
1

Reinventing Shakey

Murray Shanahan

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,

London SW7 2BT,
England.

m.shanahan@ic.ac.uk

Abstract
This paper describes the logical foundations of an
implemented system which employs resolution-based
theorem proving techniques for high-level robot
control. The paper offers complementary logical
characterisations of perception and planning, and
shows how sensing, planning and acting are
interleaved to control a real robot.

1 Introduction
In the late Sixties, when the Shakey project started [Nilsson,
1984], the vision of robot design based on logical
representation seemed both attractive and attainable.
Through the Seventies and early Eighties, however, the
desire to build working robots led researchers away from
logic to more practical but ad hoc approaches to
representation. This movement away from logical
representation reached an extreme in the late Eighties and
early Nineties when Brooks jettisoned the whole idea of
representation, along with the so-called sense-model-plan-
act architecture epitomised by Shakey [Brooks, 1991].

However, the Shakey style of architecture, having an overtly
logic-based deliberative component, seems to offer
researchers a direct path to robots with high-level cognitive
skills, such as planning, reasoning about other agents, and
communication with other agents. Accordingly, a number of
researchers have instigated a Shakey revival, and are aiming
to achieve robots with these sorts of high-level cognitive
skills by using logic as a representational medium
[Lespérance, et al., 1994].

This paper describes one such robot. The paper concentrates
on logical foundations, but everything described has been
implemented, deployed, and tested on a real robot, namely a
Khepera, a miniature robot with two drive wheels and a
suite of eight infra-red proximity sensors around its
circumference. The robot inhabits a miniaturised office-like
environment, depicted in Figure 1.

The robot has a simple repertoire of low-level actions,
executed on-board, which includes wall-following, turning
into doorways, and turning around corners. Using these, the
high-level, off-board controller manoeuvres the robot
around its environment.

C1

C6

C2

C4

C5

C3

C7

C9

C8

C10

C11

C15

C16

C12C13C14

C17

C19

C18

C20

C23

C22 C21

C24

C30C25

C31

C26

C32

C27

C33

C28

C34

C29

C35C36

C40C37

C41

C38 C39

C42

C46C43

C47

C44 C45

D1

D4

D2

D3

D5 D6

R1

R4

R5

R2

R6

R3
robot

P1

C48

Figure 1: The Robot’s Environment

1.1 A Motivating Example
To get a feel for its capabilities, let’s take a look at an
example of the way in which the high-level controller
functions. Suppose the robot is initially between corners
C18 and C19, as shown, and suppose it has the goal of
retrieving package P1 from room R6. Informally, this is how
the robot’s high-level controller achieves the goal.

First, the robot plans a route. As soon as it finds a complete
(though perhaps not fully decomposed) plan with an
executable first action, the robot starts carrying that plan
out. In this case, the first action is to go through door D4, so
the robot sets out along the wall until it reaches corner C19.
It then turns the corner, and heads off towards door D4.

Suppose someone now closes door D4. Unfortunately,
because of its poor sensors, the robot cannot detect closed
doors, which are indistinguishable from walls. So the robot
continues wall-following until it reaches corner C22.

Up to this point, the assimilation of the robot’s sensor data
has been a trivial matter. The sensor events it receives are
exactly what it would expect given what it has done and
what it believes about its environment. So the explanations
of those sensor events are trivial. But the encounter with a
corner at this time requires a non-empty explanation.

Using abduction, the robot constructs an explanation of its
encounter with the corner — door D4 must have been
closed, and it must now be at corner C22. But this new piece

2

of information conflicts with the assumptions underlying the
plan it is executing. So the robot is forced to replan. It now
finds a new route to room R6, via doors D2, D3, and D6,
which it successfully executes and retrieves the package.

In the implemented system, the robot is controlled by a
sense-plan-act cycle. Sensing and planning are both
resolution-based abductive theorem proving processes, and
in each iteration of the cycle, the sense phase and plan phase
carry out a single step of resolution each. The chief aim of
the rest of this paper is to set out the logical foundations of
these planning and perception processes.

The paper presents,

• a short introduction to the event calculus, a formalism
for reasoning about action,

• a logical account of abductive event calculus planning,

• a complementary logical account of abductive sensor
data assimilation, also based on the event calculus, and,

• a brief outline of event calculus hierarchical planning,
through which plans can be generated in progression
order.

2 Representing Action
To supply the required logical accounts of perception and
planning, a formalism for reasoning about action is needed.
The formalism presented here is based on the
circumscriptive event calculus [Shanahan, 1997a],
[Shanahan, 1999]. The event calculus is a well-established
logical formalism for reasoning about actions. It is capable
of representing a wide variety of phenomena, including
actions with indirect effects, non-deterministic actions,
concurrent actions, and continuous change [Shanahan,
1999]. A robust solution to the frame problem exists for the
event calculus, that works in the presence of all of these
phenomena [Shanahan, 1997a].

Because this material is presented in considerable detail
elsewhere, the description here will be kept fairly brief. A
many sorted language is assumed, with variables for fluents,
actions (or events), and time points. We have the following
axioms, whose conjunction will be denoted EC. Their main
purpose is to constrain the predicate HoldsAt. HoldsAt(f,t)
represents that fluent f holds at time t. Throughout the
paper, all variables are universally quantified with
maximum scope, unless otherwise indicated.

