Reinventing Shakey

Murray Shanahan

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,
London SW7 2BT,
England.
m.shanahan@ic.ac.uk

Abstract C1 (o7 (1] (o7:] [S57 Cis
This paper describes the logical foundations of an cslcie colca4 ool
implemented system which employs resolution-based R1 D1 R2 D2 R3
theorem proving techniques for high-level robot cajcis clgczs
control. The paper offers complementary logical c6 c5|c14 c13 . Cl2 Cljeze cai , c20 cig
characterisations of perception and planning, and [c25 c26 ~ c27 c28 ~' €2 cag
shows how sensing, planning and acting are
interleaved to control a real robot. R4
. C36 C35 C34 C33 C32 C31
1 Introduction x> ecmlcm ou X o ol
In the late Sixties, when the Shakey project started [Nilsson
1984], the vision of robot design based on logical RS [r] R6
representation seemed both attractive and attainablqg.
Through the Seventies and early Eighties, however, thgc42 ca1| c48 c47
desire to build working robots led researchers away from
logic to more practical buad hoc approaches to Figure 1: The Robot's Environment

representation. This movement away from logical
representation reached an extreme in the late Eighties and A Motivating Example

early Nineties when Brooks jettisoned the whole idea of, yet 5 feel for its capabilities, let's take a look at an
representation, along with the so-called sense-model-plagyample of the way in which the high-level controller
act architecture epitomised by Shakey [Brooks, 1991]. g nctions. Suppose the robot is initially between corners

However, the Shakey style of architecture, having an overtig18 and C19, as shown, and suppose it has the goal o
logic-based deliberative component, seems to offefetrieving package P1 from room R6. Informally, this is how
researchers a direct path to robots with high-level cognitivéhe robot’s high-level controller achieves the goal.

skills, such as planning, reasoning about other agents, aggs; the robot plans a route. As soon as it finds a complete
communication W|t_h o_ther agents. Accordl_ngly, anumbe_ro_though perhaps not fully decomposed) plan with an
researchers have instigated a Shakey revival, and are aimig o \taple first action, the robot starts carrying that plan
to achieve robots with these sorts of high-level cognitive,

kills b . loai . | di In this case, the first action is to go through door D4, so
skills' by ‘using logic as a representational mediumye ropot sets out along the wall until it reaches corner C19.
[Lespéranceet al, 1994].

. _ It then turns the corner, and heads off towards door D4.
This paper describes one such robot. The paper concentra§§ppose someone now closes door D4. Unfortunately,

ol o deoloved. and d " ob el%cause of its poor sensors, the robot cannot detect close
Implemented, deployed, and tested on a real robot, namelyyg s \hich are indistinguishable from walls. So the robot

Khepera, a miniature robot with two drive wheels and &qniinyes wall-following until it reaches corner C22.
suite of eight infra-red proximity sensors around its

circumference. The robot inhabits a miniaturised office—lik<—:iE|Jp t(t)) this point, tlhe assimilation of the robot’s sensor data
environment, depicted in Figure 1. as been a trivial matter. The sensor events it receives ar

h bot h il . t low-level . __exactly what it would expect given what it has done and
The ro (;)t %S ad3|mr|?_ eh r_epleréowe 0” fO\IIY- evel actionsy ;i it pelieves about its environment. So the explanations
executed on-board, which includes wall-following, tumningyt those sensor events are trivial. But the encounter with

into doorways, and turning around corners. Using these, the .o 4t this time requires a non-empty explanation.

high-level, off-board controller manoeuvres the robot .) . .
g bsmg abduction, the robot constructs an explanation of its

around its environment. !
encounter with the corner — door D4 must have been
closed, and it must now be at corner C22. But this new piece

of information conflicts with the assumptions underlying the Declipped(tl1,f,t4)- (EC6)
plan it is executing. So the robot is forced to replan. It now [a,t2,t3 [Happens(a,t2,t8)tl < t30t2 < t40

finds a new route to room R6, via doors D2, D3, and D6, [Initiates(a,f,t2)0 Releases(a,f,t2)]]

which it successfully executes and retrieves the package. Happens(a,t1,t2) t1< t2 (EC7)

In the implemented system, the robot is controlled by & particular domainis described in terms of Initiates,
sense-plan-act cycle. Sensing and planning are botferminates, and Releases formulae. Initiates(a,f,t) represent
resolution-based abductive theorem proving processes, afkht fluent f starts to hold after action a at time t.
in each iteration of the cycle, the sense phase and plan phasghversely, Terminates(a,f,t) represents that f ceases to hol
carry out a single step of resolution each. The chief aim qffier action a at t. Releases(a,f,t) represents that fluent f ic
the rest of this paper is to set out the logical foundations ¢f, longer subject to the common sense law of inertia after

these planning and perception processes. action a at t.
The paper presents, A particular narrative of events is described in terms of
» a short introduction to the event calculus, a formalisnHappens and Initially formulae. The formulae Initigi(f)

for reasoning about action, and Initiallyn(f) respectively represent that fluent f holds at

- alogical account of abductive event calculus planning, time 0 and does not hold at time 0. Happens(a,t1,t2)

« a complementary logical account of abductive Sensorepresents that action or event a occurs, starting at time t:
piementary 109 nd ending at time t2. Table 1 summarises the predicates c
data assimilation, also based on the event calculus, an

