestrate the talents the robot has at its disposal, in the form of a
repertoire of Brooks-style behaviours, in order to achieve its goals. The behaviour-
based component of the architecture needn’t be under the direct control of the rational
component, but can remain fully autonomous. The aim of the rational, goal-achieving
component of the architecture is only to perturb these behaviours in ways conducive to
the achievement of its goals. Although the very idea of a goal to some extent
compromises the behaviour-based approach to robotics, this proposal preserves one of
its essential insights, which is that tight coupling between sensors and effectors is the
way to achieve robustness in control.
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Appendix A: Proofs of Propositions

Proof of Proposition 2.8. From CIRC[N ; Happens], we get,

Happens(a,t) ↔ [[a = Rotate(90) ∧ t = 10] ∨ [a = Rotate(–180) ∧ t = 20]]. [A.1]

From CIRC[E ; Initiates, Terminates, Releases], we get,

Initiates(a,f,t) ↔ [A.2]
∃ r1,r2,r3 [a = Rotate(r1) ∧ f = Facing(r2) ∧

HoldsAt(Facing(r3),t) ∧ r2 = r3 + r1]

Terminates(a,f,t) ↔ [A.3]
∃ r1,r2 [a = Rotate(r1) ∧ f = Facing(r2) ∧

HoldsAt(Facing(r2),t) ∧ r1 ≠ 0]

¬ ∃ a,f,t [Releases(a,f,t)]. [A.4]

From [A.1] and (EC5), we get,

¬ Clipped(0,Facing(0),t) ← 0 ≤ t ≤ 10

which, given (EC1) and (2.3), yields,
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HoldsAt(Facing(0),t) ← 0 ≤ t ≤ 10. [A.5]

From [A.2] and [A.5], we get,

Initiates(Rotate(90),Facing(90),10). [A.6]

From [A.1] and (EC5), we get,

¬ Clipped(10,Facing(90),t) ← 10 < t ≤ 20

which, given [A.1], [A.6] and (EC2), yields,

 HoldsAt(Facing(90),t) ← 0 ≤ t ≤ 10. [A.7]

From [A.2] and [A.5], we get,

Initiates(Rotate(–180),Facing(270),20). [A.8]

From [A.1] and (EC5), we get,

¬ Clipped(20,Facing(270),t) ← 20 < t

which, given [A.1], [A.8] and (EC2), yields,

 HoldsAt(Facing(270),t) ← 20 < t. [A.9]

The proposition follows from [A.5], [A.7], and [A.9]. �

Proof of Proposition 3.13. From CIRC[N ; Happens], we get,

Happens(a,t) ↔ [[a = Go ∧ t = 10] ∨ [a = Stop ∧ t = 20]]. [A.10]

From CIRC[E ; Initiates, Terminates, Releases], we get,

Initiates(a,f,t) ↔ [A.11]
[a = Go ∧ f = Moving] ∨

∃ p [a = Stop ∧ f = Location(Robot,p) ∧
HoldsAt(Location(Robot,p),t)]]

Terminates(a,f,t) ↔ a = Stop ∧ f = Moving [A.12]

Releases(a,f,t) ↔ ∃ p [a = Go ∧ f = Location(Robot,p)]. [A.13]

From [A.10] and (EC5), we get,

¬ Clipped(0,Location(Robot,〈0,0〉),t) ← 0 ≤ t ≤ 10

which, from (EC1) and (3.9), yields,

HoldsAt(Location(Robot,〈0,0〉),t) ← 0 ≤ t ≤ 10. [A.14]

Similarly, we can show,

HoldsAt(Facing(90),10). [A.15]

From [A.11] we have,

Initiates(Go,Moving,10). [A.16]
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From [A.10] and (EC5), we get,

¬ Clipped(10,Moving,t) ← 10 < t ≤ 20. [A.17]

From [A.14], [A.15], and (3.5), we get,

Trajectory(Moving,10,Location(Robot,〈x,0〉),d) ← x = V.d

which, given [A.10], [A.16], [A.17] and (EC7), yields,

HoldsAt(Location(Robot,〈x,0〉),t) ← 10 < t ≤ 20 ∧ x = V.(t – 10). [A.18]

From [A.11] and [A.18], we have,

Initiates(Stop,Location(Robot,〈x,0〉),20) ← x = V.10. [A.19]