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t3) ← (EC2)
Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧

t2 < t3 ∧ ¬ Clipped(t1,f,t3)

Clipped(t1,f,t4) ↔ (EC3)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

¬ HoldsAt(f,t) ← (EC4)
Initially N(f) ∧ ¬ Declipped(0,f,t)

¬ HoldsAt(f,t3) ← (EC5)
Happens(a,t1,t2) ∧ Terminates(a,f,t1) ∧

t2 < t3 ∧ ¬ Declipped(t1,f,t3)

Declipped(t1,f,t4) ↔ (EC6)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Initiates(a,f,t2) ∨ Releases(a,f,t2)]]

Happens(a,t1,t2) → t1 ≤ t2 (EC7)

A particular domain is described in terms of Initiates,
Terminates, and Releases formulae. Initiates(a,f,t) represents
that fluent f starts to hold after action a at time t.
Conversely, Terminates(a,f,t) represents that f ceases to hold
after action a at t. Releases(a,f,t) represents that fluent f is
no longer subject to the common sense law of inertia after
action a at t.

A particular narrative of events is described in terms of
Happens and Initially formulae. The formulae InitiallyP(f)
and InitiallyN(f) respectively represent that fluent f holds at
time 0 and does not hold at time 0. Happens(a,t1,t2)
represents that action or event a occurs, starting at time t1
and ending at time t2. Table 1 summarises the predicates of
the calculus.

Formula Meaning

Initiates(α,β,τ) Fluent β starts to hold after action

α at time τ

Terminates(α,β,τ) Fluent β ceases to hold after action

α at time τ

Initially P(β) Fluent β holds from time 0

Initially N(β) Fluent β does not hold from time 0

τ1 < τ2 Time point τ1 is before time point

τ2

Happens(α,τ) Action α occurs at time τ

Happens(α,τ1,τ2) Action α starts at time τ1 and ends

at time τ2

HoldsAt(β,τ) Fluent β holds at time τ

Clipped(τ1,β,τ2) Fluent β is terminated between

times τ1 and τ2

Declipped(τ1,β,τ2) Fluent β is initiated between times

τ1 and τ2

Table 1: Event Calculus Predicates

A two-argument version of Happens is defined as follows.

Happens(a,t) ≡def Happens(a,t,t)

Formulae describing triggered events are allowed, and will
generally have the form,

Happens(α,τ) ← Π.

As we’ll see in Section 5, similar formulae can be used to
define compound actions, which are used for hierarchical
planning.

3

The frame problem is overcome through circumscription.
Given a conjunction Σ of Initiates, Terminates, and Releases
formulae describing the effects of actions, a conjunction ∆
of Initially, Happens and temporal ordering formulae
describing a narrative of actions and events, and a
conjunction Ω of uniqueness-of-names axioms for actions
and fluents, we’re interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω.

By minimising Initiates, Terminates and Releases we
assume that actions have no unexpected effects, and by
minimising Happens we assume that there are no
unexpected event occurrences. In all the cases we’re
interested in, Σ and ∆ will be conjunctions of Horn clauses,
and the circumscriptions will reduce to predicate
completions.

Care must be taken when domain constraints and triggered
events are included. Domain constraints (or “state
constraints”) are formulae that constrain the combination of
fluents that can hold simultaneously, and are used to define
actions with indirect effects. Triggered events are events
that occur when some specified combination of fluents
holds. The former must be conjoined to EC, while the latter
are conjoined to ∆.

3 A Logical Account of Planning
Planning can be thought of as the inverse operation to
temporal projection, that is to say reasoning forwards in
time from causes to effects. Temporal projection in the
event calculus is naturally cast as a deductive task. Given Σ,
Ω and ∆ as above, we’re interested in HoldsAt formulae Γ
such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆ ; Happens] ∧ EC ∧ Ω � Γ.

Conversely, planning in the event calculus can be
considered as an abductive task, since it is a form of
reasoning from effects to causes. Given a domain
description Σ, a conjunction Γ of goals (HoldsAt formulae),
and a conjunction ∆N of InitiallyP and InitiallyN formulae
describing the initial situation, a plan is a consistent
conjunction ∆P of Happens and temporal ordering formulae
such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆N ∧ ∆P ; Happens] ∧ EC ∧ Ω � Γ.

The following formulae capture the connectivity of the
rooms, as shown in Figure 1.

Connects(D1,R1,R2) (W2.1)

Connects(D2,R2,R3) (W2.2)

Connects(D3,R2,R4) (W2.3)

Connects(D4,R3,R4) (W2.4)

Connects(D5,R4,R5) (W2.5)

Conects(D6,R4,R6) (W2.6)

Connects(d,r1,r2) ← Connects(d,r2,r1) (W2.7)

Let’s suppose the robot can perform only one action, which
is to go through a specified door d, denoted by the term
GoThrough(d). (In the implemented system, the GoThrough
action is broken down by hierarchical planning into a
sequence of FollowWall and Turn actions.) We’ll assume,
for now, that doors are always open. The only fluent in the
domain is InRoom(r) representing that the robot is in room
r. We have the following Initiates and Terminates formulae.