. . ,) . e calculus.
e a brief outline of event calculus hierarchical planning,

through which plans can be generated in progressioh
order. Formula Meaning

2 Representing Action Initiates(@,3,T) Fluentf starts to hold after actior]

To supply the required logical accounts of perception anfl o at timet

planning, a formalism for reasoning about action is neede(
The formalism presented here is based on th)
circumscriptive event calculus [Shanahan, 1997a] a at timet
[Shanahan, 1999]. The event calculus is a Well-established] itiall

logical formalism for reasoning about actions. It is capablg nitially p(@)
of representing a wide variety of phenomena, including

[Terminates§,3,1) | FluentB ceases to hold after actipn

Fluentf holds from time O

. Ty D O A X Initiall Fluentp does not hold from time
actions with indirect effects, non-deterministic actions, YNE) B

concurrent actions, and continuous change [Shanahaht1 <12 Time pointt1 is before time point
1999]. A robust solution to the frame problem exists for thq 2

event calculus, that works in the presence of all of thesp

phenomena [Shanahan, 1997a]. Happensg,T) Action o occurs at time

Because this material is presented in considerable detdil _ _
elsewhere, the description here will be kept fairly brief. Al Happens§,11,12) | Action a starts at time1 and ends

many sorted language is assumed, with variableffuients at timeT2
actions(or event$, andtime points We have the following .
axioms, whose conjunction will be denoted EC. Their mair|] HoldsAt(3,1) Fluentp holds at time

purpose is to constrain the predicate HoldsAt. HoldsAt(f,t} , ,
represents that fluent f holds at time t. Throughout thg Clipped@1,8,12) | Fluentp is terminated between
paper, all variables are universally quantified with timestl andt2

maximum scope, unless otherwise indicated.

HoldsAt(f,t) < Initiallyp(f) O- Clipped(0,f,t) (EC1) Declippedtl,3,12) | Fluentf is initiated between time

o7

HoldsAt(f,t3) « B (EC2) 11 andt2
Happens(a,t1,t2)l Initiates(a,f,t1y] Table 1: Event Calculus Predicates
t2 < t30 - Clipped(tl,f,t3) . . i
Clipped(tL. t4) (EC3) A two-argument version of Happens is defined as follows.
Oa,t2,t3 [Happens(a,t2,t8)tl < t30t2 < t40] Happens(a,tFdef Happens(a,t.t)
[Terminates(a,f,t2)] Releases(a,f,t2)]] Formulae describing triggered events are allowed, and will
- HoldsAt(f,t) — (EC4) generally have the form,
Initially ny(f) O- Declipped(0,f,t) Happensg,t) — IM.
- HoldsAt(f,t3) — (EC5) As we'll see in Section 5, similar formulae can be used to
Happens(a,t1,t2) Terminates(a,f,t1)] define compound actions, which are used for hierarchical
t2 < t30 - Declipped(tl,f,t3) planning.

The frame problem is overcome through circumscriptionLet’'s suppose the robot can perform only one action, which
Given a conjunctiork of Initiates, Terminates, and Releasess to go through a specified door d, denoted by the term
formulae describing the effects of actions, a conjunction GoThrough(d). (In the implemented system, the GoThrough
of Initially, Happens and temporal ordering formulaeaction is broken down by hierarchical planning into a
describing a narrative of actions and events, and sequence of FollowWall and Turn actions.) We’ll assume,
conjunctionQ of uniqueness-of-names axioms for actionsfor now, that doors are always open. The only fluent in the
and fluents, we're interested in, domain is INnRoom(r) representing that the robot is in room
CIRCIZ ; Initiates, Terminates, Releasés] r. We have the following Initiates and Terminates formulae.

CIRCIJA ; Happens[JEC O Q. Initiates(GoThrough(d),InRoom(rl),t) (R2.1)

By minimising Initiates, Terminates and Releases we Connects(d,r2,ri) HoldsAt(InRoom(r2),t)
assume that actions have no unexpected effects, and byTerminates(GoThrough(d),iInRoom(r)4) (R2.2)
minimising Happens we assume that there are no HoldsAt(InRoom(r),t)

unexpected event occurrences. In all the cases we'ince there is only one action and only one fluent, this

interested inx andA will be conjunctions of Horn clauses, example doesn't require any unigueness-of-names axioms.
and the circumscriptions will reduce to predicate T
Suppose the robot is initially in room R3.

completions. 0
Care must be taken when domain constraints and triggeredInltlally P(InRoom(R3)) (N2.1)

events are included. Domain constraints (or “statdhe goalis to get the robot to room R6.

constraints”) are formulae that constrain the combination of HoldsAt(InRoom(R6),T) (G2.1)
fluents that can hold simultaneously, and are used to defiRgear1y one plan for achieving the goal is to go through D4
actions with indirect effects. Triggered events are eventgqp, go through D6

that occur when some specified combination of fluents '

holds. The former must be conjoined to EC, while the latter Happens(GoThrough(D4),T1) (P2.1)
are conjoined ta. Happens(GoThrouyD6),T2) (P2.2)

_ _ T1<T2 (P2.3)
3 A Logical Account of Planning T2<T (P2.4)

Planning can be thought of as the inverse operation tphe fact that this is a plan according to the abductive
temporal projection, that is to say reasoning forwards igjefinition is expressed in the following proposition. Let,
time from causes to effects. Temporal projection in the > be the conjunction of (R2.1) and (R2.2)

event calculus is naturally cast as a deductive task. Given
Q andA as above, we're interested in HoldsAt formufae ¢ AN be formula (N2.1),

such that, « Ap be the conjunction of (P2.1) to (P2.4),
CIRC[Z ; Initiates, Terminates, Releasés] e ® be the conjunction of (W2.1) to (W2.7), and
CIRCIA ; HappensJECOQ E T. « T be formula (G2.1).