From [A.10] and (EC5), we get,

¬ Clipped(20,Location(Robot,〈x,0〉),t) ← 20 < t ∧ x = V.10

which, given [A.10], [A.18], [A.19] and (EC2), yields,

HoldsAt(Location(Robot,〈x,0〉),t) ← 20 < t ∧ x = V.10. [A.20]

From [A.14], [A.18] and [A.20], we arrive at,

HoldsAt(Location(Robot,〈x,y〉),t) ←
[0 ≤ t ≤ 10 ∧ x = 0 ∧ y = 0] ∨

[10 < t ≤ 20 ∧ x = V.(t – 10) ∧ y = 0] ∨
[20 < t ∧ x = V.10 ∧ y = 0].

The proposition follows from this and the domain constraint (3.6). �

Proof of Proposition 5.8. From CIRC[N1 ∧ N2 ; Happens], we get,

Happens(a,t) ↔ H1(a,t) ∨ H2(a,t) ∨ H3(a,t) ∨ H4(a,t) [A.21]

where,

H1(a,t) ≡def

[a = Go ∧ t = 0] ∨ [a = Stop ∧ t = 2·8] ∨
[a = Rotate(–90) ∧ t = 3·3] ∨ [a = Go ∧ t = 3·8]

H2(a,t) ≡def

∃ w,r [a = Bump ∧ [HoldsAt(Moving,t) ∨ t = 0 ∨ t = 3·8] ∧
HoldsAt(Facing(r),t) ∧ HoldsAt(Blocked(Robot,w,r),t)]

H3(a,t) ≡def

∃ w,r,p1,p2,z [a = Switch1 ∧ [HoldsAt(Moving,t) ∨ t = 0 ∨ t = 3·8] ∧
HoldsAt(Facing(r),t) ∧

HoldsAt(Occupies(Robot,Displace(Disc(z),p1)),t) ∧
HoldsAt(Touching(Robot,w,p2),t) ∧

r–150 < Bearing(p1,p2) < r+30]
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H4(a,t) ≡def

∃ w,r,p1,p2,z [a = Switch2 ∧ [HoldsAt(Moving,t) ∨ t = 0 ∨ t = 3·8] ∧
HoldsAt(Facing(r),t) ∧

HoldsAt(Occupies(Robot,Displace(Disc(z),p1)),t) ∧
HoldsAt(Touching(Robot,w,p2),t) ∧

r–30 < Bearing(p1,p2) < r+150].

From CIRC[E ; Initiates, Terminates, Releases], we get,

Initiates(a,f,t) ↔ [A.22]
∃ r1,r2 [a = Rotate(r1) ∧ f = Facing(r1+r2) ∧ HoldsAt(Facing(r2),t)] ∨

[a = Go ∧ f = Moving] ∨
∃ g [[a = Stop ∨ ∃ r [a = Bump(r)]] ∧ f = Occupies(Robot,g) ∧

HoldsAt(Occupies(Robot,g),t)]

Terminates(a,f,t) ↔ [A.23]
[a = Stop ∨ ∃ r [a = Bump(r) ∨ a = Rotate(r)]] ∧ f = Moving

Releases(a,f,t) ↔ ∃ g [a = Go ∧ f = Occupies(Robot,g)]. [A.24]

From CIRC [O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] we get,

InitiallyN(Occupies(x,g)) ← x ≠ A ∧ x ≠ Robot. [A.25]

It can easily be shown that A retains its initial region of occupancy for all time. Let
X turn = 1 + 2·8.Sin(80), Yturn = 1 + 2·8.Cos(80). From [A.25] and (5.7), using
Axioms (Sp7) and (B5), it can be confirmed that,

¬ HoldsAt(Blocked(Robot,w,r),t) ← [A.26]
HoldsAt(Occupies(Robot,Displace(Disc(0·5),〈x,y〉)),t) ∧

∃ d [[0 ≤ d ≤ 2·8 ∧ x = 1 + d.Sin(80) ∧ y = 1 + d.Cos(80)] ∨
[3·8 < d < Tbump ∧ x = Xturn + (d – 3·8).Sin(–10) ∧

y = Yturn + (d – 3·8).Cos(–10)]].