Initiates(GoThrough(d),InRoom(r1),t) ← (R2.1)
Connects(d,r2,r1) ∧ HoldsAt(InRoom(r2),t)

Terminates(GoThrough(d),InRoom(r),t) ← (R2.2)
HoldsAt(InRoom(r),t)

Since there is only one action and only one fluent, this
example doesn’t require any uniqueness-of-names axioms.

Suppose the robot is initially in room R3.

Initially P(InRoom(R3)) (N2.1)

The goal is to get the robot to room R6.

HoldsAt(InRoom(R6),T) (G2.1)

Clearly one plan for achieving the goal is to go through D4
then go through D6.

Happens(GoThrough(D4),T1) (P2.1)

Happens(GoThrough(D6),T2) (P2.2)

T1 < T2 (P2.3)

T2 < T (P2.4)

The fact that this is a plan according to the abductive
definition is expressed in the following proposition. Let,

• Σ be the conjunction of (R2.1) and (R2.2)

• ∆N be formula (N2.1),

• ∆P be the conjunction of (P2.1) to (P2.4),

• Φ be the conjunction of (W2.1) to (W2.7), and

• Γ be formula (G2.1).

Proposition 3.1.
CIRC[Σ ; Initiates, Terminates, Releases] ∧

CIRC[∆N ∧ ∆P ; Happens] ∧
EC ∧ Φ � Γ. �

3.1 Implementation
This account of planning can be implemented through
abductive logic programming, as described in [Shanahan,
1997c] and [Shanahan, 2000]. The implementation is an
abductive meta-interpreter, which has been tailored for the
event calculus. HoldsAt goals are treated in a special way,
and the sub-goals they generate are processed in a particular
order to prevent looping. In addition, a dedicated constraint
solver is applied to temporal ordering constraints, whose
efficiency is improved by the maintenance of a cache of
temporal ordering lemmas.

The computation carried out by the resulting system
strongly resembles that of a hand-coded partial-order
planning algorithm. (The present example of route planning
can be reduced to graph search, but for general purpose
planning, we need a more generic technique.) In particular,
the implementation has to record negated Clipped formulae

4

that it has proved, and these correspond to protected links in
partial-order planning terminology. A protected link records
the fact that the value of a fluent initiated or terminated by a
given action must be preserved until the occurrence of
another subsequent action whose preconditions depend that
fluent.

The efficiency of this planner is in line with that of a partial
order planner. A more recent event calculus planner, based
on the planning as satisfiability work of Kautz and Selman
[1996], is more efficient, but has not yet been applied to
robotics [Shanahan & Witkowski, 2000]. However, as we’ll
see later, this is only part of the story for planning. In order
to be able to interleave planning, sensing and acting in a
respectable way, we need to carry out hierarchical planning.
Moreover, by using hierarchical planning wherever
possible, we minimise the use of search-heavy planning
from first principles.

Now, what exactly is the relationship between the logical
specification of planning and its implementation by means
of abductive logic programming? This question is addressed
more fully in [Shanahan, 2000]. But, in outline, here is the
answer.

In [Shanahan, 2000], a class of event calculus domain
descriptions is defined which, among other restrictions,
confines Initiates and Terminates formulae to the Horn
clause subset. This means that the theorems of Lifschitz
[1994] can be applied to reduce the circumscriptions of
these formulae to predicate completion. Moreover, since
these restrictions rule out recursion, predicate completion
and SLDNF coincide for the class of theories in question.
Thus the prospect of a straightforward logic programming
implementation is brought closer.

However, the use of temporal ordering constraints whose
completions we can’t assume complicates the issue. In
effect, the abductive meta-interpreter treats temporal
constraints in a special way, using a dedicated constraint
solver.

For the restricted class of event calculus theories defined,
the abductive meta-interpreter of [Shanahan, 2000] is both
sound and complete with respect to the abductive
characterisation of planning. This meta-interpreter forms the
basis of both the planning and sensor data assimilation
components in the present work.

However, many useful domain descriptions fall outside the
scope of these theorems. Domain descriptions including
formulae describing compound actions are an example of
particular relevance to the present paper, since they form the
basis of hierarchical planning. In the presence of such
formulae, the soundness and completeness of the meta-
interpreter are conjectural. So there is a theoretical gap that
needs to be filled here, and this is the subject of ongoing
work.

Next, we’ll look into the topic of perception.

4 A Logical Account of Perception
This section offers a logical account of sensor data
assimilation (perception) which mirrors the logical account
of planning in Section 3. The need for such an account
arises from the fact that sensors do not deliver facts directly
into the robot’s model of the world. Rather they provide raw
data from which facts can be inferred.

The methodology for supplying the required logical account
is as follows [Shanahan, 1997b]. First, using a suitable
formalism for reasoning about actions, construct a theory Σ
of the effects of the robot’s actions on the world and the
impact of the world on the robot’s sensors. Second, consider
sensor data assimilation as abduction with this theory.
Roughly speaking, given a narrative ∆ of the robot’s actions,
and a description Γ of the robot’s sensor data, the robot
needs to find some Ψ such that,

Σ ∧ ∆ ∧ Ψ � Γ.