Conversely, planning in the event calculus can be
considered as an abductive task, since it is a form of
reasoning from effects to causes. Given a domain
descriptionZ, a conjunction” of goals (HoldsAt formulae),
and a conjunctiod\y of Initiallyp and Initiallyy formulae

describing the initial situation, plan is a consistent
conjunctionAp of Happens and temporal ordering formula

roposition 3.1.

CIRC[Z ; Initiates, Terminates, Releasés]
CIRC[AN O Ap ; HappensTd
ECOMPET. |

e3.1 Implementation

such that, This account of planning can be implemented through
Nt ; abductive logic programming, as described in [Shanahan,
CIEICR[E[,AImtéages., ;’ggg;ng]%ségeml?sfﬁ] 1997c] and [Shanahan, 2000]. The implementation is an
_N P o abductive meta-interpreter, which has been tailored for the
The following formulae capture the connectivity of thegyent calculus. HoldsAt goals are treated in a special way,
rooms, as shown in Figure 1. and the sub-goals they generate are processed in a particul:
Connects(D1,R1,R2) (W2.1) order to prevent looping. In addition, a dedicated constraint
Connects(D2,R2,R3) (w2.2) solver is applied to temporal ordering constraints, whose
efficiency is improved by the maintenance of a cache of

Connects(D3,R2,R4) (W2.3) temporal ordering lemmas.
Connects(D4,R3,R4) (W2.4) The computation carried out by the resulting system
Connects(D5,R4,R5) (W2.5) strongly resembles that of a hand-coded partial-order
Conects(D6,R4,R6) (W2.6) planning algorithm. (The present example of route planning
Connects(d,r1,r2)- Connects(d,r2,r1) (W2.7) can be reduced to graph search, but for general purpos:

planning, we need a more generic technique.) In particular,
the implementation has to record negated Clipped formulae

that it has proved, and these correspongrtdected linksn .)
partial-order planning terminology. A protected link record4 A Logical Account of Perception
the fact that the value of a fluent initiated or terminated by @his section offers a logical account of sensor data

given action must be preserved until the occurrence Qfssimilation (perception) which mirrors the logical account

another subsequent action whose preconditions depend tatplanning in Section 3. The need for such an account
fluent. arises from the fact that sensors do not deliver facts directly
The efficiency of this planner is in line with that of a partialinto the robot’'s model of the world. Rather they provide raw

order planner. A more recent event calculus planner, basddta from which facts can be inferred.

on the planning as satisfiability work of Kautz and Selmamrhe methodology for supplying the required logical account
[1996], is more efficient, but has not yet been applied tgs as follows [Shanahan, 1997b]. First, using a suitable
robotics [Shanahan & Witkowski, 2000]. However, as we'lliormalism for reasoning about actions, construct a th&ory
see later, this is only part of the story for planning. In ordesf the effects of the robot’s actions on the world and the
to be able to interleave planning, sensing and acting injgpact of the world on the robot’s sensors. Second, conside!
respectable way, we need to carry loierarchicalplanning. sensor data assimilation as abduction with this theory.
Moreover, by using hierarchical planning whereveirRoughly speaking, given a narratiieof the robot's actions,
possible, we minimise the use of search-heavy planningnd a descriptio of the robot’s sensor data, the robot
from first principles. needs to find som such that,

Now, what exactly is the relationship between the logical s OAOQWET.

specification of planning and its implementation by meaneza event calculus terms, might comprise Happens and/or

oldsAt formulae describing sensor events or valuesYand
eFnight comprise Initially; and Initiallyp formulae describing
the environment’s initial configuration and/or Happens

In [Shanahan, 2000], a class of event calculus domagrmulae describing the intervening actions of other agents
descriptions is defined which, among other restrictionsyhich have modified that configuration.

confines Initiates and Terminates formulae to the Hon:ro illustrate this, we’ll stay with the office delivery domain.

clause subset. This means that the theorems of Ln‘sch%;th we must begin with a look at the sensory capabilities of
h

{ﬁggg]fg?rzu?:eatgpllfgd;[ga{sdclgcrﬁ ﬁztﬁoﬂm&g‘éﬂmoﬁng e Khepera robots which are being used to test the idea:
b P : ' resented in this paper.

these restrictions rule out recursion, predicate completion .
and SLDNF coincide for the class of theories in questionlN€ Khepera can be straightforwardly programmed to

Thus the prospect of a straightforward logic programming@vigate around the environment of Figure 1. Using its
implementation is brought closer. proximity sensors, it can follow walls and detect inner and

However, the use of temporal ordering constraints WhosOUter corners. If all the doors are open, the GoThrough
’ P 9 ction of Section 3 can be executed, assuming the robot'’s

completions we can't assume complicates the issue. fitial location is known, by counting inner and outer

effect, _the .abductivg meta-intgrpreter treats tempor§C| rners until the robot reaches the required door, then
constraints in a special way, using a dedicated constra|B ssing through it '

solver.))
For the restricted class of event calculus theories defineéé any of the doors is closed, however, this approach to

of abductive logic programming? This question is address
more fully in [Shanahan, 2000]. But, in outline, here is th
answer.