It can similarly be confirmed that,

¬ HoldsAt(Touching(Robot,w,p),t) ← [A.27]
HoldsAt(Occupies(Robot,Displace(Disc(0·5),〈x,y〉)),t) ∧

∃ d [[0 ≤ d ≤ 2·8 ∧ x = 1 + d.Sin(80) ∧ y = 1 + d.Cos(80)] ∨
[3·8 < d < Tbump ∧ x = Xturn + (d – 3·8).Sin(–10) ∧

y = Yturn + (d – 3·8).Cos(–10)]].

Given [A.26], from [A.21] to [A.24], using a similar procedure to that employed in the
proof of Proposition 3.13, we can show,
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HoldsAt(Occupies(Robot,Displace(Disc(0·5),〈x,y〉)),t) ← [A.28]
[0 ≤ t ≤ 2·8 ∧ x = 1 + t.Sin(80) ∧ y = 1 + t.Cos(80)] ∨

[2·8 < t ≤ 3.8 ∧ x = Xturn ∧ y = Yturn] ∨
[3·8 < t ≤ Tbump ∧ x = Xturn + (t – 3·8).Sin(–10) ∧

y = Yturn + (t – 3·8).Cos(–10)].

Given that A retains its initial region of occupancy, from [A.28], [A.25] and (5.7),
using Axioms (Sp7), we can show,

HoldsAt(Blocked(Robot,A,–10),Tbump). [A.29]

We can also show,

HoldsAt(Facing(–10),Tbump). [A.30]

From [A.29] and [A.30], using Axiom (B5), we get,

Happens(Bump,Tbump). [A.31]

Given that A retains its initial region of occupancy, from [A.28], [A.25] and (5.7),
using Axioms (Sp7), we can also show,

∃ p1, p2 [HoldsAt(Touching(Robot,A,p1),Tbump) ∧ [A.32]
HoldsAt(Occupies(Robot,Displace(Disc(0·5),p2)),Tbump) ∧

Bearing(p1,p2) = 0].

From [A.21] and [A.30] to [A.32] we get,

Happens(Switch1,Tbump) ∧ Happens(Switch2,Tbump). [A.33]

From [A.21], [A.27] and Axiom (B6) we get,

[Happens(Switch1,t) ∨ Happens(Switch2,t)] → t = Tbump. [A.34]

The proposition follows directly from [A.33] and [A.34]. �

Proof of Proposition 6.2. The proof is analogous to that of Proposition 5.10.�

Proof of Proposition 7.9. The proposition can be proved using Theorem 8.9.
First, it can easily be verified that O ∧ M1 ∧ M2 is consistent. Now, let ρ0 be 〈1,1〉, let
ρ1 be 〈2,3〉, and let τ1 be 2·1. We have Tstop(1) = τ1,  RL(ρ0,0,1) = 〈2,3·1〉, and
ε.MT(0,1) = 0·525. Therefore the distance from ρ1 to RL(ρ0,0,1) is less than
ε.MT(0,1), and the sequence comprising just ρ1 is a bump trail.

Let η1 be 3. We have RO(τ1) = 0, which gives us the following.

O ∧ M1 ∧ M2 ª OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1)))

This follows from the definition of OTR, since the obstacle A would touch the robot at
point 〈2,3·5〉 if the robot’s location were ρ1 = 〈2,3〉.

Finally, it can be shown that,
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CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B Ω ¬ COMP[Ψ]

because a model can be exhibited which satisfies,

[Happens(a,t) ∧ [a = Switch1 ∨ a = Switch2]] → t = 2·1.

The proposition then follows from Theorem 8.9. �

Appendix B: Proofs of Theorems

Proof of Theorem 7.13. We only need to consider Ψ since the definition of an
explanation caters for COMP[Ψ] automatically. The theorem follows from the fact that
Axioms (B3) and (B6) are equivalent if ε is 0, and the fact that (B3) ensures that the
robot’s path is deterministic in the sense that at any given time its location is the same in
every model of,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ Bdet.

To see that the theorem follows, consider that, if the robot’s path is deterministic
according to a formula Γ and the locations and shapes of objects are the same in every
model of Γ (as they must be in the above formula since M1 and M2 are complete spatial
descriptions), then Γ Ω ¬ Ψ if and only if Γ ª Ψ. �

For the proofs of Theorems 8.8 to 8.10, let Σ be,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B.

The proof of Theorem 8.8 requires the development of two lemmas.

First we note that from CIRC[N1 ∧ N2 ; Happens], we get the completion of Happens
(as in the proof of Proposition 5.9, for example). If N2 tracks Ψ, then this completion
will include a Stop action for every time point at which Moving is terminated. So the
robot is sure to remain in continuous motion between temporally adjacent Go and Stop
actions.