In event calculus terms, Γ might comprise Happens and/or
HoldsAt formulae describing sensor events or values, and Ψ
might comprise InitiallyN and InitiallyP formulae describing
the environment’s initial configuration and/or Happens
formulae describing the intervening actions of other agents
which have modified that configuration.

To illustrate this, we’ll stay with the office delivery domain.
But we must begin with a look at the sensory capabilities of
the Khepera robots which are being used to test the ideas
presented in this paper.

The Khepera can be straightforwardly programmed to
navigate around the environment of Figure 1. Using its
proximity sensors, it can follow walls and detect inner and
outer corners. If all the doors are open, the GoThrough
action of Section 3 can be executed, assuming the robot’s
initial location is known, by counting inner and outer
corners until the robot reaches the required door, then
passing through it.

If any of the doors is closed, however, this approach to
executing the GoThrough action will fail, because the infra-
red proximity sensors cannot detect a closed door, which
looks to them just like a continuation of the wall.

This, in an extreme form, is the predicament facing any
perceptual system. Inference must be carried out on raw
sensor data in order to produce knowledge. In this case, the
robot can abduce the fact that a door is closed as the only
possible explanation of its unexpected arrival at an inner
corner instead of the outer corner of the doorway.

Our aim here is to give a formal account of this sort of
inference that gels with the formal account of planning
already supplied. Indeed, in the implemented system, the
same knowledge, expressed using the same formalism, is
used for both planning and sensor data assimilation.
Furthermore, as already emphasised, both planning and
sensor data assimilation are viewed as abductive tasks with
a very similar character. This means that the same abductive
logic programming technology, indeed the very same code,
can be used to implement both processes.

5

4.1 The Robot’s Environment
Returning to the example at hand, the representation of the
robot’s environment, as depicted in Figure 1, now needs to
include corners, which were neglected in the planning
example. The formula NextCorner(r,c1,c2) represents that
corner c2 is the next inner or outer corner in room r after
corner c1, in a clockwise direction. For room R1 alone, we
have the following formulae.

NextCorner(R1,C1,C2) NextCorner(R1,C2,C3)

NextCorner(R1,C3,C4) NextCorner(R1,C4,C5)

NextCorner(R1,C5,C6) NextCorner(R1,C6,C1)

In addition, the formula Door(d,c1,c2) represents that there
is a doorway between the two corners c1 and c2. For each
door, there will be a pair of such formulae. Here they are for
door D1.

Door(D1,C3,C4) Door(D1,C15,C16)

Finally, the formulae Inner(c) and Outer(c) represent
respectively that c is an inner corner and c is an outer
corner. Again confining our attention to room R1, we have
the following.

Inner(C1) Inner(C2)

Outer(C3) Outer(C4)

Inner(C5) Inner(C6)

Each of these predicates will need to be minimised using
circumscription, so that their completions are formed.

4.2 The Robot’s Effect on the World
Now we can formalise the effects of the robot’s actions on
the world. To simplify the example, the following formulae
assume the robot always hugs the left wall, although
parameters are provided which allow for it to hug the right
wall as well.

Again, a finer grain of detail is required than for the
planning example. Instead of a single GoThrough action, the
robot’s repertoire now comprises three actions: FollowWall,
Turn(s), and GoStraight, where s is either Left or Right.
These actions affect three fluents. The fluent AtCorner(c,s)
holds if the robot is at (inner or outer) corner c, with c in
direction s, where s is Left or Right. The fluent
BesideWall(w,s) holds if the robot is adjacent to wall w in
direction s, where s is Left or Right. The fluent
InDoorway(d,r) holds if the robot is in doorway d, with its
back to room r. (By convention, the three fluents are
mutually exclusive.)

Let’s formalise the effects of the three actions in turn. Each
action is assumed to be instantaneous, an assumption which
has no practical implications in the present example. The
term Wall(c1,c2) denotes the wall between corners c1 and
c2. First, if the robot follows a wall, it ends up at the next
visible corner.

Initiates(FollowWall,AtCorner(c3,Left),t) ← (K4.1)
HoldsAt(BesideWall(Wall(c1,c2),Left),t) ∧

NextVisibleCorner(c1,c3,Left,t)

Terminates(FollowWall,BesideWall(w,s),t) (K4.2)

The formulae NextVisibleCorner(c1,c2,s,t) means that, at
time t, c2 is the next visible corner after c1, where the wall
in question is in direction s. The corner of a doorway whose
door is closed is invisible.

NextVisibleCorner(c1,c2,Left,t) ← (K4.3)
NextCorner(r,c1,c2) ∧ ¬ InvisibleCorner(c2,t)

NextVisibleCorner(c1,c3,Left,t) ← (K4.4)
NextCorner(r,c1,c2) ∧ InvisibleCorner(c2,t) ∧

NextVisibleCorner(c2,c3,Left,t)

NextVisibleCorner(c1,c2,s,t) ∧ (K4.5)
NextVisibleCorner(c1,c3,s,t) → c2 = c3

InvisibleCorner(c1,t) ↔ (K4.6)
∃ d,c2 [[Door(d,c1,c2) ∨ Door(d,c2,c1)] ∧

¬ HoldsAt(DoorOpen(d),t)]

Next we have the GoStraight action, which the robot
executes to bypass a doorway, travelling in a straight line
from the near corner of the doorway and coming to rest
when it detects the far corner.