X ¢ . xecuting the GoThrough action will fail, because the infra-
the abductive meta-interpreter of [Shanahan, 2000] is bofli , proxgi]mity sensors %annot detect a closed door, which
sound a_nd _complete .W'th respect to the abduct|v%0ks to them just like a continuation of the wall.
characterisation of planning. This meta-interpreter forms the

basis of both the planning and sensor data assimilatiofis, in an extreme form, is the predicament facing any
components in the present work. perceptual system. Inference must be carried out on raw

sensor data in order to produce knowledge. In this case, tht

However, many useful domain descriptions fall outside the,\) "2 apduce the fact that a door is closed as the onl
scope of these theorems. Domain descriptions mcludmg y

formulae describing compound actions are an example ﬁssibl_e explanation of its unexpected arrival at an inner
. . rner instead of the outer corner of the doorway.

particular relevance to the present paper, since they form the i i ,

basis of hierarchical planning. In the presence of sucRur aim here is to give a formal account of this sort of

formulae, the soundness and completeness of the metgference that gels with the formal account of planning

interpreter are conjectural. So there is a theoretical gap thdieady supplied. Indeed, in the implemented system, the

needs to be filled here, and this is the subject of ongoirRgMe knowledge, expressed using the same formalism, i
work. used for both planning and sensor data assimilation.

Furthermore, as already emphasised, both planning anc
sensor data assimilation are viewed as abductive tasks witt
a very similar character. This means that the same abductive
logic programming technology, indeed the very same code,
can be used to implement both processes.

Next, we’'ll look into the topic of perception.

, . The formulae NextVisibleCorner(cl1,c2,s,t) means that, at

4.1 The Robot’s Environment time t, c2 is the next visible corner after c1, where the wall

Returning to the example at hand, the representation of tirequestion is in direction s. The corner of a doorway whose

robot’s environment, as depicted in Figure 1, now needs fdoor is closed is invisible.

include corners, which were neglected in the planning NextVisibleCorner(c1,c2,Left,t)- (K4.3)

example. The formula NextCorner(r,c1,c2) represents that NextCorner(r,c1 CZL,D _ Invi,sibIeCorner(cz)

corner c2 is the next inner or outer corner in room r after - T ’

corner c1, in a clockwise direction. For room R1 alone, we NextVisibleComer(cl,c3,Left,t)- (K4.4)
NextCorner(r,c1,c2)] InvisibleCorner(c2,t)]

have the following formulae. L
NextVisibleGrner(c2,c3,Left,t
NextCorner(R1,C1,C2) NextCorner(R1,C2,C3) ()

NextVisibleCorner(c1,c2,s,f) (K4.5)
NextCorner(R1,C3,C4) NextCorner(R1,C4,C5) NextVisibleCorner(c1,c3,s,t) c2 = c3
NextCorner(R1,C5,C6) NextCorner(R1,C6,C1) InvisibleCorner(c1,t) (K4.6)

In addition, the formula Door(d,c1,c2) represents that there [Od,c2 [[Door(d,c1,c2)] Door(d,c2,c1)[J
is a doorway between the two corners c1 and c2. For each - HoldsAt(DoorOpen(d),t)]

door, there will be a pair of such formulae. Here they are fQ(ext we have the GoStraight action, which the robot

door D1. executes to bypass a doorway, travelling in a straight line
Door(D1,C3,C4) Door(D1,C15,C16) from the near corner of the doorway and coming to rest
Finally, the formulae Inner(c) and Outer(c) representvhen it detects the far corner.
respectively that ¢ is an inner corner and ¢ is an outer |nitiates(GoStraight, (K4.7)
corner. Again confining our attention to room R1, we have BesideWall(Wall(c2,c3),Left),t)-
the following. HoldsAt(AtCorner(cl,Left),t}]
Inner(C1) Inner(C2) Door(d,c1,c2)d NextCorner(r,c2,c3)
Outer(C3) Outer(C4) Terminates(GoStraight,AtCorner(c,s),t) (K4.8)
Inner(C5) Inner(C6) Finally we have the Turn action. Since the robot has to hug

Each of these predicates will need to be minimised usint(tc%e left wall, it always turnslleft (or_goes straight) at outer
circumscription, so that their completions are formed. mers, and always turns ”gh.t at inner corners. If it turns
' left at the corner of a doorway, it ends up in the doorway.