Lemma B.1. For any model V of Σ,

V æ HoldsAt(Facing(θ),τ)

if and only if θ = RO(τ).

Proof. Given the completion of Happens, the proof is a straightforward induction on
the number of Rotate actions in N2, using Axioms (E1) and (E2), and the event
calculus axioms (EC1) to (EC7). �
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Lemma B.2. If N2 tracks Ψ, then for any model V of Σ and any i, i < 0 < m, if

V æ HoldsAt(Occupies(Robot,Displace(Disc(0·5),ρ)),τi)]

then,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),τi+1) ∧
Distance(p,RL(ρ,j,k)) ≤ ε.MT(j,k)]

where Tstop(j) is τi and Tstop(k) is τi+1.

Proof. What we in fact show is that, for any i, 0 < i ≤ n – j, if,

V æ HoldsAt(Occupies(Robot,Displace(Disc(0·5),ρ)),Tstop(j))] [B.3]

then,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+i)) ∧
Distance(p,RL(ρ,j,j+i)) ≤ ε.MT(j,j+i)]

from which the lemma follows directly, given that N2 tracks Ψ, since k = j + i for some
i, 0 < i ≤ n – j.

The proof is by induction over i. The base case is as follows. There is exactly one Go
action between Tstop(j) and Tstop(j+1), which occurs at time Tgo(j+1). From the
completion of Happens, the event calculus axioms, and [B.3], we can show that,

V æ HoldsAt(Occupies(Robot,Displace(Disc(0·5),ρ)),Tgo(j+1))].

Now given that,

V æ HoldsAt(Facing(θ),Tgo(j+1))]

(which, from Lemma B.1, is equivalent to θ = RO(Tgo(j+1))), we can show,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+1)) ∧
Distance(p,ρ') ≤ ε.(Tstop(j+1) – Tgo(j+1))]

where ρ' is,

ρ + 〈(Tstop(j+1) – Tgo(j+1)).Sin(θ),(Tstop(j+1) – Tgo(j+1)).Cos(θ)〉.

Given the completion of Happens, this follows from Axioms (E3) and (B6), and the
event calculus axioms (EC1) to (EC7).

From the definitions of RL and MT, this implies,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+1)) ∧
Distance(p,RL(ρ,j,j+1)) ≤ ε.MT(j,j+1)].

The inductive step is as follows. Consider any h, 0 < h ≤ n – j. Suppose we know that
if,

V æ HoldsAt(Occupies(Robot,Displace(Disc(0·5),ρ)),Tstop(j))] [B.4]

then,
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V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+h)) ∧
Distance(p,RL(ρ,j,j+h)) ≤ ε.MT(j,j+h)].

Then what’s required is to show that if [B.4] then,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+h+1)) ∧
Distance(p,RL(ρ,j,j+h+1)) ≤ ε.MT(j,j+h+1)].

The proof is similar to that for the base case. From the completion of Happens, the
event calculus axioms, and [B.4], we can show that,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tgo(j+h+1)) ∧
Distance(p,RL(ρ,j,j+h)) ≤ ε.MT(j,j+h)].

Now given that,

V æ HoldsAt(Facing(θ),Tgo(j+h+1))]

(which, from Lemma B.1, is equivalent to θ = RO(Tgo(j+h+1))), we can show,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+h+1)) ∧
Distance(p,ρ') ≤ ε.(Tstop(j+h+1) – Tgo(j+h+1))]

where ρ' is,

ρ + 〈(Tstop(j+h+1) – Tgo(j+h+1)).Sin(θ),(Tstop(j+h+1) – Tgo(j+h+1)).Cos(θ)〉.

Given the completion of Happens, this follows from Axioms (E3) and (B6), and the
event calculus axioms (EC1) to (EC7).

From the definitions of RL and MT, this implies,

V æ ∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),Tstop(j+h+1)) ∧
Distance(p,RL(ρ,j,j+h+1)) ≤ ε.MT(j,j+h+1)]. �

Proof of Theorem 8.8. The proof is by induction on the elements of the bump trail.
The base case is as follows. Let Tstop(k) be τ1 and ρ0 be the robot’s initial location
according to M1. Consider ψ1. Suppose that there is no ρ1 such that,

• the distance from ρ1 to the point RL(ρ0,0,k) is less than or equal to ε.MT(0,k),
and

• O ∧ M1 ∧ M2 ª OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1))).