Initiates(GoStraight, (K4.7)
BesideWall(Wall(c2,c3),Left),t) ←

HoldsAt(AtCorner(c1,Left),t) ∧
Door(d,c1,c2) ∧ NextCorner(r,c2,c3)

Terminates(GoStraight,AtCorner(c,s),t) (K4.8)

Finally we have the Turn action. Since the robot has to hug
the left wall, it always turns left (or goes straight) at outer
corners, and always turns right at inner corners. If it turns
left at the corner of a doorway, it ends up in the doorway.

Initiates(Turn(Left),InDoorway(d,r),t) ← (K4.9)
HoldsAt(AtCorner(c1,Left),t) ∧ Door(d,c1,c2) ∧

HoldsAt(DoorOpen(d),t) ∧ NextCorner(r,c1,c2)

If the robot turns left when in a doorway, it ends up
alongside a wall in the next room.

Initiates(Turn(Left), (K4.10)
BesideWall(Wall(c2,c3),Left),t) ←

HoldsAt(InDoorway(d,r1),t) ∧ Connects(d,r1,r2) ∧
Door(d,c1,c2) ∧ NextCorner(r2,c2,c3)

If the robot turns right at an inner corner, it ends up next to a
new wall.

Initiates(Turn(Right), (K4.11)
BesideWall(Wall(c1,c2),Left),t) ←

HoldsAt(AtCorner(c1,Left),t) ∧
Inner(c1) ∧ NextCorner(r,c1,c2)

The mutual exclusivity of the AtCorner, InDoorway and
BesideWall fluents is preserved by the following formulae.

Terminates(Turn(s1),AtCorner(c,s2),t) (K4.12)

Terminates(Turn(s),InDoorway(d,r),t) ← (K4.13)
HoldsAt(InDoorway(d,r),t)

4.3 The Effect of the World on the Robot
Having axiomatised the effects of the robot’s actions on the
world, now we need to formalise the impact the world has
on the robot’s sensors. For this purpose, we introduce two
new types of event. The event GoesHigh(s) occurs if the
average value of the two sensors in direction s exceeds a

6

threshold δ1, where s is Left, Right or Front. Similarly the
event GoesLow(s) occurs if the average value of the two
sensors in direction s goes below a threshold δ1. (By
making δ1 > δ 2, we avoid a chatter of GoesHigh and
GoesLow events when the robot approaches an obstacle.)

Happens(GoesHigh(Front),t) ← (S4.1)
Happens(FollowWall,t) ∧

Initiates(FollowWall,AtCorner(c,s),t) ∧ Inner(c)

Happens(GoesLow(Front),t) ← (S4.2)
HoldsAt(AtCorner(c,Left),t) ∧

Inner(c) ∧ Happens(Turn(Right),t)

Happens(GoesHigh(s),t) ← (S4.3)
HoldsAt(AtCorner(c,s),t) ∧ Outer(c) ∧

[Happens(GoStraight,t) ∨ Happens(Turn(s),t)]

Happens(GoesLow(s),t) ← (S4.4)
Happens(FollowWall,t) ∧

Initiates(FollowWall,AtCorner(c,s),t) ∧ Outer(c)

Our overall aim, of course, is to use abduction to explain the
occurrence of GoesHigh and GoesLow events. In the
present example, if the doors are all initially open and never
subsequently closed, every sensor event is predicted by the
theory as it stands, so no explanation is required. The
interesting case is where there are sensor events which can
only be explained by a closed door. Accordingly, we need to
introduce the events OpenDoor(d) and CloseDoor(d), with
the obvious meanings.

Initiates(OpenDoor(d),DoorOpen(d),t) (K4.14)

Terminates(CloseDoor(d),DoorOpen(d),t) (K4.15)

Finally, we need some uniqueness-of-names axioms.

UNA[FollowWall, GoStraight, Turn, (U4.1)
GoesHigh, GoesLow, OpenDoor, CloseDoor]

UNA[BesideWall, AtCorner, InDoorway, (U4.2)
DoorOpen]

The UNA notation is defined as follows. Let f1 to fk be
function symbols. Then UNA[f1, f2, . . . , fk] abbreviates
the conjunction of the formulae,

fi(x1 , x2, . . . xm) ≠ fj(y1, y2, . . . , yn)

for all i < j < k, and,

fi(x1 , x2, . . . xn) = fi(y1, y2, . . . , yn) →
[x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xn = yn]

for all i < k.

4.4 An Example Narrative
Now let’s examine the narrative of robot actions and sensor
events for the example of Section 1.1. The following
formulae describe the initial situation.

Initially P(DoorOpen(d)) (N4.1)

Initially P(BesideWall(w,s)) ↔ (N4.2)
w = Wall(C18,C19) ∧ s = Left

Initially N(AtCorner(c,s)) (N4.3)

Initially N(InDoorway(d,r)) (N4.4)

The robot follows the wall to its left until it arrives at corner
C19, where it turns right and follows the wall to its left
again.