4.2 The Robot’s Effect on the World Initiates(Turn(Left),InDoorway(d,r),t}- (K4.9)

: , : HoldsAt(AtCorner(cl,Left),t)1 Door(d,c1,c2)]

Now we can formalise the effects of the robot’s actions on
the world. To simplify the example, the following formulae HoIdsAt(DoorOpen(d),tE.NextCorner(r,cll,CZ)
assume the robot always hugs the left wall, although the robot turns left when in a doorway, it ends up
parameters are provided which allow for it to hug the righ@longside a wall in the next room.
wall as well. Initiates(Turn(Left), (K4.10)
Again, a finer grain of detail is required than for the BesideWall(Wall(c2,c3),Left),t)-
planning example. Instead of a single GoThrough action, the HoldsAt(InDoorway(d,r1),t}J Connects(d,rl,r2)]
robot’s repertoire now comprises three actions: FollowWall, Door(d,c1,c2)1NextCorner(r2,c2,c3)
Turn(s), and GoStraight, where s is either Left or Rightif the robot turns right at an inner corner, it ends up next to a
These actions affect three fluents. The fluent AtCorner(c,$ew wall.
holds if the robot is at (inner or outer) corner ¢, with c in | _... ;
direction s, where s is Left or Right. The fluent In|t|atgs(Turn(R|ght), (K4.11)

. ' X . ; BesideWall(Wall(cl1,c2),Left),t}-
BesideWall(w,s) holds if the robot is adjacent to wall w in HoldsAt(AtCorner(cl.Left) t
direction s, where s is Left or Right. The fluent oldsAt(AtComer(cL,Left),t]]

. Inner(c1l)0 NextCorner(r,c1,c2)

InDoorway(d,r) holds if the robot is in doorway d, with its -
back to room r. (By convention, the three fluents ard he mutual exclusivity of the AtCorner, InDoorway and

mutually exclusive.) BesideWall fluents is preserved by the following formulae.
Let's formalise the effects of the three actions in turn. Each Terminates(Turn(s1),AtCorner(c,s2),t) (K4.12)
action is assumed to be instantaneous, an assumption whichlrerminates(Turn(s),InDoorway(d,r),t) (K4.13)

has no practical implications in the present example. The HoldsAt(InDoorway(d,r),t)
term Wall(c1,c2) denotes the wall between corners ¢l and
c2. First, if the robot follows a wall, it ends up at the nex#.3 The Effect of the World on the Robot

visible corner. Having axiomatised the effects of the robot’s actions on the
Initiates(FollowWall,AtCorner(c3,Left),t)- (K4.1) world, now we need to formalise the impact the world has
HoldsAt(BesideWall(Wall(c1,c2),Left),t) on the robot’s sensors. For this purpose, we introduce twa
NextVisibleCorner(cl,c3,Left,t) new types of event. The event GoesHigh(s) occurs if the

Terminates(FollowWall,BesideWall(w,s),t) (K4.2) average value of the two sensors in direction s exceeds

5

thresholddl, where s is Left, Right or Front. Similarly the The robot follows the wall to its left until it arrives at corner
event GoesLow(s) occurs if the average value of the tw819, where it turns right and follows the wall to its left
sensors in direction s goes below a threshdld (By again.

making 61 > 32, we avoid a chatter of GoesHigh and Happens(Followwall, T1) (N4.5)
GoesLow events when the robot approaches an obstacle.) .
Happens(Goesigh(Front) f) - (s4.1) Happens(Turn(Right),T2) (N4.6)
Happens(FoIIowWaII,tﬁ Happens(FollowWall, T3) (N4.7)
Initiates(FollowWall, AtCorner(c,s),)] Inner(c) T1<T2 (N4.8)
Happens(GoesLow(Front),t) (S4.2) T2<T3 (N4.9)
HoldsAt(AtCorner(c,Left),tY] Now let's suppose someone closes door D4 shortly after the
Inner(c)J Happens(Turn(Right),t) robot sets out, and consider the incoming sensor events. Th
Happens(GoesHigh(s),t (S4.3) robot’s front sensors go high at time T1, vyhelj it arriyes at
HoldsAt(AtCorner(c,s),t)l] Outer(c)d corner C19. (Recall that the FollowWall action is considered
[Happens(GoStraight,f Happens(Turn(s),t)] instantaneous.) They go low when it turns, then

(unexpectedly) go high again, when it arrives at corner C22,

Happens(GoesLow(s).t (S4.4) having bypassed door D4.

Happens(FollowWall,t)]

Initiates(FollowWall,AtCorner(c,s),] Outer(c) Happens(GoesHigh(Front), T1) (D4.1)
Our overall aim, of course, is to use abduction to explain the Happens(GoesLow(Front),T2) (D4.2)
occurrence of GoesHigh and GoesLow events. In the Happens(GoesHigh(Front),T3) (D4.3)

present example, if the doors are all initially open and nevef,e apove formulae only describe the sensor eventsithat

subsequently closed, every sensor event is predicted by g \r Byt in general, we want explanations of sensor data
theory as it stands, so no explanation is required. Thg oyclude those sensor events that haseoccurred.

interesting case is where there are sensor events which G38nce we have the following definition, which captures the
only be explained by a closed door. Accordingly, we need t0,mpetion of the Happens predicate for sensor events.
introduce the events OpenDoor(d) and CloseDoor(d), Wltla)efinition 441

the obvious meanings.

Initiates(OpenDoor(d),DoorOpen(d),t) (K4.14) COMPW] =(ef
Terminates(CloseDoor(d),DoorOpen(d),t) (K4.15) [Happens(a,t)]
Finally, we need some uniqueness-of-names axioms. [a = GoesHigh(s)] a = GoesLow(s)]}»
UI\CI;A(\)[eF:ﬂ(i)g\;AfI]\,/vggégl?(?vtliaggéngggr’, CIoseDoor(]U4.1) |:| [a=abt=1]
UNA[BesideWall, AtCorner, InDoorway, (U4.2) {@.n)
DoorOpen] wherell = {[@, 10| Happens(,T) O ¥} O
The UNA notation is defined as follows. Let fo fx be
function symbols. Then UNAJf, f2, . . ., k] abbreviates The following formula is one possible explanation of the
the conjunction of the formulae, above sensor events.
filxe, x2, .. .om) Z2fjlyn, y2, ...,) Happens(CloseDoor(D4),[j0< t < T30 (E4.1)
foralli<j<k, and, This is expressed by the following proposition. Let,
filxe, x2, .. o) =filyny2, ...,) - % be the conjunction of (K4.1) to (K4.15),
[x1=y1Dx2=y20. . .0Oxn=ynl « Ay be the conjunction of (N4.1) to (N4.9),
for all i < k. ¢ At be the conjunction of (S4.1) to (S4.4),
4.4 An Example Narrative * Agbe formula (E4.1),

Now let's examine the narrative of robot actions and sensor® @ be the conjunction of the formulae representing the
events for the example of Section 1.1. The following robot’s environment, as described in Section 4.1,

formulae describe the initial situation. * Q be the conjunction of (U4.1) and (U4.2), and
Initially p(DoorOpen(d)) (N4.1) » I be the conjunction of (D4.1) to (D4.3).
Initially p(BesideWall(w,s))- (N4.2) Proposition 4.4.1.
w = Wall(C18,C19)]s = Left CIRCI[Z ; Initiates, Terminates, Releasés]
Initially n(AtCorner(c,s)) (N4.3) CIRC[AN O AT OAE ; Happens[
Initially \(InDoorway(d,r)) (N4.4) ECOQ U® = COMPT]. 0

In general, a collection of sensor data can have many
explanations. Explanations can be ordered using a

preference criterion, such as one which favours explanatiomse introduced, and the abductive definition of planning can
with few events. But there can still be many mimimalbe retained as is.

explanations. In these circumstances, the robot can Simphg an example, here’s the definition of a GoToRoom action
proceed on the assumption that the first explanation it findg terms of the GoThrough action from Section 3. The term
is the true explanation. It's reasonable to expect that, if th§oToRoom(r1,r2) denotes the action of going from room ri
explanation is indeed false, the processing of subsequegt room r2. (In the implemented system, the GoThrough
sensor data will reveal this. But obviously this topic merit$ction itself is broken down into FollowWall and Turn
further investigation. actions in a similar way.)

In the present experiment, the policy of adopting the first appens(GoToRoom(r, 1) t,1) (H5.1)

explanation can lead to faulty explanations if there is more

than one door on the same wall. This is because there WouIdHappens(GoToRoom(r1,r3),t1,t3) h h (H5.2)
then be no way to distinguish between two competing Conr|1_|ects(d,rl,(rSZI]Tngpens(ngT 2roug (d).tD)
explanations — one involving the first door being closed, appens(Go CIJ. oo(rjn(r 13),12,18)

and one involving the second door being closed. This t1 <20~ Clipped(t1,InRoom(r2),2)
problem can be remedied by the use of distance information Initiates(GoToRoom(r1,r2),iInRoom(r2),4) (R5.1)
to select between the competing explanations. HoldsAt(InRoom(r1),t)

The next section spells out how the planning and perceptidd effect, when implemented via abductive logic
processes are embedded in the overall sense-plan-act cy@legramming, these clauses carry out a forward search, ir

that controls the robot. contrast to the backward search effected by the clauses i
Section 3. The clauses used in the implemented systen
5 Interleaving Sensing, Planning, and Acting incorporate a heuristic to give more direction to the search.

In the implemented system, the planning and perceptio'H general, if the effects of a compound action follow from

processes each carry out a single resolution step bef effects of its sub-actions, it adds little to the
suspending and going around the cycle again. Thigrmalisation, logically. But, if they are defined in the right

perception task can be thought of as a producer oYY the presence of compound actions will adjust the
, gomputation so that it generates actions in progression

er. Specifically, the earliest component action in a

consumed by the planning process. The planner treats th . finit he ol low level
in exactly the same way as it treats new steps in the plan i€@mpound action definition must be the closer to a low leve
ction than its successors. In (H5.2), for example, the

enerating, which are also Happens formulae. Therefor 2
?hese ingoming explanationsppcan violate the plan’ oThrough action is at a lower level than the GoToRoom

“protected links” (previously proved Clipped formulae). action.