So, for any ρ1 whose distance from RL(ρ0,0,k) is less than or equal to ε.MT(0,k), we
have,

O ∧ M1 ∧ M2 Ω OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1))).

Clearly we have,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN] Ω
OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1)))
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since the circumscription only cuts out models with superflous objects. But we also
have,

Σ Ω OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1))).

This follows from the fact that the initial value of the spatial fluent Occupies is fixed by
the first circumscription in Σ and are not influenced by the rest of Σ.

So there is some model V of Σ such that,

V æ ¬ OTR(ρ1,BDmin(η1,RO(τ1)),BDmax(η1,RO(τ1))). [B.5]

From Lemma B.2, V must satisfy,

∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),τ1) ∧
Distance(p,RL(ρ0,0,k)) ≤ ε.MT(0,k)]. [B.6]

From [B.5] and [B.6] and the completion of Happens, given that the distance from ρ1

to the point RL(ρ0,0,k) is less than or equal to ε.MT(0,k), we can show,

V æ ¬ Happens(Switch1,τ1)

if η1 is 1 or 3, and,

V æ ¬ Happens(Switch2,τ1)

if η1 is 2 or 3. Therefore M2 is not an explanation of Ψ, which is a contradiction.

The inductive step is similar to the base case, and is as follows. Consider any h,
0 < h < m. Let Tstop(k) be τh+1. Suppose that there exists a bump trail ρ1 to ρh such
that, for any i, 0 < i ≤ h,

O ∧ M1 ∧ M2 ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi)))

for which there is no ρh+1 such that,

• the distance from ρh+1 to the point RL(ρh,h,k) is less than or equal to
ε.MT(h,k), and

• O ∧ M1 ∧ M2 ª OTR(ρh+1,θmin,θmax)

where θmin = BDmin(ηh+1,RO(τh+1)) and θmax = BDmax(ηh+1,RO(τh+1)).

So, for any ρh+1 whose distance from RL(ρh,h,k) is less than or equal to ε.MT(h,k),
we have,

O ∧ M1 ∧ M2 Ω OTR(ρh+1,θmin,θmax).

Using the same argument as for the base case, this means there is some model V of Σ
such that,

V æ ¬ OTR(ρh+1,θmin,θmax). [B.7]

From Lemma B.2, V must satisfy,
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∃ p [HoldsAt(Occupies(Robot,Displace(Disc(0·5),p)),τh+1) ∧
Distance(p,RL(ρh,h,k)) ≤ ε.MT(h,k)]. [B.8]

From [B.7] and [B.8] and the completion of Happens, given that the distance from
ρh+1 to the point RL(ρh,h,k) is less than or equal to ε.MT(h,k), we can show,

V æ ¬ Happens(Switch1,τh+1)

if ηh+1 is 1 or 3, and,

V æ ¬ Happens(Switch2,τh+1)

if ηh+1 is 2 or 3. Therefore M2 is not an explanation of Ψ, which is a contradiction.�

Proof of Theorem 8.9. Suppose,

Σ Ω ¬ COMP[Ψ] [B.9]

and let ρ1 to ρm be a bump trail such that, for any i, 0 < i ≤ m,

O ∧ M1 ∧ M2 ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi))). [B.10]

Now, given [B.9], it’s sufficient to exhibit a model of Σ such that V æ ψi for any ψi.
The following is a partial definition of such a model V. The definition doesn’t
encompass predicate and function symbols whose interpretations are straightforward to
fill in.

Let each ground fluent or action term be interpreted by itself. Let Happens be
interpreted as follows.

V[Happens] = V1 ∪ V2 ∪ V3

where V1 is,

{ 〈α,τ〉 | Happens(α,τ) occurs in N2},

V2 is,

{ 〈α,τ〉 | Happens(α,τ) occurs in some ψi},

V3 is,

{ 〈Bump,τ〉 | Happens(Switch1,τ) or Happens(Switch2,τ) occurs in some ψi}.

Obviously, from V1, V satisfies N2, and from V2, V satisfies Ψ. But we need to fill in
the interpretation of HoldsAt for the fluents Facing and Blocked in such a way that V
satisfies Axioms (H1) to (H3) given V1 to V3. The only-if counterparts to these axiom
must also be satisfied if V is to be minimal with respect to Happens. To begin with, we
incorporate in V the objects described by M1 and M2. To do this, we first supply
interpretations for the function Shape and the predicate InitiallyP.