Happens(FollowWall,T1) (N4.5)

Happens(Turn(Right),T2) (N4.6)

Happens(FollowWall,T3) (N4.7)

T1 < T2 (N4.8)

T2 < T3 (N4.9)

Now let’s suppose someone closes door D4 shortly after the
robot sets out, and consider the incoming sensor events. The
robot’s front sensors go high at time T1, when it arrives at
corner C19. (Recall that the FollowWall action is considered
instantaneous.) They go low when it turns, then
(unexpectedly) go high again, when it arrives at corner C22,
having bypassed door D4.

Happens(GoesHigh(Front),T1) (D4.1)

Happens(GoesLow(Front),T2) (D4.2)

Happens(GoesHigh(Front),T3) (D4.3)

The above formulae only describe the sensor events that do
occur. But in general, we want explanations of sensor data
to exclude those sensor events that have not occurred.
Hence we have the following definition, which captures the
completion of the Happens predicate for sensor events.

Definition 4.4.1.

COMP[Ψ] ≡def
[Happens(a,t) ∧

[a = GoesHigh(s) ∨ a = GoesLow(s)]] →

where Π = {〈α,τ〉 | Happens(α,τ) ∈ Ψ} �

The following formula is one possible explanation of the
above sensor events.

Happens(CloseDoor(D4),t) ∧ 0 ≤ t < T30 (E4.1)

This is expressed by the following proposition. Let,

• Σ be the conjunction of (K4.1) to (K4.15),

• ∆N be the conjunction of (N4.1) to (N4.9),

• ∆T be the conjunction of (S4.1) to (S4.4),

• ∆E be formula (E4.1),

• Φ be the conjunction of the formulae representing the
robot’s environment, as described in Section 4.1,

• Ω be the conjunction of (U4.1) and (U4.2), and

• Γ be the conjunction of (D4.1) to (D4.3).

Proposition 4.4.1.
CIRC[Σ ; Initiates, Terminates, Releases] ∧

CIRC[∆N ∧ ∆T ∧ ∆E ; Happens] ∧
EC ∧ Ω ∧ Φ � COMP[Γ]. �

In general, a collection of sensor data can have many
explanations. Explanations can be ordered using a

α τ
α τ

,

[]

∈
= ∧ =∨

Π
a t

7

preference criterion, such as one which favours explanations
with few events. But there can still be many mimimal
explanations. In these circumstances, the robot can simply
proceed on the assumption that the first explanation it finds
is the true explanation. It’s reasonable to expect that, if the
explanation is indeed false, the processing of subsequent
sensor data will reveal this. But obviously this topic merits
further investigation.

In the present experiment, the policy of adopting the first
explanation can lead to faulty explanations if there is more
than one door on the same wall. This is because there would
then be no way to distinguish between two competing
explanations — one involving the first door being closed,
and one involving the second door being closed. This
problem can be remedied by the use of distance information
to select between the competing explanations.

The next section spells out how the planning and perception
processes are embedded in the overall sense-plan-act cycle
that controls the robot.

5 Interleaving Sensing, Planning, and Acting
In the implemented system, the planning and perception
processes each carry out a single resolution step before
suspending and going around the cycle again. The
perception task can be thought of as a producer of
explanations in the form of Happens formulae, which are
consumed by the planning process. The planner treats them
in exactly the same way as it treats new steps in the plan it’s
generating, which are also Happens formulae. Therefore,
these incoming explanations can violate the plan’s
“protected links” (previously proved ¬ Clipped formulae).
When this occurs, the system replans from scratch.

Consider the example of Section 1.1. In response to the
GoesHigh(Front) sensor event the robot receives when it
encounters corner C22, the perception process generates a
formula of the form,

Happens(CloseDoor(D4),τ)

as described in the previous section. When this is
assimilated by the planning process, it violates a protected
link of the form,

¬ Clipped(τ1,DoorOpen(D4),τ2)

where τ1 < τ < τ2. This precipitates replanning, whereupon
the planner finds the alternative route via room R2.

As it stands, the planner of Section 3 produces actions in
regression order. That is to say, the last action to be carried
out is generated first. This means that, if interrupted, the
planner’s partial results are useless. What we require instead
is a progression planner — one that generates the earliest
action of a plan first. If a progression planner is interrupted,
its partially constructed plan will contain actions that can be
executed immediately.

One way to generate plans in progression order is via
hierarchical planning. This is the approach adopted here.
The foregoing logical treatment of partial order planning
can be straightforwardly extended to planning via
hierarchical decomposition. Compound action definitions

are introduced, and the abductive definition of planning can
be retained as is.

As an example, here’s the definition of a GoToRoom action
in terms of the GoThrough action from Section 3. The term
GoToRoom(r1,r2) denotes the action of going from room r1
to room r2. (In the implemented system, the GoThrough
action itself is broken down into FollowWall and Turn
actions in a similar way.)

Happens(GoToRoom(r,r),t,t) (H5.1)

Happens(GoToRoom(r1,r3),t1,t3) ← (H5.2)
Connects(d,r1,r2) ∧ Happens(GoThrough(d),t1) ∧

Happens(GoToRoom(r2,r3),t2,t3) ∧
t1 < t2 ∧ ¬ Clipped(t1,InRoom(r2),t2)

Initiates(GoToRoom(r1,r2),InRoom(r2),t) ← (R5.1)
HoldsAt(InRoom(r1),t)

In effect, when implemented via abductive logic
programming, these clauses carry out a forward search, in
contrast to the backward search effected by the clauses in
Section 3. The clauses used in the implemented system
incorporate a heuristic to give more direction to the search.

In general, if the effects of a compound action follow from
the effects of its sub-actions, it adds little to the
formalisation, logically. But, if they are defined in the right
way, the presence of compound actions will adjust the
computation so that it generates actions in progression
order. Specifically, the earliest component action in a
compound action definition must be the closer to a low level
action than its successors. In (H5.2), for example, the
GoThrough action is at a lower level than the GoToRoom
action.

Moreover, the ability of hierarchical decomposition to
quickly generate a first action in response to a situation
justifies the use of a replan-from-scratch strategy rather than
a more sophisticated replanning technique.

Formulae (H5.1) and (H5.2) illustrate both conditional
decomposition and recursive decomposition: a compound
action can decompose into different sequences of sub-
actions depending on what conditions hold, and a compound
action can be decomposed into a sequence of sub-actions
that includes a compound action of the same type as itself.
A consequence of this is that the event calculus with
compound actions could be used to implement a universal
Turing machine, and is therefore formally as powerful as
any programming language. In this respect, it can be used in
the same way as GOLOG [Levesque, et al., 1997]. Note,
however, that we can freely mix direct programming with
planning from first principles.

6 Related Work
The title of this paper, “Reinventing Shakey”, alludes to the
fact that the logic-based approach to robotics was first
seriously attempted in the Shakey project in the late Sixties
[Nillson, 1984]. One the successes for which the Shakey
project is well-known was the STRIPS approach to planning
[Fikes & Nilsson, 1971]. The STRIPS planner arose out of
dissatisfaction with Green’s earlier attempts to use

8

resolution-based theorem proving for planning [Green,
1969]. In many ways, Green’s work is more akin to modern
cognitive robotics than STRIPS. We’ll return to STRIPS
shortly. But first, let’s consider how contemporary work in
cognitive robotics is an advance on Green’s efforts. Why is
it not subject to the same pitfalls?

There are two main differences bewteen contemporary
cognitive robotics and Green’s work. First, Green’s
approach to planning was beset by the frame problem. But
we now have a number of satisfactory solutions to the frame
problem that can be deployed in cognitive robotics
[Shanahan, 1997a]. Second, the Shakey project relied on full
search-based planning from first principles, which is
computationally very expensive. Like other recent work in
cognitive robotics [Levesque, et al., 1997], the approach
presented here uses chiefly pre-compiled plans – programs,
effectively. In the present approach, this also facilitates
reactivity, another feature notably lacking in Shakey.

Let’s return briefly to STRIPS. The STRIPS planning
algorithm is now of purely historical interest, as it has long
been superseded by more efficient techniques. But the
STRIPS language — the language in which planning
problems are described — has had lasting influence on the
planning community. One aim of contemporary cognitive
robotics is to return to logic as a planning language. This
move can be justified in many ways — logic is a more
expressive language, logic is a lingua franca used in other
areas of AI, logic has a clear semantics with well-
understood mathematical properties, and so on.

However, the logic-based approach to robotics faces a
number of challenges. First, with respect to the present
work, a major question is how to scale up. The Khepera
robots have very poor sensors, and can only carry out wall-
following, or similar basic navigational operations. When
we move up to richer sensors, such as sonar or vision, how
will the techniques of this paper be adapted? Likewise, the
Kheperas in the experiments reported here inhabit a simple,
static, uniform environment, of just the sort that Brooks
criticises [Brooks, 1991]. How will logic fare when
confronted with a complex, dynamic, messy environment?

One approach is to employ an architecture that cleanly
separates low- and high-level issues, both on the control
front and on the sensing front. This is the approach taken by
the Toronto group [Lespérance, et al., 1994]. Then, the
question of how to deal with complex sensor data and motor
control can be pushed into the lower level, where off-the-
shelf techniques can be employed. But ideally, the line
between low-level and high-level, between the level of
perception and control and the logical level, should be
drawn as low as possible, to allow logical reasoning as
much influence as possible. So more work is required on
topics such as how to move directly from raw sensor data to
logical representations of low-level detail of the
environment, such as the shapes of obstacles.

From a methodological point of view, the present work falls
somewhere between the robotics work carried out at the
University of Texas [Baral & Tran, 1998] and the early

work carried out at the University of Toronto [Lespérance,
et al., 1994]. In the Toronto work, there is no planning,
except as a last resort. Instead, the robot directly executes a
program written in Golog [Levesque, et al., 1997], a
language based on the situation calculus. A planner is
invoked only if the plan monitor detects a failure, in which
case planning is used to get the world into a state from
which execution of the program can resume [De Giacomo,
et al., 1998]. Therefore, the course of actions the robot is to
take is worked out almost entirely in advance, and is fixed
in the program the robot executes.

More recently, the Toronto group have developed a variant
of Golog called ConGolog [De Giacomo, et al., 1997].
ConGolog incorporates facilities for concurrent execution,
interrupt handling, and dealing with exogenous actions.
Using ConGolog, the precise course of actions taken by the
robot depends on conditions and events at run-time,
resulting in more reactivity. However, in neither Golog nor
ConGolog is there any notion of a goal with respect to
which a program can be proved correct. In the Texas work
[Baral & Tran, 1998], by contrast, the effects of actions are
specified using logic, and the resulting theory is used to
generate, off-line, a set of provably correct condition-action
control rules which are then used to direct the robot. The
course of actions carried out by the robot is, therefore,
largely determined at run-time, and the resulting behaviour
is highly reactive.

The present work differs from each of these approaches. In
contrast to both the Toronto and Texas approaches, the work
reported here uses on-line planning, and there is a clear
notion of a goal, which must be entailed by the plan.
However, the heavy use of hierarchical planning means that
most of the time the robot is, in effect, executing a program.
On the other hand, the constant checking of protected links
(negated Clipped literals) during execution, which can
precipitate rapid replanning, means that the robot is reactive
to unexpected changes, like a ConGolog program or the
Texas robot. The aim is to combine the advantages of
planning, direct programming, and reactive control rules in
a uniform, logic-based architecture.

Concluding Remarks
To summarise, the aim of the ongoing work reported here is
to design and build theoretically well-founded, general
purpose systems for high-level robot control, in which each
computational step is also a step of logical inference, and
each computational state has declarative meaning. Needless
to say, the ideas presented merit a good deal of further
study, and although preliminary results are promising, it
remains to be seen whether they will scale up to robots with
richer sensors in more realistic environments.

Acknowledgments
Thanks to Jack Minker, Mark Witkowski, and two
anonymous referees. This work was carried out as part of
EPSRC project GR/L20023 “Cognitive Robotics”.

9

References
[Baral & Tran, 1998] C.Baral and S.C.Tran, Relating

Theories of Actions and Reactive Control, Linköping
Electronic Articles in Computer and Information Science,
vol. 3 (1998), no. 9.

[Brooks, 1991] R.A.Brooks, Intelligence Without Reason,
Proceedings 1991 International Joint Conference on
Artificial Intelligence (IJCAI 91), Morgan Kaufmann,
pages 569-595.

[De Giacomo, et al., 1997] G. De Giacomo, Y.Lespérance,
H.Levesque, Reasoning about Concurrent Execution,
Prioritized Interrupts, and Exogenous Actions in the
Situation Calculus, Proceedings 1997 International Joint
Conference on Artificial Intelligence (IJCAI 97), Morgan
Kaufmann, pp. 1221–1226.

[De Giacomo, et al., 1998] G. De Giacomo, R.Reiter and
M.Soutchanski, Execution Monitoring of High-Level
Robot Programs, Proceedings 1998 Knowledge
Representation Conference (KR 98), Morgan Kaufmann,
pp. 453–464.

[Fikes & Nilsson, 1971] R.E.Fikes and N.J.Nilsson,
STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving, Artificial Intelligence, vol. 2
(1971), pp. 189–208.

[Green, 1969] C.Green, Applications of Theorem Proving to
Problem Solving, Proceedings 1969 International Joint
Conference on Artificial Intelligence (IJCAI 69), pp.
219–240.

[Kautz & Selman, 1996] H.Kautz and B.Selman, Pushing
the Envelope: Planning, Propositional Logic and
Stochastic Search, Proceedings 1996 American
Association for Artificial Intelligence Conference (AAAI
96), MIT Press, pp. 1194–1201.

[Lespérance, et al., 1994] Y.Lespérance, H.J.Levesque,
F.Lin, D.Marcu, R.Reiter, and R.B.Scherl, A Logical
Approach to High-Level Robot Programming: A Progress
Report, in Control of the Physical World by Intelligent
Systems: Papers from the 1994 American Association for
Artificial Intelligence Fall Symposium, ed. B.Kuipers,
New Orleans (1994), pp. 79–85.

[Levesque, et al., 1997] H.Levesque, R.Reiter,
Y.Lespérance, F.Lin and R.B.Scherl, GOLOG: A Logic
Programming Language for Dynamic Domains, The
Journal of Logic Programming, vol. 31 (1997), pp.
59–83.

[Nilsson, 1984] N.J.Nilsson, ed., Shakey the Robot, SRI
Technical Note no. 323 (1984), SRI, Menlo Park,
California.

[Shanahan, 1997a] M.P.Shanahan, Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia, MIT Press (1997).

[Shanahan, 1997b] M.P.Shanahan, Noise, Non-Determinism
and Spatial Uncertainty, Proceedings 1997 American

Association for Artificial Intelligence Conference (AAAI
97), MIT Press, pp. 153–158.

[Shanahan, 1997c] M.P.Shanahan, Event Calculus Planning
Revisited, Proceedings 4th European Conference on
Planning (ECP 97), Springer Lecture Notes in Artificial
Intelligence no. 1348 (1997), pp. 390–402.

[Shanahan, 1999] M.P.Shanahan, The Event Calculus
Explained, in Artificial Intelligence Today, eds.
M.J.Wooldridge & M.Veloso, Springer-Verlag Lecture
Notes in Artificial Intelligence no. 1600, Springer-Verlag
(1999), pages 409-430.

[Shanahan, 2000] M.P.Shanahan, An Abductive Event
Calculus Planner, The Journal of Logic Programming, to
appear.

[Shanahan & Witkowski, 2000] M.P.Shanahan and
M.Witkowski, Event Calculus Planning Through
Satisfiability, submitted.