When this occurs, the system replans from scratch. Moreover, the ability of hierarchical decomposition to

Consider the example of Section 1.1. In response to tHfi/ICkly generate a first action in response to a situation

GoesHigh(Front) sensor event the robot receives when IStifies the use of a replan-from-scratch strategy rather thar

encounters comer C22, the perception process generate& B10re sophisticated replanning technique.

formula of the form, Formulae (H5.1) and (H5.2) illustrate both conditional
Happens(CloseDoor(D4), decomposition and recursive decomposition: a compound

as described in the previous section. When this igcpon ((:jan d%c_:omposeh |:1to ddl_f;"erena sl,gquegces of sub-
B ; o ions depending on what conditions hold, and a compounc

assimilated by the planning process, it violates a protectegls;, canpbe degcomposed into a sequence of sub-gction

link of the form, that includes a compound action of the same type as itself

- Clipped(1,DoorOpen(D4X2) A consequence of this is that the event calculus with
whereT1 < T < 12. This precipitates replanning, whereuponcompound actions could be used to implement a universal
the planner finds the alternative route via room R2. Turing machine, and is therefore formally as powerful as

y programming language. In this respect, it can be used ir

As it stands, the planner of Section 3 produces actions
regression order. That is to say, the last action to be carri same way as GOLOG [Leyesqm,al., 1997]. Note, .
owever, that we can freely mix direct programming with

out is generated first. This means that, if interrupted, th nning from first orincioles

planner’s partial results are useless. What we require insteBFf1 9 P pies.

is a progression planner — one that generates the earli

action of a plan first. If a progression planner is interrupte(()%,éStReIated Work

its partially constructed plan will contain actions that can b&he title of this paper, “Reinventing Shakey”, alludes to the
executed immediately. fact that the logic-based approach to robotics was first

hierarchical planning This is the approach adopted here[Nillson, 1984]. One the successes for which the Shakey
The foregoing logical treatment of partial order planning?roject is well-known was the STRIPS approach to planning

hierarchical decomposition. Compound action definitionglissatisfaction with Green’s earlier attempts to use

resolution-based theorem proving for planning [Greenwork carried out at the University of Toronto [Lespérance,
1969]. In many ways, Green’s work is more akin to moderet al, 1994]. In the Toronto work, there is no planning,
cognitive robotics than STRIPS. We'll return to STRIPSexcept as a last resort. Instead, the robot directly executes
shortly. But first, let’s consider how contemporary work inprogram written in Golog [Levesquest al, 1997], a
cognitive robotics is an advance on Green’s efforts. Why ienguage based on the situation calculus. A planner is
it not subject to the same pitfalls? invoked only if the plan monitor detects a failure, in which
There are two main differences bewteen contempora§@Se planning is used to get the world into a state from
cognitive robotics and Green’s work. First, Green’sWhich execution of the program can resume [De Giacomo,
approach to planning was beset by the frame problem. Bt aI.,_ 1998]. Therefore, the course _of actions the robot is to
we now have a number of satisfactory solutions to the frand@ke is worked out almost entirely in advance, and is fixed
problem that can be deployed in cognitive roboticdn the program the robot executes.

[Shanahan, 1997a]. Second, the Shakey project relied on filore recently, the Toronto group have developed a variant
search-based planning from first principles, which isof Golog called ConGolog [De Giacomet al, 1997].
computationally very expensive. Like other recent work inConGolog incorporates facilities for concurrent execution,
cognitive roboticgLevesque,et al, 1997], the approach interrupt handling, and dealing with exogenous actions.
presented here uses chiefly pre-compiled plans — programdsing ConGolog, the precise course of actions taken by the
effectively. In the present approach, this also facilitatesobot depends on conditions and events at run-time,
reactivity, another feature notably lacking in Shakey. resulting in more reactivity. However, in neither Golog nor
Let's return briefly to STRIPS. The STRIPS planningConGolog is there any notion of a goal with respect to
algorithm is now of purely historical interest, as it has longvhich @ program can be proved correct. In the Texas work
been superseded by more efficient techniques. But tH&aral & Tran, 1998], by contrast, the effects of actions are
STRIPS language — the language in which planningPecified using logic, and the resulting theory is used to
problems are described — has had lasting influence on tig€nerate, off-line, a set of provably correct condition-action
planning community. One aim of contemporary cognitivecontrol rules which are then used to direct the robot. The
robotics is to return to logic as a planning language. Thigourse of actions carried out by the robot is, therefore,
move can be justified in many ways — logic is a mordargely determined at run-time, and the resulting behaviour
expressive language, logic idiagua francaused in other 1S highly reactive.

areas of Al, logic has a clear semantics with wellThe present work differs from each of these approaches. Ir
understood mathematical properties, and so on. contrast to both the Toronto and Texas approaches, the worl

However, the logic-based approach to robotics faces gPorted here uses on-line planning, and there is a clea
number of challenges. First, with respect to the presefotion of a goal, which must be entailed by the plan.
work, a major question is how to scale up. The Kheperflowever, the heavy use of hierarchical planning means that
robots have very poor sensors, and can only carry out walost of the time the robot is, in effect, executing a program.
following, or similar basic navigational operations. When©On the other hand, the constant checking of protected links
we move up to richer sensors, such as sonar or vision, hdegated Clipped literals) during execution, which can
will the techniques of this paper be adapted? Likewise, tHe€cipitate rapid replannmg, means that the robot is reactive
Kheperas in the experiments reported here inhabit a simpi®, unexpected changes, like a ConGolog program or the
static, uniform environment, of just the sort that Brooks! €xas robot. The aim is to combine the advantages of
criticises [Brooks, 1991]. How will logic fare when planning, direct programming, and reactive control rules in

confronted with a complex, dynamic, messy environment? @ uniform, logic-based architecture.

One approach is to employ an architecture that cleanlé ludina R K

separates low- and high-level issues, both on the contr oncluding kemarks

front and on the sensing front. This is the approach taken By summarise, the aim of the ongoing work reported here is
the Toronto group [Lespérancet al, 1994]. Then, the to design and build theoretically well-founded, general

guestion of how to deal with complex sensor data and mot@urpose systems for high-level robot control, in which each
control can be pushed into the lower level, where off-thecomputational step is also a step of logical inference, and
shelf techniques can be employed. But ideally, the lineach computational state has declarative meaning. Needles
between low-level and high-level, between the level ofo say, the ideas presented merit a good deal of furthe:
perception and control and the logical level, should bstudy, and although preliminary results are promising, it
drawn as low as possible, to allow logical reasoning aremains to be seen whether they will scale up to robots with
much influence as possible. So more work is required oficher sensors in more realistic environments.

topics such as how to move directly from raw sensor data to

logical representations of low-level detail of the Acknowledgments

environment, such as the shapes of obstacles. Thanks to Jack Minker, Mark Witkowski, and two
From a methodological point of view, the present work fallanonymous referees. This work was carried out as part of
somewhere between the robotics work carried out at thePSRC project GR/L20023 “Cognitive Robotics”.

University of Texasg[Baral & Tran, 1998] and the early

Association for Artificial Intelligence Conference (AAAI

References 97), MIT Press, pp. 153-158.

[Baral & Tran, 1998] C.Baral and S.C.Tran, Relating[Shanahan, 1997c] M.P.Shanahan, Event Calculus Planning
Theories of Actions and Reactive Contrainkoping Revisited, Proceedings 4th European Conference on
Electronic Articles in Computer and Information Scignce Planning (ECP 97)Springer Lecture Notes in Atrtificial
vol. 3 (1998), no. 9. Intelligence no. 1348 (1997), pp. 390-402.

[Brooks, 1991] R.A.Brooks, Intelligence Without Reason[Shanahan, 1999] M.P.Shanahan, The Event Calculus
Proceedings 1991 International Joint Conference on Explained, in Artificial Intelligence Today eds.
Artificial Intelligence (IJCAI 91) Morgan Kaufmann, M.J.Wooldridge & M.Veloso, Springer-Verlag Lecture
pages 569-595. Notes in Artificial Intelligence no. 1600, Springer-Verlag

[De Giacomo,et al, 1997] G. De Giacomo, Y.Lespérance, (1999), pages 409-430.

H.Levesque, Reasoning about Concurrent Executiofishanahan, 2000] M.P.Shanahan, An Abductive Event

Prioritized Interrupts, and Exogenous Actions in the Calculus PlanneiThe Journal of Logic Programmingp

Situation CalculusProceedings 1997 International Joint appear.

Conference on Artificial Intelligence (IJCAI 9Mlorgan [Shanahan & Witkowski, 2000] M.P.Shanahan and

Kaufmann, pp. 1221-1226. M.Witkowski, Event Calculus Planning Through
[De Giacomo,et al, 1998] G. De Giacomo, R.Reiter and Satisfiability, submitted.

M.Soutchanski, Execution Monitoring of High-Level

Robot Programs,Proceedings 1998 Knowledge

Representation Conference (KR 9B)organ Kaufmann,

pp. 453-464.

[Fikes & Nilsson, 1971] R.E.Fikes and N.J.Nilsson,
STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solvindrtificial Intelligence vol. 2
(1971), pp. 189-208.

[Green, 1969] C.Green, Applications of Theorem Proving to
Problem SolvingProceedings 1969 International Joint
Conference on Artificial Intelligence (IJCAI §9p.
219-240.

[Kautz & Selman, 1996] H.Kautz and B.Selman, Pushing
the Envelope: Planning, Propositional Logic and
Stochastic SearchProceedings 1996 American
Association for Artificial Intelligence Conference (AAAI
96), MIT Press, pp. 1194-1201.

[Lespérance,et al, 1994] Y.Lespérance, H.J.Levesque,
F.Lin, D.Marcu, R.Reiter, and R.B.Scherl, A Logical
Approach to High-Level Robot Programming: A Progress
Report, inControl of the Physical World by Intelligent
Systems: Papers from the 1994 American Association for
Artificial Intelligence Fall Symposiumed. B.Kuipers,
New Orleans (1994), pp. 79-85.

[Levesque, et al, 1997] H.Levesque, R.Reiter,
Y.Lespérance, F.Lin and R.B.Scherl, GOLOG: A Logic
Programming Language for Dynamic Domainshe
Journal of Logic Programmingvol. 31 (1997), pp.
59-83.

[Nilsson, 1984] N.J.Nilsson, edShakey the RoboSRI
Technical Note no. 323 (1984), SRI, Menlo Park,
California.

[Shanahan, 1997a] M.P.Shanah&yglving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of InertjaMIT Press (1997).

[Shanahan, 1997b] M.P.Shanahan, Noise, Non-Determinism
and Spatial UncertaintyProceedings 1997 American