Let VO be any model of,

CIRC[O ∧ M1 ∧ M2 ; AbSpace ; InitiallyP, InitiallyN].
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We know that O ∧ M1 ∧ M2 is consistent, so it must have at least one model. Given
this, it’s easy to see that it must have a minimal model with respect to the above
circumscription policy. Let VO be any such minimal model, and let Shape, InitiallyP,
and InitiallyN be interpreted as follows.

V[Shape] = VO[Shape]

V[InitiallyP] = {〈β〉 | 〈β〉 ∈ VO[InitiallyP] and β is Occupies(ω,γ) or Facing(θ)}

V[InitiallyN] = {〈β〉 | 〈β〉 ∈ VO[InitiallyN] and β is Occupies(ω,γ) or Facing(θ)}

V[AbSpace] = VO[AbSpace]

Obviously V satisfies O ∧ M1 ∧ M2 and its circumscription.

Now we can construct a trajectory for the robot which brings it into contact with the
obstacles described in M1 and M2 in such a way as to cause the sensor events described
in Ψ.

For every i, 0 < i ≤ n such that Tstop(i) = τj for some j, 0 < j ≤ m,  let ρi* be ρj. Let
every other ρi* be some point such that the distance from ρi+1* to RL(ρi*,i,i+1) is less
than or equal to ε.MT(i,i+1). From the definition of a bump trail, such an assignment
of points must exist.

The point ρi* is the location in V of the robot at the time of the ith Stop action. Some
Stop actions will be associated with Bump events and some won’t. For those that are,
the choice of ρi* ensures that the robot abuts an object, since from [B.10] we know
that, for any 0 < j ≤ m,

V æ OTR(ρj,BDmin(ηj,RO(τj)),BDmax(ηj,RO(τj))).

Now, HoldsAt is interpreted as follows.

V[HoldsAt] = V4 ∪ V5 ∪ V6 ∪ V7

where V4 to V7 are defined in the following way. V4 and V5 interpret the Occupies
fluent. V4 describes the regions of occupancy of all objects except the robot, which is
the only object which moves.

V4 = {〈Occupies(ω,γ),τ〉 | ω ≠ Robot and V æ InitiallyP(Occupies(ω,γ))}

V5 describes the robot’s region of occupancy. The idea here is to plot a course between
each ρi* and ρi+1*. Let θi and δi satisfy the following equation.

ρi+1* = ρi* + 〈δi.Sin(θi),δi.Cos(θi)〉

The LOC function, defined below, captures the robot’s location between Stop actions.

LOC(τ) =  

 

ρ  if τ ≤ Tgo(1),

LOC(Tgo(i)) + DISP(i,τ) if Tgo(i) < τ ≤ Tstop(i),
LOC(Tstop(i)) if T go(i+1) is defined and Tstop(i) < τ ≤ Tgo(i+1),
LOC(Tstop(i)) if T go(i+1) is undefined and τ > Tstop(i)

where
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• V æ InitiallyP(Occupies(Robot,γ)) and γ = Displace(Disc(0·5),ρ)), and,

•  DISP(i,τ) = 〈δi.Sin(θi)
Tstop(i)–τ ,δi.Cos(θi)

Tstop(i)–τ  〉.

Now we have,

V5 = {〈Occupies(Robot,γ),τ〉 | γ = Displace(Disc(0·5),LOC(τ))}.

V6 interprets HoldsAt for the fluents Facing and Moving, and is defined as follows.

V6 =
{ 〈Facing(θ),τ〉 | θ = RO(τ)} ∪

{ 〈Moving,τ〉 | Tgo(i) < τ ≤ Tstop(i) for some i}.

From V6, it can be verified that V satisfies Axiom (B4). V7 interprets HoldsAt for the
fluents Blocked and Touching. Given V5, this can be directly filled in so as to satisfy
Axioms (B4) and (B6). The details are omitted, but it can be confirmed from the
definition of V5 that, for any 0 < i ≤ m, there is some ω such that,

〈Blocked(Robot,ω,θ),τi〉 ∈ V7

and that if, for any any τ, ω and θ,

〈Blocked(Robot,ω,θ),τ〉 ∈ V7

then either,

• τ = τi for some 0 < i ≤ m, or

• V æ ¬ HoldsAt(Moving,τ) ∧ ¬ Happens(Go,τ), or

• V æ ¬ HoldsAt(Facing(θ,τ).

