
Computability and Complexity
Lecture 10

Computability and Complexity

More unsolvable problems..
why are we interested in problems which can’t be
solved?

..we should know fundamental results in Computing as
 part of education in the field
 ….and avoid trying to solve them!

..we should understand that these results are
 independent of future hardware developments

..we learn methods applicable to more unsolved problems

Computability and Complexity
Lecture 10

Computability and Complexity

GÖDEL’s Incompleteness Theorem

“there is no Turing Machine which prints out all true statements
 “sentences” about arithmetic and no false ones.”

The language of arithmetic has
• function symbols + and .
• successor function S
• the relation symbols < and =
• the constant symbol 0
• variables v, v', v''..(infinitely many)(symbols are v and ')
• connectives Ÿ (and), ⁄ (or), fi (implies), ¬ (not), ¤(iff)
• quantifiers $, "
• brackets (and)

e.g. p(x) =def (x>S0) Ÿ ("y "z (x = y.z fi y=x ⁄ z=x))

Computability and Complexity
Lecture 10

Computability and Complexity

Method of proof of Gödel’s incompleteness theorem..

We reduce the Halting Problem to the Gödel machine problem..

 express a run of a Turing Machine as an arithmetic formula
describing conditions which must be satisfied for there to be a
successful sequence of configurations (a run ending with a
Halting State) of the TM.

We run the hypothetical Gödel Machine and wait for it to produce
 this formula, or the negation of it, as a true statement of arithmetic.

..that is, whether the TM on a given input will halt or not..
but this is a solution to the Halting Problem..impossible.

the assumption of the Gödel machine is invalid
..there is NO Gödel Machine

Computability and Complexity
Lecture 10

Computability and Complexity

Deciding whether a sentence of first-order predicate logic is
valid or not..

Church showed that an algorithm to do this could be modified to
print out all true statements of arithmetic and no false ones
i.e. he reduced Gödel’s incompleteness problem to this..

as we know Gödel’s theorem has been disproved,
we deduce that this is unsolvable too.

Post’s Correspondance Problem.
Given words a1,a2,..an, b1,b2,..bn of C….
is there a non-empty sequence i(1),i(2),..i(k) of numbers ≤n such
that ai(1) , ai(2)..a i(k) and bi(1), bi(2).. bi(k) are the same or not. There is
no algorithm to decide the general case…can be shown by reducing
HP to this problem.

Computability and Complexity
Lecture 10

Computability and Complexity

Turing Machine Summary
We defined a TM, M = (Q, ∑, I, q0, d, F),
Where:
Q finite, non-empty set of states

∑ finite set of at least 2 symbols: the alphabet. ^ Œ ∑
I non-empty subset of ∑; ^ œ I; input alphabet

q0 q0 Œ Q; starting or initial state

 d: (Q\F) x ∑ fiQ x ∑ x {-1, 0, 1}, a partial function,
 the instruction table

F F Õ Q, the set of final or halting states

Computability and Complexity
Lecture 10

Computability and Complexity

Tape

0 1 2 3 4 5

a b a ^ 3 ^

Symbols from alphabet ∑

‘blank’ symbol

starting state

final states

A Turing Machine

Turing Machine Head

{state set Q

{instruction table d

square number
(not visible to TM)

Computability and Complexity
Lecture 10

Computability and Complexity

The Church-Turing Thesis: a problem is algorithmically solvable
 iff it can be solved by a Turing Machine..
evidence (not proof) for this:

• intuition
• very large set of examples
• equivalence to other formalisms (eg Church’s).

we looked at ways we might extend the capacity of the defined TM:
• multiple tracks
• holding finite amount of data in a state

and found these were just programmers’ conveniences - they did not
extend the TM-solvable problems
and at hardware extensions:

 • 2-way infinite tape
 • multiple tapes
 • 2-dimensional tape..and showed no extension to computability

support for the Church-Turing thesis

Computability and Complexity
Lecture 10

Computability and Complexity

We defined the Universal Turing Machine, U
 - the first programmable computer

which takes the code of a standard TM, S, and an input word w,
 and produces the same outcome as S running on input w.

Could we use U to tell us whether an arbitrary standard TM
 Halts and Succeeds or not?

..is there any TM which could do this..solve the Halting Problem?

We proved directly that there is no TM to solve the Halting Problem

and derived other unsolvability results by reduction of HP (showing
that a solution of the new problem could be used to solve HP..already
shown to be unsolvable)…reduction of HP to the new problem.

Later in the course - non-deterministic TMs

Computability and Complexity
Lecture 10

Computability and Complexity

Tutorial Sheet 5 - Qu 1

Duplicator

Halt
& Succeed H' loop

M

 input w Œ C

Assume (to get a contradiction proof) that H' exists.
Build M:

w*w

0 on tape 1 on tape

By elimination of scratch characters we can assume M is standard,
so M has a code; input code(M) to M:
M runs forever (moving right)
iff fH(code(M)*code(M)) = 1
iff M halts on input code(M) [defn of H']…Contradiction

so H' does not exist

(x,x,1)

Computability and Complexity
Lecture 10

Computability and Complexity

Tutorial Sheet 5 - Qu 2

Assume (to get a contradiction) that EO exists. Build M as below

Duplicator EO
Next state after

EO halts
Halt &
Succeed

M

By elimination of scratch characters we can assume M is standard,
So it has a code.
fM(code(M)) = * iff fEO(code(M)*code(M)) = y
 iff fM(code(M)) = e
Contradiction

So EO does not exist.

wŒ C w*w (y,*,0)
(n,^,0)

Computability and Complexity
Lecture 10

Computability and Complexity

Tutorial Sheet 5 - Qu 3

If H'' exists, consider the following TM, M:

Halt & Succeed H'' no applicable
 instruction

M

wŒ C

0 on tape 1 on tape

The duplicator is not needed (see defn of fH'') . We can assume M
is standard by elimination of scratch characters, so it has a code.
M Halts and Fails on input code(M)

iff fH''(code(M)) = 1
iff M Halts and Succeeds on input code(M).

Contradiction fi there is no such H''

Computability and Complexity
Lecture 10

Computability and Complexity

Tutorial Sheet 5 - Qu 4

..we build the TM X:

EDIT H''
X code(S)*w code(S[w])

X solves the Halting Problem: ..if S is standard, and w ŒC, then
fX(code(S)*w)) = fH’’(code(S[w]).
By definition of H’’ this is 1 if f S[w](code(S[w]) is defined

 0 if not defined.
But f S[w] (code(S[w])) = fS(w).
So fX(code(S)*w) = 1 if fS(w) is defined, and 0 if not. ..X solves HP

 but HP has no TM solution..H'' cannot exist.