Given this, it can be verified that V satisfies Axiom (H1) plus its only-if counterpart.

Similarly, it can be verified from the definition of V5 that V satisfies Axiom (H2) and
(H3) plus their only-if counterparts. Since (H1) to (H3) are satisfied along with their
only-if counterparts, V is minimal with respect to Happens, and V satisfies CIRC[N1 ∧
N2 ; Happens].

Let Initiates, Terminates, and Releases be interpreted as follows.

V[Initiates] =
{ 〈Go,Moving,τ〉} ∪

{ 〈Rotate(θ1),Facing(θ1+θ2),τ〉 | θ2 = RO(τ)} ∪
{ 〈α,Occupies(Robot,γ),τ〉 | α = Stop or Bump and

γ = Displace(Disc(0·5),LOC(τ))}

V[Terminates] =
{ 〈Stop,Moving,τ〉} ∪ { 〈Bump,Moving,τ〉} ∪ { 〈Rotate(θ),Moving,τ〉}
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V[Releases] =
{ 〈Go,Occupies(Robot,γ),τ〉} ∪

{ 〈Rotate(θ1),Facing(θ2),τ〉 | θ2 = RO(τ) and θ1 ≠ 0}

It can easily be verified that V satisfies CIRC[E ; Initiates, Terminates, Releases], given
Lemma B.1.

Now it’s a routine exercise to fill in the interpretations of Clipped and Declipped
according to Axioms (EC5) and (EC6). Finally, based on V5, an interpretation of the
Trajectory predicate can be supplied which conforms to Axioms (B7) and (B8), and it
can be verified that V satisfies the axioms of the event calculus. �

Proof of Theorem 8.10. Given that O ∧ M1 ∧ M2 is consistent, a model can be
constructed for Σ as shown in the proof of Theorem 8.9. �

Proof of Theorem 9.3. Noting that no square in M can be both black and white, we
can see that O ∧ M1 ∧ Exp(M) is consistent.

It can be verified by inspection of the algorithm that the sequence of points P[1] to P[m]
is a bump trail. Let ρi be the ith element of P. We now proceed to show that, for any i,
0 < i ≤ m,

O ∧ M1 ∧ Exp(M) ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi))). [B.11]

From Lines 11 and 15 of ColourMap and the definition of PossSquare, we know that
M will include a black square with a boundary which, if it were the boundary of an
object, would meet the conditions set out in the definition of OTR for a boundary l.
From Line 12 of ColourMap and the definition of ColourPath, we see that this
boundary will also be shared by a white square. So, according to the definition of Exp,
it will indeed be the boundary of an object.

Next we show that,

CIRC[O ∧ M1 ∧ Exp(M) ; AbSpace ; InitiallyP, InitiallyN] ∧ [B.12]
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B Ω ¬ COMP[Ψ].

From Lines 7 and 12 of ColourMap and the definitions of PlotPath and ColourPath, it
can be seen that the white squares in M at the end of ColourPath’s execution cover a
clear path for the robot from its starting position to the site of its first change of
direction, and from each point where it changes direction to the next. Since the
corresponding region of space in Exp(M) will be empty, then models of,

CIRC[O ∧ M1 ∧ Exp(M) ; AbSpace ; InitiallyP, InitiallyN] ∧
CIRC[N1 ∧ N2 ; Happens] ∧

CIRC[E ; Initiates, Terminates, Releases] ∧ B

exist in which the only collisions are those recorded in Ψ.
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Given the consistency of O ∧ M1 ∧ Exp(M), the theorem follows from [B.11], [B.12],
and Theorem 8.9. �

Proof of Theorem 9.5. Since M2 is curve-free, for every bump trail ρ1 to ρm such
that, for any 0 < i ≤ m,

O ∧ M1 ∧ M2 ª OTR(ρi,BDmin(ηi,RO(τi)),BDmax(ηi,RO(τi)))

there exists some P[1] to P[m] which is a possible result of the algorithm’s non-
deterministic choices on Line 11 of ColourMap and Line 5 of PlotPath, such that, for
any 0 < i ≤ m, P[i] = ρ i. Therefore, from Theorem 8.8, the algorithm’s non-
deterministic choices cover all possible explanations of the requisite form. �


